The Localization of Eceriferum loci in Barley. IV. Three-point Tests of Genes on Chromosome 7 in Barley

Eleven three point tests are reported for chromosome 7 in barley. The tests were analysed in the F3 generation. The results permit the construction of a map for the ten genes studied.

General information
Publication status: Published
Organisations: Risø National Laboratory for Sustainable Energy
Contributors: Søgaard-Pedersen, B.
Pages: 34-44
Publication date: 1977
Peer-reviewed: No

Publication information
Journal: Carlsberg Research Communications
Volume: 42
Issue number: 1
ISSN (Print): 0105-1938
Original language: English
DOIs: 10.1007/BF02906708
Source: orbit
Source ID: 284817

The Localization of Eceriferum Loci in Barley V. Three Point Tests of Genes on Chromosome 1 and 3 in Barley

Five three point tests are reported for chromosome 1 and four three point tests for chromosome 3. The tests were analysed in the F3 generation. Maps for two regions on chromosome 1 comprising five and four genes respectively, can be constructed from the data obtained. The map spanning the distance cer-f toert-m confirms previous results for this interval. As observed earlier, coefficients of coincidence larger than 1 corresponding to negative interference are found in this region of chromosome 1. It is suggested that the consistent occurrence of negative interference in this interval is due to its location close to the centromere. In the other region studied on chromosome 1 normal positive interference is observed. On chromosome 3 a linkage map of the four markers analysed is presented. Positive interference is found in the three point tests of this region.

General information
Publication status: Published
Organisations: Risø National Laboratory for Sustainable Energy
Contributors: Søgaard-Pedersen, B.
Pages: 67-75
Publication date: 1977
Peer-reviewed: No

Publication information
Journal: Carlsberg Research Communications
Volume: 42
Issue number: 1
ISSN (Print): 0105-1938
Original language: English
DOIs: 10.1007/BF02906710
Source: orbit