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Abstract (max. 2000 char.): 

This document summarizes the scientific results achieved during 

the EUDP-funded project `Low-Noise Airfoil'. The goals of this 

project are, on one side to develop a measurement technique that 

permits the evaluation of trailing edge noise in a classical 

aerodynamic wind tunnel, and on the other side to develop and 

implement a design procedure to manufacture airfoil profiles with 

low noise emission. The project involved two experimental 

campaigns: one in the LM Wind Power wind tunnel, a classical 

aerodynamic wind tunnel, in Lunderskov (DK), the second one in 

the Virginia Tech Stability Wind Tunnel at the Aerospace and 

Ocean Engineering Department of Virginia Tech (Blacksburg, VA, 

USA), also a classical aerodynamic wind tunnel but equipped with 

an anechoic chamber that allow to perform acoustic measurements. 

On the theoretical side, the above experiments yield a series of 

model validations and improvements. In particular, the so-called 

TNO trailing edge noise model could be significantly improved by 

introducing turbulence anisotropy in its formulation, as well as the 

influence of the boundary layer mean pressure gradient. This two 

characteristics are inherent to airfoil flows but were neglected in the 

original approach. In addition, the experimental results are 

confronted to detailed Large Eddy Simulations of the airfoil flow 

giving more insight into the flow turbulence characteristics. The 

methodology which consists in measuring surface pressure spectra 

directly on the airfoil surface using flush-mounted microphones in 

order to evaluate far-field noise emission using additional 

theoretical results has been validated. This technique presents the 

advantage that it can easily be used in a classical aerodynamic wind 

tunnel and does not require the use of an anechoic facility. It was 

developed as a substitute to the original plan that consisted in 

measuring acoustic waves using hot-wire velocimetry. This last 

technique proved ineffective in the LM Wind Tunnel as the high 

ambient noise levels largely overwhelmed the signal of interest. 

Finally, a new airfoil design was proposed based on a design 

concept including noise reduction. The new airfoil proved to 

perform better aerodynamically but noise reduction were not as 

important as expected, mainly due to the inaccuracy of the 

simplified flow model used in the design algorithm. 
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1 Introduction
The EUDP-founded project ‘Low Noise Airfoil’ has been o�cially running from
January 2010 to December 2011. It is more precisely entitled: ‘Development of a
Measurement Technique for Low Noise Airfoil Design and Validation’. The overall
aim of the project is to design low-noise wind turbine blades and make Danish
wind turbines blades more competitive in the future world wind energy market. To
achieve this, the project focuses on the development of a measurement technique
that allows the evaluation of blade generated noise in an industrial aerodynamic
wind tunnel instead of developing a speci�c anechoic wind tunnel. An alterna-
tive would be to rent such a speci�cally designed wind tunnel facility to perform
acoustic measurements, but it must be beared in mind that access to these wind
tunnels is expensive. The objective is two-fold: Firstly, the above experimental
methodology is used to validate engineering models that are subsequently applied
to design low-noise wind turbine blades. Secondly, the designed airfoil from the
blade manufacturer are tested with respect to noise before large scale industrial
production occurs.

The project was initially divided into 3 main tasks:

1. Analysis of preliminary results
As part of previous state-funded projects between Ris�-DTU, LM Glas�ber
and DTU-MEK (among others), various measurements related to noise emis-
sion were performed both in wind tunnels and on a real wind turbine. In this
task, the above results are analyzed and used as reference for the present
project. Comparisons between existing engineering models are performed.
This study is used as a benchmark to evaluate these models. As part of this
task, the methodology for measuring noise in a classical aerodynamic wind
tunnel should be designed in view of the above measurements.

2. Development of a noise measurement technique
This experiment is intended to demonstrate the feasibility of the proposed
methodology, i.e. measuring noise inside an aerodynamic wind tunnel. Three
di�erent airfoils are to be tested. This step is mandatory in order to ensure
that the method can di�erentiate between these di�erent airfoils, each char-
acterized by a di�erent acoustic signature.
In addition, the experimental data related to the actual sources of noise and
obtained during this campaign are used and correlated with the noise sig-
nature measurements to better understand the mechanism involved in noise
generation and further re�ne the model theories.

3. Low-noise wind turbine airfoil and proof of concept
It is intended to design an airfoil speci�cally tailored for low-noise charac-
teristics, without compromising its aerodynamic performances. This airfoil
is �nally be tested in a wind tunnel to prove the potential of the proposed
design and veri�cation of concept.

The above plan was modi�ed to some extent due to technical di�culties that
arose during the �rst experiment of the project. In particular, the approach in-
tended to be used to evaluate noise in Task.2 was based on a two-step method.
Firstly, the noise sources should be evaluated using surface microphones ush-
mounted in the airfoil near the trailing edge. In theory, this should characterize
the turbulence in the boundary layer that will subsequently radiate as noise to
an extent that it is nearly su�cient to evaluate the radiated noise. Secondly, the
far-�eld noise was supposed to be measured with a second measurement device.
The latter plan of action relied on two hot-wire probes that would be inserted
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in the wind tunnel in the vicinity of the airfoil trailing edge, though outside the
turbulent boundary layer in order to avoid its perturbating e�ect. However, the
results proved to be seriously contaminated by powerful acoustic waves that were
travelling in the wind tunnel. It should be reminded here that the above-described
experiment was conducted in the LM Power wind tunnel at Lunderskov which is
not designed for acoustic measurements, and therefore there is no special device
or equipment to attenuate acoustic waves in the tunnel.

The change of plan then consisted in only relying on the surface microphones
to evaluate noise emission using theoretical results. Nevertheless, this approach
needed to be validated. It was therefore decided to use a wind tunnel (located
at Virginia Tech. University, USA) where such acoustic measurements could be
performed within a classical aerodynamic wind tunnel.

This report is organized as follows. The various modeling and experimental
studies and their main results are provided in each of the report sections. These
deals with the following topics:

- Experiment in LM Wind Tunnels including the hot-wire measurements useful
to characterize the turbulent boundary layer around an airfoil and how these
are correlated to the surface pressure measurements with microphones near
the trailing edge; the failed noise measurements using hot-wire is presented.

- The results of the above experiment, in particular hot-wire measurements in-
side the boundary layer, are compared with detailed Large Eddy Simulations
of the ow around the airfoil.

- Anisotropic model development, including boundary layer pressure gradient
inuence, and using the above results to tune the model.

- Noise evaluation technique based on surface pressure uctuations measure-
ment using microphones.

- Design of a new low-noise/aerodynamic e�cient airfoil using a classical opti-
mization method in which noise evaluation has been included.

- Validation in Virginia Tech wind tunnel:

� Validation of the far-�eld noise evaluations based on surface pressure
measurements.

� Validation of the low-noise airfoil design.

This report is terminated by general conclusions and perspectives.
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2 Wind Tunnel Measurements at
LM Wind Power
Author: F. Bertagnolio

This section presents the results obtained during the experimental campaign
that was conducted in the wind tunnel at LM Wind Power in Lunderskov from
August 16th to 26th, 2010. The goal of this study is to validate the so-called TNO
trailing edge noise model through measurements of the boundary layer turbulence
characteristics and the far-�eld noise generated by the acoustic scattering of the
turbulent boundary layer vorticies as they convect past the trailing edge.

This campaign was conducted with a NACA0015 airfoil section that was placed
in the wind tunnel section. It is equipped with high-frequency microphones be-
neath its surface so that surface pressure uctuations generated by the boundary
layer turbulence can be measured.

Hot-wire anemometry was used to measure mean ow velocities and turbulent
uctuations inside the boundary layer. For this, a traverse system was developped
so that the hot-wire probes could be moved with a step motor perpendicularly to
the airfoil chord in order to perform measurements across the boundary layer. The
probes could be moved manually back and forth relatively to the inow velocity
and along the trailing edge in order to investigate several locations in the ow
�eld.

As a second part of the experiment, the previous traverse system was removed
and two airfoil-shaped probe-holders were installed instead. These were designed
to hold in place two hot-wire sensors, one on each side of the trailing edge (below
and above the plane spanned by the airfoil trailing edge and the inow velocity) in
an attempt to measure the velocity uctuations associated to the pressure waves
originating from the acoustic scattering at the trailing edge, which should behave
as a dipole.

The results of this experiment are reported in details in the technical report by
Bertagnolio [6].

2.1 Experimental Set-up
2.1.a LM Wind Power Wind Tunnel

The LM Wind Power wind tunnel is designed for the testing of wind turbine
airfoils [50]. The actual test section dimensions are 1.35 m in width, 2.70 m in
height, and 7 m in length. A NACA0015 airfoil section with a 0.9 m chord was
placed across the width of the tunnel. During this study, three inow velocities
were investigated: U1 = 30; 40 and 50 m/s, as well as four angles of attack: � =
0; 4; 8 and 12o.

A previous study [50] showed that the inow turbulence (without turbulence
grid in the tunnel as it is the case here) was roughly of the order of I = 0:1% in
all velocity directions at all wind tunnel inow velocities. A subsequent study [5]
using tri-axial hot-wire anemometry showed higher turbulence intensities of ap-
proximately 1%.

2.1.b Hot-Wire Measurements
Both single-wire and bi-axial hot-wire probes from Dantec Dynamics [34] to-

gether with the StreamLine CTA (Constant Temperature Anemometer) measure-
ment system and the StreamWare software were used for data acquisition and
post-processing. The traverse system used to explore the boundary layer (BL)

8 DTU Wind Energy-E-0004



with these probes was designed and manufactured at Ris� DTU by Andreas Fis-
cher. The whole system with probes installed in the wind tunnel downstream of
the airfoil trailing edge (TE) is pictured in Figure 1.

Figure 1. Traverse set-up

As for the far-�eld sound measurements, two slanted hot-wire probes were �xed
at the tip of probe-holders, themselves mounted on the nose of airfoil-shaped
holders spanning the whole tunnel width downstream the airfoil TE. The device
set-up can be seen in Fig. 2.

Figure 2. Slanted hot-wire holders set-up

2.1.c Airfoil Model and Surface Microphones
The NACA0015 airfoil section with a chord C =0:9 m and a spanwise extension

L = 1:35 m was installed in the wind tunnel. Sennheiser KE 4-211-2 microphones
were ush-mounted beneath the airfoil surface in order to measure the pressure
uctuations. These microphones have a potential sampling frequency larger than
50 kHz. However, the actual sampling rate of the data was set to the same as for
the hot-wire probes, i.e. 25 kHz. Note that the low-pass �lter couldn’t be applied

DTU Wind Energy-E-0004 9



to the microphone measurement data since these were directly acquired through
the A/D board and could not be processed by the StreamLine acquisition system.
Consequently, the surface pressure measurements may be polluted by some aliasing
e�ects. However, it is believed that this e�ect is small in our case as the energy
contained in the signals at frequencies above 25 kHz is expected to be rather small.

2.2 Measurement vs. Model Comparisons
This section concentrates on comparison between the measured data (i.e. BL ve-
locity components and surface pressure) and numerical modeling.

In a �rst step, CFD calculations are performed with the two-dimensional Reynolds
Averaged Navier-Stokes solver EllipSys2D [63, 44, 46] using the k�! SST turbu-
lence model [43]. For comparison with the clean airfoil, the en transition model
by Drela and Giles [22] is used. Mean velocity pro�les and averaged turbulent
quantitities are compared with measurements. In addition, the velocity spectra
measured in the wind tunnel are compared with the isotropic theoretical spectra
of Von Karman (or other similar derivation) for which the turbulent kinetic energy
(or turbulent stresses) and length scales are extracted from the CFD calculations
or the measurement data.

In a second step, the results from the previous CFD calculations can be used
as input for the TNO model that provides an estimation of the surface pressure
spectra (in addition to the far �eld noise spectra).

2.2.a Comparison with CFD Calculations
CFD results are compared with the clean airfoil experimental results. Note that

the results displayed for � = 0 and 12o were obtained with the inow velocity
U1 =50 m/s, and those for �=4 and 8o with U1 =40 m/s.

The mean velocity and turbulent kinetic energy (TKE) pro�les are plotted in
Figs. 3 and 4, respectively. The TKE for the experimental results is obtained
by adding the turbulent stresses in all directions and dividing by 2. Although
the computational and experimental mean velocity pro�les are quite similar, the
velocity di�erence at one given BL position can be quite large. This may be caused
by a wrong o�set speci�cation of the initial probe position when exploring the BL.
As for the TKE, it can be observed that the di�erences between computational
and experimental results increase with increasing angle of attack.

The turbulent stresses in the three space directions are displayed in Figs. 5(a-
b-c). Isotropy is assumed for the CFD results, that is:

<uiui > =
2
3

kT for i = x; y; z

It is clear that the ow is highly anisotropic. The ux component is noticeably
more energetic than the two others, whereas the uz component is slightly more
energetic than the uy component.

A wind tunnel blockage e�ect could have explained some discrepancies. However,
it appears that the di�erences in maximum mean velocity at the top of the BL
between the measurements and the calculations (see Fig. 3) are rather small.
Nevertheless, the measured maximum velocity slowly overtakes the computed one
as the angle of attack increases. This could be expected since the blockage e�ect
is intensi�ed when the apparent surface of the airfoil relatively to the incoming
ow, which is directly related to the angle of attack, increases.
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Figure 3. Velocity pro�le Ux
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Figure 5. Turbulent stresses (CFD: <uiui >= 2=3 � kT )
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2.2.b Measured Velocity and Isotropic One-Point Spectra
For the same cases as in the previous section, the ‘pre-multiplied’ (see de�nition

below) one-point spectra of the ux and uy components are compared with those
predicted by the theory of Von Karman for which isotropy is assumed. Note that
the spectra displayed in this section are plotted as functions of the wavenumber
k1 which is parallel to the mean ow direction. By assuming frozen turbulence,
the following relationship is used:

k1 = 2�f=Ux

where f is the frequency and Ux is the local mean ow velocity. In addition, all
spectra are ‘pre-multiplied’ by k1 in order to make their peak wavenumber values,
which is characteristics of the integral length scale, appear more clearly in the
�gures.

The de�nition of the Von Karman spectrum requires the variance of the consid-
ered velocity component, as well as the corresponding integral length scale. These
can be extracted either from the experimental or from the CFD calculation results.
As mentioned above, the peak value wavenumber of the spectra is characteristic
of the integral length scale, whereas the amplitude of the spectra is characteristic
of the turbulence intensity (variance) of the speci�c velocity component.

Fig. 6(a) shows the spectra for the ux component, and Fig. 6(b) for the uy com-
ponent. The Von Karman spectra are evaluated using the experimental turbulent
stresses and integral length scales. The agreement between the experimental and
theoretical spectra is very good for the ux component. As for the uy component,
the �gures indicate in most cases a shift of the theoretical spectra toward higher
wavenumbers, indicating that the evaluated integral length scale is too small or
alternatively, that the Von Karman spectrum is not a good approximation for this
component.

Fig. 7(a-b) show the same spectra as above for the ux and uy components,
respectively. However, the Von Karman spectra are now evaluated using the tur-
bulent stresses and integral length scales extracted from the CFD calculations.
It must be noted here that these data were not extracted at the same distance
to the wall for which the measured spectra are shown, but where the mean ow
velocities coincide (The actual BL locations are indicated in the �gure’s legends).
This is done because some small errors in the o�set de�ning the initial distance of
the probe to the wall yield large error in the turbulent quantities evaluation, since
these quantities vary very rapidly close to the wall. In addition, the CFD calcu-
lations only give access to the vertical integral length scale L2 (see Section 4.1.a)
and the turbulent kinetic energy. Here, isotropy is assumed and the same values
are used in both x and y-directions . The following computational values are used
as input for the Von Karman one-point spectra de�nition:

L =
1

0:7468
L2 and <uiui > =

2
3

kT

The agreement is now much more mitigated than before. As for the ux component,
there exists a noticeable shift of the theoretical spectra toward higher wavenumbers
and the amplitudes of the theoretical spectra seem also to be largely underesti-
mated. As for the uy component, the agreement is slightly better, but a small
shift of the theoretical spectra to the higher wavenumber still exists and this time,
their amplitudes is slightly overestimated. These remarks apply to the two loca-
tions closest to the surface. Conclusions are somehow di�erent for the location
furthest away (but this is less critical, as far as the TNO model is concerned, since
the inuence of this location on the surface pressure is largely reduced due to
its larger distance to the wall and the local turbulence intensity is relatively low
anyway).
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Figure 6. Pre-multiplied one-point spectra (V.K. using experimental data)
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Figure 7. Pre-multiplied one-point spectra (V.K. using CFD data)
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2.2.c Surface Pressure and CFD/TNO Model
As described in Section 4.1.a, the TNO model gives access to the surface pressure

uctuations spectra. These spectra could be reliably measured during the present
campaign. In this section, both sets of data are compared at the chord location
X=C =0:894. Note that all input ow data for the TNO model have been obtained
with CFD calculations. In these calculations, the transition is determined with the
en transition model by Drela and Giles [22] and the parameter Ncrit is set to 9.

The surface pressure spectra obtained with the original CFD/TNO model are
compared with the measurements at the chord location X=C =0:894 in Fig. 2.2.c.
Each of the four sub�gures corresponds to one of the considered angles of attack
� = 0; 4; 8 and 12o. In each sub�gure, results for the three wind tunnel inow
velocities are plotted. It can be observed that the surface pressure is consistently
underestimated by the model, and that this underestimation is increasing as the
angle of attack increases. However, the form of the measured spectra is quite well
predicted by the model. Indeed, the evolution of the spectra (i.e. the spectrum
slope at higher frequencies and the spectrum peak frequency) as a function of the
angle of attack is very well reproduced by the model, as well as the increasing
spectral intensity as a function of the inow velocity.
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2.2.d Conclusions on BL Measurements
The various tests performed in this section to evaluate the impact of the various

parameters on the CFD/TNO model prediction of the surface pressure spectra,
together with the comparisons of CFD results with BL measurements provide
some indications on how to improve the TNO model.

It seems clear from Section 2.2.a that the CFD calculations underestimate the
TKE in the turbulent BL when the angle of attack is getting large. This underesti-
mation is increasing as the angle of attack is increasing, which is correlated to the
fact that the CFD/TNO model underestimates the surface pressure spectra as the
angle of attack increases. However, attempts to increase the TKE (within sensible
limits) were not successfull in reducing the discrepancies between measured and
modeled surface pressure spectra at high angles of attack.

It is also clear that the isotropic assumption might be in default here.
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2.3 Trailing Edge Noise Measurements
As described in Section 2.1, two slanted single hot-wire probes were placed in the
wind tunnel near the trailing edge (TE) of the airfoil, one on each side of the TE
relatively to the airfoil chord plane. Both probes were located outside of the BL
and wake generated by the airfoil itself so that BL/wake turbulence will not a�ect
the measured velocity uctuations.

The goal is to measure the TE radiated noise that should behave as a dipole and
therefore should be characterized as out of phase pressure/velocity uctuations
on both sides of the TE. The slanted probes are orientated so that the hot-wires
stand approximately along a line perpendicular to the TE and perpendicular to
the line joining the probe to the closest point on the TE. In this way, the set-up
will signi�cantly �lter out waves that are not parallel to TE noise waves, though
waves travelling in the direction parallel to the TE will not be �ltered out. One
can therefore expect that the resulting measurements will be contaminated by
spurious sound waves reecting on the side walls of the wind tunnel. In any case,
it cannot be expected that this set-up will �lter out all background noise present
in the wind tunnel as it will become clear in the analysis of the measured data
below.

In order to evaluate this measurement technique, two di�erent con�gurations
are investigated here. In the �rst one, the probes are located at approximately
9 cms below and above the plane described by the mean inow velocity and the
TE, and at a distance approximately equal to 13 cms from the TE perpendicularly
to the TE direction. The angle of attack of the airfoil is equal to � = 8o. As for
the second con�guration, the probes are located at the same relative locations in
the wind tunnel but the airfoil is removed from the wind tunnel.

The coherence and phase between the velocities measured by the two hot-wires
are plotted in Figs. 8(a) and (b), respectively, for an angle of attack � = 8o and
for the empty wind tunnel at all considered inow wind speeds U1 = 30; 40 and
50 m/s. It can be observed that there is no signi�cant di�erence between the wind
tunnel being empty and when the airfoil is present, except at lower frequencies
(f <600 Hz) where there exist strong correlated signals captured by the two hot-
wires. However, the phase behaviour does not indicate that it is related to TE noise
(which should be characterized by a �� phase shift), but rather that it behaves
more like the phase shift of sensors measuring the same traveling wave at di�erent
locations (i.e. characterized by a linear variation of the phase as a function of
frequency). This latter behaviour could be the result of the two hot-wire probes
being located not exactly at the same distance from the acoustic source.

A small frequency range for which the two velocities measured by the hot-wires
are out of phase can be observed around 1500 < f < 2100 Hz. However, it is also
observed when the wind tunnel is empty excluding that this could be related to
TE noise. In addition, sharp large coherence peaks can be observed above 2000 Hz.
Their frequency locations increase with increasing inow speed. These are most
certainly caused by the wind tunnel fan noise.

The large coherence between the hot-wire signals observed at frequencies lower
than approximately 600 Hz is investigated in more detail. The cross-spectra of the
two signals are displayed in Fig. 9(a). It is important to note here that, for a
sound wave emitted by a dipole source, the velocity is linearly related to the time
derivative of the pressure �eld. Therefore, the velocity amplitude should scale as
the pressure amplitude. In addition, the sound wave intensity (proportional to the
pressure amplitude squared) of trailing edge noise should scale as U 5

1 at higher
frequencies, i.e. f � c0=C where C is the airfoil chord and c0 the speed of sound
(see Blake [10], Vol.II, p.732), and as U 6

1 at lower frequencies, i.e. f � c0=C.
The cross-spectra non-dimensionalized using the two scaling laws are displayed
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in Figs. 9(b) and (c), respectively. It can be observed that the two scalings give
similar results, and that in both cases, the cross-spectra seem to merge into a
common curve. In addition, note that the intermediate scaling frequency c0=C is
approximately equal to 380 Hz in our case. This might indicate that the highly
correlated signals at low frequencies may originate from a compact acoustic source
(low wavenumber acoustic waves relatively to the airfoil chord) due to the inter-
action of the airfoil with either inow turbulence or turbulent boundary layer
vortices convecting above the trailing edge.
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2.3.a Conclusions on Hot-Wire Noise Measurements
As a conclusion for this section, it seems that measuring trailing edge noise

with the present set-up is not feasible. Some noise related to the presence of the
airfoil could be measured at lower frequencies, however, it remains uncertain what
its origin is. The main reason for these inconclusive results is most probably the
presence of intense background noise which overwhelms the TE noise that we are
trying to measure.

2.4 Conclusions
Hot-wires and surface pressure measurements of the NACA0015 airfoil that were
performed in the LM wind tunnel provide a detailed description of the BL mean
velocity pro�les as well as BL turbulent velocity uctuations and the associated
surface pressure uctuations. These measurements are intended to validate both
the CFD calculations using the RANS code EllipSys2D and the TNO model which
uses the previous calculations as an input for the evaluation of the surface pres-
sure spectrum, and subsequently the trailing edge far-�eld noise. There is a relative
quite good agreement between the CFD results and the measurements. Some dis-
crepancies were observed for the turbulent kinetic energy and integral length scale
distributions across the boundary layer. The TNO model predicts the qualitative
features of the surface pressure as a function of inow velocity and angle of attack
quite well. However, discrepancies exists concerning the quantitative results. In
particular, the modeled surface pressure spectra largely underestimate the mea-
surements. Some corrections based on the discrepancies observed between the CFD
results and the measured turbulent boundary layer quantities were implemented
to improve the model. However, it proved unable to eliminate the surface pressure
spectra underestimation at high angles of attack.

The second part of the experiment intended to measure trailing edge noise with
hot-wire anemometry. It turns out that the background noise present in the wind
tunnel (originating from the fan, boundary layer along the walls of the wind tun-
nel, reecting sound waves on these walls, etc...) seems to dominate the whole fre-
quency range where trailing edge noise should be observed. These spurious sound
waves could not be �ltered out. Nevertheless, sound waves related to the presence
of the airfoil could be observed in the frequency range 100-600Hz. However, their
origin could not be clearly identi�ed.

As a �nal conclusion, it seems that the LM wind tunnel is not adapted to
measure trailing edge noise using hot-wire anemometry due to the high background
noise present in the tunnel. However, the relative good agreement between the
TNO modeled and the measured surface pressure using the ush-mounted airfoil
microphones can indirectly give access the radiated trailing edge noise using the
TNO model theory.
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3 Comparisons between LES and
Wind Tunnel Hot-Wire Measure-
ments
Authors: W.J. Zhu, W.Z. Shen and J.N. S�rensen

Large-eddy simulations (LES) are carried out for ows over a NACA 0015 airfoil
at AoA = 8o and a chord based Reynolds number of 1:71 � 106. To accurately
simulate the complex ow on the suction side of the airfoil, a reasonably large
number of grid points is required. The computational mesh is constructed in a
wind tunnel similar to the LM wind tunnel where the experiment for an NACA
0015 airfoil was carried out. The goal of this study is to validate the mixed scale
SGS turbulence model against detailed measurements. Simulations are performed
with the in-house EllipSys3D code on high performance computers. The stability
and accuracy of the LES simulations are studied on various mesh con�gurations.
The spanwise grid spacing is found important to produce correct ow disturbances
along the airfoil span, which can a�ect the turbulent energy distribution.

3.1 Introduction
Computational Fluid Dynamics (CFD) has entered into its mature stage. Di�erent
techniques exist to model turbulent ows: the Reynolds-averaged Navier-Stokes
(RANS) method, the detached eddy simulation (DES), the large eddy simulation
(LES) and the direct numerical simulation (DNS). The RANS technique is most
popular for solving engineering based ow problems. One has the alternative to
choose one equation models, for example the Baldwin-Barth model [3] and the
Spalart-Allmaras model [65], and the two equation models, for example the k-
epsilon model [35] and the k-omega model [69]. A more advanced method that
combines RANS and LES is the DES method [66]. Comparing with RANS, DES
is much more convincing to resolve highly separated turbulent ows. In LES, large
eddies are solved explicitly and smaller eddies are treated implicitly using sub-grid-
scale (SGS) models. LES does not resolve the full range of turbulence scales, but
it solves a scale range much wider than RANS. The use of LES is a compromise
between limited computer resource and numerical accuracy. As the grid becomes
�ner, the SGS Reynolds stress is smaller. The method is identical to DNS when
the grid density is high enough to resolve the smallest eddy structures.

The increase of computer power and memory storage has raised the interest of
using LES. LES appears to be a potential numerical tool that can handle complex
turbulent ow problems. The foundation works of Smagorinsky [62], Lilly [36]
and Deardor� [19] were aimed at weather forecasts. For ows with smaller scale
objects, such as turbulent airfoil ows, some modi�ed LES models were proposed.
The method for modeling the SGS stress tensor is seen in Bardina et al [4]. The
models of Ta Phuoc [53] and Sagaut [58] are an extension of the Smagorinsky
model as well. The eddy viscosity is a function of vorticity, shear strain tensor and
turbulent kinetic energy, therefore it is called mixed scale eddy viscosity model.
Such approach is seen in Mary and Sagaut [40] who simulated ows over an airfoil
near stall. It was found that the simulated mean and uctuating velocity pro�les
compare favourably with experimental data. It was suggested that the streamwise,
wall normal and spanwise mesh resolutions in terms of wall units must satisfy the
grid size constrains: x+ < 50, y+ � 2, z+ � 20, respectively. On the other hand,
the values suggested by [54] are 50 < x+ < 150, y+ � 1, 15 < z+ < 40. For
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comparison, the criteria used for DNS are: 10 < x+ < 20, y+ � 1, 5 < z+ < 10.
In the above criteria, the limitation of the spanwise spacing is even more critical
than in the streamwise direction. In the present paper, the mixed scale eddy
viscosity model is used to investigate turbulent ows over a NACA 0015 airfoil.
Numerical simulations are conducted in a wind tunnel of a similar geometry as
in the experimental setup. E�ects of grid spacing in the spanwise direction are
investigated.

3.2 Numerical Method
3.2.a Governing Equations

In LES the �ltered Navier-Stokes equations is de�ned as

@ �Ui

@t
+
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= �
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@ �Ui
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where the �rst �lter is identi�ed by a bar (�). The solutions obtained from equation
(1) and (2) are �ltered due to the �nest grid level used in the computation.

The ow velocity can be written as Ui = �Ui + U 0
i , where �Ui represents the

resolved scale part and U 0
i is its subgrid scale part. The large scales are simulated

whereas the small scales are modelled by the sub-grid-scale (SGS) model. The
term that requires to model is the SGS stress
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The turbulent stresses are modelled with an eddy viscosity

�ij = �t
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2
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k�ij (4)

The eddy viscosity is determined by the mixed scale turbulence model introduced
by Ta Phuoc [53]

�t = Cj~!j�k
(1��)

2 �(1��) (5)

where � = (�x�y�z)1=3 is an average grid size, and is a parameter that takes
values in the range between 0 and 1. The turbulent kinetic energy can be estimated
by using a test �lter

k =
1
2

3X

j=1

�
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�2 �
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j=1

�
�Uj � f�Uj

�2
(6)

where f�Uj is the velocity resulted from the test �lter. Assuming ow similarity
between two grid levels, the test �lter is applied on the coarser mesh which is
double coarser than the �nest mesh. The model equation (5) becomes a pure
vorticity based model in the case when � = 1,

�t = Cj~!j�2 (7)

and it becomes the Bardina model [4] in the case when � = 0,

�t = Ck
1
2 � (8)

From studies on the model parameter, it was found that the model generally
performs best when the parameter � is chosen to be 0.5,

�t = Cj~!j
1
2 k

1
4 �

2
3 (9)

with C = 0:04. Therefore, this model is used in our computations for turbulent
ows.
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3.2.b The Flow Solver
The EllipSys code [44, 46, 63] has been developed for solving general incompress-

ible ows. The solver is based on a second-order �nite volume method where the
multi-grid strategy is used for solving the pressure correction equation. The code
solves the velocity-pressure coupling equations with the SIMPLE/SIMPLEC/PISO
method. The momentum equations are �rst solved with a known pressure to give
a prediction and the continuity equation is used as a constraint on the velocity to
obtain a pressure correction equation. In the predictor step, the momentum equa-
tions are solved by the second-order backward di�erentiation scheme in time and
second-order central di�erences in space. The QUICK upwind scheme is used for
the convective terms instead of using central di�erences schemes. In the corrector
step, the improved Rhie-Chow interpolation [61] is applied to suppress numeri-
cal oscillations from velocity-pressure decoupling. Also, the improved SIMPLEC
scheme for collocated grids [60] is used such that the solution is independent of
the relaxation parameters and the time-step. The di�erential form of NS equations
are transformed into a curvilinear coordinate system aligned with the local grid
lines. In 3D case, the metric expressions of the partial di�erentials are

@
@x = 1

J

�
@
@� ��x + @

@� ��x + @
@� ��x

�

@
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�
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@� ��y

�

@
@z = 1

J

�
@
@� ��z + @

@� ��z + @
@� ��z

�
(10)

where �() are the partial di�erentials between the two coordinates and J is the
Jacobian.

3.3 LES Simulations
This section presents results from numerical simulations with the wind tunnel.
Numerical results are compared with the wind tunnel measurements [6] carried
out at the LM wind tunnel.

3.3.a Computational Mesh
The LM Wind Power wind tunnel has the actual test section dimensions: 1.35 m

in width, 2.70 m in height and 7 m in length. A NACA 0015 airfoil model of 0.9 m
chord and 1.35 m span is placed across the tunnel. For numerical simulations, we
use a similar con�guration as in the experiment. As drawn in �gure 10, the domain
height is H = 2.70 m. A total tunnel length of 30 m is used in the simulations. The
airfoil chord is 0.9 m and it is placed in the centre of the computational domain.
Three di�erent mesh con�gurations are used in the current study, namely M1, M2
and M3. For M1, the spanwise extension is 2% of the chord length. The reason
of choosing a small span is due to the requirement of a small grid spacing in the
spanwise direction. The streamwise, wall normal and spanwise mesh resolutions
in terms of wall units shall be small enough to satisfy: x+ < 50, y+ � 2, z+ � 20,
as mentioned earlier. To meet these criteria, the present mesh has an o�-wall cell
size between 1 � 10�5 and 5 � 10�5 chords. For a span of 2% airfoil chords, the
maximum grid-spacing measured in wall unites, is x+ < 30, y+ � 2, z+ � 20 in the
streamwise, wall normal and spanwise directions, respectively. Thus, the maximum
x+ is 15 times of y+ and z+ is 10 times of y+. The total grid number used for
M1 is 4:6 � 106. For M2, the grid spacing in x; y; z directions are kept the same as
M1. However, the span is extended to 4% of the chord length. Therefore, the grid
number is increased to 9:2�106. For M3, the span is extended to 20% of the chord
length, but the number of grid points is still the same as for M1. This means that
the grid size in the spanwise direction is 10 times larger in M3 as compared to M1.

DTU Wind Energy-E-0004 23



In all the cases, periodic boundary conditions are used at the ends in the spanwise
direction, wall boundary conditions are used on the top and bottom sides, inow
and outow boundaries are set for inlet and outlet, respectively.

Figure 10. Mesh con�guration (plotted at every 8th grid lines).

3.3.b LES Results and Comparisons
Inputs for the ow simulations on the 3 meshes are: �t = 1�10�5s, U0 = 30m=s,

� = 8o. A snapshot of U-velocity contours is shown in �gure 11. The upper and
lower boundaries are the wall surfaces where velocity is zero. Flow acceleration
can also be observed on the suction side of the airfoil which is up to 31m=s.
The spanwise iso-surface vorticity is plotted in �gure 12 after the ow is fully
established. At 8 degrees of angle of attack, the ow is near stall. Simulations on
all the three meshes show that the ow separation occurs at a position not far from
the leading edge on the suction side. The separation location in �gure 12(c) is a bit
more downstream than that in �gure 12(a) and 12(b) which indicates the e�ect
of large grid stretching in the spanwise direction. The vorticity plot consists of
eddies structures of varying size, indicating the complexity of turbulent boundary
layer on suction side.

At a position of x/c=0.91, the time-averaged horizontal and vertical velocity
components along the line normal to the wall surface are compared with the mea-
sured data. Figure 13 shows good agreements. The computed horizontal velocity
has general agreements with the experiment data. The ow is fully separated at
the position x/c=0.91, the discrepancy between the simulation and the experiment
indicates that a better grid resolution in streamwise direction might be needed.
So far, the mean velocities obtained from M1, M2 and M3 are similar.

Time history data are recorded at several positions near the trailing edge in
the wall normal direction. This allows us to compare the horizontal and vertical
turbulent stresses against the hot-wire measurements. In �gure 14, the turbulent
stresses are plotted together along the line normal to the wall at the chordwise
position of x/c=0.91. For M1 and M2, the agreements between the simulations and
the measurements are satis�ed, however, < uxux > obtained from M3 is about
2.5 times larger than those from M1 and M2. Results are also shown for the span-
wise velocity component. In �gure 15, the plot of turbulent stress components
are plotted where < uzuz > obtained from M3 is about 2 times larger than those
from M1 and M2. As it has been noticed, even though the time-averaged velocities
are similar, the velocity uctuations in the boundary layer can be signi�cantly
di�erent for di�erent meshes. The present numerical study has indicated that with
�z+ � 200 (M3), the results tends to 2D. In the present ow case, energy cascades
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Figure 11. Horizontal velocity contour of ow past a NACA 0015 airfoil in a wind
tunnel section.

from large to small eddies due to the span-wise disturbances are established such
that large eddies convected from the main stream are disturbed, and small eddies
are generated with energy received from larger eddies. For an over stretched grid
in the span-wise direction, ow along the span are highly smoothed due to the
inherent �ltering e�ect of the SGS modeling.

To study the coherence of two signals, say, S1(f) and S2(f), the function is
given by

Coh12(f) = jS12j2=S1(f)S2(f) � 1 (11)

where S1(f) and S2(f) are the spectral density of two signals, S12(f) is the cross
spectral density between two signals. Signals are linearly dependent if the coher-
ence is 1, and it becomes zero when they are statistically independent, such that
they are non-coherent. The coherence of pressure and streamwise velocity is cal-
culated and results are shown in �gure 16. It can be seen that the two signals are
coherent at the four tested boundary layer positions. At high frequencies, they are
less coherent because of strong numerical dissipations and under-resolved small
eddies. Similar tendency can be found from the phase di�erence of the two signals
by using equation (12).

��12(f) = arctan[Im(S12(f))=Re(S12(f))] (12)

The integral time scale can be calculated as

Rij(�) = lim
T !1

1
2T

Z T

�T
ui(t)ui(t + �)dt (13)

For a �nite number of LES data, we have

Rij(m) =
1
N

N�m+1X

n=1

ui(n)ui(n + m � 1)dt (14)
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(a)

(b)

(c)

Figure 12. Instantaneous iso-surface plot of span-wise vorticity (!z) at a Reynolds
number of 1:71 � 106 and an angle of attack of 8o. Figures (a),(b),(c) correspond
to the results computed on M1, M2 and M3, respectively.
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Figure 13. Mean velocities along the line normal to the wall surface.
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The �rst cross-point at zero y-axis corresponds to an integral time scale. As seen
in �gure 17, the time scale increases as the boundary layer thickness increases
where the wave-length becomes longer.
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Figure 17. Autocorrelation at BL sample positions with 10%, 30% and 50% of the
boundary layer thickness.

Multiplying the integral time scale by the mean velocity gives the integral length
scale. The integral length scales are compared with experiment. In �gure 18, the
solid lines are the length scales in the mean ow direction, and the dot lines are
the length scales in the cross ow direction. Again, the LES data have general
agreements with the experimental data except for the case using M3.
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Figure 18. Turbulence integral length scales.

3.4 Conclusions
Numerical simulations have been carried out for turbulent ows over a NACA 0015
airfoil. The incompressible Navier-Stokes equations are solved by using LES with a
suitable SGS turbulence model. Simulations have been compared with wind tunnel
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measurements. Results have shown general agreements between simulations and
experiments. Deep investigations have been performed with the aim of studying
the e�ects of the spanwise grid size. It turns out that too large �z leads to two-
dimensional ows, where the spanwise velocity disturbances are poorly modelled.
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4 Improved Trailing Edge Noise
Model
Author: F. Bertagnolio

The modeling of the surface pressure spectrum under a turbulent boundary
layer is investigated in the presence of an adverse pressure gradient along the ow
direction. It is shown that discrepancies between measurements and results from a
well-known model increase as the pressure gradient increases. This model is modi-
�ed by introducing anisotropy in the de�nition of the vertical velocity component
spectrum across the boundary layer. The degree of anisotropy is directly related
to the strength of the pressure gradient. It is shown that by appropriately nor-
malizing the pressure gradient and by tuning the anisotropy factor, experimental
results can be closely reproduced by the modi�ed model.

In this section, the original TNO-Blake model [10, 51, 48] is modi�ed in order to
account for the e�ects of a pressure gradient through turbulence anisotropy. The
model results are compared with measurements of the surface pressure uctuations
on an airfoil section.

For more details about this study, the reader is referred to the following confer-
ence proceedings [7] or journal article [9].

4.1 Surface Pressure Model
In this section the so-called TNO-Blake model for the boundary layer surface
pressure (SP) spectrum is reminded. A �rst correction of the model is proposed.
It is then shown that the model results however still exhibit discrepancies with
experimental data, and that these can be related to the presence of a pressure
gradient.

4.1.a Original TNO-Blake model
Let consider a turbulent boundary layer ow over a at plate. The direction of

the ow is x1. The direction normal to the wall is x2 (also denoted as y in the
following), and x3 is the direction transversal to the ow. Taking the divergence
of the Navier-Stokes equations for the turbulent uctuations yields an elliptic
equation for the turbulent pressure uctuations. Assuming homogeneity in time
and in the plane parallel to the surface, a one-dimensional 2nd order di�erential
equation along y for the Fourier transform of the pressure can be formulated [49].
Neglecting second order moments and using Green’s function formalism, a solution
for the wavenumber-frequency SP spectrum is obtained as an integral across the
BL [10]:

�p(kk ; !) = 4 �2
0 k2

1=
�
k2

1 + k2
3
� Z �BL

0
L2(y)(@U1=@y)2 u 2

2 (y) e�22(kk ; �)

� �m(! � Uc(y)k1) e�2 kky dy (15)

where �BL is the BL thickness, L2 is the vertical correlation length characterizing
the vertical extent of the vertical turbulent velocity component u2, u 2

2 its mean
squared value, U1 is the streamwise mean velocity, kk is the norm of the wavenum-
ber vector kk = (k1; k3) spanning the plane parallel to the wall, e�22 is the nor-
malized spectrum of the vertical velocity uctuations integrated over k2, �m is
the so-called moving axis spectrum which describes how e�22 is distorted by the
generation and destruction of eddies during their convection past the trailing edge
(Details of its de�nition can be found in the paper by Moriarty [48]). The convec-
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tion velocity Uc of these eddies is related to the local velocity as: Uc(y)=0:7 U1(y).
Note that e�22 depends on the integral length scale � (see de�nition below) and is
therefore also a function of y.

The various quantities in the integral in Eq. (15) need to be quanti�ed in order
to evaluate the SP spectrum. In this work, a Reynolds Averaged Navier-Stokes
(RANS) solver is used. It directly provides the BL thickness and the mean velocity
pro�le. The turbulent normal stress can be estimated from the turbulent kinetic
energy (TKE) kT calculated by the solver as: u 2

2 = �k kT where �k is set to 0.45
or 0.3 on the suction or on the pressure side of the airfoil, respectively.

Assuming isotropy and using the classical Von Karman model, the vertical ve-
locity spectral tensor e�22 reads:

e�22(kk ; �) = (4=9�) �2�
(�k1)2 + (�k3)2�

=
�
1 + (�k1)2 + (�k3)2�7=3 (16)

where the integral length scale � characterizes the size of the energy-containing
eddies.

It can also be shown [41] that the correlation length L2 is related to the integral
length scale by:

L2 = 0:7468 �

In addition using the turbulence dissipation rate � calculated by the RANS solver,
the integral length scale can be deduced [37] from the asymptotic behavior of the
Von Karman spectrum in the inertial range as:

� = 0:519 k3=2
T =� (17)

The SP frequency-spectrum can be obtained by integrating Eq. (15) over the
whole wavenumber space as:

�p(!) =
ZZ +1

�1
�p(kk ; !) dk1dk3

As for the far-�eld noise radiated at the trailing edge, using the assumptions of
Brooks and Hodgson [12], it results in:

S(!) =
L

4 �R2

ZZ +1

�1

!
c0k1

�p(k1; k3 =0; !) dk1

where L is the span length of the considered airfoil, R is the distance between the
trailing edge and the observer located above the trailing edge and c0 is the speed
of sound.

4.1.b Comparison of Original Model with Measurements
In this section, the model described above is compared with surface pressure

measurements on an airfoil placed in a wind tunnel. Further details on the exper-
imental set-up are given in Section 2.1.

During this experiment, the airfoil was tested at several wind speeds (U1 =
30; 40; 50 m/s) and at various angles of attack (� = 0; 4; 8; 12o). The measured
SP spectra on the suction side are compared to the original model in Fig. 19. As it
can be seen, there exists an o�set between the measured and the modeled spectra.
In addition, this o�set is consistently increasing as the angle of attack increases.

It is well-known that the adverse pressure gradient developing in the BL on the
suction side of an airfoil is increasing as the angle of attack increases, as long as the
BL remains attached which is the case here. This suggests that the discrepancies
observed above are a consequence of the model being unable to account for the
inuence of the pressure gradient.
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Figure 19. Surface Pressure Spectra - Comparison Experiment vs. Original Model

4.2 A New Model Including Anisotropy and Pres-
sure Gradient
Modi�cations to the model are proposed in order to remedy for the discrepancies
observed above. The isotropy assumption used various times to derive Eq. (15) is
certainly not justi�ed in the context of a turbulent BL ow. In addition, it has been
suggested in previous work [49] that turbulence and its anisotropic characteristics
can be inuenced by the strength of the pressure gradient. It is here proposed
to directly relate the strength of the pressure gradient to some measure of the
anisotropy.

4.2.a Revisiting the Isotropy Hypothesis
Anisotropy is modeled following the approach of Panton and Linebarger [49] for

which anisotropy scaling factors are introduced in order to stretch the correlation
length scales along the di�erent space directions. Starting from the original vertical
velocity wavenumber spectrum derived from the Von Karman theory, the modi�ed
spectrum is stated as:

ee�22(k1; k2; k3; �) = �2 �3
�(17=6)

�3=2 �(1=3)
�5 [(�k1)2 + (�3�k3)2]2

[1 + ((�k1)2 + (�2�k2)2 + (�3�k3))2]17=6

(18)

where the coe�cients �2 and �3 are anisotropy streching factors in the vertical
and transversal directions, respectively. Note that this spectrum is normalized.
Integrating over k2 yields the spectrum to be used in Eq. (15):

e�22(kk ; �) = �3
4

9�
�2 (�k1)2 + (�3�k3)2

[1 + (�k1)2 + (�3�k3)2]7=3

The inuence of the previous streching parameters may also be incorporated
in the de�nition of the correlation length scale L2 following the approach by
Lynch et al [38]. The correlation length scale is assumed to be frequency-dependent.
Assuming frozen turbulence, it can be related to the de�nition of the wavenumber
spectrum of Eq. (18) as:

2 L2(!) b�22(!) = 2�=Uc

Z +1

�1

ee�22(k1 =kc; k2 = 0; k3; �) dk3

32 DTU Wind Energy-E-0004



where kc = !=Uc is the convective wavenumber. Using Eq. (18) and integrating
over k3 yields:

2 L2(!) b�22(!) = �2
�2

9�Uc

3 + 11(�kc)2

(1 + (�kc)2)7=3

The frequency spectrum of the vertical velocity b�22(!) is de�ned as [38]:

b�22(!) = 1=Uc

ZZ +1

�1

ee�22(k1 =kc; k2; k3; �) dk2 dk3

Introducing again Eq. (18) and integrating over the k2-k3 space yields:

b�22(!) =
6 �(17=6)

55
p

� �(1=3)
�
Uc

3 + 8(�kc)2

(1 + (�kc)2)11=6

Combining the previous results provides an estimate for the correlation length
scale:

L2(!)
�

= �2
55 �(1=3)

108
p

� �(17=6)
3 + 11(�kc)2

3 + 8(�kc)2
1p

1 + (�kc)2
(19)

In the present implementation of the model, Eq. (17) is still used to evaluate the
integral length scale � from the TKE and its dissipation rate calculated by the
RANS solver.

4.2.b Pressure Gradient Scaling
Various scalings have been proposed in the past for obtaining self-similar BL

pro�les in the presence of a pressure gradient (see [2] for a review). However, to the
best author’s knowledge, there is no such scaling that is designed for turbulence
spectral analysis. In our case, the following non-dimensional pressure gradient is
introduced:

 = (��=Ue)
�
(@P=@x1)2=� �

�1=3

where �� is the displacement thickness, � is the dynamic viscosity, Ue is the mean
velocity at the edge of the BL, and P the mean pressure. In this work, the mean
pressure gradient is evaluated from the mean surface pressure using the RANS
calculations. It is expected to be a good approximation of the pressure gradient
across the BL as the pressure gradient normal to the surface should be roughly
constant across the BL according to turbulent BL theory.

The anisotropy factors that were introduced above to modify the vertical veloc-
ity spectrum are now de�ned as functions of  as:

�2 = �3 = (20 )2=5

The above formula is purely empirical and was tuned so that model results best
�t the measurement data presented in the next section. It is important to note
that this formula would become inconsistent for a zero-pressure gradient BL as the
factors would cancel. A more advanced formula should then be devised in order
to make the model more general.

4.3 Analysis of Results
The new model de�ned above is now applied to the case of an airfoil that is tested
in a wind tunnel and for which surface pressure is measured.

4.3.a Wind-Tunnel Measurements
The LM Wind Power wind tunnel is designed for the testing of wind turbine

airfoils. The actual test section dimensions are 1.35 m in width, 2.70 m in height,
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and 7 m in length. A NACA0015 airfoil section with a chord C = 0:9 m is placed
across the width of the tunnel. During this study, three inow velocities are in-
vestigated: U1 = 30; 40 and 50 m/s, as well as four angles of attack: � = 0; 4; 8
and 12o. Assuming an average air temperature of 23oC in the wind tunnel, the
corresponding Reynolds numbers for the airfoil ow are Re = 1:7; 2:3; 2:85�106.
In the results presented here, no BL turbulence triggering device is present on the
airfoil surface.

High-frequency microphones are ushed-mounted beneath the surface of the
airfoil. The microphone considered in this work is located at x=C = 0:894. All
details about this experiment can be found in [6, 24].

4.3.b Navier-Stokes Solver
The RANS solver used for the uid ow calculation is the in-house code Ellip-

Sys2D [64]. It solves the incompressible Navier-Stokes equation on a structured
mesh in a predictor-corrector fashion using the classical SIMPLE algorithm. Tur-
bulence is modeled using the k-! SST model by Menter [43]. In all the calcula-
tions presented in this paper, the transition is set free and the en transition model
(Ncrit =9) by Drela and Giles [22] is used.

4.3.c Results Comparisons
The model described above involves anisotropy factors �2 = �3. This factor is

evaluated from RANS calculations and is plotted in Fig. 20(b) as a function of
the angle of attack for the 3 experimental inow velocities, next to the pressure
gradient in Fig. 20(a). As it can be seen, the anisotropy factor increases almost
linearly with angle of attack and it is nearly insensitive to the inow velocity
contrary to the pressure gradient.
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Figure 20. Modi�ed Model Parameters

The SP spectra obtained with the modi�ed model for the di�erent inow con-
ditions and angles of attack are displayed in Fig. 21. This �gure has to be com-
pared with the original model results in Fig. 19. The modi�ed model results are
now in good agreement with the measurements irrespectively of the experimental
conditions. Some discrepancies can still be observed in the low-frequency range.
However, the TNO-Blake model is eventually no more valid in the low-frequency
limit.

4.4 Conclusions
A modi�ed version of the TNO-Blake model was proposed in order to account for
the e�ect of adverse pressure gradient in an airfoil BL, as well as the subsequent
turbulence anisotropy. The model proved to improve the SP spectrum predictions
when compared to wind tunnel measurements.
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Figure 21. Surface Pressure Spectra - Comparison Experiment vs. Modi�ed Model

However, it must be kept in mind that the proposed model was tuned for the
above-mentioned experimental results. Further study must be conducted to verify
that the model is general and can be applied to di�erent airfoil types or experi-
mental conditions.
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5 Noise Evaluation Technique Based
on Surface Pressure
Author: A. Fischer

In this chapter the relevant theory for the understanding of TE noise modeling
is collected. It contains the acoustic formulations of [31] and [57]. Both give a
relation for the far �eld sound pressure in dependence of the frequency wave
number spectral density of the pressure on the airfoil surface.

5.1 Theory
The �rst attempt to model trailing edge (TE) noise analytically was done by
Ffwocs Williams and Hall [70] in 1970. They applied Lighthill’s acoustic analogy
to ow on a semi-in�nite half plane and determined the radiation in terms of the
assumed velocity �eld. Chase [14] developed a theory to relate the sound �eld
to the surface pressure uctuations on the surface close to the TE of the airfoil.
His approach was re�ned by Chandiramani [13] and some years later Howe [31]
uni�ed the TE noise theory and generalized Chase’s [14] and Chandiramani’s [13]
theory. He showed that the model can be directly derived from Lighthill’s acoustic
analogy.

Amiet [1] developed a theory based one a similar approach as Chase [14], but
with a di�erent response function from the airfoil. His theory was recently revised
by Roger [57]. In the present work Howe’s formulation and Amiet’s model with
Roger’s extension are applied. The model formulations is briey repeated below.

5.1.a Howe’s Relation Between Far-Field Noise and Surface
Pressure Spectrum

Using Lighthill’s acoustic analogy recast in term of the stagnation enthalpy
instead of the pressure as primary acoustic variable and making a number of
hypothesis, Howe [31] �nd a solution for the scattering phenomenon at the trailing
edge of a at plate through a relationship between the SP spectrum and the far-
�eld noise:

Sf (!) =
2LMc

�R2
sin � sin2(�=2) cos �

(1 + M0R)2(1 � MW R)2
�s(!=Uc; (!=c0) cos �)

(1 � Mc~n � ~r)2(1 � Mc sin �)
(20)

where L is the plate span length, Uc the convective velocity and Mc the convective
Mach number, R is the distance to the observer, M0R =M0(x1=R) is the compo-
nent of the free stream Mach number in the observer direction, c0 is the speed of
sound. ~n = (cos �; sin �) is the unit vector in the direction of the mean boundary
layer/eddy convection velocity and ~r =(sin � cos �; cos �) is the unit vector in the
observer direction. The geometric angles �, � and � are de�ned in the sketch in
Fig. 22. In the previous equation �s(K1; !) is the SP spectrum near the trailing
edge.

5.1.b Amiet’s Model with Roger’s Extension
Amiet [1] assumes in his model that the turbulent ow convecting over the

airfoil produces a convective pressure pattern on the surface of the airfoil. The
convective pressure pattern creates a radiating pressure �eld near the TE of the
airfoil. The radiation of sound to the far �eld is then solved with a Schwartzschild
technique. The approach of Amiet assumes a 2D setup and an in�nite chord length.
Roger [57] extends Amiet’s model to be valid for a 3D ow �eld and corrects for
a �nite chord length.
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Figure 22. Half-plane Con�guration

The �nal result for the above analysis is the following:
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where I is a radiation integral whose de�nition can be found in the reference [57].
Now the function �0 can be related to the one-point SP spectrum �pp(!) and the
spanwise correlation length as:

�0
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; !) (22)

The both last quantities can be measured in a wind tunnel using surface mi-
crophones. The use of these microphones for surface pressure measurements are
described in the next section.

5.2 Surface Pressure Measurements
The uctuating pressure on an airfoil surface is very sensitive to small changes of
the surface. Microphones have to be mounted in way which creates the smallest
possible disturbance of the surface. This was realized by mounting microphones
inside the airfoil and connecting them via a pinhole with the surface. This con-
�guration has the additional advantage that the sensitive area of the sensor on
the surface is minimized and its spacial extend is smaller than a typical eddy
size at the highest frequency of interest. If the typical eddy size becomes smaller
than the sensitive area of the sensor, the signal is attenuated. Corcos [16] is the
earliest work trying to resolve this problem and gives a semi-empirical correction
for the attenuation of the signal. However, if the surface pressure uctuations
should be determined with low uncertainty, it should not be necessary to apply
this correction.

The microphones used in the present experiments were back-electret condenser
microphones of Sennheiser type KE4-211-2. A microphone housing which can be
integrated in the airfoil surface was developed by Madsen et al [39]. The geometry
of this housing and the Sennheiser microphone is displayed in Fig. 23.

The design goal for the housing was to have the Helmholtz eigen-frequency
of the air in the cavity between pinhole opening and microphone above 10 kHz.
However, the Helmholtz eigen frequency shifted strongly with small changes in
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Figure 23. The Sennheiser KE4-211-2 Condenser Microphone and its Housing
(from [27])

the housing geometry and/or the mounting torque. For accurate measurements
the pinhole microphone have to be calibrated when mounted, as outlined below.
In the Virginia tech experiment the microphones were directly mounted in the
airfoil model without using the housing, if the space inside the airfoil allowed.
They were calibrated individually when mounted.

The mounting space close to the trailing edge of the airfoil models was very
small. To access these locations the microphones had to be connected to the pin-
hole via a tubing system. The �rst generation of the microphone adapter with
tubing system is illustrated in Fig. 24.

Figure 24. The First Generation of the Microphone Adapter with Tubing System

It was used in the NACA0015 airfoil model. The reection in the tubing system
created an interference pattern in the transfer function between the pressure at the
pinhole and the pressure at the microphone. A second generation of the tubing
system which did not su�er from the aws was developed. It was copied from
the design of [52]. This microphone adapter is used in the NACA 64-618 and the
NACA 64-618T model. The main change of the second design compared to the
�rst is the continuation of the tubing system with a 2 meter long plastic tube
with internal radius of 3 mm downstream of the microphone position. Interference
patterns are less strong, because the reected sound wave is attenuated.

5.2.a Analytical Modeling of the Pinhole Microphones
An analytic model to describe the transfer function between the pressure at

the pinhole and at the microphone location was developed. The analytical model
corresponding to the microphones mounted directly in the airfoil and mounted in
the housing of Fig. 23 is the one of a Helmholtz resonator. The transfer function
between microphone and source pressure of the Helmholtz resonator model is given
by [42]. All details about this model used subsequently for SP calibration are given
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in the thesis by A. Fischer [23].

5.2.b Calibration of the Surface Pressure Microphones
The calibration method for the NACA0015 is described in [24]. The calibration

function we found by this method was contradictory to the one found by Br�uel &
Kj�r [27]. The calibration setup of Guastavino [27] is considered more accurate,
because the signal to noise ratio is improved by several orders of magnitude com-
pared to the old one. Hence, it was decided not to use the calibration functions
found by [24] andt the calibration method of [27] was developed for the Virginia
Tech Wind Tunnel experiment. The Br�uel & Kj�r Probe Microphone Type 4182
with a 50 mm probe was used a reference. It was placed as close as possible to the
pinhole (see Fig. 25(a)). A Sennheiser headphone HD650 was used as source for

(a) Reference Microphone and Pinhole (b) Sennheiser Headphone HD650 Source

Figure 25. Calibration Setup of the Surface Pressure Microphones in VT Experi-
ment

the calibration (see Fig. 25(b)). A B&K PULSE Data Acquisition Hardware Type
3560-B-130 together with the PULSE LabShop v. 15.1.0.15 Software was used
for data acquisition and source feeding. The high frequency compensation for the
B&K Probe Microphone Type 4182 with a 50 mm probe was implemented in the
PulseLab software. The calibration signal was a sweep in 1/48th octave bands
with center frequencies from 16 to 50 Hz. An individual calibration function for
microphone 10 to 24 as well as microphone 28 and 29 was obtained. The cali-
bration was performed in a laboratory at Virginia Tech University. The ambient
temperature, pressure and humidity were recorded.

5.2.c Discussion of Measured and Analytic Transfer Func-
tions

Figure 26 shows the transfer function of microphone no. 10, 12, 14 and 15 on
the NACA 64-618 airfoil. Those microphones were mounted directly on the airfoil.
To compute the transfer in dB the Sennheiser microphone electric signals were
multiplied with a �ctive sensitivity of 10 mV/Pa (manufacturer value). A consid-
erable scatter in the transfer function of the di�erent microphones is observed.
This points out the importance of individually calibrating the microphones after
mounting. The transfer functions have the typical shape of the Helmholtz transfer
function, but the eigen-frequency and the damping coe�cient are very di�erent
compared to the ones of the con�guration microphone and housing as in Fig. 23.

Figure 27 shows the transfer function of microphone no. 17, 19, 24 and 28 on
the NACA 64-618 airfoil. All of them are placed in a tube adapter. The scatter is
less the for the directly mounted microphones, expect for frequencies above 7 kHz.
It exhibits a strong interference pattern in the frequency range below 1 kHz. This
is due to reexions at the end of the plastic tube. In further applications, a longer
and thinner (to increase the damping coe�cient) plastic tube should be used.
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Figure 26. Transfer Function between Microphone and Source Pressure as Func-
tion of Frequency

Figure 27. Transfer Function between Microphone and Source Pressure as Func-
tion of Frequency
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6 Noise Optimized Airfoil Design
Author: F. Bertagnolio

The optimization of airfoil pro�les speci�cally designed for wind turbine applica-
tion was initiated in the late 80’s [67, 68, 30, 15]. The �rst attempts to reduce airfoil
noise for wind turbines made use of airfoil trailing edge serration [32, 18, 11]. The
modi�cation of airfoil shapes targeted at noise reduction is more recent [28, 29]. An
important e�ort was produced in this direction within the SIROCCO project [59].
This latter work involved measurements on full size wind turbines and showed
that trailing edge serration may proved a viable solution for mitigating wind tur-
bine noise though it has not been implemented on commercial wind turbine yet.
It should be mentioned here that the attenuation of turbulent inow noise using
wavy leading edge has recently been investigated [55], but this technique has still
to be further validated for practical applications.

In this paper, it is proposed to optimize an airfoil which is used for wind turbine
applications, namely the NACA 64-618 airfoil. The optimization procedure is per-
formed with the in-house code AirfoilOpt. The objective is to reduce trailing edge
noise, preserving some of the aerodynamic and geometric characteristics of the
original airfoil using constraints at the same time. In this way, the resulting airfoil
should remain a realistic candidate for wind turbine applications and comparisons
between the original and optimized airfoils remain fair. As for the veri�cation in
wind tunnel, the reader is referred to Section 7.3.

For more details about this study, the reader is referred to the following journal
article [8].

6.1 Aerodynamic and Trailing Edge Noise Mod-
eling
Xfoil [21] is an airfoil ow solver that couples a panel method to compute the
inviscid ow around the airfoil outside the BL together with a solution method
for the BL equations in order to determine its development along the airfoil chord.
BL transition to turbulence can be �xed or evaluated with the en transition model
by Drela and Giles [22]. The code can handle transitional separation bubbles and
limited TE separation, as well as to a certain extent lift and drag predictions
beyond maximum lift. Due to its short computational requirements, this program
will be used for the optimization procedure described later.

For a preliminary validation of the design results, the CFD code EllipSys2d will
be used. The Navier-Stokes incompressible ow solver EllipSys2D used for airfoil
ow calculations was developed as a co-operation between the group of Aero-
Elastic Design at Ris�-DTU and the department of Fluid Mechanics at DTU.
Both entities are now merged within DTU Wind Energy (Department of Wind
Energy, Technical University of Denmark) [45, 47, 63].

It is designed to solve the 2D Navier-Stokes equations for an incompressible uid.
It uses a cell-centered grid arrangement for the pressure �eld and the cartesian
velocity components. The equations are discretized by means of a �nite volume
formulation. The well-known velocity-pressure decoupling is circumvented by using
the Rhie and Chow interpolation technique [56]. The PISO algorithm is used for
solving the momentum and pressure equations in a predictor-corrector fashion [33].
Details about the numerical code and discretization issues can be found in the
references [45, 47, 63].

The trailing edge noise model used for the noise optimization of the airfoil is
the TNO model described in Section 4.1.a. Note that this is the original model
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version developed by Parchen [51] since the improved model version introduced in
Section 4.2 was not available yet at the time of the present study.

6.2 Airfoil Aero-Acoustic Optimization
6.2.a Optimization Program AirfoilOpt

The optimization code AirfoilOpt is an airfoil/blade section pro�le design tool
that was developed in the group of Aero-Elastic Design at Ris�-DTU [26, 25].
A gradient-based algorithm (Successive Linar Programming) is used to reduce a
given cost function subject to various constraints [17]. In short, for a given set
of design parameters at each iteration of the numerical procedure the code calcu-
lates the local gradients of the cost function with respect to each design param-
eter in order to �nd a new iterate improving the value of the cost function. This
cost function can be a linear combination of various geometric (surface curvature,
camber, thickness distribution, etc...) and/or aerodynamic (lift, drag, moment co-
e�cients, lift-to-drag ratio, transition location, etc...) characteristics of the airfoil
section. The aerodynamic data are computed with the airfoil analysis code Xfoil by
Drela [21]. In addition, non-linear constraints on the geometric and aerodynamic
properties of the airfoil can be enforced during the optimization process. Note
that the cost function and constraints may involve aerodynamic characteristics of
the airfoil calculated both using �xed transition ow conditions or with transition
modelling in the ow solver. The SLP optimization algorithm is a well-tested and
stable technique but it can be computationally expensive due to the large number
of ow calculations required to calculate the cost function gradients. It may also
fail to reach the global optimum and �nd instead a local optimum depending on
initial conditions. In an attempt to remedy to this latter drawback, the ’move lim-
its’ technique for exploring the design space combined with a line search procedure
is implemented.

The optimization code also includes TE noise as a possible component of the cost
function or constraints. In this study, the maximum value of the far �eld sound
pressure level (SPL) spectrum across the whole frequency range is used as the
cost function. The integrated spectrum value may also be used but both methods
give similar results. It was found in a preliminary study that A-weighting alters
the convergence of the optimization algorithm by smearing out the cost function
gradients. Therefore, the non-�ltered spectra are only considered here. Both the
pressure and the suction side noise spectra are considered and added to each other
to form the cost function. However, the suction side generated noise will prevail
for the ow conditions that we are interested in.

6.2.b New Airfoil Design
The reference airfoil for this study is the NACA 64-618 airfoil. This airfoil was

chosen because it has been used for designing various wind turbine blades. Its
characteristics are laminar ow conditions along a large part of the airfoil chord
and a smooth post-stall behavior. This airfoil pro�le is used as the initial guess
for the iterative optimization procedure described above.

Our strategy is to use as cost function the emitted TE noise (peak value or inte-
gral value across the SPL spectrum) as predicted using the TNO model together
with the BL ow solver Xfoil. Note that in this case, the �xed transition case for
the the ow conditions was assumed for evaluating the cost function. As it will be
seen later, this has the unfortunate consequence that noise was not signi�cantly
reduced in the free transition case. The Xfoil ow calculations used to evaluate the
noise SPL for the cost function (and the aerodynamic data for the constraints, see
below) are all performed at a Reynolds number Re=1:5�106. The SPL used for
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the cost function evaluation are evaluated at a relative angle of attack �0 = 10o

which approximately corresponds to the angle of attack at maximum lift-to-drag
ratio. In the �xed transition case, transition is enforced at x=C =5% on the suction
side, and 10% on the pressure side of the airfoil.

In order to preserve some of the aerodynamic and geometric characteristics of
the reference airfoil, constraints are enforced on speci�c values of these character-
istics. The value of the lift and of the lift-to-drag ratio at maximum lift-to-drag
ratio angle of attack (i.e. design point set at �0 =10o) are constrained as:

1:0 < Cl and 60 < Cl=Cd at �0 = 10o

in the case of �xed transition calculation and:

1:1 < Cl and 140 < Cl=Cd at �0 = 10o

for the free transition case. In order to preserve maximum lift and a smooth stall
behavior, the additional following contraints are enforced:

1:35 < Cl < 1:78 at �0 = 23o and 1:2 < Cl at �0 = 28o

in the �xed transition case, and for the free transition case:

1:38 < Cl < 1:85 at �0 = 23o and 1:2 < Cl at �0 = 28o

As for the geometric constraints, the airfoil maximum thickness is kept equal to
18% and its chord location is restricted to be located in the interval 0:35<x=C <
0:41. A minimum thickness of 15% is enforced in the interval 0:16<x=C <0:56. In
order to avoid a collapse of the TE thickness, it is limited to be higher than 2.2%
for x=C >0:9, 0.8% for x=C >0:94, 0.4% for x=C > 0:96, and 0.3% for x=C > 0:98.
The airfoil surface curvature is also monitored to keep sensible values, in particular
near the leading edge.

6.3 Analysis of Xfoil/TNO Results
The aerodynamic polar characteristics of the new airfoil design resulting from the
above optimization process, which is denoted as NACA 64-618T, are compared
to those of the original NACA 64-618 airfoil in Figs. 28(a) and (b) for the free
and �xed transition cases, respectively. Note that the lift curves are plotted as a
function of the angle of attack relative to zero lift �0. The computational results
obtained with Xfoil, as within the optimization algorithm, and those obtained with
the CFD code EllipSys2D, are displayed in the �gures.

It can be observed that both Xfoil and the CFD code predict slightly better
aerodynamic characteristics for the optimized airfoil. Indeed, this airfoil exhibits
a quite larger maximum lift, though together with an increase of drag at the same
maximum lift angle of attack (roughly by a factor 3.5 compared to the linear
region for the free transition case, and a factor 2 for �xed transition case). The
aerodynamic characteristics beyond this point (say above �0 =15o) slightly di�ers
for the two airfoils. While the numerical codes predict a continuous increase of lift
for the original airfoil along with a rapid increase of drag, the optimized airfoil
presents a more abrupt stall, though with a rather smooth lift drop.

It should be noted that the CFD calculations predict slightly higher lift at
all angles of attack and a somewhat di�erent behavior around stall compared to
Xfoil. However, even if the CFD code should provide a better ow approximation,
in particular when ow separation occurs, the accuracy of both methods is always
questionable in these conditions.

To get a general overview of the airfoils acoustic characteristics, the noise spectra
are integrated from 100 to 1 kHz and plotted as a function of the lift coe�cient.
The results are displayed in Figs. 29(a-b) for the free and �xed transition cases,
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Figure 28. Aerodynamic polar characteristics, Re = 1:5M: a-b) Free transition,
c-d) Fixed transition.

respectively. The CFD/TNO calculations shows that the original and optimized
airfoils behave quite similarly at all angles of attack as far as noise is concerned,
whereas Xfoil calculations con�rm that noise is signi�cantly reduced for the �xed
transition case but not for free transition. In this latter case, noise is slighyly
increase at lower angle of attack and decrease at higher angles for the optimized
airfoil, the limit between the two tendencies being located at the design point
�0 =10o corresponding to a lift approximately equal to Cl =1:1 (see Fig .28).
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Figure 29. Integrated noise spectra (100 to 1000 Hz) using original TNO model as
function of lift: a) Free transition, b) Fixed transition.

6.4 Conclusions
As a conclusion, even if some noise reductions could be achieved without compro-
mising, or actually even slightly improving the airfoil aerodynamic characteristics,
it still remain to be proved that these conclusions will hold for the actual airfoil
section in a real environment. Indeed, the allegedly more accurate CFD ow solver
combined with the TE noise model did exhibit almost no noise reduction. An im-
portant conclusion is therefore the fact that the Xfoil solver might not be suited to
the optimization goal that was set, i.e. TE noise reduction. The failure to correctly
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predict the turbulent kinetic energy in the turbulent BL, at least compared to CFD
calculations, might mislead the optimization algorithm to a solution which does
actually not meet the expected goals in real life. In Section 7, the actual trailing
edge noise emission are evaluated through a wind tunnel experiment.
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7 Wind Tunnel Measurements at
Virginia Tech
Authors: A. Fischer and F. Bertagnolio

In this section, the wind tunnel con�guration used for aerodynamic and aeroa-
coustic measurement is described. Then, the validation of the method for evaluat-
ing far-�eld noise from surface microphones as described in Section 5 is presented.
Finally, the design concept proposed in Section 6 is veri�ed.

7.1 Virginia Tech Stability Wind Tunnel
The Virginia Tech Stability Wind Tunnel (VTST) is a closed loop subsonic wind
tunnel with a 1.83m x 1.83m rectangular removable test section (see Fig. 30).

Figure 30. Schetch of the Virginia Tech Stability Wind Tunnel in acoustic con�g-
uration

The length of the test section is 7.3m. The tunnel is driven by a 0.45MW fan
of 5.3m diameter. A ow speed of 75m/s can be reached with empty test section.
Downstream of the fan an air exchange tower open to the atmosphere is located.
From there the ow is directed into a 5.5m x 5.5m settling chamber. The settling
chamber contains 7 screens with open area ration 0.6 and a separation of 0.15m.
The ow enters the test section through a nozzle with contraction ratio 9:1 and
leaves it through a 3 degree di�user. All corners of the tunnel are equipped with
an array of shaped turning vanes. Turbulence intensities of less than 0.05% were
reported from measurements in the aerodynamic test section.

Two di�erent test sections are available for the tunnel: a hard walled aerody-
namic test section and a acoustic test section with Kevlar walls. In the present
experiment the acoustic test section was used. The acoustic test section is sur-
rounded by anechoic chambers (see Fig. 31). The Kevlar walls were designed to
contain the ow and keep the same aerodynamic performance as with a closed test
section while sound waves are transmitted through the walls and can be measured
in the anechoic chamber.

7.1.a Airfoil Models
Two airfoil models were tested in the VTST: a NACA 64-618 and a modi�ed

version called NACA 64-618T. The airfoil models had a chord length of 0.6 m and
a span of 1.82 m. They were made from a full aluminum block by RIVAL A/S in
Denmark. The machining accuracy of the surface is �0:1mm measured spanwise
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Figure 31. The acoustic test section of the VTST

from end to end. Each airfoil was equipped with 62 pressure ports (0.5 mm pinhole
diameter) and 29 surface pressure microphones.

Microphones connected to a pinhole close to the trailing edge were installed
with an tube adapter. The diameter of the pinhole on the surface was 1 mm. The
other microphones were installed in a cavity on the airfoil surface. The pinhole
diameter was 1.3 mm. Details of the microphone installation and calibration are
given in Section 5.2.

Fig. 32 shows the NACA 64-618 airfoil mounted in the acoustic test section of
the wind tunnel. The airfoils are ush-mounted with the wind tunnel walls. The
gap between the airfoil and the tunnel wall was bridged with a transition piece
made of three layers: aluminum, foam and Teon. The Teon layer minimizes
friction when sliding over the tunnel walls while changing the angle of attack. To
ensure a smooth surface at the junction, a Mylar strip was wrapped around the
airfoil and transition piece and �xed with aluminum tape.

(a) View from upstream (b) View from downstream

Figure 32. The NACA 64-618 airfoil installed in the acoustic test section
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7.1.b Acoustic Measurements
A microphone array consisting of 117 microphones was located in the starboard

anechoic chamber (see Fig. 33(a)). The microphones were arranged in a 9-armed

(a) Microphone array in starboard anechoic chamber (b) CAD rendering of the microphone
array

Figure 33. Microphone array of AVEC, Inc.

spiral of 13 microphones (see Fig. 33(b)). The diameter of the array disc is 1.1 m.
The microphones used in this array are Panasonic model WM-64PNT Electret
microphones. These microphones have a at frequency response from 20-16000Hz
and a sensitivity of �44 � 3dB Re 1V/Pa at 1 kHz. All microphones used in the
array were calibrated before being installed in the array and selected to be within
�5� phase and �0:4dB amplitude from 500 to 16000Hz.

The microphone array measurements were performed by AVEC, Inc. and the
postprocessed data was provided by this company. The postprocessing method
according to the description provided by AVEC, Inc. is outlined in the following.

The raw data obtained from the microphone measurement was processed with
frequency domain beamforming to extract the sound pressure level of the TE
source from the background noise. The time series was measured with a sampling
frequency of 51200 Hz during a period of 32 seconds. It was divided into 200
blocks of 8192 samples to compute the averaged cross-spectral density matrix. A
classical beamforming algorithm is used to produce maps of the noise distribution
in the wind tunnel. To improve the beamforming maps the microphone array was
carefully calibrated after installation.

The beamforming maps are integrated to obtain the far �eld sound pressure
spectrum. The integration area was chosen to allow a separation of the TE source
from spurious noise caused by the airfoil/wind tunnel junction. It extends 0.6 m
of the airfoil span and is centered in the center of the test section. The integral is
normalized in a way that the spectrum represents the sound pressure level which a
monopole point source at the center of the integration volume causes at the center
of the microphone array.

7.2 Validation of a Far-Field Noise Evaluation Us-
ing Surface Microphones
This section aims on validating the acoustic formulation of Howe [31] and Amiet
with Roger’s extensions [57] by comparison of the far �eld sound pressure spectrum
predicted with measured surface pressure statistics as input with the far �eld sound
pressure spectrum measured with the microphone array in the VT experiment.
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7.2.a Assessment of the Prediction Method
The far �eld sound prediction models of Howe and Amiet/Roger, Eq. (20), need

the surface pressure PSD close to the trailing edge, the spanwise correlation length
and the convection velocity on pressure and suction side of the airfoil as input.
For the suction side, the �rst two quantities can be taken directly taken from the
measurements at chord position x=c = 0:975. The convection velocity could only
be measured with high uncertainty in the low frequency range. Additionally, it
varied signi�cantly when measured at di�erent chordwise locations, because the
turbulent �eld is highly inhomogeneous in ow direction and it varied also when
measured with di�erent separation of the sensors [12]. In the frequency range up
to 800 Hz we used the convection velocity measured between chordwise position
x=c = 0:95 and x=c = 0:975. This implies assuming the convection �eld remains
unchanged between x=c = 0:95 and x=c = 1 (TE). In the high frequency range we
used the empiric expression by Brooks and Hodgson [12]:

Uc

U1
= 0:39(1 + 2�s=��)0:19 (23)

valid in the high-frequency range for a NACA0012 airfoil at AoA � = 0o. In the
frequency range between 800 and 2000 Hz we interpolated linearly between the
measured value and the value given by Eq. (23).

On the pressure side, only the measured surface pressure PSD at x=c = 0:95 is
available as input for the acoustic model. The focus of the comparison is there-
fore on cases where the surface pressure PSD on the pressure side was at least
5 dB lower than the one on the suction side in the frequency range of interest. It
comprises basically all cases for e�ective AoAs of �E =2:6o and higher. Those are
also the relevant cases for wind turbine operation. The contribution of the pres-
sure side to the far �eld sound pressure is then roughly estimated by assuming
that the spanwise correlation length is the same as measured on the suction side
and the ratio of the convection velocity to ow speed is 0.7 for frequencies up to
1000 Hz, decreasing linearly to 0.4 between frequencies of 1000 and 2000 Hz and
then staying constant at 0.4.

Another important issue is where to take the wall pressure statistics as input
for each model. In Amiet’s model the measurement should represent the surface
pressure on the airfoil at the TE without the e�ect of edge scattering. It was found
during the study that the surface pressure PSD measured at x=c=0:975 was free
of scattering e�ects. It is our best estimate of the surface pressure PSD directly
at the TE and is used directly as input to the model.

7.2.b Comparison of the Acoustic Models with Microphone
Array Response

To compare Howe’s and Amiet’s model with each other and the measurements
we �rst only evaluated the sound radiated from the suction side. To be able to
roughly compare with far �eld sound measurements we chose a test case in which
the surface pressure PSD was about 7dB higher than the one on the pressure
side, the NACA 64-618 airfoil at Reynolds number Re = 1:5M and e�ective AoA
�E =6:55o (see Fig. 34). The observer is assumed to be situated in the center of the
microphone array in the computation with both acoustic models. The full solution
of Amiet’s model with Roger’s extensions (green triangle) produces almost the
same solution as the simpli�ed version (red cross). There are only small di�erences
in the low frequency range up to 700 Hz. This is a quite unexpected result, because
the simpli�cation was based on the assumption of a large aspect ratio. But in the
computation a span of 0.6m was used (to get a result equivalent to the array
measurement). It yields an aspect ratio of 1, far from being large. An explanation
might be that the observer position is very close to mid span and the sinc2 function
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Figure 34. Comparison of the far �eld sound pressure spectrum for the NACA 64-
618 airfoil at Re = 1:5M and �E = 6:55o (Observer position for model: center of
mic. array; Model: suction side contribution to far �eld sound only)

of the full solution model is centered about low values of the spanwise wave number
and it is narrow enough that the radiation integral is constant in the range of
signi�cant spanwise wave numbers.

The main di�erence between Howe’s and Amiet’s model is the more elaborated
directivity of Amiet’s model which is a function of the frequency. In Howe’s model
the directivity for an in�nite high frequency is assumed for all frequencies. The
far �eld sound pressure spectrum predicted with Amiet’s model oscillates about
the one predicted with Howe’s model as ‘mean value’. However, those oscillations
are not observed in the microphone array measurement. On the other hand, the
microphone array is placed quite close to the airfoil compared to its geometric
extend. There is a aperture angle of about 36o from the TE of the airfoil model.
The far �eld sound pressure spectrum measured by the microphone array is an
average over its area. This setup can be approximately simulated using a line of 10
observer positions and averaging. The line of observer is placed in the center of the
microphone array in the spanwise direction and equally spaced along its chordwise
extension. The result is shown in Fig. 35. The Amiet’s model yields an nearly
identical far �eld sound pressure spectrum as Howe’s model when averaging over
10 observer positions. The di�erence is less than 0.4 dB, expect in the frequency
range lower than 800 Hz. There it can be up to 0.9 dB. The di�erence compared
to the far �eld sound pressure spectrum measured with the microphone array is
up to 2 dB. The di�erence between the models can be neglected compared to this.
The setup with the microphone array positioned close to the airfoil is not suitable
to detect directivity e�ects.

7.2.c Inuence of Convection Velocity on Far Field Sound
Prediction

The main source of uncertainty in the far �eld sound pressure prediction using
input from the measurement is the unknown convection velocity in the high fre-
quency range. Simulations with di�erent convection velocities assumed constant
over the frequency for simplicity were performed for the test case (see Fig. 36).
Only the suction side contribution to the far �eld sound pressure is taken into
account. A doubling of the convection velocity corresponds approximately also
to a doubling of the far �eld sound pressure (it can be directly inferred from
Eq. (20)), con�rmed by the 3 dB di�erence of the prediction with Uc=U1 = 0:4
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Figure 35. Comparison of the far �eld sound pressure spectrum for the NACA 64-
618 airfoil at Re = 1:5M and �E = 6:55o (Observer position for model: center
of mic. array; Observer position for model simulating array: spanwise center of
mic. array, 10 positions equally spaced over chordwise extend; Model: suction side
contribution to far �eld sound only)

Figure 36. Comparison of the far �eld sound pressure spectrum for the NACA 64-
618 airfoil at Re = 1:5M and �E = 6:55o (Observer position: spanwise center of
mic. array, 10 positions equally spaced over chordwise extend; Model: suction side
contribution to far �eld sound only)

and Uc=U1 =0:8 in Fig. 36.
In the high frequency range at about 2500 Hz the measured sound pressure drops

suddenly very strong. This would correspond to sudden drop of the convection
velocity in the prediction model. With the present measurements it can not be
proven.

7.2.d Comparison of Measurement and Prediction for Sev-
eral Relevant Cases

The model used in the comparison of the predicted and measured far �eld sound
pressure takes the contribution from both sides into account and is assessed as de-
scribed in Section 7.2.a. The test cases are chosen that the AoA is in the linear
range of the polar and the suction side PSD is at least 5 dB higher than the pres-
sure side PSD. The comparison is displayed in Fig. 37. In all cases, the slope of
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(a) NACA64-618, Re = 1:5M (b) NACA64-618t, Re = 1:5M

(c) NACA64-618, Re = 1:9M (d) NACA64-618t, Re = 1:9M

Figure 37. Comparison of measured and predicted far �eld sound pressure spectrum
(Observer position: spanwise center of mic. array, 10 positions equally spaced over
chordwise extend; Model: suction and pressure side contribution to far �eld sound)

the predicted far �eld sound pressure spectrum is atter than the measured one.
It is higher in the high frequency range and lower in the low frequency range.
The di�erence for high frequencies can be due to a bad estimate of the convection
velocity. Improving the setup to measure the convection velocity at higher frequen-
cies can improve the prediction. In the low frequency range, say up to 2000 Hz,
the predictions are excellent.

Another point of controversy in the model is the ful�llment of the Kutta con-
dition at the TE in the high frequency range. If the Kutta condition is ful�lled
suction and pressure side can be treated separately. If the Kutta condition is not
ful�lled the ow around the TE has to be treated as a whole and a model dealing
with di�erent pressure distributions on both sides is necessary. The results above
showed that the prediction of the far �eld sound pressure in the high frequency
range is better if only the suction side contribution is taken into account. This
leads to the speculation that the ow at the TE is more complex in reality and a
simple summation of the contribution of both sides to the far �eld sound is not
appropriate.

Another reason for the di�erence could be the inhomogeneity of the surface
pressure PSD close to the TE. The model assumption is clearly violated.

7.3 Validation of a Noise Optimized Airfoil De-
sign
As described in the previous section, the wind tunnel measurements were per-
formed at the Virginia Tech Stability Wind Tunnel. During this campaign the
airfoil design exposed in Section 6 could be tested. Both the aerodynamic and
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acoustic characteristics of the original and optimized airfoils are compared in the
following.

7.3.a Aerodynamic Analysis of Original and Optimized Air-
foils

The lift curves as a function of the relative angle of attack �0 obtained at each
tested inow velocity, including the case of the tripped airfoil for the intermediate
one, are displayed in Figs. 38(a-d). There exists a quite good agreement between
the experimental data and the CFD calculations, as least in the linear region.
However, the slow lift curve slope decrease as the maximum lift is approached
for the original tripped airfoil measured in the wind tunnel is not captured by
the CFD solver. As the curves approach maximum lift, it can be observed in the
measurements that the optimized airfoil reaches higher values of this maximum
lift, whereas the lift curve of the original airfoil stagnates around this maximum
lift. At higher angles of attack, the optimized airfoil present a stall behavior with
a distinct drop in lift. Such behavior was basically already predicted by the CFD
and Xfoil calculations in Section 6.3.

It is thereby con�rmed that the optimized airfoil provides slightly better aerody-
namic performances as long as one considers maximum lift as an important design
characteristics and if somewhat more abrupt stall characteristics are acceptable.
Since drag could not be measured in the wind tunnel facility, the conclusions drawn
in the previous section in this respect can not be directly validated. However, the
good agreement between measured and CFD calculated lift results in this Section
contributes to surmise that this also holds in reality.
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Figure 38. Lift as function of �0: a) U1 =30 m/s, b) U1 =45 m/s, c) U1 =60 m/s,
d) U1 =45 m/s with tripped airfoil.

It is important to note here that the CFD calculations performed in the free
transition case were not able to reproduce the transition locations observed in the
wind tunnel. The latter could be detected using high-frequency microphones ush-
mounted in the measuered airfoil section making use of the technique developed
by D�ssing [20]. Therefore all the CFD calculation results that are presented in
this paper and referred to as clean airfoil were obtained by enforcing transition at
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the same location than the one observed in the wind tunnel experiment.

7.3.b Acoustic Analysis of Original and Optimized Airfoils
As described in the beginning of this section, the noise emitted at the trail-

ing edge of the airfoils has been measured simultaneously with the aerodynamic
characteristics.

The noise spectra measured in the various velocity and airfoil con�gurations are
compared to those calculated with the CFD/TNO model. The angles of attack are
equal to those obtained in the wind tunnel (including wind tunnel corrections). In
Figs. 39(a-d) the spectra are plotted for relative angles of attack approximately
equal to �0 � 10o. As explained earlier, exact relative angles of attack can not
be achieved during the wind tunnel measurements since these were performed at
discrete geometric angles of attack with 2o intervals, the wind tunnel corrections
obviously not being known in advance as dependent it depends on the loading
on the airfoil. Therefore, the above �gures do not provide a fair comparison be-
tween the original and optimized airfoils. Nevertheless, the di�erences between
the original and the optimized airfoil are quite small. It is however clear that
the CFD/TNO model over-estimates the measured noise spectra, in particular at
higher angles of attack.

In order to provide a more objective comparison of the results, the noise spectra
are integrated along a speci�ed spectral band for all measured and calculated
angles of attack. The results are then plotted as a function of the measured or
calculated lift for the corresponding case. Fig. 40 display the integrated spectra
over the whole frequency range where measurements are reliable, that is 600 <
f < 3000 Hz. The spectra obtained from the CFD/TNO model are accordingly
integrated over the same frequency interval. It can be observed that the CFD/TNO
calculations consistently overpredict the measured integrated spectra. In addition,
comparisons between the original and optimized airfoil show opposite tendencies
whether the model results or the measurements are considered, except for the
tripped case (Fig. 40(d)). As for the measurements, as long as the ow remains
attached, the optimized airfoil performs always better than the original airfoil
when the airfoil is not tripped. Indeed, at equal lift coe�cient Cl the former
airfoil exhibits lower integrated noise values. This noise reduction remains rather
modest and ranges from 0.5 dB for the low angles of attack and low velocity to
2 dB for the highest wind speed. However, for the highest angle of attack where
stall initiates, the tendency is inversed and the original airfoil becomes less noisy
than the optimized one in the case without tripping, and vice-versa for the tripped
case. Nevertheless, it is clear in the �gures that the optimized airfoil can reach
quite larger maximum lift without signi�cant change in noise emission.

The CFD/TNO calculations yield di�erent results. It appears that the optimized
airfoil is always more noisy, which is in accordance with the measurements in the
tripped case, but not in the free transition case.

7.3.c Conclusions
An optimization procedure was conducted in order improve the TE noise charac-

teristics of a standard wind turbine airfoil without compromising its aerodynamic
performances. The optimization code uses the airfoil ow solver Xfoil to calculate
the turbulent BL characteristics that are subsequently used to evaluate the TE
noise. The optimization algorithm succeeded in reducing the cost function based
on this model. However, CFD calculations conducted a posteriori did not con�rm
that the expected noise reduction could be achieved.

The two airfoil prototypes were tested in an acoustic wind tunnel facility. The
new airfoil design exhibits quite weak TE noise reductions compared to the original
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Figure 39. Noise spectra (in 1=12th octave bands) at �0 � 10o: a) U1 =30 m/s, b)
U1 =45 m/s, c) U1 =60 m/s, d) U1 =45 m/s with tripped airfoil.
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Figure 40. Integrated noise spectra (600 to 3000 Hz) as function of lift: a) U1 =
30 m/s, b) U1 =45 m/s, c) U1 =60 m/s, d) U1 =45 m/s with tripped airfoil.

airfoil, and actually noise increase in the tripped case. Not however that tripping
an airfoil can have severe e�ects on the turbulent BL that are di�cult to model
and predict.

Therefore, in the future, an optimization method using the CFD ow calcula-
tions should be considered in the design process in order to achieve the expected
substantial noise reductions.

Nevertheless, the new airfoil design exhibits better aerodynamic performances
than the original one. Slightly better lift in the linear region and relatively im-
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portant maximum lift increase were observed, in particular when using the more
accurate CFD code as a ow solver, as a function of relative angle of attack. In
addition, large lift-to-drag ratio increase around design relative angle of attack
were also observed.

Some of the di�culties faced during this study are related to the particular
behavior of the NACA64618 airfoil. Indeed, this airfoil is part of the group of so-
called ‘laminar’ airfoil. These are characterized by a late transition, i.e. usually far
downstream of the trailing edge. This phenomenon is, as we found out, not easily
reproduced by the standard transition models, or at least the calculation results
can become very sensitive to other parameters due to the uncertainty associated
to the transition location.

As a conclusion about the design process, it can be argued that beni�cial aero-
dynamic features have been obtained without compromising the acoutic charac-
teristics, and in most cases even slightly reducing the TE noise emission. However,
better noise reduction could probably be obtained if using a CFD code as a ow
solver during the design process instead of the Xfoil code which results seem not
accurate enough for TE noise calculations in this case.
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8 Conclusions
As part of this project, an initial experiment was conducted during which detailed
boundary layer measurements were performed with a hot-wire set-up together with
surface pressure microphones. Important imformations concerning the turbulence
structure of the boundary layer were collected. The classical trailing edge noise
model, the so-called TNO-model which is also able to predict surface pressure
uctuations, proved to perform poorly against the measured pressure spectra.
Finally, measuring noise using hot-wires located outside the turbulent boundary
layer proved impractical due to the presence of high background noise levels.

The above measurement data constitute the basis to theoretical development
and improvement of the original TNO-model. Turbulence anisotropy and bound-
ary layer mean pressure gradient were introduced in the model formulation. The
model was tuned to �t the above measurement data. The new formulation signif-
icantly improved the model prediction capabilities.

A measurement technique based on microphone ush-mounted beneath the sur-
face of the airfoil near the trailing edge was developed. This technique is designed
to estimate the far-�eld noise radiated by the trailing edge without having to ac-
tually perform measurements in the far-�eld. The methodology relies on a tubing
set-up so that microphones can be located very close to the trailing edge. This
tubing system necessitates an accurate calibration of the microphones. Such a
calibration methodology was also developed.

A design method based on an existing optimization program was developed to
include noise optimization of airfoil sections. A new airfoil design was proposed.
The method made use of the original TNO-model. In addition, the airfoil ow
solver Xfoil which is appropriate for the aerodynamic design of airfoils was used.

A second and last experiment was conducted in the acoustic wind tunnel of the
Virginia Tech University. In this tunnel, a set-up for the measurement of far-�eld
noise with a microphone array is available. The surface pressure measurement
technique close to the trailing edge using the above new tubing system was tested
and the calibration technique was validated. The measurement methodology pro-
posed above to evaluate far-�eld noise from these surface microphones was also
validated and gave good results. In addition, the new airfoil design proposed above
was tested and compared to a reference airfoil. The aerodynamic characteristics
of the new airfoil were improved, but noise reduction were not as important as
expected. This last setback is partly attributed to the ow solver Xfoil together
with the original TNO model being unable to accurately predict the BL turbulence
characteristics.

9 Perspectives
Acoustic emissions from wind turbines have nowadays become a major concern
for wind turbine manufacturers and operators. Indeed, the growing demand for
renewable energy sources, combined with the signi�cant increase of wind turbine
sizes over the last two decades to meet this demand, have raised important prob-
lems associated to the strict noise regulations that also have to be considered when
installing wind turbines.

The present study has brought two important contributions that can readily be
applied in the industry and help mitigate the above-mentioned problems:

1. A measurement methodology for evaluating trailing-edge noise emission using
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microphones ush-mounted in the airfoil/blade itself has been developped and
tested in an acoustic wind tunnel.

2. A methodology for low-noise airfoil design has been developped. As a test
case, a noise optimized airfoil has been designed and tested in the above
acoustic wind tunnel.

As far as the �rst contribution is concerned, this should have two important
impacts on the commercial activities within wind turbine developers and manu-
facturers. Firstly, this technique can be used in a classical wind tunnel that is not
designed for acoustic measurements. It should be mentioned here that all danish
wind turbine and wind turbine blade manufacturers do not own such an acoustic
facility themselves. In order to perform acoustic measurements, they have to rent
an appropriate facility abroad. As a results, the above measurement technique
can make the acoustic design and validation of new airfoil sections cheaper and
faster. Secondly, this technique can also be used on actual wind turbines to as-
sess their noise emission. This concept was actually tested within the DANAERO
project [39] for which a wind turbine was equipped with similar microphones that
were ush-mounted on the turbine blades as in the present experimental set-up.
The present project can be considered on one side as a validation of the acoustic
mechanism involved with trailing-edge noise emission in controlled experimental
conditions, which cannot be performed on a real-life wind turbine since the var-
ious wind turbine noise sources are very di�cult to distinguish from each other
and/or from the ambient noise. On the other side, it can be considered as a feasi-
bility study for the evaluation of noise using these microphones on an actual wind
turbine.

As for the second contribution of this project, the results of the present study
proved that the airfoil ow solver Xfoil is a too crude approximation for the bound-
ary layer calculations. Indeed, it appears that a more advanced model such as CFD
is necessary to correctly capture the physics underlying the noise mechanism.
Nevertheless, since the simpli�ed model Xfoil is still valid to predict the airfoil
aerodynamic characteristics, the newly designed airfoil proved to exhibit better
aerodynamic features in term of maximum lift. However, the expected noise re-
duction were not as substantial as expected for the reason mentioned above. Still,
detectable noise reductions were observed for the new airfoil without tripping de-
vices. The pitfalls met during this study should be taken into account for new
design concepts. This should contribute in the future to better noise optimized
airfoils.

On the commercial side and as a follow-up to this project, LM Wind Power is
conducting further investigations for the design of low-noise airfoil pro�les. It is
intended that such pro�les will be used on commercial wind turbines within a time-
frame of approximately 2 years. On the technological side, LM Wind Power is still
developing the methodology to experimentally verify airfoil noise in wind tunnels.
These activities are part of a di�erent EUDP-funded project named: ‘Design of
New Generation Wind Turbine Rotors (NextRotor)’.
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