Antireflective nanostructures replicated from black silicon

Christiansen, Alexander Bruun; Clausen, Jeppe Sandvik; Mortensen, N. Asger; Kristensen, Anders

Publication date: 2013

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Antireflective nanostructures replicated from black silicon

Presenting author: Alexander Bruun Christiansen

Optofluidics group (Anders Kristensen)

Contributing authors: Jeppe Clausen², N. Asger Mortensen², and Anders Kristensen¹

¹ DTU Nanotech Oersteds Plads Building 345 East DK 2800 Kongens Lyngby, ² DTU Fotonik, Technical University of Denmark

Introduction

Can expensive multilayer antireflective coatings for e.g. glasses and camera objectives be replaced by cheap nanostructured surfaces? Can we use black silicon nanostructures to increase light transmission through a medium? Or will the light just be scattered on the randomly structured surface?

Black silicon and scattering properties

Different types of black silicon seen from side (a) and top (b). The relative scattering properties of the six surfaces can be estimated using dark field optical microscope images (c). Samples were illuminated by an intense white light source under normal incidence, and the scattered light was photographed at an oblique angle.

Fabrication

- PMMA
- Silicon master
- Ormocomp母体样本
- Ormocomp样本

(a) Black silicon master. Etched using mask-less reactive ion etching.
(b) Optional removal of structures by photolithography and dry etching.
(c) The master is anti-reflection coated and Ormocomp is poured onto the master.
(d) Planarization by placing PMMA plate on top. Curing Ormocomp with UV light.
(e) Demolding to form Ormocomp Mother stamp. The mother stamp is anti-reflection coated.
(f) A single Ormocomp Mother stamp used to form structures on a single face of the sample.
(g) Two identical Ormocomp Mother stamps used to form structures on both faces of the sample.

Spatial frequencies and transmission measurements

Power spectral density of SEM image of the black silicon surfaces reveal a dominating spatial frequency of the structures.

Measurements show that light transmission through the Ormocomp samples is increased for longer wavelengths. Light with low wavelength is scattered more easily.

The cutoff at which transmission is increased is related to the spatial frequency of the nanostructures (see insert).

Prototype

Type A structures proved the most promising and are used for a prototype. With antireflective nanostructures on both faces of this Ormocomp sample, the effect is clear. The specular reflection of the lamp is reduced significantly, and the sample retains transparency.

Conclusion

Black silicon structures are replicated to Ormocomp films. Using Fourier analysis of SEM images of the surfaces we can determine the dominating spatial period of the surfaces. Light with short wavelength is scattered more on the random structures, and the wavelength cutoff for scattering of light is related to the period of the structures.

Type A black silicon structures with a period of 160 nm, a height of 200 nm, and aspect ratio of 1.3 show insignificant scattering of light with wavelength above 500 nm and lower the reflectance by a factor of two, for an Ormocomp surface.

Acknowledgments

The NanoPlast project is funded by the Danish National Advanced Technology Foundation.

Presenting author

Alexander Bruun Christiansen

Ph.D. Student

abch@nanotech.dtu.dk

Authors affiliation


Link to paper

www.nanotech.dtu.dk/ak

DTU Nanotech department days, Helsingør, 21/22 November 2012