The role of location of low inertia in power systems

Activity: Examinations and supervisionSupervisor activities


The plans to reduce the energy-related greenhouse gas emissions stimulate the deployment of electronically interfaced renewable resources. The increased penetration of such intermittent sources together with phasing conventional power plants out and the installation of High Voltage Direct Current (HVDC) links for long-distance more efficient transmission, reduces the stored inertia in any electrical grid. This leads to a more vulnerable power system and increases the significance of studying the corresponding stability aspects. Decreasing the inertial response of a power system deteriorates the quality of both frequency and rotor-angle stability which are the dynamics of interest in this study.

The thesis explores the role of the location of low inertia on varying the power system’s dynamics. This is to be conducted in isolation of all other factors that could affect the study outcomes, such as dealing with the same system’s inertia value upon lowering the inertia in different locations. To accomplish this objective, it is essential to analyze the inertia distribution of the examined power system following the alterations of inertia reduction location. Accordingly, an inherently previous work methodology, that estimates the relative distance of the system’s components to Center Of Inertia (COI), is utilized throughout this study. Both frequency response and small-signal stability are analyzed in light of the inertia distribution results.

The thesis examines two different power systems, a small two-area model and a bigger more realistic power system. The former model, known as Kundur model, helps in building a conceptual process to apply the methodology and to benchmark the dynamics of interest. While the latter is a reduced model of the Swedish transmission grid, known as Nordic 32 model. Different scenarios of low inertia are considered to capture the current trend of integrating more Renewable Energy Sources (RES) and phasing out more conventional plants. DIgSILENT Powerfactory is the weapon of choice in this study. It is utilized to assess both the frequency stability by performing electromechanical transients’ simulations, and small-signal stability following modal analysis simulations.

Results show that the alterations of low inertia location are associated with variations in Instantaneous Frequency Deviation (IFD), Rate Of Change Of Frequency (ROCOF) and the damping ratio of the most critical inter-area oscillation mode. These variations have different levels of significance. Variations of the latter two metrics have the most considerable effects from the stability’s perspective. They can be utilized to prioritize the phasing out process of the conventional power plants, and to choose one of the scenarios of a specific low inertia location over the others. This helps in fulfilling proper long-term planning and short-term operation from the system operator’s perspective.
Period22 Jan 202110 Jun 2021
ExamineeBashar Alahmad
Examination held atUppsala University
Degree of RecognitionInternational