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Abstract: The internal energy flow in a light beam can be divided into the 

“orbital” and “spin” parts, associated with the spatial and polarization 

degrees of freedom of light. In contrast to the orbital one, experimental 

observation of the spin flow seems problematic because it is converted into 

an orbital flow upon tight focusing of the beam, usually applied for energy 

flow detection by means of the mechanical action upon probe particles. We 

propose a two-beam interference technique that results in an appreciable 

level of spin flow in moderately focused beams and detection of the orbital 

motion of probe particles within a field where the transverse energy 

circulation is associated exclusively with the spin flow. This result can be 

treated as the first demonstration of mechanical action of the spin flow of a 

light field. 

©2012 Optical Society of America 

OCIS codes: (260.2160) Energy transfer; (260.5430) Polarization; (350.4855) Optical tweezers 

or optical manipulation; (350.4990) Particles. 
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1. Introduction 

The study of internal energy flows is a rapidly developing branch of physical optics (see, e.g., 

Refs [1–19].). The internal flows (optical currents) not only constitute an “energy skeleton” of 

a light field reflecting important physical characteristics of its spatial structure. They have 

proven to be valuable instruments for investigation of fundamental dynamical and 

geometrical aspects of the light fields’ evolution and transformations [1–12], providing a 

natural language for explaining the special features of singular fields [1–4,7–15], fields with 

angular momentum [8,14–18] and for interpreting the effects of spin-orbit interaction of light 

[12,18–22]. As physically meaningful and universal parameters of light fields, they offer 

disclosure of physical mechanisms of the beam transformation upon free and restricted 
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propagation and put forward attractive possibilities for characterization of arbitrary light 

fields [12]. 

In the usual case of a monochromatic electromagnetic field, the electric and magnetic 

vectors can be written as ( )Re exp i tω−  E  and ( )Re exp i tω−  H  with complex amplitudes 

E  and H  (ω  is the radiation frequency). Subsequently, the time-average energy flow 

density is expressed by the Poynting vector S  or the electromagnetic momentum density p : 

 ( )2 *
Rec gc= = ×S p E H  (1) 

( ( ) 1
8g π −

=  in the Gaussian system of units, c is the light velocity). The total quantity [Eq. 

(1)] can be subdivided into the spin momentum density (SMD) and orbital momentum density 

(OMD), ,
S O

= +p p p  according to which sort of beam angular momentum they are able to 

generate [11,14,15]: 

 ( ) ( ) ( )* * * *Im , Im
4 2

S O

g g
p E E H H p E E H H

ω ω
   = ∇× × + × = ⋅ ∇ + ⋅ ∇  � �  (2) 

where ( ) .
x x y y z z

E E E E E E
∗ ∗ ∗ ∗⋅ ∇ = ∇ + ∇ + ∇E E  The particular properties of the SMD and OMD 

contributions [Eq. (2)] reflect specific features of the “intrinsic” rotation associated with the 

spin of photons (
S

p ) and of the macroscopic energy transfer (
O

p ) in a light field. The 

quantities introduced by Eq. (2) provide deeper insight into the details of the light field 

evolution, and allow one to describe interrelations between the spin and orbital degrees of 

freedom of light [12,15–17,19–23]. However, the wide practical application of the internal 

flow parameters is hampered by difficulties in their experimental measurement and/or 

visualization. At present, only indirect procedures are available, e.g., via the Stokes 

polarimetry [13], where the energy flow pattern is calculated from the measured amplitude, 

phase and polarization data. In this context, possibilities coupled with the energy flow 

visualization via the motion of probe particles, suspended within an optical field, have 

attracted special attention [24–28]. This technique relies on the assumption that the force 

acting on a particle is proportional to the local value of the field momentum. Though with 

serious precautions [12,28], this assumption is qualitatively justified for the OMD 
O

p , 

whereas even the physical explanation of how the spin momentum can be transferred from the 

field to a particle is not clear. For example, as is well established for a long time [29], a 

circularly polarized beam as a whole, as well as any part of its transverse cross section, carries 

the “pure” angular momentum that can cause spinning motion of the absorbing particle, but 

there is no clear understanding whether and how the translational or orbital motion can appear 

in this situation [12,17]. Besides, the spin flow does not manifest itself in the visible changes 

of the beam profile upon propagation [12,14]. Although recent calculations [28] suggest no 

significant differences in the mechanical action of the SMD and OMD, a direct unambiguous 

verification of their mechanical equivalence (e.g., in their ability to produce corresponding 

light pressure on material objects) is highly desirable [12,17]. 

In the present paper, we describe experimental observations of the polarization-dependent 

orbital motion of suspended probe particles in a transversely inhomogeneous beam with 

circular polarization where rotational action of the OMD is absent or negligible. To the best 

of our knowledge, these results can be considered as the first experimental evidence of the 

mechanical action of the spin momentum (spin energy flow) of a light beam. 
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2. Spin and orbital flows in paraxial beams 

Let us consider a paraxial light beam propagating along the z-axis, and let the transverse plane 

be parameterized by coordinate axes x, y. The spatial distribution of the electric and magnetic 

vectors in this beam can be described as [12,14,17] 

 ( ) ( ) ( ) ( )( )exp div , exp
z z z z

i i
ikz ikz

k k
⊥

   = + = × + ∇ ⋅ ×      
E u e u H e u e e u  (3) 

where the slowly varying vector complex amplitude ( ), ,x y z=u u  is related to the complex 

amplitudes of the orthogonal polarization components of the fields [Eq. (3)], 
z

e  is the unit 

vector in the longitudinal direction, k cω=  is the radiation wavenumber. In the circular-

polarization basis 

 ( )1

2
x y

iσ σ= +e e e   

( ,
x

e  
y

e  are unit vectors of the transverse coordinates, 1σ = ±  is the photon spin number, or 

helicity), 

 ,u u+ + − −= +u e e  (4) 

( ), ,u u x y zσ σ≡  is the scalar complex amplitude of the corresponding circularly polarized 

component [17] (subscripts “+” and “–” in Eq. (4) stand for 1σ = +  or 1σ = − ). In paraxial 

beams, the SMD is always transverse ( 0
S z
⋅ =p e ) whereas the OMD consists of the 

longitudinal part, expressing the ‘main’ energy flow along the propagation direction, and the 

transverse part 
O⊥p  ( 0

O z⊥ ⋅ =p e ) which describes the internal energy redistribution during 

the beam propagation. By using Eq. (3) and introducing ‘partial’ intensity and phase 

distributions, 

 ( ) ( )
2 1

, , , , , ln ,
2

u
I x y z cg u x y z

i u

σ
σ σ σ

σ

ϕ
∗

= =  (5) 

the SMD and the transverse part of the OMD [see Eq. (2)] can be expressed as sums of 

contributions belonging to the orthogonal polarization components, 

 , ,
S S S O O O+ − ⊥ + −= + = +p p p p p p  (6) 

where [12] 

 [ ] ( ) ,
2 2

S z zI I
c c

σ σ σ

σ σ
ω ω⊥ ⊥= − ×∇ = ∇ ×p e e  (7) 

 ( ) 1
ImO

g
u u I

c
σ σ σ σ σϕω ω

∗
⊥ ⊥= ∇ = ∇p  (8) 

and ( ) ( )x y
x y⊥∇ = ∂ ∂ + ∂ ∂e e  is the transverse gradient. 

In particular, Eq. (7) means that in beams with homogeneous circular polarization but 

inhomogeneous intensity, the SMD circulates around the intensity extrema [12,14,17]. In 

contrast, the internal OMD [Eq. (8)] is directed along the transverse phase gradient, and it is 

not difficult to realize conditions where the OMD vanishes or distinctly differs from the spin 
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contribution, e.g., in direction, so that both contributions can be easily separated in an 

experiment. 

3. Analysis of the experimental approach 

Direct observation of the internal energy flow via the field-induced motion of probe particles 

within a collimated laser beam is generally difficult because the transverse light pressure 

associated with momentum densities [Eqs. (7) and (8)] is rather weak for usual beam 

intensities. To enlarge the effect, in usual schemes [24–27] a cell with suspended particles is 

placed near the focal plane of the strongly focusing objective, in which the size of the incident 

beam is efficiently reduced. The high numerical aperture (NA) of the objective guarantees 

sufficient concentration of the light energy to provide noticeable mechanical action. However, 

high NA is unfavourable for the SMD investigation since tight focusing of a circularly 

polarized beam induces partial conversion of the initial spin flow into an orbital one [12,26] 

and, consequently, even if the mechanical action is observed, one cannot definitely exclude 

that it is caused by the conversion-generated OMD. To avoid this ambiguity, the focusing 

strength should not be high: in accordance with known data [30], the spin-orbital conversion 

is negligible (does not exceed 1%) at NA 0.2~
<  (focusing angle θ ≈11°). Of course, this 

leads to certain loss in the energy concentration; however, one can avoid essential reduction 

of the focal-region SMD, if lowering the intensity is compensated by increasing the beam 

inhomogeneity [see Eq. (7)]. 

 

Fig. 1. Schematic of the experimental setup: (1), (2) input beams, (3) objective lens 

schematized by the double arrow, (4) cell with probing particles suspended in the water. Axes 

xj and zj of the involved frames (see Eqs. (10)) are shown, axes yj are orthogonal to the figure 

plane. 

At this point, the ideas of polarization interferometry developed in Refs [31,32]. can be 

employed (see Fig. 1). With this approach, the internal flows are studied in the field formed 

by superposition of two beams. Their polarizations (circular, elliptic, linear), phases, 

intensities and degree of mutual coherence can be varied within a wide range, which provides 

the possibility to create a diversity of optical fields with desirable properties [33]. By 

controlling the angle between the beams’ axes and relative phase shift between the beams, 

one may regulate the spatial intensity modulation (interference pattern) as well as the spatial 

inhomogeneity of the polarization of the resulting field, independently. 

In our experiments, two identical beams obtained from a semiconductor laser (λ = 0.67 

µm) with radii 0.7b =  mm (measured at the intensity level 1
e
−  of maximum) approach a 

micro-objective with focal distance 10f =  mm. The beams are parallel to the objective axis 

and are located at a distance 1.3a =  mm from it which provides the effective focusing angle 

( )arctan 7.4a fθ = ≈ °  and NA = 0.16; after focusing, they interfere in the focal region of 

the objective. If the beams are circularly polarized, they can be described by the terms in Eqs. 
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(4) – Eq. (8) corresponding to either 1σ = +  or –1; once the helicity is fixed, the subscript σ 

can be omitted from subsequent equations. Let both beams be Gaussian with the nominal 

input (just before the lens) complex amplitude distribution 

 ( )
( )

( )

2
2

0 2

1
, , exp 1,2 .

2

j

j

x a y
u x y z A j

b

  + − +  = − = 
 
 

 (9) 

Behind the objective, each beam propagates along its own axis 
j

z  with focusing angle 

( )~ arctan 0.07b f ≈  rad, which practically corresponds to the paraxial regime. Therefore, in 

the proper coordinate frame ( ), ,j j jx y z  (see Fig. 1), which is connected to the laboratory 

frame ( ), ,x y z  by the relations 

 ( ) ( ) ( ) ( )
1,2

1 cos 1 sin , , 1 1 sin cos ,
j j j j

j j
x x a z y y z x a zθ θ θ θ= + − − − = = − + − +         (10) 

its evolution is described by the equation 

 

( ) ( )
2

2 2

0 2 22 2

1
11

1
, , exp ,

2
1 1

j jj j R

R RR

j j j j j j

j j j j

R R

z zz z zik
i

b z z f ff z
u x y z A x y

z z z z

f z f z

η

− − −− −

= − +

− + − +

    
          
 

       
                 (11) 

where the coefficient η accounts for the energy losses in the focusing optical system, and 
2 .

R
z kb=  Eq. (11) can be readily derived from the common theory of Gaussian beams (see, 

e.g., Ref [34].). Then, neglecting the small (in agreement with Eq. (3)) longitudinal 

components, the resulting amplitude distribution in the focal region can be found from 

equation 

 ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 2 2 2 2
, , exp , , exp , , exp

z f
u x y z ikz u x y z ikz u x y z ikz

δ= +
= +    (12) 

where δ specifies the exact location of the observation plane with respect to the focus (in 

experiment, δ was adjusted empirically to provide the best conditions for particle trapping and 

manipulation), 
j

z  and 
j

x  should be replaced by their expressions, Eq. (10), with allowance 

for .z f δ= +  

Of course, Eq. (12) is immediately applicable only to the y-components of the field; as for 

the x-components, it rather unites their projections onto the observation plane, proportional to 

cosθ (see Fig. 1), However, in the special conditions of the experiment, cos 1θ ≈  with 

accuracy of 1%, and the scalar relation Eq. (12) can be safely used for the whole circularly 

polarized field. Other projections of the x-components give rise to the longitudinal field 

component in the cell 4 of Fig. 1, which is quite noticeable (~13% of the transverse field 

amplitude). Nevertheless, this longitudinal component possesses no optical vortex and carries 

no azimuthal OMD so it can be omitted when analyzing the expected rotatory action of the 

focused field. 

The properties of the interference pattern, calculated via Eqs. (7), (8) and (10) – (12) for 

conditions of Fig. 1, are illustrated in Fig. 2. It is seen that the circulatory flow of the spin 

nature exists within each lobe, while the OMD is, in fact, completely radial, attributed to the 

beam divergence. This radial field momentum can be used for probing particle confinement at 

a desirable off-center position [35], allowing observation of the SMD-induced orbital motion. 
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Within an inhomogeneous optical field, any dielectric particle is subjected to the gradient 

force [27] that pulls the particle towards the intensity maximum, here the beam axis; in 

contrast, the radial OMD of a divergent beam produces the radial light pressure that pushes 

the particle away from the axis. As a result, both forces can compensate each other at certain 

off-axial points within the central lobe of the interference pattern (e.g., points A and B in Fig. 

2d), permitting stable trapping the particle at a position where azimuthal action of the SMD is 

the most efficient (compare Fig. 2d and Figs. 2a, 2b). In experiment, such conditions occur if 

the observation plane is located several microns behind the focus ( 0δ > ). 

Figure 2c shows that due to strong intensity modulation, the SMD in the two-beam 

interference pattern is approximately 2.5 times higher than in a single Gaussian beam focused 

with the same NA objective. Noticeably, to reach the equivalent SMD level in a single 

Gaussian beam, conditions with NA ≈0.4 should be realized when more than 10% of the 

initial SMD would be transformed to the OMD [30]. The interference technique of the focal 

pattern formation facilitates the avoidance of this undesired conversion and the subsequent 

observation of the mechanical action of the ‘pure’ spin flow without any contamination 

influence of the orbital one. 

 

Fig. 2. Characteristics of the optical field in the observation plane (see Fig. 1) for σ = 1, viewed 

against the z-axis. (a) SMD and (b) OMD maps (arrows) with the intensity distribution as a 

background; (c) actual SMD distribution along the x-axis (black curve) together with the SMD 

distribution for a single focused Gaussian beam with the same sum power (light curve); (d) 

qualitative pattern of the transverse forces experienced by a probe particle at the x-axis: 

gradient force (curve 1), OMD-generated radial light pressure force (curve 2) and resulting 

force (black curve), A and B are points of stable equilibrium. In panel (a), polarization ellipses 

are shown on the background (because of small θ, they have small eccentricities and visually 

look like circles); panels (a) and (b) also contain contours of a trapped particle (black circle) 

located at point B of panel (d). 

#159576 - $15.00 USD Received 7 Dec 2011; revised 23 Jan 2012; accepted 23 Jan 2012; published 30 Jan 2012
(C) 2012 OSA 13 February 2012 / Vol. 20,  No. 4 / OPTICS EXPRESS  3569



  

4. Results and discussion 

In the experiment, a cell was used that contained an ensemble of latex microparticles 

(refractive index 1.48) suspended in water. The particles were chosen so that their shape was 

close to ellipsoidal with approximate size 1.5 × 1 µm, which was suitable for observing 

individual particles within a single lobe of the interference pattern formed in the focal region. 

Experimental observations of the trapped particle motion in case when both superposed 

beams were circularly polarized are represented by the video in Fig. 3. It is seen that the 

asymmetric particle spins around its own centre of mass, which is naturally explained by 

partial absorption of the incident circularly polarized light together with its inherent angular 

momentum. This effect is well known [24,27] and to be expected in this situation. A new 

observation is that, simultaneously, the particle’s centre of mass evidently performs an orbital 

motion, which can only be associated with the azimuthal light pressure originating from the 

SMD circulation (see Fig. 2a). This attribution is confirmed by the reversal of rotational 

direction when the sign of the circular polarization is changed; besides, when both beams are 

linearly polarized, the particle stops. 

Hence, the preliminary suggestion that the spin energy flow of an inhomogeneous 

circularly polarized beam can cause translational and orbital motion of probe particles is 

experimentally verified. Among other things, this means that the usual believe that orbital 

motion of particles witnesses for the orbital angular momentum in the motive light field is 

generally not correct, and possible contribution of the spin flow must be taken into account in 

experiments on the spin-to-orbital angular momentum conversion [26,30]. In fact, in the 

known work treating this issue, in particular, Ref [26], the spin flow action is absent or 

negligible, and their conclusions are correct. 

 

Fig. 3. Motion of a particle trapped within the central lobe of the interference pattern of Fig. 2. 

Media 1. 

It should be emphasized that beams with inhomogeneous intensity distribution and 

uniform circular polarization, as employed in this paper, are not unique examples of light 

field with nonzero SMD. In accordance with Eqs. (6), (7), quite similar SMD should appear 

in polarization-inhomogeneous beams. Such situations were recently discussed [36] but 

wrongly interpreted [37] as manifestations of a new category of the orbital angular 

momentum. Besides, high-NA focusing reported in Ref [36]. gives no certainty that the 

observed orbital motion of trapped particles is not caused by the OMD generated due to the 

spin-to-orbital conversion. 
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5. Conclusions 

To the best of our knowledge, the results reported in this paper can be considered as the first 

experimental evidence for the mechanical action of the spin momentum of light fields. This 

purports an additional confirmation for the mechanical equivalence of the spin and orbital 

momentum of light, despite the difference in their physical nature [12,16]. Additionally, we 

have demonstrated possibility of the SMD-induced particle transportation, which probably 

constitutes an interesting applied aspect of the observed phenomena. In our opinion, such a 

possibility opens up new promising opportunities for controllable optical manipulation 

procedures in which regulation and regime switching are realized via the polarization control 

alone, without change of the trapping beam intensity or spatial profile. Such techniques may 

be advantageous in many applications, e.g., when high switching speed is important. 
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