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Summary

This PhD thesis consists of two main parts. The �rst part describes the dynamics
of an ideal �uid on a stationary free surface of a given shape. It turns out that one
can formulate a set of self-contained equations of momentum conservation for the
tangential �ow, with no reference to the �ow of the �uid bulk. With these equa-
tions, one can in principle predict the surface �ow on a given free surface, once its
shape has been measured. The equations are expressed for a general surface using
Riemannian geometry and their solutions are discussed, including some dif�culties
that may arise. Furthermore, the equations are applied to an experiment involving
a poorly understood symmetry-breaking instability of a rotating �uid with a free
surface, cf. Bergmann et al., [J. Fl. Mech. 679, 415-431 (2011)], with the re-
sult con�rmed by direct measurement. This experiment is discussed in some detail
together with an ongoing investigation of the �uid motion in question and the elu-
sive instability mechanism. The second main part of the thesis describes work on
point vortex dynamics and instability. The problem of point vortex pair scatter-
ing is brie�y revisited together with a short discussion of chaotic advection, and
the stability of vortex leapfrogging is investigated within the framework of Floquet
theory. An analytical criterion is found, giving the exact location of the transition
to instability earlier observed in numerical investigations by Acheson [Eur. J.
Phys. 21, 269-273 (2000)]. Finally, an experimental work on elastic collisions of
wet spheres is brie�y discussed.
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Summary in Danish
Over�ade- og hvirvelstrømninger: Dynamik og instabiliteter

Denne PhD-afhandling best	ar af to hoveddele. I første del præsenteres en un-
dersøgelse af ideelle væskestrømninger p	a en stationær fri over�ade af en givet
form. Ved projektion af Euler-ligningerne p	a over�adens tangentplan udledes dy-
namiske ligninger for strømningen i over�aden, uafhængigt af strømningen under
over�aden. Med disse ligninger kan man i princippet bestemme strømningen p	a
en stationær fri over�ade, hvis man først m	aler over�adens form. Ligningerne
udledes for en generel over�ade beskrevet som en Riemannsk mangfoldighed, og
løsningsmulighederne diskuteres. Disse resultater anvendes p	a et eksperimentelt
studie af et endnu d	arligt forst	aet symmetribrud i en roterende væskestrømning, se
Bergmann et al., [J. Fl. Mech. 679, 415-431 (2011)]. Resultaterne bekræftes
ved direkte m	aling. Desuden diskuteres eksperimentet og en igangværende un-
dersøgelse af den involverede komplekse væskedynamik og mekanismen bag det
omtalte symmetribrud. I afhandlingens anden del præsenteres resultater om punk-
thvirveldynamik og instabilitet. Kollisioner af punkthvirvler studeres sammen med
kaotisk partikelbevægelse i ideelle væskestrømninger. Desuden undersøger vi en
hvirvelbevægelse, s	akaldt “leapfrogging”, hvor to hvirvelpar overhaler hinanden
p	a skift i en periodisk bevægelse. Bevægelsens stabilitet analyseres, og vi �nder
et eksakt kriterie for overgangen til instabilitet, der bekræfter resultatet af en nu-
merisk undersøgelse udført af D. Acheson [Eur. J. Phys. 21, 269-273 (2000)].
Sluttelig præsenteres resultaterne fra et kort eksperimentelt studie af elastiske kol-
lisioner mellem v	ade partikler.

Populært Resuḿe

Strømninger i vand bemærkes ofte ved at over�aden ændrer form. Vi kender det
fra h	andvasken, hvor en fordybning i vandover�aden over a�øbet fortæller os, at
der er en hvirvel dernede. Men hvad kan man engentlig sige om strømningen,
hvis man kender over�adens form? Det viser sig, at man kan sige en hel del. I
afhandlingens første del beskrives en teori for strømningen p	a en vandover�ade
af konstant form. Desuden diskuteres et eksperiment, hvor en roterende væske i
en rund beholder pludselig bliver ustabil og g	ar fra en cirkulær til en kantet form.
Teorien for over�adestrømninger bruges p	a dette eksperiment, og jeg fortæller om
vores forsøg p	a at forst	a de mystiske kantede former i strømningen. Afhandlin-
gens anden del beskriver dynamikken i en simpel model af hvirvelstrømninger. Jeg
præsenterer resultater om kaotisk bevægelse i et system af hvirvler og stabiliteten
af den s	akaldte “leapfrog”-bevægelse, hvor to par af hvirler overhaler hinanden p	a
skift. Bevægelsen er ustabil under bestemte betingelser, som bestemmes matema-
tisk.
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Introduction

This thesis gives a condensed account of my PhD project at DTU Physics in 2008-
2012. A number of research papers are included, some of which have been pub-
lished in journals, while others have been submitted for review. Not included is the
number of failed ideas and the hours of futile work spent during the project.

The thesis is divided into two main chapters, each containing a set of papers. In
the introduction to each set, I give a brief account of the papers and the work lead-
ing up to them. The style of these introductory sections is informal, and squarely
technical discussions are reserved for the included papers.

Chapter 1 deals with the description of free surface �ows and my efforts to
analyze an experiment performed at DTU Physics. Much will be said about this
so-called “rotating polygon” experiment in chapter 1. The main part of the chapter
deals with the introduction and application of a set of dynamical equations gov-
erning the �ow of an ideal �uid on a stationary free surface. The equations �nd
an application in an all but ideal �uid in the rotating polygon experiment. Lessons
learned from the above-mentioned work is in turn applied in an ongoing work on
understanding the observed phenomenon and the underlying symmetry-breaking
instability.

Chapter 2 recounts a very different part of my PhD project, which was done
in collaboration with my co-supervisor Hassan Aref. This work is on point vortex
dynamics, a simple low-dimensional model which captures much of the dynamics
of real �uid dynamics, while providing a lot of interesting problems for the math-
ematically inclined. In this project, we have mainly worked on an analysis of the
stability of vortex leapfrogging, and we have found analytically a criterion identi-
fying stable and unstable leapfrogging motions. This work is presented in chapter
2 along with other results on point vortex motion, in particular the scattering of
vortex pairs. The chapter also gives a small preview of a piece work to come, on
the scattering problem in the limit of weak interaction.

Finally, the short chapter 3 provides the results of my short visit during the PhD
to theÉcole Polytechnique in Paris, where I performed an experimental study of
collisions of elastic spheres covered in a viscous �lm.

A complete list of references is found at the end of the thesis.
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The thesis page number is shown at the bottom of each page. For those reading on
a computer, the page footer provides a link to the table of contents.

This PhD project was funded by DTU Physics.
I wish to express my gratitude toward my friend and teacher Hassan Aref, who
recently passed away.
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Chapter 1

Modelling of Free Surface Flows

This work is motivated by an experiment �rst described by [Vatistas (1990)] and
later by [Janssonet al. (2006)], whose work has been continued by the Complex
Motion in Fluids Group at DTU Physics. The experiment consists of a cylindrical
bucket partially �lled with water. The bucket is so constructed, that the bottom
plate can be rotated while the side wall is kept stationary. Thus forced, the �uid
spins around at rather high speeds in a turbulent �ow, and the free surface deforms
considerably. The setup is carefully manufactured and arranged to have circular
symmetry, so one might expect to observe a symmetric �ow and free surface de-
formation. But on the contrary, the �ow breaks the symmetry for a range of control
parameters (bottom plate rotation rate, �uid viscosity and volume of �uid). Ob-
serving the shape of the free surface, one then sees a polygon-shaped deformation
that rotates while keeping its shape. The rotation of the deformation is consid-
erably slower than both that of the bottom plate and that of the �uid itself. The
�ow itself is complex and not too well understood, and we do not understand the
symmetry-breaking instability leading to the polygon states.

While trying to understand these �ows, I made an observation on the problem
of deducing �ow velocities from observation of the free surface shape. If one treats
the �uid as ideal, i.e. free of shear forces from viscous friction between �uid parti-
cles, the �ow is governed by the well-known Euler equations. Now, when the �ow
is stationary as seen from some (possibly rotating) frame of reference, the Euler
equations can be projected onto the free surface to yield dynamical equations for
the tangential �ow without reference to the underlying �ow in the �uid bulk. The
force on �uid particles moving on the surface is given entirely in terms of potential
gradients, e.g. from gravity, surface tension and possibly Coriolis forces, all of
which can be calculated in terms of the free surface shape and the tangential �uid
velocity components. These equations can be solved independently of the bulk
�ow. It is important to note that in any physical �ow, the motion of the �uid bulk
is has a great in�uence on the �ow on the free surface. But, neglecting viscosity,
this in�uence is conveyed entirely through theshapeof the free surface, which we
can in principle observe and quantify.
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Aside from the rather mathematical problem mentioned above, I have been
working on the dynamics of the �ow. Aspects of this work are brie�y discussed.

Outline

The work is presented in a reverse order, starting with the most recent paper giving
an up-to-date exposition of the theory, followed by an earlier paper on the experi-
ment that motivated the theoretical developments.

First, on pp. 9-32 I include the paper “Stationary ideal �ow on a free surface
of a given shape” by Laust Tophøj and Tomas Bohr. The paper was submitted to
Journal of Fluid Mechanics on March 14, 2012. We set about to introduce the dy-
namical equations governing the free surface �ow, emphasizing theoretical results.
The paper introduces the mathematical formalism necessary to write the equations
for a given surface, including the use of Riemannian geometry and a representa-
tion of the free surface as a smooth 2D manifold, and discusses the possibility of
solving them in certain cases.

Next, on pp. p. 33-49, I include the paper “Polygon formation and surface �ow on a
rotating �uid” by Raymond Bermann, Laust Tophøj, Tess Homan, Pascal Hersen,
Anders Andersen and Tomas Bohr, published by Journal of Fluid Mechanics in
2011, [Bergmannet al. (2011)]. The paper is centered on three aspects of the
rotating polygon experiment: The observed dynamics of states, a detailed experi-
mental investigation of a �ow in a triangular polygon state, and an analysis of sym-
metric �ows. The bulk of the experiments discussed were performed by Raymond
Bergmann. My main contribution to the paper is section 5 on symmetric states. We
speculate that the rotating polygon �ows occur as a result of an instability of such
states, and we are therefore very interested in a detailed understanding. Section 5
gives an account of the projected Euler equations using basic vector analysis, and
the results are succesfully employed in extracting the surface �ow velocities from
the free surface shape, a result which is con�rmed by particle tracking experiments.

This is followed on pp. 51-52 by an erratum, published by Journal of Fluid Me-
chanics, cf. [Bergmannet al. (2012)], which corrects a couple of typos and ex-
pands the discussion on the feasibility of representing the polygon �ow as induced
by a few point vortices, as proposed in [Vatistaset al. (2008)]. In the erratum, we
present new calculations on the experiments by Raymond Bergmann mentioned
above, including a map of the vorticity distribution of the surface �ow in a trian-
gular polygon state. This material is proving useful to us when discussing possible
models of the �ow with George Vatistas and his collaborators.

Finally, on pp. 53-64 the draft paper, “A model of the rotating polygon experi-
ment using conservation of angular momentum” is presented. As discussed above,
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a detailed understanding of symmetric states is essential when trying to identify the
instability mechanism leading to the observed polygon �ows. I present an analysis
on the in�ux of angular momentum to the �uid in the rotating polygon experiment.
Using this analysis, one can use the control parameters of the experiment, the ro-
tation rates of the control surfaces and the water volume, to predict the shape of
the resultingsymmetricstate. Arguing that the properties of the observed polygon
(e.g. the number of corners) depends on the geometry of the associated symmetric
state, I propose a model that reproduces the phase diagram of observed states, cf.
[Janssonet al. (2006)], reasonably well. It seems that we are now one step closer
to understand and predict the �ow and surface shape resulting from a given set of
control parameters.
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Under consideration for publication in J. Fluid Mech. 1

Stationary ideal 
ow on a free surface of a
given shape

L. TOPH�J and T. BOHR
Physics Department & Center for Fluid Dynamics,
The Technical University of Denmark, Kgs. Lyngby

(Received 14 March 2012)

We study the stationary, ideal 
ow on a 
uid surface of a given shape. It is
demonstrated that the 
ow is governed by a self-contained set ofequations
for the surface 
ow �eld without any reference to the bulk-
ow. To write
down these equations for arbitrary surfaces, we apply a covariant formula-
tion using Riemannian geometry and we show how to include surface tension
and velocity dependent forces such as the Coriolis force. We write down ex-
plicitly the equations for cases where the surface elevation can be written as
function of either cartesian or polar coordinates in the plane, and we obtain
solutions for the important case of rotational symmetry and the perturbed

ow when this symmetry is slightly broken. To understand the general char-
acter and solubility of the equations, we introduce the associated dynamical
system describing the motion along the streamlines. The existence of orbits
with transversal intersections, as well as quasiperiodic and chaotic solutions,
show that not all boundary value problems are well-posed. In the particular
case of unforced motion the stream lines are geodesic curves and inthis case
the existence of a non-trivial surface velocity �eld requires that the surface
can be foliated by a family of non-intersecting geodesic curves.

1. Introduction
The close connection between surface 
ow and surface deformation is well

known from everyday experiences as well as from laboratory experiments
in 
uid dynamics. For example, the localised surface deformations behind
an oar is closely linked to the swirling motion on the surface of the vortices
in the wake. One might then ask how strong this link is: is it possible from
knowledge of the shape of the surface to infer the surface 
ow? In this paper
we shall show that the answer is to a large extent a�rmative.

In section 2 we present a simple observation, which to our knowledge
has not been stated clearly before: that the stationary 
ow of anideal
incompressible 
uid on a stationary free surface is governed by self-contained
dynamical equations that do not involve the 
ow outside the free surface.
These equations are the projection of the Euler equation onto thelocal
surface tangent plane.

To write these equations in a transparent way and connect them tothe
geometry of the surface, we use a covariant description where the free surface
is described as a two-dimensional Riemannian manifold equipped with a
metric tensor. With this formalism, which is reviewed in section 3, one can
readily write the surface 
ow equations on an arbitrary smooth free surface.
This is done in section 4. The equations can be made to account for surface
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2 L. Toph�j and T. Bohr

tension and velocity-dependent forces, such as the Coriolis acceleration in
a non-inertial reference frame.

In section 5, we move on to describe a situation where the 
ow and surface
shape possess invariance under rotations about a �xed axis, a case that has
been discussed in Bergmann et al. (2011). In this case the equations simplify
a great deal and it is straightforward to �nd solutions. The types of solutions
demonstrate a crucial property of the surface 
ow equations: that they
may be singular on lines separating regions with di�erent behaviour ofthe

ow. The rami�cations for general surface 
ows with rotational invariance
is discussed. We next study 
ows in which the circular symmetry is broken,
and as an example we look at the perturbation expansion for a line vortex
on a slightly asymmetric surface. We obtain expressions for the streamlines
and discuss the conditions for the absence of drift.

In section 6 we show that the surface 
ow equations can be interpreted as
a dynamical system, where particles of the dynamical system movealong the
characteristics for the �eld equations. With no external forcing (like gravity)
the orbits are geodesics corresponding to the given surface deformation. We
give general expressions for the Lagrangian and the Hamiltonian controlling
the dynamics, and we relate the Beronoulli integral to the conserved energy
along the orbit.

Finally, we discuss the general solubility of the surface 
ow equations.
In the example treated in section 5, we gave explicit formulas for 
owve-
locities and streamlines for a slightly perturbed line vortex. On the other
hand, the dynamical orbits introduced in section 6, will, since they are pro-
jections from the energy surface of a 4-dimensional phase space, generally
intersect, and the existence of a well-de�ned velocity �eld on the surface
thus depends crucially on the structure of the domain and the boundary
conditions imposed on it. As an example, we treat an anisotropic quadratic
surface elevation and show that the perturbation expansion breaks down.

2. Decoupling of the free surface Euler equations from the bulk 
ow
Consider the stationary 
ow of an inviscid, incompressible 
uid of con-

stant density � 0. The velocity vector is denoted byv and thevorticity vector
is !!! = r � v . Conservation of momentum for time-independent 
ow is ex-
pressed by the Euler equation,

(v � r )v = �
1
� 0

r p + f : (2.1)

External body forces are represented by the acceleration vector f . Note that
p is the pressure divided by the constant 
uid density.

On a smooth free surface, inviscid 
ow governed by (2.1) is subjectto:
1) the kinematic boundary condition,that v � n = 0, where n is a any
normal vector to the surface, and 2)the dynamic boundary condition,that
the pressure (neglecting an immaterial constant term) isp = 2
H . This is
the Young-Laplace pressure associated with constant surface tension
 on a
surface of mean curvatureH , which is well-de�ned at every point on the free
surface and di�erentiable in terms of any smooth surface parametrization.

We use the identity (v � r )v = rk vk2=2 + !!! � v and project (2.1) along
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Stationary ideal 
ow on a free surface of a given shape 3

a tangent vector t to the surface by taking the dot product oft and the
vector quantities on either side. The resulting equation,valid in the surface
is

(t � r )
kvk2

2
+ t � (!!! � v ) = � 2



� 0

(t � r )H + t � f : (2.2)

Aside from the triple product term t � (!!! � v ), all the terms in (2.2) are
explicitly in the tangent plane sincet � r is the derivative along a tangent
vector in the surface, and since the kinematic boundary condition ensures
that the normal component ofv vanishes in the surface. To show that the
triple product is also in the tangent plane, we use the invariance of a triple
product under cyclic permutations of the factors:t � (!!! � v ) = !!! � (v � t ).
Now, v � t (a cross product of tangent vectors) is clearly normal to the
surface, so (2.2) refers only to the normal component of the vorticity �eld,
which in turn is de�ned by velocity gradients only in the tangent plane.

We have then achieved a decoupling between the surface 
ow and the bulk

ow in the sense that (2.2) involves only velocity components and deriva-
tives in the surface. Note that the continuity equation, which involves the
normal derivative of the normal component ofv is left indeterminate, but
since the pressure has disappeared as a variable, the surface 
owequations,
being basically two coupled equations for two independent surface velocity
components, are su�cient for a solution. This will be discussed in greater
detail later. Note at this point, that knowledge of the surface 
owallows
the determination of the normal derivative@vn=@nof the normal velocity
by the continuity equation,

r � v =
@vn
@n

+ r s � v = 0; (2.3)

wherer s � v is the divergence in the tangent plane.
Let us brie
y discuss the case of a viscous 
ow. The dynamical boundary

condition requires the viscous stress tensor to vanish on the freesurface.
However, the divergence of the stress tensor, which gives the viscous force
density, needs not vanish. The uncoupling cannot take place for the viscous
Navier-Stokes equation as one can immediately realize by consideringthe
Poiseuille 
ow of a uniform �lm of liquid 
owing steadily down an inclined
plate. At the free surface, the force of gravity is balanced by theviscous
force, a necessary condition for steady 
ow. In many cases, however, it is
useful to approximate the dynamics of a given 
ow by neglecting viscous
stresses. This would require that the Reynolds number be small, i.e. that
the viscous force term is small compared to the terms included in (2.1).
Even though the 
ow of a real 
ow is often dramatically di�erent from a
solution to the Euler equation, this di�erence is typically localized to strong
vorticity in boundary layers near solid boundaries, and regions where such
boundary layer vorticity is advected by the 
ow. For extended regions of
the 
uid, viscosity plays a negligible role in the local dynamics.

Note that we could easily have considered a time dependent velocity �eld.
The inclusion of the term@v=@tin (2.2) would still allow us to proceed with
the projection to the tangent plane. We have not pursued this further here
since in applications this would typically imply that the surface shape is
time dependent too, and this would introduce severe complications.
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4 L. Toph�j and T. Bohr

3. Covariant formulation of the 3D Euler equations
In the previous section we showed that the Euler equation, when projected

along the free surface, decouples from the bulk 
ow. This was donelocally,
with reference to vectors de�ned in the tangent plane associatedwith a
speci�c point on the free surface. Now, in order to assemble this point-wise
information into a useful set of partial di�erential equations we shall proceed
to develop a framework based on tensor notation and the description of the
free surface as a two-dimensional Riemannian manifold. In many cases, the
dynamical equations can be derived and analyzed without reference to the
physical 3D space, into which this manifold is embedded. However, inclusion
of magnetic or Coriolis forces, and the e�ect of surface tension, requires us
to refer to the details of the embedding.

Conventionally, the equations of 
uid mechanics are written in termsof
orthogonal coordinates. When dealing with the 
ow on a (generally curved)
surface, it is generally practical to use non-orthogonal coordinates. Even
though orthogonal coordinate systems do exist for any two-dimensional
smooth manifold, cf. Stoker (1969), their relation to typical laboratory co-
ordinates can be complicated, and their very de�nition may involve the
solution of di�erential equations. Riemannian geometry, on the other hand,
provides a straightforward procedure for describing the 
ow on any smooth
surface using non-orthogonal coordinates. For example, a wavysurface given
in Cartesian coordinates (x; y; h(x; y)), where h is the surface height, can
immediately be described as a manifold parameterized by the coordinates
(x; y), which are non-orthogonal when the surface has a height gradient
at an angle to the coordinate axes. In the following, we shall developa
procedure for writing the projected Euler equations governing free surface

ows on such (and more general) surfaces. For a phycisists introduction to
Riemannian geometry, cf. Carroll (2003). We start by writing the full 3-
dimensional stationary Euler equation in covariant form. Covariance means
that the equations keep their meaning when the coordinate systemis trans-
formed. The essential point is that we write our equations in terms of ten-
sors, de�ned as objects that transform according to speci�c rules, implying
covariance. If the equations hold in one coordinate system, they will hold
in another, due to the tensor property. So we need simply write theEuler
equation in tensor form, such that it reduces to the well-known expression
in orthogonal coordinates.

First we introduce an orthogonal \laboratory" coordinate system y� =
(y1; y2; y3). The corresponding metric tensor is� �� , the Kronecker delta. Let
the 
uid domain be described by a set of coordinatesx � ; � = 1; 2; 3, given
a transformation

x � ! y� (x � ); (3.1)
and a metric tensor

g�� =
@y�

@x�
@y�

@x�
� �� : (3.2)

By convention, summation over repeated indices is implied. In the following,
we shall use Greek letters to denote indices over 3D space and Latinletters
to denote indices over the 2D manifold describing the free surface.The
inverse metricg�� is de�ned as the matrix inverse ofg�� , i.e. g�� g�� = � �

� .
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Stationary ideal 
ow on a free surface of a given shape 5

A vector is a quantity with one upper index, e.g. the 
uid 
ow velocity
V � = d x � =dt, wherex � are the coordinates of a 
uid particle. Adual vector
is a quantity with a lower indix, e.g. the gradient@� � � @� =@x� . Both are
tensors and transform accordingly, cf. Carroll (2003). The rules of tensor
manipulation ensure that contractions, e.g.a� � g�� V � , or products, e.g.
b�

� � V � @� �, are tensors. We can raise and lower indices by the metric
tensor, i.e. we can de�ne a dual velocity vector byV� � g�� V � or a vector
gradient by @� � � g�� @� �. The physical velocity vector v is given in terms
of V � by v = e� V � , where e� = @y=@x� are the dual basis vectors. Note
that e� need not be either unit vectors nor mutually orthogonal.

The Euler equation in covariant form reads

V � r � V � = � g�� @�
@x�

+ f � : (3.3)

The left-hand side of (3.3) is the covariant expression of the conventional
advective derivative and contains the covariant derivative

r � V � =
@V�

@x�
+ � �

�� V � : (3.4)

The last term of (3.4) is a curvature term that accounts for the change of
coordinate directions over space. They contain the Christo�el connection
coe�cients, de�ned in terms of the metric by

� �
�� [g�� ] =

1
2

g��
�

@g��
@x�

+
@g��
@x�

�
@g��
@x�

�
; (3.5)

where we have explicitly written the dependence on the metricg�� . The
connection coe�cients are not tensors, but the covariant derivative de�ned
by (3.4) is. On the right hand side of (3.3) we have the scalar potential �eld
� and the applied force f � . We can de�ne � so as to include pressure (p=�0),
gravity forces and possibly a centrifugal force, and on the free surface, the
e�ect of surface tension, which would correspond to � containing aterm
proportional to the surface mean curvature. The covariant formulation of
the Euler and Navier-Stokes equations has been discussed earlier,e.g. by
Ilin (1991).

To see that (3.3) are indeed the stationary Euler equations, we inspect
their form in Cartesian coordinates, whereg�� = � �� . Then � �

�� = 0, and
the equations read (v � r )v = �r � + f , which we recognize.

4. Covariant formulation of the surface 
ow equations
In order to project (3.3) onto the free surface, we shall now introduce

a particular set of surface-adapted coordinates. We denote thefree surface
by S. We assume thatS is described by a smooth regular parameterized
surface, i.e. a mapf 0 : x i ! y�

x i ! y� � f �
0 (x i ): (4.1)

Here and below we use Greek letters to denote indices over 3D space, so
x � = ( x1; x2; x3), and Roman letters for indices overS, so x i = ( x1; x2).
The regularity of the parameterization (4.1) means that at any point, the
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e1

e2

e3

y1

y2

y3

�x �

S

Figure 1. Sketch of the coordinates. y� are the Cartesian laboratory coordinates. x � are
non-orthogonal coordinates attached to the free surface S and de�ned by the map y� = f � (x � )
given in (4.3). The basis dual vectors ei , (4.2), associated to a point x � = �x � de�ne the local
coordinate directions, in the sense that f � (�x � + d x � ) = f � (�x0) + d x � e� (x �

0 ). The dashed line
tangent to e1 is obtained by varying x1 while keeping x2 and x3 �xed. (4.3) de�nes a valid
coordinate system close theS, i.e. for small values of x3 .

vectors @f�0 =@x1 and @f�0 =@x2 are linearly independent, and so they span
the local tangent plane. The smoothness condition means that thetangent
plane varies smoothly with (x1; x2). We introduce the dual vectors

e1(x i ) =
@f�0
@x1

; e2(x i ) =
@f�0
@x2

; e3(x i ) =
e1 � e2

ke1 � e2k
; (4.2)

all of which are de�ned onS, and the mapf : x � ! y� ,

f � (x1; x2; x3) = f �
0 (x i ) + x3e3(x i ): (4.3)

Due to (4.2) and the regularity of (4.1),f is a smooth map at any point
x i in S, with a nonsingular Jacobian matrix, i.e.j@y� =@x� j 6= 0. So by the
Inverse Function Theorem, the inverse mapf � 1 : y� ! x � exists in a small
neighbourhood of space around any pointy� (x i ) in S. Sof de�ned by (4.3)
is a smooth bijective map from an open set inR3 containing the planex3 = 0
to an open set of the physical space containing the free surfaceS. In other
words, x � together with (4.3) gives a valid coordinate system on space near
the free surfaceS. (4.2) are the corresponding dual basis vectors. Note that
this argument extends directly to the case whereS is described by two or
more overlapping charts, whose overlap must satisfy certain conditions for
S to be a manifold. These properties carry over the 3D manifold to linear
order in x3.

We move on to compute the metric from (4.3). We have@y� =@xi = ei +
x3@e3=@xi and @y� =@x3 = e3. To �rst order in x3, the metric tensor (3.2) is

g�� = e� � e� + x3
�

e� �
@e3

@x�
+ e� �

@e3

@x�

�
: (4.4)

Now, (4.4) allows us to compute the �rst derivatives of the metric onS and
so the Christo�el symbols in (3.5).

The property ei � e3 = 0 means that the metric (4.4) takes a special form
on S, essentially decomposing the part pertaining tox1; x2:

g�� =

 h
gij

i 0
0

0 0 1

!

; (4.5)
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wheregij is the 2D metric tensor of the surface submanifold:

gij =
@f�0
@xi

@f�0
@xj

� �� ; i; j = 1; 2. (4.6)

wheref 0 is de�ned in (4.1).
Similarly, we introduce submanifold connection coe�cients �ijk [glm ] by

restricting the summation indices in (3.5) to 1,2. We note that these new
connection coe�cients are identical to the corresponding ones de�ned from
the full metric � i

jk [glm ] = � i
jk [g�� ], but we want to stress that they can be

computed without reference to thex3 coordinate. The block form ofg�� in
(4.5) implies that the inverse metricg�� takes a similar block form, withgij

in (4.5) replaced by its inverse,gij .
We shall now show that, in accordance with section 2, the equations

of (3.3) for � = 1; 2, refer only to the physical �elds directly on the free
surface, and furthermore, that one can determine the coordinate form of
these equations without bothering to even de�ne the third coordinate, x3.
We assume for now that the force and potential �eldsf i and � are known
on the surface as functions of the parametrizing coordinatesx i .

The kinematic boundary condition,v � n = 0, means that the physical
velocity vector v lies in the plane spanned bye1; e2. Since the linearly in-
dependent dual basis vectorse� admit a unique linear combination forming
v, this implies V 3 = 0.

Looking at the terms of (3.3) with � = 1; 2, we note that the partial
derivatives@=@xi refer only to surface quantities. (4.5) impliesgi� @� =@x� =
gij @� =@xj so the potential term depends only on the potential de�ned on
the free surface. As for the convective derivativeV � r � V i = V j r j V i , it con-
tains only surface-directed velocity derivatives@Vi =@xj and the connection
coe�cients � i

jk , which may be computed directly from the surface metric
(4.6).

Let us return to the question of the potential and force �elds, which must
be de�ned using the full map x i ! y� . A crucial feature of the surface
equations is, in contrast to the 3D Euler equations (3.3), that the pressure
drops out of the potential, since it is constant on the surface, except for the
Laplace pressure due to surface tension. We thus assume that the potential
has the form

� = � (y� ) + 2 
H; (4.7)
where H is the surface mean curvature de�ned on the surface.H is pos-
itive when the surface curves in the direction of the normal vectore3.
Physically, this corresponds toe3 pointing out of the 
uid. For example
y� = ( x1; x2; h(x1; x2)) corresponds to the typical situation where the 
uid
is below the interface.

The mean curvature is given by

H (x i ) = �
1
2

g�� r � n� = �
1
4

g�� @g��
@x3

; (4.8)

where n� = � 3
� is the dual normal vector �eld. In (4.8), we have used the
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8 L. Toph�j and T. Bohr

extrinsic curvature tensorr � n� associated with the surface, a generaliza-
tion of the second fundamental form of the surface, cf. Carroll(2003). The
tensor g�� r � n� generalizes the Weingarten matrix, the trace of which is
associated to the mean curvature, cf. do Carmo (1976). Note that H is an
extrinsic quantity, i.e. it depends on the metric outside the free surface by
the tensor @g�� =@x3 given in (4.4). The de�nitions in (4.1-4.2,4.5) allowH
to be computed as a function ofx i .

Now, using again (4.1), we can de�ne the potential (4.7) as a function of
the surface coordinates by

�( x i ) = � (y� (x i )) + 2 
H (x i ); (4.9)

Similarly, we compute the Coriolis acceleration term,f � in (3.3). The cross
product A = B � C in terms of covariant coordinates is

A � = g�� p
g "��� B � C � ; (4.10)

where
p

g = jg�� j1=2 is the determinant of the Jacobian matrix@y� =@x� ,
and " ��� is the Levi-Civita symbol, equal to the sign of the permutation
of the numbers ��� and zero if any number is repeated. (4.10) can be
derived using elementary techniques by considering a linear invertiblemap
to Cartesian coordinates and comparing to the well-known formula.For a
more conventional di�erential geometry derivation in terms of dyadics, cf.
Lebedev et al. (2010). Note thatA � is a pseudovector, i.e. it switches sign in
a left-handed coordinate system. Using (4.5) and the kinematic boundary
condition, we see that the componentsf i of (4.10) applied tof = � 2
 � v
refer only to the third component 
 3 = e3 � 
 of 
 , and we have

f i (xk) = 2 jgij j1=2 
 3(gi 1V 2 � gi 2V 1): (4.11)

With all this in place, we are ready to de�ne the 
ow equations in termsof
the manifold coordinatesx i .

In summary, the ideal 
ow on a stationary free surface parametrized by
(x1; x2) ! (y1; y2; y3) is governed by the momentum balance equations

V j r j V i =

V j @Vi

@xj
+ � i

jk V j V k = � gij @�
@xj

+ f i ; (4.12)

wherei; j = 1; 2, and the metric is de�ned by (4.6). The left hand side can be
computed from the metric alone, using (3.4) and �ijk [glm ] de�ned by (3.5).
The terms on the right hand side depend on the embeddingx i ! y� and
the dual basis (4.2). Expressions for the potential �(x i ) and the Coriolis
acceleration f i (x j ) and are given in (4.9) and (4.11). In appendix A we
give the coordinate expression for (4.12) in two important cases, where the
horizontal position is described by the coordinates (x1; x2), which are either
Cartesian or polar, and the vertical height is given byy3 = h(x1; x2).

We shall later see that (4.12) has a �rst integral generalizing the Bernoulli
�eld, cf. (6.7a) below.

As for the possibility of specifying the normal derivative@vn=@nof the
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normal velocity by the continuity equation, cf. chapter 2, we notethat the
covariant formulation of the continuity equation (2.3) is

r � V � = 0: (4.13)

On the free surface, whereV 3 = 0, the only quantities referring �elds out-
side the surface (4.13) are@V3=@x3 and � 3

3i = 0, where the last equality
follows from the coordinate de�nition (4.4). So we are left with the following
expression for the normal derivative

@vn
@n

=
@V3

@x3
= �

@Vi

@xi
� � i

ij V j ; (4.14)

where the last term is the curvature correction to (2.3).

5. Solutions to the surface 
ow equations in symmetric and nearly
symmetric situations

We have seen how to write the surface 
ow equations (4.12) on a general
curved surface with a general potential �eld, but to solve these equations, or
even write them in coordinate form, is not an easy task. We shall therefore
start out by looking at a couple of simple special cases.

First we consider the special case when both the free surface height and
the 
ow �eld are invariant under rotations about the y3 axis. In this case,
(4.12) reduces to a simple set of two ordinary di�erential equations, and
the solution is straightforward. The free surface is parameterized by the
coordinates (x1; x2) = ( �; � ). The corresponding (contravariant) velocity
vector components are (V 1; V2) � (U; V). Note that the vector component
V has the dimensions of an angular velocity. The position in space is given
in terms of Cartesian coordinatesy� by

(y1; y2; y3) = ( � cos�; � sin�; h (� )) : (5.1)

The potential �eld is � = �( � ). We do not include the possibility of a
rotating reference frame at this stage, since any steady rotation about the
symmetry axis may be included in the 
ow �eld. Now, (4.12) written for
polar base coordinates, cf. (A 10), yields

UU� +
1

1 + h2
�

�
h� h�� U2 � �V 2

�
= �

1
1 + h2

�
� � ; (5.2a)

UV� + 2
1
�

UV = 0; (5.2b)

for the � and � directions, respectively. We use a subscript to denote di�er-
entiation, i.e. U� = d U=d� . We can make sense of (5.2) by introducing the
\physical" velocity componentsu, v, along the dual basise� , e� , so that the
velocity vector isv = ue� =ke� k + ve� =ke� k. In the symmetric situation, the
coordinates are orthogonal,e� � e� = 0, so we have

u = ke� kU =
p

g�� U =
q

1 + h2
� U; (5.3a)

v = ke� kV =
p

g�� V = �V; (5.3b)
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10 L. Toph�j and T. Bohr

in terms of which (5.2) are equivalent to

d
d�

�
u2

2
+ �

�
�

v2

�
= 0; (5.4a)

u
� 2

d
d�

(�v ) = 0 : (5.4b)

An equivalent set of equations was derived in Bergmann et al. (2011)using
a more pedestrian approach in line with our section 2.

We will now brie
y reiterate some analysis of Bergmann et al. (2011)
and move on to some general considerations about the possible solutions to
(5.4). First we note that (5.4b) is singular whenu = 0. Hence, the solutions
to (5.4) fall in two categories:

a) A regime whereu = 0, so (5.4b) is satis�ed independently ofv, and
(5.4a) reduces to

v2

�
= � � : (5.5)

If the function �( � ) is known, (5.5) directly expresses the possible forms
v(� ). If on the other hand v(� ) is known, an expression for �(� ) can easily
be established by integrating (5.5).

b) A regime whereu 6= 0, and (5.4b) leads to

v =
�
�

; (5.6a)

where � is a constant, and the circulation along a streamline� =constant
is 2� �. Using (5.6a), (5.4a) integrates to

1
2

(u2 + v2) + � = constant ; (5.6b)

the well-known Bernoulli equation connecting points along the same stream-
line in Euler 
ows, cf. (6.7a) below. This was to be expected, because in the
symmetric case any �nite region withu 6= 0 is connected by streamlines.

The splitting of the solutions to (5.4) presented above can be interpreted
as follows. In regimea, di�erent radii are not connected by streamlines,
and (5.4b) is exhausted byu = 0. That condition, however, allows us to
directly solve (5.4a) either in terms of the velocity �eld or the potential
�eld. In regime b, di�erent radii are connected by streamlines, and (5.4)
lead to conditions for the conservation of angular momentum (5.6a) and
energy (5.6b).

Similar considerations were used in Bergmann et al. (2011) to give the
surface 
ow �eld based on a measurement of the surface pro�le, aresult con-
�rmed by a direct measurement of the velocities. Furthermore, the symmet-
ric 
ow equations were used to infer information about the surfaceelevation
from requiring continuity of the 
ow �eld, cf. Bergmann et al. (2011).

5.1. Nearly symmetric 
ows
We now consider a situation where the free surface and the potential are
nearly symmetric under rotations. In particular, we look at perturbations of
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the 
ow problem discussed in the preceding section. We do the computation
in a rotating reference frame to account for the possibility of an assymmet-
ric disturbance that rotates as a rigid body. Examples of such 
owsare
bathtub vortices disturbed by waves traveling in the azimuthal direction, or
other symmetry-breaking 
ows such as the rotating polygons discussed by
Bergmann et al. (2011).

One can proceed from (A 10) with the substitutions

h ! H (� ) + "h(�; � ); (5.7a)
� ! �( � ) + "� (�; � ); (5.7b)

U ! U(� ) + "u(�; � ) + O("2); (5.7c)

V ! V(� ) + "v(�; � ) + O("2); (5.7d)

and expand (A 10) to �rst order in " . Note that the validity of the expan-
sion (5.7) rests upon the unperturbed velocity being large compared to the
perturbation, so we can expect problems ifU and V vanish in some region.

For simplicity, we assumeU = 0. The reference frame rotates in the
positive � direction at the angular velocity 
. We take � = g0h � 1

2 
 2� 2,
whereg0 is the gravity acceleration constant.

The zeroth order equation of (A 10) in the� direction gives

(V + 
) 2 =
g0H 0

�
; (5.8)

which can be seen by substitutingU ! 0 and V ! V + 
 in (5.2 a).
Now, using (5.8), the �rst order part of (A 10) is

V
@u
@�

� 2�
V + 

1 + H 02

v = �
1

1 + H 02

�
V 2H 0@

2h
@�2

+ g0
@h
@�

�
; (5.9a)

2V + �V 0+ 2

�

u + V
@v
@�

= �
g0

� 2

@h
@�

; (5.9b)

a set of linear partial di�erential equations inu andv. We Fourier expand the
perturbation and the �rst order velocities, i.e. h(�; � ) = Re[

P
n hn (� )ein� ],

u(�; � ) = Re[
P

n un(� )ein� ] and v(�; � ) = Re[
P

n vn (� )ein� ]. The Fourier
coe�cients are in general complex functions of� , allowing the phase of
the perturbation to depend on� . The linearity of (5.9) ensures that the
terms pertaining to di�erent n are independent. On a Fourier component of
wavenumbern, the derivative @=@�simply acts to multiply by in , so (5.9)
yields a linear system of algebraic equations forun and vn in terms of hn
and h0

n , which we can easily solve by inverting the coe�cient matrix found
from the left hand side of (5.9).

As a useful example, we consider a line vortex, with a slight perturbation
revolving at the rate 
. For now, we restrict our attention to the case 
 6= 0
and takeV = � =� 2� 
. From (5.8), H 0 = �V 2=g0. In this case, the coe�cient
to u in (5.9b) vanishes, so the coe�cient matrix associated with (5.9) has the
determinant � n2V 2, which is nonzero except at a particular characteristic
radius � = � de�ned below. We now non-dimensionalize all quantities by
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12 L. Toph�j and T. Bohr

the characteristic length� and time � ,

� �
q

� =
 ; � � 
 � 1: (5.10)

For example, we rescale� to the non-dimensional ^� = �=� and V to the
non-dimensional

V̂ = V
�

1
�

� � 1

=
1
�̂ 2

� 1: (5.11)

By inserting the expressions forV and H 0 into (5.9) and rescaling, we get
expressions for the non-dimensional �rst order velocities in termsof the non-
dimensionalized perturbation and the non-dimensional parameterŝ� and ĝ0.
The non-dimensional gravity constant is ^g0 = g0(�=� 2)� 1 = g0(� 
 2)� 1, i.e.
the ratio of the magnitudes of the accelerations due to gravity andthe
centripetal unperturbed 
ow at the characteristic radius. For the remainder
of this section, we shall drop the hats and always refer to non-dimensional
quantities. Now, (5.9) yield

un = i [An (� )hn + Bn (� )h0
n ] (5.12a)

vn = C(� )hn ; (5.12b)

with

An (� ) =
1

(1 + g2
0� 6)

�
1
n

2g3
0� 7

(1 � � 2)2
� ng0� (1 � � 2)

�
; (5.12c)

Bn (� ) =
1
n

g3
0� 8

(1 � � 2)(1 + g2
0� 6)

; (5.12d)

C(� ) = �
g0

1 � � 2
: (5.12e)

The coe�cients in (5.12) are shown in �gure 2 as functions of� . The co-
e�cients are well-de�ned expect for the characteristic radius� = 1, where
they diverge, cf. (5.12). Because the unperturbed 
ow velocity vanishes at
this radius, the coe�cient matrix of (5.9) vanishes, implying that the per-
turbation expansion (5.7) is ill-de�ned here. We shall proceed to consider
perturbations in regions for� 6= 1, concentrating on the region� < 1, where
the 
ow speed exceeds the rotation speed of the perturbation. The coe�-
cient An (� ) changes sign once in the interval 0< � < 1, at a radius which
we designate� � , the single positive real root of

g2
0� 6

� � n2(1 � � 2
� )3: (5.13)

This gives rise to some interesting behaviour of the perturbed streamlines,
as we shall see below, cf. �gure 3.

Pausing brie
y to comment on stationary perturbations with 
 = 0, w e
note that this case can be accessed by changing to another scaling, by the
length � 2=3g� 1=3

0 and time � 1=3g� 2=3
0 . The expressions forun and vn are then

obtained by substituting (1� � 2) ! 1 and g0 ! 1 in (5.12) and (5.13). The
qualitative behaviour of the coe�cients resemble the interval 0< � < 1 in
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� 1

0

1

0 1 2

�

Figure 2. The dependence of the coe�cients in (5.12) as a function of th e nondimensional
radius � for g0 = 1. The thick black curve shows the zeroth order azimuthal ve locity V as a
reference, cf. (5.10). Note that V changes sign at the characteristic radius � = 1. The thin black
line is C(� ). The dashed line is A1(� ). Note the sign change at � � = 1 =

p
2, cf. (5.13). The dotted

line is Bn (� ). We note that An and Bn for di�erent values of n are qualitatively similar to the
curves shown, with � � approaching 1 asn increases.

�gure 2, in particular the coe�cient An is negative for� < � � and positive
for � � < � . We now turn to the question of the streamlines of the per-
turbed 
ow. We consider a perturbation consisting of a single Fourier mode
of wavenumbern. To linear order in " and in terms of nondimensional quan-
tities, the position of a 
uid particle is governed by the linear dynamical
system

_� = V + "v; (5.14a)
_� = "u; (5.14b)

where a dot indicates the derivative with respect to the non-dimensional
time t. By u we mean Re[un(� )ein� ] and similarly for v. In the following, we
shall take u� � Re[u0

n(� )ein� ].
Assuming� to be a monotonic function oft (valid as long as"vn is small),

we substitute � for our dependent variable. Dividing (5.14b) by (5.14a), we
then get an ordinary di�erential equation for the streamline,

d�
d�

= "
u(�; � )

V(� ) + "v(�; � )
: (5.15)

Now, (5.15) is a strongly nonlinear nonautonomous ordinary di�erential
equation, and we have no hope of solving it exactly. Instead, we expand the
solution

� (� ) = � 0 + "� 1(� ) + "2� 2(� ) + O("3); (5.16)
where � 0 is the constant unperturbed radius. Expanding (5.15), we get to
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Figure 3. Plot of the perturbed streamlines (5.18) for n = 2 and g0 = 1. The top half of the
unit disc is shown. The bottom half is the mirror image. The ch aracteristic radius � = 1 is shown
as the outer black circle.
Streamlines are shown in grey around two values of� 0 , and for each a reference circle of radius� 0

is shown in black. In both cases we selecth > 0 for best visibility. We take h0 = 0. The smallest
radius has � 0 = 0 :50 < � � = 1 =

p
2, cf. (5.13), so A2 < 0 and the streamline is de
ected in the

same direction as the isoheight line by the perturbation, th ough slightly less. The larger radius
has � 0 = 0 :79 > � � , where A2 > 0 and the streamline is de
ected away from the isoheight line .
The same opposite de
ection would be present also for streamlines at � 0 > 1, cf. the behaviour
of An in �gure 2. The dashed lines show isoheight lines for the same two radii. The isopotential
lines (not shown) are close to the isoheight lines, but slightly further de
ected from � 0 .

second order:

"
d� 1

d�
+ "2 d� 2

d�
+ : : : = "

u
V

+ "2
�

� 1

V
@u
@�

�
u(v + � 1V 0)

V 2

�
+ : : : ; (5.17)

where all functions of� are evaluated at� 0.
We now specify a perturbation. The complex phase ofhn (� 0) simply de-

notes the orientation of the perturbation, so we can takehn (� 0) to be real.
For simplicity, and because we typically havejBn j < jAn j, cf. (5.12) and
�gure 2, we take h0

n (� 0) = 0.
We integrate the �rst order part of (5.17):

� 1(� ) =
Z �

� i

d� 0u(� 0; � )
V(� 0)

= �
Z �

� i

d� 0 Anhn

V
sinn� 0 =

Anhn

nV
cosn�; (5.18)

where we have chosen the starting angle� i so as to eliminate a constant
from � 1. A plot of a few streamlines given by (5.18) is shown in �gure 3. For
comparison, we show also the isoheight lines around the same� 0, found by
keeping the nondimensional heightH + "h �xed to �rst order in " . Clearly,
the sign ofAn determines the leading de
ection of the streamlines induced
by the perturbation. In particular, for � < � � whereAn < 0, cf. (5.13), the
de
ection � 1 has the opposite sign ofhn . This means that the streamlines are
de
ected in the same sense as the isoheight lines, cf. �gure 3. The converse
happens for� � < � .

Could there bedrift in the solutions to (5.15)? This would mean that�
would not be an exactly periodic function of� , but contain a \secular" term
allowing a slow change in each revolution. We �rst consider the case where
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h0
n has the same complex phase ashn . As discussed above, we can takehn

to be real. Then, (5.15) can be written

d�
d�

=
A(� ) sin n�

B(� ) + C(� ) cosn�
; (5.19)

where A; B; C are some functions of� . In terms of the the variable x =
� cosn� , this equation becomes

d�
dx

=
1
n

A(� )
B(� ) + C(� )x

: (5.20)

The variablex(� ) is monotonically increasing on [0; �=n ] and monotonically
decreasing on [�=n; 2�=n ]. Both of these intervals are mapped onto thex-
interval [� 1; 1].

If we assume thatjC(� )j < jB (� )j for all relevant values of� , we can
integrate (5.20) with the initial condition � (� 1) = � 1 and we shall obtain
a value at x = 1, say � = � 2. This corresponds to one half-period in� .
In the second half-period,x traverses exactly the same interval [� 1; 1], but
in the reverse order. This time we start at� = �=n , i.e., at x = 1 with
the value � 2 and move down towardx = � 1. Since there cannot be more
than one solution � (x) with � = � 2 at x = 1, we are going to exactly
reproduce the solution curve from the �rst half-period and get� = � 1 at
x = � 1. Thus the solution is periodic in� and there is no drift. In addition,
we see that the solution� (� ) will be symmetric under � ! 2� � � , since
this leavesx invariant. Note that if additional terms containing odd powers
of sinn� had been present the above argument would not work because
the expression sinn� =

p
1 � x2 valid for � 2 [0; �=n ] would change to

sinn� = �
p

1 � x2 valid for � 2 [�=n; 2�=n ] and thus the two half-periods
would not be identical.

Thus, in the case whereh0
n has a di�erent complex phase thanhn , i.e.

when the perturbation has a� -dependent orientation (for example describ-
ing a spiral), we do obtain a drift. Keepinghn real, a �nite h0

n will introduce
a term � Im[(h0

n ) sinn� ] in (5.18). When multiplied by u� � V 0=V in (5.15),
which also contain a sine part, this term indeed gives rise to a drift of order
"2. The magnitude and direction of the drift depends on bothh0

n and h00
n .

6. The surface 
ow equations as a dynamical system
We now discuss the possibility of solving the surface 
ow equations (4.12)

and the di�culties that may arise. Unlike the ordinary Euler 
ow equat ion,
(4.12) form a closed system, with no need for a continuity equation relating
to either a condition of incompressibility or knowledge of the pressure �eld
response to 
uid compression, e.g. by an equation of state.

For a particle, whose position on the surfacex i and velocity V i are func-
tions of the time t, (4.12) can be viewed as a dynamical system, since by
the chain rule

_x i �
dx i

dt
=

@Vi

@t
+ V j @Vi

@xj
; (6.1)

and V i does not depend explicitly on time, i.e.@Vi =@t= 0. So (4.12) implies
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16 L. Toph�j and T. Bohr

that on the streamlines, the motion is governed by the two degree-of-freedom
dynamical system,

_V i = � � i
jk V j V k � gij @�

@xj
+ f i ; (6.2a)

_x i = V i : (6.2b)

The dynamical system (6.2) is fundamentally di�erent from the �eld equa-
tion (4.12). Given a solution to (4.12), i.e. a �eldV i (x j ), we could solve the
two-dimensional ODE

_x i = V i (x j ); (6.3)
where the unique velocity at a given point implies that there is a unique
streamline passing through the point. On the contrary, (6.2) is a two de-
gree of freedom Hamiltonian system (a 4D ODE), which has a much richer
dynamics than (6.3), and it can for example have chaotic solutions. The
trajectories x i = x i (t) to (6.2) may intersect each other or even themselves,
in violation of the condition that each point speci�es a unique velocity.So
it is not straightforward to construct solutions to (4.12) from (6.2), and in
some cases it is even impossible. We shall return to this discussion below,
in section 6.2.

Note that (6.2) corresponds to the Lagrangian

L =
1
2

Vj V j + Vj A j � � (6.4)

The �eld A j = A j (x i ) is analogous to the electromagnetic vector potential.
Since the rotation vector is de�ned as a �xed direction in physical space,
we must refer to the laboratory coordinatesy� 0

de�ned just before (3.1).
Here we indicate these coordinates by primed indices. Iny� 0

coordinates,
the vector potential is represented by the physical vectorA = 
 � y , whose
components areA � 0

. A � is obtained through the vector transformation rule
A � = A � 0

@x� =@y�
0
, where @x� =@y�

0
can be found by inverting@y�

0
=@x�

given in (4.3). The Coriolis acceleration vector is related toA j by

f i = gik V j
�

@Aj
@xk

�
@Ak
@xj

�
: (6.5)

The Lagrangian, (6.4), corresponds to the generalized momenta

pi �
@L
@Vi

= Vi + A i ; (6.6)

and the Hamiltonian

H = pj V j � L

=
1
2

Vj V j + � (6.7 a)

=
1
2

pj pj +
1
2

A j A j � pj A j + � ; (6.7b)
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wherepi � gij pi . Hamiltons equations of motion are then dx i =dt = @H=@pi

and dpi =dt = � @H=@xi .
Note that (6.7a) corresponds to the standard Bernoulli equation, which

states that H is constant along a streamline. This could also be seen from
(4.12), which gives the directional derivative ofH along a streamline,

V j @H
@xj

= V j r j H = Vj f j = 0; (6.8)

where the last equality follows from the Coriolis acceleration being orthog-
onal to V i , cf. (4.11).

6.1. The unforced case - Geodesic 
ows
Consider the nonlinear surface 
ow equation, (4.12), in the coordinate-
independent form. We shall see that we can in some cases obtain knowledge
of the general solution without even bothering to introduce a coordinate
system. A special case occurs, when � andf vanish, and (6.2) simpli�es to

d2x i

dt2
+ � i

jk
dx j

dt
dxk

dt
= 0: (6.9)

This is the equation for ageodesiccurve on the surface manifold, cf. Car-
roll (2003). So the solutions to (4.12) on a manifold is a family of non-
intersecting geodesic curves.

6.2. The nearly planar case
Consider the case when the physical coordinates describing the free surface
are (x; y; h(x; y)) for small heightsh. Then the metric tensor for the surface
manifold is given by (A 2), and

gij = � ij + O(h2): (6.10)

The correction term is of second order inh and its gradient, and so are the
connection coe�cients � i

jk . To lowest order inh and expressed in terms of
the physical velocity componentsv = ( u; v), (4.12) becomes

(v � r )v = � f � v � r � ; (6.11)

where the potential takes the form � = g0h in a uniform gravity �eld of
magnitude g0. In traditional geophysical notation, we de�ne the Coriolis
Parameter f as a vector pointing upwards out of the plane withkf k =
2
 sin � on the geographical latitude� .

Now, (6.2) become

_v = � f � v � r � ; (6.12a)
_x = v: (6.12b)

These equations of motion correspond to the LagrangianL and Hamiltonian
H ,

L =
1
2

k _xk2 +
1
2

_x � (f � x) � � ; (6.13)

H =
1
2

kpk2 +
1
8

kf k2kxk2 �
1
2

p � (f � x) + � ; (6.14)
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18 L. Toph�j and T. Bohr

where the conjugate momenta arepi � @L=@_x i = _x i + " i 3k f x k . Hamilton's
equations of motion are _pi = � @H=@xi , _x i = @H=@pi .

7. Existence of solutions to the surface 
ow problem
As we have seen, it is possible to solve the surface 
ow equations (4.12)

for important special cases with symmetry and - at least perturbatively
- when the symmetry is broken. As we shall now see, however, it is not
guaranteed that a solution of (4.12) for a given surface shape andgiven
boundary conditions exists at all. To analyse this question for various cases,
we shall make frequent use of the dynamical systems description of last
section.

As an example, consider a planar horizontal free surface with no verti-
cal forcing. The particle orbits are geodesics, which according to (6.9) are
straight lines. They must also be streamlines, so the only solution in a
connected open subset of the plane is a parallel 
ow. The 
ow speeds on
distinct streamlines are not related through (6.9), which contain only the
acceleration of 
uid particles along their path of motion, and obviously we
can specify any parallel 
ow on (part of) the boundary.

Another example is a spherical drop of liquid. Without an external po-
tential, and even in the presence of surface tension, the right hand side of
(4.12) vanishes, and we are again left with geodesic 
ows(6.9). The geodesics
on the sphere are great circles. Any two non-identical great circles intersect
each other at two points, and (4.12) has only one global solution,V i = 0.
So the only equilibrium state for a spherical drop of inviscid liquid without
external forcing is a state where the particles on the surface areat rest.

Ellipsoids can be analyzed using a similar argument. A general triaxial
ellipsoid has more complicated geodesics, cf. Arnold (1978),x47. A single
geodesic is either a closed curve, or it is dense in an area between two
confocal one-sheet hyperboloids. This behaviour is incompatible with the
idea of a geodesic 
ow withV i = V i (x j ). An analysis of surface conditions on
equilibrium shapes of self-gravitating 
uid bodies, e.g. Dedekind ellipsoids,
could be pursued from (4.12) including a non-zero forcing.

The existence of solutions is an issue even for the nearly planar case
studied in section 6.2. As a prelude to considering boundary value problems
involving (6.11), let us make a few remarks on boundary value problem
for \ordinary" stationary inviscid incompressible 
ows. Consider the Euler
equation and the continuity equation in a compact domain in the plane with
boundary conditions giving the normal 
ow velocity through the boundary.
Assuming irrotational 
ow, the problem reduces to solving the Laplace equa-
tion on the domain with Neumann boundary conditions, which is possible
under rather general conditions, for example the total in
ux to the domain
must be zero. For a mathematical discussion, cf. Courant and Hilbert (1989),
vol. II ch. IV. While this irrotational 
ow may not be the only solution t o
the 
ow problem, we know at least that a solution exist.

Boundary value problems in (6.11) are somewhat di�erent. We now give
an example of a boundary value problem which apparently has no solution
at all. Consider (6.11) on the half-planex > � 1 with the boundary condition
u = 0 at x = � 1, cf. �gure 4(a). We take the potential to describe a circular
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harmonic well centered at the origin,

f = 0; � =
1
2

(x2 + y2); (7.1)

Each component of (6.12) is simply an unforced harmonic oscillator ofunit
angular velocity, i.e •x i + x i = 0. So any solution to (6.12) describes a par-
ticle moving about on an ellipse centered at the origin. As shown in �gure
4, the trajectories of any two particles starting out at distinct points on
the boundary will intersect and have di�erent velocities at the points of
intersection, in con
ict with the condition that the velocity dependson the
position alone. So it appears that this boundary value problem has noso-
lutions at all. Note that other choices of boundaries of prescribed normal
velocities may yield a well-posed boundary value problem. For example,ap-
plying no-penetration boundary conditions to one of the elliptic trajectories
to (6.12), we can �nd a solution, with streamlines consisting of downsized
versions of the boundary curve.

A further complication becomes apparent if we break the symmetryof
(7.1) slightly and take

f = 0; � =
1
2

(x2 + ! 2y2); (7.2)

wherex = x1 and y = x2, and ! = 1+ � , � � 1. With (7.2), (6.12) separates
into two harmonic oscillators

•x = � x; (7.3a)

•y = � ! 2y; (7.3b)

and the exact solution is straightforward. With the initial condition x(0) =
x0, y(0) = y0, _x(0) = u0 and _y(0) = v0 in terms of real numbersx0; y0; u0; v0,
the solution is

x(t) =
�

x0 + iu 0

�
e� it ; (7.4a)

y(t) =
�

y0 + i
v0

!

�
e� i!t ; (7.4b)

where the real part of (7.4) is understood as the position. The motion is
clearly bounded to a rectangleD = f (x; y) : jxj � xM ^ j yj � yM g with
xM =

p
x2

0 + u2
0 and yM =

p
y2

0 + v2
0=! 2. If ! is rational and expressed as

an irreducible fraction p=q, the motion (7.4) will be periodic with period
2�q . During one such period,x will oscillate q times while y will oscillate p
times. In the process, the orbit will necessary self-intersect several times, if
q is large. In the case, when! is irrational, the system will never return to
the initial condition, and the motion is quasiperiodic. The orbit will then
eventually coverD densely.

A set of orbits to (7.3) is shown in 4. As the trajectory meanders around in
the rectangleD, it su�ers several self-intersections. Such an orbit is clearly
not a permissible streamline of a time-independent 
ow. Introducingnon-
harmonic terms in � in (7.2) only makes the situation worse, since we shall
�nd chaotic orbits with self-intersections irregularly distributed, and thus
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it becomes even harder to �nd a domain, where the streamlines do not
intersect.

Apparently, the linearized version of (4.12) with (7.2) has no solution
with anything even resembling closed streamlines. On the other hand, given
a potential and a domain with a given boundary curve, we can construct
a well-posed boundary value problem, if we choose just the right boundary
condition. For if we inject a particle at the boundary with a su�ciently large
initial speedv0, the potential gradient forcing becomes a small perturbation,
and the trajectories will approach straight lines in the casef = 0 and
segments of circles with radiuskv0k=kf k otherwise. Clearly, we can always
foliate the domain with trajectories of this form. So, while some boundary
value problems cannot be solved, any particular bounded region does have
an associated well-posed boundary value problem.

This situation seems at odds with the results of section 5.1, where we
used perturbation theory directly on the surface 
ow equation without any
reference to particle orbits. Could the same procedure work in thiscase as
well? To answer this question, we proceed from (A 10) in the limit of small
surface deformations where the nonlinear terms in the surface elevation
gradient appearing in the connection coe�cients can be neglected.Thus we
get

UU� + V U� � �V 2 = � � � ; (7.5a)

UV� + V V � +
2
�

UV = �
1
� 2

� � : (7.5b)

Following section 5.1, we takeU ! U + "u, V ! V + "v and � ! � + "� .
We take as the unperturbed state a 
ow describing a rigid rotation at the
constant angular velocity V , the so-called \Newton's bucket". The zero
order part of (7.5) yields the well-known parabolic potential � = 1

2V 2� 2. To
�rst order, we get the linear system

u� � 2�v = �
1
V

� � ; (7.6a)

2
�

u + v� = �
1

� 2V
� � : (7.6b)

For a Fourier mode of wavenumbern, we can replace the� derivative by
the factor i n , and (7.6) yields an algebraic linear system of equations in the
Fourier modesun and vn . From (7.6), we observe that the system determi-
nant has the value

4 � n2

Evidently, (7.6) cannot be solved for then = 2 Fourier mode. The potential
given in (7.2) describes a perturbation of just that sort, with� = 1

2y2 =
1
2 � 2(cos 2� � 1). So we are unable to �nd nearly circular streamlines to (7.5),
in agreement with our analysis of (7.3), whose exact solution shows that such
streamlines do not exist.
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Figure 4. a) Example of a boundary value problem in (6.11) with no solut ion. The parameters
are given in (7.1). Any solutions to (6.12) trace ellipses centered at the origin (shown by the
black dot). Impenetrable boundary conditions are applied a t the line x = � 1. A particle at a
point x 0 = ( � 1; y) at the boundary with velocity v = (0 ; v) will be advected according to (6.12)
along an ellipse connecting the points x 0 and � x 0 . Clearly, any two such trajectories emanating
from distinct points on the boundary will intersect, and the ir velocities at the intersection points
will not be identical. This is incompatible with the uniquen ess of streamlines at each point of a
stationary 
ow, and it seems that this boundary value proble m has no solution at all.
b) Position view ( x; y ) of a trajectory of the dynamical system (6.12) with the pote ntial given by
(7.2) with ! 2 = 1 :06. The particle is starts at the point marked by the black dot , (x0 ; y0) = (1 ; 0)
with an initial velocity ( u0 ; v0) = (0 ; 1). The very slightly eccentric ellipse surrounding the orb it
is the region � � E0 � 1

2 (u2
0 + v2

0 )+ �( t0), where the particle has su�cient energy to go. In fact,
due to the decoupling of (7.3), energy is conserved separately for the motion in x and y, so the
orbit is contained within the rectangle D. Here ! is irrational, so the orbit will eventually cover
D densely. With self-intersections this orbit clearly canno t be a streamline of a stationary 
ow.

8. Conclusion
We have shown that it is possible to write down a self-contained set of

equations for the 
ow on a stationary, free surface of an ideal 
uid. It is given
by Eq. (4.12), which is the main result of the paper. We have shown how to
include surface tension and velocity dependent forces such as theCoriolis
force, and demonstrated that the formalism provides a practicaltool for
determining actual 
ows on surfaces of simple shapes. We also showed that
it can be used to predict that given surface shapes, boundary conditions or
domains preclude the existence of a single-valued surface velocity �eld. Here
the analogy to Hamiltonian particle dynamics with two-degree of freedom
is very useful. The latter problem can always be solved with given initial
conditions, and hence the question of existence of a velocity �eld onthe
surface becomes a question of projecting from the energy surface of the four-
dimensional phase space of the dynamical system to the two-dimensional
space of the surface - without intersections. In the present paper, we have
given a preliminary analysis of this problem, and we believe that there are
ample possibilities for developing this approach further in future work.

Finally, we might mention that in modelling sea currents one is faced
with a problem very similar to ours. Here satellite measurements of the
free surface elevation (altimetry) on a grid of points around the globe is
used to predict the ocean currents. It is customary (see e.g. Ray(2001))
to work in the linear, geostrophic approximation, where the inertialterm
(the left hand side of (6.11)) is ignored, and the Coriolis term balances the
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forcing on the surface 
ow. If one were to include the nonlinear terms, one
might in principle �nd that the surface shapes assumed cannot actually
support the predicted 
ows! In the present state of our theory, however, we
cannot perform such an analysis since we would �rst have to build in e�ects
like time dependence and wind stresses, which are important for theocean
currents.

Appendix A. The form of the surface 
ow equations in simple
situations

A.1. Cartesian base coordinates
We shall now give an example of the general equations, (4.12) for the surface

ow derived in the previous section. Consider a free surface parameterized
by (x1; x2) � (x; y) so the Cartesian laboratory coordinatesy� are

(y1; y2; y3) = ( x; y; h(x; y)) : (A 1)

The 2D metric tensor and its determinant for the surface manifold are then,
by (4.6),

gij =
�

1 + h2
x hxhy

hxhy 1 + h2
y

�
; (A 2)

g � j gj = 1 + h2
x + h2

y ; (A 3)

where subscripti denotes di�erentiation by x i . The y� coordinate expression
of the dual basis vectors (recall that the velocity vector isV i ei ) is ex =
(1; 0; hx), ey = (0 ; 1; hy). We denote the velocity vector components by
(V 1; V2) � (U; V).

The coordinate system is assumed to rotate in the counterclockwise di-
rection about the y3 axis with a constant angular velocity 
. In order to
compute the Coriolis force term, we shall need 
3 in terms of the surface-
adapted coordinates de�ned in the beginning of section 4, wheree3 =
1=

p
g � (� hx ; � hy; 1) in y� -coordinates. Thus, 
3 = 
 e3 � (0; 0; 1) = 
 =

p
g.

Now, (4.12) becomes, for thex and y directions, respectively:

(UUx + V Uy) + hxM =
1
g

�
� (1 + h2

y)� x + hxhy � y
�

+ 2

1
g

�
hxhyU + (1 + h2

y)V
�

; (A 4a)

(UVx + V Vy) + hyM =
1
g

�
hxhy � x � (1 + h2

x )� y
�

� 2

1
g

�
(1 + h2

x )U + hxhyV
�

; (A 4b)

where

M =
1
g

(hxx U2 + 2hxy UV + hyyV 2): (A 5)

If we include a centrifugal force, a gravitational potentialg0h(x; y) and a
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surface tension
 with the associated Young-Laplace pressure on the free
surface, and denote the constant liquid mass density by� 0, we have

�( x; y) = �
1
2


 2 �
x2+ y2�

+ g0h(x; y) � 2


� 0

H (x; y); (A 6)

where H is the mean curvature (positive in they3 direction) of the free
surface and must be computed from (A 1), for example using (4.8).

A.2. Polar base coordinates
We do the same for polar (�; � ) base coordinates, i.e.

(y1; y2; y3) = ( � cos�; � sin�; h (�; � )) ; (A 7)

with the metric

gij =
�

1 + h2
� h� h�

h� h� � 2 + h2
�

�
; (A 8)

g = � 2 + � 2h2
� + h2

� : (A 9)

The dual basis expressed iny� coordinates ise� = (cos �; sin�; h � ), e� =
(� � sin�; � cos�; h � ). The relevant component of 
� , corresponding to a
rotation vector of magnitude 
 in the positive y3 direction, is 
 3 = � 
 =

p
g.

Now, (4.12) becomes, for� and � , respectively:

(UU� + V U� )+
1
g

h
� 2h� h�� U2 + 2�h � (�h �� � h� )UV + � (�h � h�� � � 2� h2

� )V
2
i

=
1
g

�
� (h2

� + � 2)� � + h� h� � �
�

+ 2

�
g

h
h� h� U + ( � 2 + h2

� )V
i
; (A 10a)

(UV� + V V� )+
1
g

h
h� h�� U2 + 2

�
� (1 + h2

� ) + h� h��
�
UV + h� (�h � + h�� )V 2

i

=
1
g

�
h� h� � � � (1 + h2

� )� �
�

� 2

�
g

h
(1 + h2

� )U + h� h� V
i
: (A 10b)

Including the same physical e�ects as in the previous section, cf. (A 6), we
have the potential

�( �; � ) = �
1
2


 2� 2 + g0h(�; � ) � 2


� 0

H (�; � ): (A 11)
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We present a study of polygons forming on the free surface of a water ”ow con“ned
to a stationary cylinder and driven by a rotating bottom plate as described by
Janssonet al. (Phys. Rev. Lett., vol. 96, 2006, 174502). In particular, we study the
case of a triangular structure, either completely •wet• or with a •dry• centre. For the
dry structures, we present measurements of the surface shapes and the process of
formation. We show experimental evidence that the formation can take place as a
two-stage process: “rst the system approaches an almost stable rotationally symmetric
state and from there the symmetry breaking proceeds like a low-dimensional linear
instability. We show that the circular state and the unstable manifold connecting
it with the polygon solution are universal in the sense that very di�erent initial
conditions lead to the same circular state and unstable manifold. For a wet triangle,
we measure the surface ”ows by particle image velocimetry (PIV) and show that there
are three vortices present, but that the strength of these vortices is far too weak to
account for the rotation velocity of the polygon. We show that partial blocking of the
surface ”ow destroys the polygons and re-establishes the rotational symmetry. For
the rotationally symmetric state our theoretical analysis of the surface ”ow shows
that it consists of two distinct regions: an inner, rigidly rotating centre and an outer
annulus, where the surface ”ow is that of a point vortex with a weak secondary ”ow.
This prediction is consistent with the experimentally determined surface ”ow.

Key words: rotating ”ows, vortex ”ows, waves/free-surface ”ows

1. Introduction
The free surface of a ”uid in a circular container with a rotating bottom plate

can undergo a surprising instability by which the surface shape spontaneously breaks
rotational symmetry and turns into a rotating polygon. These shapes were “rst noticed
by Vatistas (1990) and the polygon rotation was subsequently analysed in terms of
waves rotating around a vortex core by Vatistas, Wang & Lin (1992, 1994). The

• Present address: Instrumentation and Controls Department, German…Dutch Wind Tunnels,
Emmeloord, The Netherlands. Email address for correspondence: tbohr@fysik.dtu.dk
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surface polygons are nearly invariant in a frame rotating with a rate considerably less
than that of the bottom plate and also less than that of the mean azimuthal ”ow of
the water around the polygon.

The fact that the instability leads to spontaneous symmetry breaking was
emphasized by Janssonet al. (2006), who pointed out that vortices, presumably
formed due to the strong shear-”ow, seem to play a large role. It is well known
that steady patterns of vortices can form in two-dimensional and circular shear-”ows
due to Kelvin…Helmholtz instability, as shown by Rabaud & Couder (1983). The
instability in the present system is less well understood, since the shear-”ow in this
case is fully three-dimensional and the strength and width of the shear zone are not
easily determined as a function of the control parameters. It is intriguing to note in
passing that a hexagonal cloud system, which resembles the structures described here,
was seen on the north pole of Saturn from the spacecrafts Voyager (Godfrey 1988)
and Cassini. Indeed the basic ingredients are present in both cases: the rotation from
the bottom and a strong change in the rotation rate from a rapidly rotating centre to
an almost stagnant outer layer.

The experimental set-up consists of a stationary cylindrical container in which the
(bottom) circular plate is rotated. Water is “lled to a certain level above the rotating
plate, and when the plate is set into rotation, the centrifugal force presses the ”uid
outwards, deforming the free surface. When the rotation rate becomes su�ciently
large, the axial symmetry of the free surface is spontaneously broken and large, time-
dependent deformations appear. This can result in stable, rigidly rotating surface
shapes in the form of regular polygons withN corners.

The number of corners of the polygons depends on the amount of water in the
tank and the rotation rate of the bottom plate. A larger amount of water leads to
fewer corners and a larger rotation rate leads to more corners, as “rst pointed out by
Vatistas (1990). In a phase diagram using the initial “lling height and the rotational
frequency of the bottom plate, the transition lines between di�erent polygons are
almost straight lines with positive slopes (Janssonet al. 2006). The phase diagram
contains both •dry• polygons, where the surface becomes so strongly deformed that the
central part becomes dry, and •wet• polygons which remain entirely above the bottom
plate. It is interesting to note that spontaneous symmetry breaking of the internal
”ow of our system (i.e. a cylinder with a rotating bottom) occurs for a much lower
Reynolds number. Thus periodic internal waves, breaking the rotational symmetry,
appear at rotation rates that are so low that the free surface remains virtually ”at, and
the bifurcations go in the opposite direction than the one for the surface deformations:
higher rotation rates lead to smaller wavelengths (Hirsa, Lopez & Miraghaie 2002;
Miraghaie, Lopez & Hirsa 2003; Lopez et al. 2004; Poncet & Chauve 2007).

The existence of the surface polygons seems connected with the fact that the ”ow
is turbulent. In fact, switching transitions are observed in similar but smaller systems,
where the ”ow irregularly switches between a weakly deformed, rotationally symmetric
state and a strongly deformed state with two corners. Here, the free surface touches
the bottom, and this transition is linked with a transition to turbulence (Suzuki,
Iima & Hayase 2006; Tasaka & Iima 2009). Thus the strong mixing present in the
turbulent ”ow seems to be necessary for the formation of surface polygons.

The simple structure of the phase diagram and the instability leading to polygon
formation remain unexplained despite previous studies. The goal of the present work
is to describe the polygon formation process and the surface ”ow. After brie”y
describing the experimental set-up, we shall discuss the development of the various
modes during the onset of a dry triangular polygon, based on video recordings
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of the surface. We shall see that the triangle apparently emerges through a low-
dimensional linear instability from a well-de“ned almost stable rotationally symmetric
state. Further, we shall discuss the measured surface ”ow. For the wet polygons, we
“nd clear evidence for a number of localized vortices forming a ring, as conjectured
by Vatistas, Abderrahmane & Kamran Siddiqui (2008), but we note that this ring of
line vortices is far from giving an exhaustive description of the ”ow. We shall see that
disturbing the surface ”ow by adding ”oating particles can lead to a destabilization
of the polygon and a return to a rotationally symmetric state. Finally, we shall discuss
the rotationally symmetric state based on the combined information on surface shape
and surface ”ow. Based upon decoupling of the surface ”ow and the bulk ”ow in
the inviscid limit, the surprisingly simple theoretical prediction, supported by the
measurements, is that the surface ”ow has the pro“le of a Rankine vortex with a
well-de“ned transition line separating the external line-vortex ”ow from the central
rigidly rotating core.

2. Experimental set-up
The experimental set-up is equivalent to the one used by Janssonet al. (2006). A

cylindrical, stationary tank made of Plexiglas is provided with a rotating •bottom•
plate (“gure 1). In this set-up, the plate is not really at the bottom for practical
reasons, but since we make the gap between the rotating plate and the cylinder
wall as small as possible (less than 1 mm), the ”uid below the plate should not
in”uence the observed structures. In this respect our set-up di�ers from the one used
by Vatistas (1990), where this gap can be quite large and thereby introduces a new
length scale into the problem. Our control parameters are as follows: the radiusR of
the cylindrical container, the heightH of the (quiescent) ”uid layer and the frequency
f of the rotating plate.

The only modi“cation of the set-up used by Janssonet al. (2006) is the addition
of an •outer tank•. A stationary, water-“lled tank of square cross-section allows us
to observe surface shapes from the sides undistorted by refraction. The full three-
dimensional information of the surfaces can in principle be obtained by the method
illustrated in “gure 1(e). A vertical laser sheet impinging orthogonally on the outer
tank walls illuminates a slice of the surface. Capturing these slices from a full cycle
of the rotation allows us then to re-create the full three-dimensional surface shape. A
slight complication comes from the fact that the slices might, for certain angles, be
behind other parts of the surface, as seen from our camera, but this problem can be
solved by rotating the “gure also in the opposite way. It has been hard to get high
accuracy with this method, so we have used it only to verify shapes obtained more
directly. Most experiments were made with the camera mounted vertically above
the tank at a distance of approximately 1.5 m above the surface. This allowed us
to measure surface ”ows (i.e. the projection on the horizontal plane of the surface
velocities) by particle image velocimetry (PIV) and to see the appearance of polygons.
To experimentally determine the surface ”ows, we have used polystyrene particles of
size around 1 mm that are lighter than water.

3. Creation of polygons
3.1. Structure of dry polygons

To study the creation of the polygons, we have restricted our attention to the case
of dry polygons in which the surface distortion becomes so large that part of the
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Figure 1. (a) Sketch of the experimental set-up. The circular tank has a radius ofR = 19.4 cm.
The rotation rate of the bottom plate and the total amount of water are the control parameters.
(b) and (c) A video camera can be placed either on the sides or above the cylinder to obtain
live recording of the polygon formation. It is also possible to use a vertical laser sheet to
reconstruct the three-dimensional surface shapes. (d) Typical picture showing the scattered
light from the laser sheet. (e) Three-dimensional surface shape reconstructed from multiple
side views such as the one shown in (d). It shows a triangle with a dry centre.

free surface touches the rotating bottom. In these states a picture from above clearly
shows a contour de“ning the polygon as shown in “gure 2. This is not really a contact
line because, due to the di�erent rotation rates of the plate and the polygon, part of
the bottom is covered by a thin water “lm. The contour is quite well de“ned and can
easily be identi“ed in top-down photographs as shown in “gure 2. We shall take this
contour as a simple characteristic of the shape and use it to identify the presence of
the discrete rotational symmetry through Fourier decomposition.

3.2. Formation of polygons
When the bottom plate is set into rotation, it takes some time for the ”uid to spin up.
During this process the central part of the surface is lowered, developing into a near
parabolic shape. When the centre reaches the bottom, a ”uctuating contour emerges
which grows rapidly while becoming increasingly circular. Figure 3 shows a sequence
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Figure 2. Dry triangle with H = 4 cm and f = 2 .4 Hz. Inside the faint circle the bottom plate
is dry. Between the faint circle and the rotating polygonal contour there is a thin ”uid layer.

(a)

(b)

(c)

Figure 3. The formation process for a dry triangle with H = 4 cm and f = 2 .4 Hz and three
di�erent initial conditions. ( a) Starting from rest. (b) Starting by manually destroying a
fully developed triangle. (c) Starting from a high initial rotation rate f = 3 .3 Hz where
the shape is circular. The time between consecutive frames is 9.3 s in (a), 4.0 s in
(b) and 8.0 s in (c). A bit of dye was added to the water to increase the contrast. In all
three cases a rotationally symmetric state is formed before the triangle bifurcates out.

of pictures together with examples of extracted contours from videos showing the
development of a triangle. In these sequences the triangle is formed in three di�erent
ways in order to check the robustness. One way is to start from rest and spin up the
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Figure 4. (a) The time evolution for the circular (n = 0) and triangular ( n = 3) Fourier
components for di�erent initial conditions of “gure 3. The top three lines are the n = 0
mode and the bottom three lines are then = 3 mode. The lines with the dotted, crossed and
open symbols are obtained from the image sequence in “gure 3(a,…c) respectively. For all three
cases, the zero of time has been chosen at the point where then = 3 mode reaches its constant
value. (b) Semi-logarithmic plot of the n = 3 modes of (a) which is indicative of exponential
growth.

system. The second way is to “rst let the triangle develop, but then perturb it strongly
by inserting a plate deep into the ”uid and then follow the re-creation of the triangle.
Finally, the third way is to use the circular state found at higher rotation rates as an
initial condition and then suddenly quench down the rotation rate.

3.3. Quantitative analysis of the formation process

To analyse the contours, we compute the Fourier coe�cientscn = (2 � )Š1
� 2�

0 r (� ) ein� d � ,
wherer = r (� ) denotes the contour and� the azimuthal angle. The low-order Fourier
modes are particularly interesting. Thus, then = 0 mode gives the average size, the
n = 1 mode gives the o�-centre displacement and then = 2 mode gives an elliptical
distortion. Of particular interest for the formation of a triangle is the n = 3 mode.
Figure 4 shows the time evolution of then = 0 mode and the n = 3 mode for the
initial conditions shown in “gure 3. It is seen that the development in all three cases
occurs in two stages: “rst a nearly circular state is formed and only after that does the
triangle bifurcate out. To see this more clearly, a slice is shown in “gure 5 through the
•phase space• formed by the di�erent Fourier modes or, more precisely, their absolute
values |cn|. The particular slice (phase plane) has then = 0 mode on the x-axis
and the n = 3 mode on the y-axis. The lines track the development from the di�erent
initial conditions, and it is seen that there is a •near “xed point• on thex-axis, i.e.
a circle, from where the trajectory diverges out towards the triangular “xed point,
where both then = 0 and n = 3 modes have “nite values. As shown in “gure 4(b), the
divergence along the •unstable manifold• emerging from it is indicative of exponential
growth within the available accuracy. Thus, this very high-dimensional dynamical
system behaves as if the circular state … which is stable for both high and low rotation
rates … actually remains nearly stable for all rotation rates. When the polygons form,
apparently most directions in this large phase space will still be attracted towards the
circular state, and only one or a few become unstable, moving the system away in the
direction of the polygon state. Thus the system behaves like pattern-forming systems
in con“ned geometries, where the modes are discrete, i.e. like a low-dimensional

Laust Toph�j: PhD Thesis, p.38



Polygon formation and surface ”ow on a rotating ”uid surface 421

3 4 5 6 7 8 9 10 11 12
0

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

|c0| (cm)

|c
3|

 (
cm

)

A

B

(a) (b)

Figure 5. Phase-space plot for the onset of a dry triangle showing the time evolution of
the shape of the contour. (a) Amplitude of the n = 3 mode versus then = 0 mode. The lines
with dotted, crossed and open symbols are obtained using nine measurements of the three
di�erent initial conditions discussed in the text, i.e. spin-up from rest (dots), perturbing the
triangle with a plate (crosses) and quenching the rotation rate from a large value (open circles).
(b) Qualitative structure of the phase space showing the nearly stable circular “xed point A
and the stable triangular “xed point B. The essential feature is that all initial conditions
come near to A before they proceed along the well-de“ned unstable manifold leading from A
to B.

dynamical system as sketched in “gure 5(b). We have observed the same qualitative
behaviour for other polygons, but we cannot claim that the above scenario is universal
for the entire phase diagram. The richness of possible states, including multistability
(Janssonet al. 2006), probably also means that the transition mechanism can be more
complicated.

4. Surface shapes and ”ows for polygons
In the remainder of the paper we shall concentrate on the surface ”ows … “rst

experimentally and then theoretically. Due to the secondary ”ow, the particles have
a strong tendency to move towards the centre, and it is thus experimentally more
di�cult to get a well-resolved velocity “eld near the edges. As an important example,
where the vortical structure of the surface ”ow can be seen clearly, we study a
•wet• triangle. The tendency to gather near the centre is clearly seen from “gure 6
showing the “nal state of a wet triangle with particles initially evenly spread on the
surface. Performing the recording at intermediate times, when the particles have not
yet moved to the centre, we can measure ”ows over most of the surface as shown
in “gure 7. The particles were used as sparsely as possible and the results of 100
frames were combined to deal with any gaps in the measured ”ow “eld. Figure 7 is
complemented by “gure 8 where the rotation speed of the “gure is subtracted, thus
showing the surface ”ow in the co-rotating (•“gure•) frame, where the “gure remains
stationary. As shown in the blow-up “gure 8(b) one clearly sees a vortex in each of
the arms.

From the PIV data, it is possible to compute streamlines, some of which are shown
in “gure 9. It is clearly seen that the particles spiral in towards the vortices from the
outside but away from the vortex cores.

It has been speculated that the ”ow may be described by a simple point vortex
model; see Vatistaset al. (2008). We can test this idea by using the data shown
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Figure 6. Polystyrene particles of size around 1 mm that are lighter than water were used to
measure the surface ”ows. The picture shows the “nal distribution of particles, initially evenly
distributed on the surface, for a wet triangle (f = 1 .9 Hz and H = 4 cm). The particles are
attracted to a region near the centre, where the vortices form (see “gure 9). Note that, despite
the similarity with the contour in “gure 3, the surface does not touch the bottom.

in “gures 7 and 8. From the “gure-frame ”ow (“gure 8), we note that the vortex
has an apparent width of �r � 45 mm and is centred at a distanceRv � 110 mm
from the rotation axis. From “gure 7, we note that the velocity di�erence across
the vortex width, as measured in the laboratory frame, is�v � 350 mm sŠ1. This
gives an estimated vortex strength (i.e. total circulation)� � 2� (�v/ 2) (�r/ 2) �
0.02 m2 sŠ1. Considering a simple point vortex model of the ”ow in the unbounded
plane, a con“guration of three vortices of equal strength� forming the corners of
an equilateral triangle on a circle of radiusrv will be stationary in a reference frame
rotating about the origin with the angular velocity (see e.g. Arefet al. 2003)

� =
�

2� R r2
v

� 0.26 rad sŠ1. (4.1)

The actual polygon is observed to revolve with the much higher angular velocity
� = 2 .4 rad sŠ1, i.e. almost 10 times faster. Re“ning the model by introducing image
counter-rotating vortices outside the cylinder so as to satisfy the no-penetration
boundary condition at the cylinder wall does not improve matters much. The inclusion
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Figure 7. (a) The surface ”ow measured by PIV for f = 1 .9 Hz and H = 4 cm. The ”ow is
recorded at 1000 frames per second and the PIV results are averaged over 100 frames. The
centre of the tank is located at (0,0) and the wall of the container is indicated by the black
circle. Close to the wall, re”ections prohibit the recording of meaningful velocity measurements.
One of the arms of the “gure is indicated by the solid line, while the dashed line goes through
the middle of an edge. (b) Zoom of the region of one of the polygon arms (indicated by a box
in (a)). (c) The azimuthal ”ow as measured in frame (a) along the solid line (dots) and the
dashed line (crosses). The dashed line in (c) gives the solid body rotation velocity of the “gure
� � 2.44 rad sŠ1.

of image vortices leads to a relative increase of the predicted angular velocity (4.1)
by about 30 %, which is still far too low. Thus the motion of the vortices is only
to a small degree in”uenced by the advection from the other vortices and must be
subjected, in addition, to a strong background velocity “eld. A Hamiltonian model
of point vortices in an otherwise potential ”ow would capture neither the observed
rotation velocities nor the spiralling e�ects seen in “gure 9.

The fact that the surface ”ow plays a great role for the polygon states can be seen
from the following simple experiment in which particles are progressively added to
the surface of a dry square as shown in “gure 10. Starting with a square, the addition
of particles “rst straightens out the corners and “nally forces the system back to the
circular state. The tendency of the particles to gather near the centre gives them a
strong in”uence on the surface ”ow near the contact line and through the thin “lms in
the corners of the polygon. By blocking this ”ow, the polygon is destroyed. A similar
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Figure 8. (a) The surface ”ow in the frame co-rotating with the polygon. The rotation
rate of the polygon is measured from the movie and subtracted as a solid body rotation
from the ”ow “eld of “gure 7( a). (b) Zoom of the region of one of the polygon arms. The
vortices in the arms are now apparent. (c) The azimuthal ”ow as given in (a) along the
solid line (dots) and the dashed line (crosses). The subtracted “gure rotation rate is 2.44
rad sŠ1 (0.39 Hz).

result can be obtained by adding oil near the contact line. Oil added in the bulk has
no e�ect, so the destruction of the polygon is not a surface tension e�ect.

To summarize our understanding of the polygon formation process, we have shown
that a common route to their formation is via an almost stable circular state, which
is universal (i.e. independent of initial conditions) and from which a linear instability
leads towards the polygon state in analogy with low-dimensional dynamical systems.
A better understanding of the circular states is therefore crucial, and we give a
theoretical description of these states in the following section. For the polygons, at
least as long as they are •wet•, we have found that concentrated vorticity (or •vortices•)
do occur in agreement with expectations (Janssonet al. 2006; Vatistaset al. 2008).
However, analysing the ”ow in terms of point vortices does not lead to the right
rotation rates. Indeed, we expect that the system is much more complicated than a
system of point vortices in a two-dimensional ”uid, due to the free surface and the
way in which the system is driven. Finally, we have seen that, even though surface
tension is not an important parameter, perturbations of the ”ow in the vicinity of the
contact line can destroy the polygons.

Laust Toph�j: PhD Thesis, p.42



Laust Toph�j: PhD Thesis, p.43



Laust Toph�j: PhD Thesis, p.44



Laust Toph�j: PhD Thesis, p.45



Laust Toph�j: PhD Thesis, p.46



Laust Toph�j: PhD Thesis, p.47



Laust Toph�j: PhD Thesis, p.48



Laust Toph�j: PhD Thesis, p.49



Laust Toph�j: PhD Thesis, p.50



Laust Toph�j: PhD Thesis, p.51



Laust Toph�j: PhD Thesis, p.52



Laust Toph�j: PhD Thesis, p.53



Laust Toph�j: PhD Thesis, p.54



Laust Toph�j: PhD Thesis, p.55



Laust Toph�j: PhD Thesis, p.56



Laust Toph�j: PhD Thesis, p.57



Laust Toph�j: PhD Thesis, p.58



Laust Toph�j: PhD Thesis, p.59



Laust Toph�j: PhD Thesis, p.60



Laust Toph�j: PhD Thesis, p.61



Laust Toph�j: PhD Thesis, p.62



Laust Toph�j: PhD Thesis, p.63



Laust Toph�j: PhD Thesis, p.64



Chapter 2

Point Vortex Dynamics: Chaotic
Advection & Instability

The internal dynamics of �uid �ow is extremely complicated, ranging from the
simplest of lubrication problems to fully developed turbulence. In many cases,
when the Reynolds number is small enough, it is useful to work in the limit of
vanishing viscosity. Then the �ow may be regarded as potential, except in regions
of �nite vorticity, with the vorticity in turn inducing a de�nite motion of the entire
�uid. Approximating still further, we can consider all of this vorticity to be concen-
trated in singular vortex lines, whose dynamics occurs in a dramatically reduced
phase space, while still preserving many of the features of a real high Reynolds
number �ow. In this chapter, I shall present some work on 2D �ows within the
framework point vortex dynamics.

It is well-known that a pair of vortices of opposite rotation tend to propagate
along a straight line, analagously to a vortex ring blown by a smoker, or the little
vortex pair that one can generate in a coffee cup with a teaspoon, famously termed
the “Kaffeel̈offelexperiment” by Felix Klein. If two such vortex pairs collide, they
will eventually scatter off each other and move away along their new straight-line
trajectories. The intermediate interaction, however, can be quite complicated. In
particular, the scattering process is in some cases chaotic, with the scattering output
(the angle between the outgoing pairs, say) depending sensitively on the scattering
input.

I have been working on point vortex dynamics for a few years, beginning with
my master thesis project done at DTU Physics and at Virginia Tech under the guid-
ance of Hassan Aref. The main outcome of the project is summarized in the pa-
per [Tophøjet al. (2008)], dealing with the chaotic scattering of vortex pairs. In
the paper, we showed that even the scattering of two identical vortex pairs can
be chaotic, with the intermediate dynamics consisting of various unstable periodic
motions, such as perturbed periodic 3-vortex motions and the so-called leapfrog-
ging motion. Leapfrogging is a situation, where two vortex pairs propagate along
a common axis of symmetry, and the trailing pair is swept forward by the leading
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pair in an alternating process, which is periodic in a co-moving frame of reference.
We have continued to investigate various aspects of these problem, and two papers
are included in this chapter.

Furthermore, I have been working on the problem ofweak scatteringof vortex
pairs, i.e. a restriction of the above-mentioned problem to the limit where the pairs
pass each other at a comfortable distance, so that various simplifying assumptions
can be made about their interaction. I have suceeded in producing a valid analytical
approximation to the scattering outcome, with the approximation error decaying
like j� j � 6 in the distance of closest approachj� j. The method is new, and I hope to
extend the work signi�cantly before publication, so I have omitted the derivation
from this thesis. However, I give a little preview in �gure 2.1, showing a scattering
diagram from [Tophøjet al. (2008)] as well as some of the recently developed
approximation results.

Figure 2.1: Scattering diagram for weak scattering of vortex pairs dis-
cussed in the text. The grey erratic curve is reproduced from �gure 4 in
[Toph�j et al. (2008)]. The plot shows a function of the scattering outcome
as a function of the impact parameter j� j de�ned in [Toph�j et al. (2008)].
On the vertical axis, the cosine of the angle between the outgoing pairs is
shown. The black curves are di�erent approximations, valid for weak scat-
tering, that were recently developed. The thin black curve has an approxi-
mation error scaling like j� j � 6. The thick black curve is an energy-corrected
version of the same approximation, made to exactly conserve the dynamical
invariants associated with point vortex dynamics, but with the same order
of error decay for largej� j.

Outline of chapter 2

On pp. 69-77 I include the short paper “Nonlinear excursions of particles in ideal
2D �ows” by Hassan Aref, Johan Rønby, Mark Stremler and Laust Tophøj, pub-
lished in Physica D, Nonlinear phenomena, cf. [Arefet al. (2011)]. The paper
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discusses various examples of nonlinear advection, with the scattering of vortex
pairs given as an example. My contribution to the paper is the technical back-
ground to the discussion of chaotic scattering as well as general discussion and
helping with the preparation of the manuscript for publication.

Next, on pp. p. 79-89, I include the paper “Instability of vortex pair leapfrog-
ging” by Laust Tophøj and Hassan Aref, submitted to Physics of Fluids on March
1, 2012. In the paper, we extend a work by [Acheson (2000)], who undertook a
numerical investigation of the leapfrogging motion, �nding both a stable and an
unstable range of the one parameter characterizing the family of motions.
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Chapter 3

Collisions of wet elastic spheres

In this diminutive chapter, I include the results from my visit toÉcole Polytech-
nique in the spring of 2010, where I worked at the Laboratoire d'Hydrodynamique
under the guidance of Christophe Clanet. I studied the effect on elastic collisions
of steel spheres by applying a thin layer of viscous �uid to the surface of the tar-
get. The presence of the �uid �lm signi�cantly alters the outcome of a collision,
with a large fraction of the energy being dissipated during a very short time in-
terval. Sometimes, the projectile even sticks completely to the target. I encoun-
tered some rather interesting results, suggesting that the pre-existing theory by
[Barnocky & Davis (1988)] does not accout well for the basic observations, and
furthermore that surface tension might play a key role. Unfortunately, we still lack
a thorough understanding of the physical mechanism, and we have not moved to
publish this work. It remains a standing problem to fully understand these colli-
sions and the energy transfer processes that govern the outcome.
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