
 
 
General rights  
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

�x Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
�x You may not further distribute the material or use it for any profit-making activity or commercial gain 
�x You may freely distribute the URL identifying the publication in the public portal 

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Feb 17, 2019

Quasiparticle GW calculations within the GPAW electronic structure code

Hüser, Falco Jonas

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Hüser, F. (2013). Quasiparticle GW calculations within the GPAW electronic structure code. Department of
Physics, Technical University of Denmark.

http://orbit.dtu.dk/en/publications/quasiparticle-gw-calculations-within-the-gpaw-electronic-structure-code(b318919d-d5f1-43ca-8cd8-d23b7344e8f4).html


Quasiparticle GW calculations
within the GPAW

electronic structure code

Falco Jonas H•user

Center for Atomic-scale Materials Design
Department of Physics

Technical University of Denmark



Quasiparticle GW calculations
within the GPAW

electronic structure code

Falco Jonas Ḧuser
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ABSTRACT

The GPAW electronic structure code, developed at the physics department at the Technical Uni-
versity of Denmark, is used today by researchers all over the world to model the structural,
electronic, optical and chemical properties of materials. They address fundamental questions
in material science and use their knowledge to design new materials for a vast range of appli-
cations. Todays hottest topics are, amongst many others, better materials for energy conversion
(e.g. solar cells), energy storage (batteries) and catalysts for the removal of environmentally
dangerous exhausts.

The mentioned properties are to a large extent governed by the physics on the atomic scale,
that means pure quantum mechanics. For many decades, Density Functional Theory has been
the computational method of choice, since it provides a fairly easy and yet accurate way of
determining electronic structures and related properties. However, it has several drawbacks. A
conceptual problem is the di� culty of interpreting the calculated results with respect to exper-
imentally measured quantities, resulting in, for example, the “band gap problem” in semicon-
ductors. A practical issue is the necessity of adapting the method with respect to the system one
wants to investigate by choosing a certain functional or by tuning parameters.

A succesful alternative is the so-called GW approximation. It is mathematically precise and
gives a physically well-founded description of the complicated electron interactions in terms of
screening. It provides a direct link to experimental observables through the concept of quasi-
particles. Furthermore, it is parameter-free and thereby equally applicable to di� erent kinds
of systems. Its downside lies in its immense computational costs that limit its use in practice.
Often, only the G0W0 approach is considered, which can be regarded as the lowest level of the
GW approximation.

This thesis documents the implementation of the G0W0 approximation in GPAW. It serves
two purposes: First, it can be read as a manual by anyone who is interested in doing GW cal-
culations with GPAW. All features and requirements are explained in detail and many examples
are given. This provides a full understanding of how the code works and how the outcome
should be interpreted. Secondly, it gives an extensive discussion of calculated results for the
electronic structure of 3-dimensional, 2-dimensional and �nite systems and comparison with
other implementations, methods and experiments. It shows that bandstructures, band gaps and
ionization potentials can be obtained accurately with G0W0 for many di� erent materials. But
also exceptions are pointed out, where higher levels of the GW approximation might be neces-
sary.
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RESUMÉ

GPAW er et program, der bruges til at beregne elektroniske strukturer og er blevet udviklet
på Institut for Fysik på Danmarks Tekniske Universitet. Det benyttes i dag af forskere i hele
verden til at modellere materialers fysiske, elektroniske, optiske og kemiske egenskaber. Herved
undersøges grundliggende problemstillinger indenfor materialvidenskab og resultaterne har en
lang række anvendelser. Nogle af tidens mest spændende emner er at �nde nye materialer til
bæredygtig energiproduktion (f. eks. solceller), energiopbevaring (batterier) og katalysatorer,
der nedbryder miljøskadelige udstødninger.

De ovennævnte egenskaber afgøres hovedsageligt af fysikken på den atomare skala, dvs.
kvantemekanikken. I mange årtier har tæthedsfunktionalteori været den fortrukne beregn-
ingsmetode, for den er en forholdsvis enkel, men samtidig nøjagtig metode, til at bestemme den
elektroniske struktur og de relaterede egenskaber. Men den viser sig også at have visse ulemper.
Et konceptuelt problem er at relatere de beregnede resultater med eksperimentelle målinger. Det
fører, f. eks. til det såkaldte båndgab-problem i halvledere. Et praktisk problem er, at man er
nødt til at vælge et bestemt funktionale som er velegnet for systemet i undersøgelsen eller at
tilpasse en parameter.

Den såkaldte GW approksimation tilbyder et lovende alternativ. Den er matematisk præcis
og beskriver fysikken for den komplicerede elektron-vekselvirkning i den meningsfulde form af
afskærmningse� ekter. Beregninger kan knyttes direkte til eksperimentelle resultater ved hjælp
af konceptet kvasi-partikler. Derudover er metoden fri for parametre og kan anvendes til mange
forskellige slags systemer. Praktisk sætter den høje kompleksitet dog grænser. Ofte bruges kun
G0W0, der kan betegnes som det laveste niveau af GW approksimationen.

Denne afhandling dokumenterer implementeringen af G0W0 approksimationen i GPAW.
Den har to mål: For det første kan den læses som en brugermanual til dem, der selv vil lave
GW beregninger med GPAW. Alle funktioner beskrives i detaljer ved hjælp af mange eksem-
pler. På den måde forklares der grundigt om kodens drift og om hvordan resultaterne bør
opfattes. For det andet diskuteres og vurderes beregninger af den elektroniske struktur af 3-
dimensionale, 2-dimensionale og �nite systemer ved at sammenligne med resultater fra andre
implementeringer, metoder og eksperimenter. Båndstrukturer, båndgabs og ionisationspoten-
tiale for mange forskellige materialer kan præcist bestemmes med G0W0. Men der vises også
undtagelser, hvor der kan være brug for et højere niveau af GW approksimationen.
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INTRODUCTION

Computational atomic-scale materials design is about the theoretical prediction of new mate-
rials that possess certain physical and chemical characteristics which enable their use for new
technologies. Materials, that can possibly be used to build better and faster electronic devices,
more powerful and longlasting batteries for electric cars, e� cient solar cells or catalysts that
reduce toxic gases in industrial exhausts, just to name a few.

The structures are simulated atom by atom on the computer and suitable theoretical models
are used to calculate their properties. At the atomic scale, the physics is determined completely
by quantum mechanics, where particles are di� use objects with a limited probability of existing
at a certain point in time and space, mathematically represented by wavefunctions. Interacting
particles behave collectively and are thus attributed to many-body wavefunctions. The elec-
tronic structure of a system is entirely described by its Hamiltonian. It collects the operators for
the kinetic energies of the electrons and the ionic cores, the Coulomb attraction and repulsion
between all charged particles and interactions with external �elds. The wavefunctions and the
energy spectrum of the system are given by its eigenfunctions and eigenvalues, respectively.
This is written down in compact form in the Schrödinger equation. However, it is in practice
impossible to solve the Schrödinger equation directly, other than for the simplest model sys-
tems. Leaving out the ionic contributions (which can normally be separated), the complications
arise from the electron-electron interactions.

Various approximations have been developed and successfully applied over the years. The
simplest idea is to treat the electrons as if they were not interacting with each other. Then,
the many-body wavefunction is just a product of single-particle wavefunctions, or, when tak-
ing Pauly's exclusion principle into account, a Slater determinant, which is fully antisymmetric
under exchange of two particles. This is the idea behind Hartree-Fock theory [1], where the
electron-electron interactions are reduced to a Hartree term, which describes the Coulomb re-
pulsion of an electron with the total electron density, and an exchange term, which accounts
for the antisymmetric nature of electrons. All that is left out here, is what is usually refered
to as “correlation”. In Density Functional Theory [2], the system of interacting electrons is
mapped onto an auxiliary system of e� ectively non-interacting electrons under the requirement
that the electron density, which is as opposed to the wavefunction an observable, of these two
systems are identical. In this scheme, wavefunctions and energies are given as eigenfunctions
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Figure 1: Schematic picture of (a) Photo Electron Spectroscopy (PES) and (b) Inverse Photo Electron
Spectroscopy (IPS). In (a), an electron is removed from the system by absorption of a photon with energy
h� . In (b), an electron is added to the system under emission of a photon. The binding energy (relative
to the vacuum level,Evac) is then given asEel = Ekin - h� , whereEkin is the kinetic energy of the free
electron.Eel corresponds to the energy of a state in a valence and conduction band, respectively.EF is
the Fermi level.

and -values of an e� ective Kohn-Sham Hamiltonian [3]. However, complications do not van-
ish, but are only transferred into an exchange-correlation functional. Development of elaborate
functionals has been work in progress for many decades and great results have been achieved.
Today, Density Functional Theory is one of the most common methods for calculating elec-
tronic structures. Still, a number of problems cannot be overcome: A practical issue is that
there is a variety of di� erent functionals to choose from and many of them are designed for
special purposes, often by tuning parameters to �t experimental data. In this sense, it is not a
100 %ab-initio method. More fundamentally, it is a groundstate theory. That means that in
principle, total energies can be calculated exactly, whereas the Kohn-Sham wavefunctions and
eigenvalues lack a meaningful physical interpretation. Physicists usually think of an electronic
structure as a series of bands, which are being �lled up by a certain number of electrons,N.
The occupied (valence) and unoccupied (conduction) states are separated by the Fermi level,
EF. In experiment, the energies of the valence and conduction bands are typically measured
by Photo Electron and Inverse Photo Electron Spectroscopy, respectively, as sketched in Fig.
1. These processes include the removal or addition of one electron and are thus not properties
of the N-electron groundstate. The fundamental energy gap is de�ned as the di� erence in the
lowest electron addition and removal energies,E�

el, and can be written as:

Egap = E+
el � E�

el = EN+1
0 + EN� 1

0 � 2EN
0 ; (1)

whereEN
0 and EN� 1

0 are the groundstate energies of the system withN and N � 1 electrons,
respectively. Eq. (1) allows in principle for determining the gap from three groundstate calcu-
lations for the neutral and single positive and negative charged system. However, this cannot
be done for periodic systems like semiconductors. In terms of (exact) Kohn-Sham energies, the
gap is given by:

Egap = " KS
N+1(N) � " KS

N (N) + � xc = EKS
gap+ � xc; (2)

where" KS
i (N) is thei-th eigenvalue of theN-electron system and� xc the derivative discontinuity

[4], which in practice can only be estimated.

2
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Figure 2: Schematic picture of the concept of screening. On the left side, electrons are non-interacting
and the potential seen outside emerging from one electron is the full Coulomb potential. Interacting
electrons tend to repel each other. As sketched on the right side, this leads to the formation of an e� ective
positively charged cloud surrounding each electron. This Coulomb hole screens the Coulomb potential.

An alternative approach that avoids these problems is established by many-body perturba-
tion theory. Instead of trying to solve the Schrödinger equation for the wavefunctions, one wants
to determine the Green's Function, which describes the propagation of a particle (electron or
hole) through the groundstate of the system. This corresponds exactly to the situations depicted
in Fig. 1. These and similar excitations are “quasi” single-particle-like and called quasiparti-
cles. The important di� erence to a real single-particle excitation is that the full response of all
particles in the system to that excitation is included in the quasiparticle itself, e.g. all correlation
e� ects. Quasiparticles have in general �nite lifetimes and their spectrum,f" QP

i� g, is given by the
poles of the Green's Function. The fundamental gap is then simply:

Egap = " QP
0+ � " QP

0� : (3)

Hence," QP
0� are equal to the lowest electron removal and addition energies,E�

el, introduced above.
The Green's Function can be de�ned through an equation of motion, which contains the self-

energy operator, a non-local and energy-dependent analogous of the exchange-correlation po-
tential. Unfortunately, it is practically impossible to calculate it exactly. However, it is straight-
forward to expand it systematically using perturbation theory. In the GW approximation [5], the
self-energy is taken to �rst order in the screened potential. This seems rather crude at �rst sight,
but turns out to give an excellent description of weak correlation. The basic idea of screening
is illustrated in Fig. 2: When an electron is added to the system, it polarizes its surrounding and
thereby induces its own Coulomb hole, which reduces the potential.

This thesis presents GW calculations for solids, molecules and two-dimensional materi-
als. Quasiparticle energies were obtained with �rst-order perturbation theory from Kohn-Sham
wavefunctions and eigenvalues in the so-called G0W0 or non-selfconsistent GW approximation.
It is organized as follows:

� Chapter 1 introduces the theory of Green's Functions and sets the mathematical frame-
work for the GW approximation.

� Chapter 2 contains all computational details of the implementation developed in this
project as well as extensive convergence tests.
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� Chapter 3 presents calculations for semiconductors, insulators and metals. Bandstructures
and band gaps are compared to results from literature, other methods and experiments,
where available.

� Chapter 4 discusses special issues that occur for two-dimensional systems for the exam-
ples of single sheets of graphene/hexagonal boron-nitride and MoS2.

� Chapter 5 focusses on the Ionization Potentials of di� erent molecules and gives insight
into the structure of the self-energy.

Each chapter is preceded by a seperate introduction and can be read to a large extent indepen-
dently from the rest of the thesis.
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CHAPTER1

THEORETICAL BACKGROUND

This chapter gives a brief introduction to the underlying theory of the GW approximation as
pointed out by Hedin in 1965 [5]. The theoretical description is given in the framework of
many-body perturbation theory (MBPT) in which the central quantities are the Green's Function
G and the self-energy� . In principal, they contain all information on a given system, similar
to the Hamiltonian and wavefunctions as de�ned by the Schrödinger equation. As opposed
to groundstate theories like density functional theory (DFT), MBPT inherently o� ers ways to
calculate excited state properties and the corresponding wavefunctions can be interpreted as
quasiparticle (QP) states. This allows for the calculation of the fundamental band gap, for
example, which is de�ned by the di� erence of electron removal and addition energies. Since all
other electrons in the system will respond to that additional electron or hole, the gap is clearly
not a groundstate property. These complicated interactions are known as correlation e� ects or
screening. A further major problem of most DFT functionals is the self-interaction error [6]
which arises from incomplete cancellation of the interaction of an electron with itself in the
Hartree and exchange-correlation terms.

In MBPT, the Green's Function is a solution to the equation of motion in which the self-
energy appears as a non-Hermitian, nonlocal and frequency-dependent operator. Determining
� is therefore the key to �nding the electronic structure.

As will be shown in Section 1.3, the self-energy can in principal be evaluated exactly
through a set of four coupled integro-di� erential equations, known as Hedin's equations. How-
ever, this turns out to be impossible to do in practice, even for simple systems. In fact, it is as
complicated as solving the Schrödinger equation directly (or as �nding the one true exchange-
correlation functional in DFT) and therefore, approximations need to be made. It is, however,
possible to write down systematic expansions of the self-energy and various approaches exist,
depending on di� erent aspects of the underlying physics. Feynman diagrams provide an easy
and instructive way of interpreting and calculating the di� erent terms, and some of them can be
summed up to in�nite order. Exxpanding the self-energy to �rst order in the screened potential
W reads simply:� = iGW. This turns out to give an astonishingly good description of the
physics of weakly-correlated materials and has become the highly successful GW approxima-

5



CHAPTER 1. THEORETICAL BACKGROUND

tion.
A mathematical rigorous introduction to quantum-mechanical Green's Functions and Feyn-

man diagrams can be found in Ref. [7], whereas the GW approximation is discussed in detail in
the reviews [8–10].

Throughout this chapter, spin indices are suppressed in order to simplify the notation. The
extension to spin-dependent quantities is straightforward. Atomic units (~ = me = e = 1) are
used.
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1.1. GREEN'S FUNCTIONS

1.1 Green's Functions

In second quantization, the time-ordered single-particle Green's Function reads:

G(r ; t; r0; t0) =
D
T

n
 ̂ (r ; t) ̂ y(r0; t0)

oE
; (1.1)

where ̂ and ̂ y denote fermionic annihilation and creation operators, respectively, which ful�ll
the anticommutator relations:

n
 ̂ (r ; t);  ̂ y(r0; t0)

o
t=t0

= � (r � r0): (1.2)

The expectation valueh: : : i is to be taken with respect to theN-particle groundstate of the
system.T is the time-ordering operator which ensures that the �eld operators on which it acts
are ordered in ascending time argumentt from right to left:

T
n
 ̂ (r ; t) ̂ y(r0; t0)

o
=

8
>><
>>:

 ̂ (r ; t) ̂ y(r0; t0) for t > t0

�  ̂ y(r0; t0) ̂ (r ; t) for t < t0:
(1.3)

With this, the physical interpretation of the Green's Function (1.1) becomes clear: It de-
scribes the propagation of an electron created at space coordinater0 and timet0 and annihilated
at another point in space,r , and a later timet through the groundstate of the system. The
opposite holds for a hole. Note that even though the Green's Function (1.1) describes the prop-
agation of a single particle, the full information of the interactingN-electron system is contained
through the expectation value.

For a system of electrons which interact via the Coulomb potentialV(r ; r0) = 1
jr � r0j , e.g.

where the Hamiltonian takes the form:

Ĥ =
Z

dr  ̂ y(r ; t)h0(r ) ̂ (r ; t) +
1
2

Z
dr

Z
dr0  ̂ y(r ; t) ̂ y(r0; t0)V(r ; r0) ̂ (r0; t0) ̂ (r ; t); (1.4)

the evolution of the Green's Function is governed by an equation of motion:1

(! � h0(r ) � VH(r )) G(r ; r0; ! ) �
Z

dr00� (r ; r00; ! )G(r00; r0; ! ) = � (r � r0); (1.5)

whereh0 collects all one-body terms such as the kinetic energy and interaction with an external
potential.VH(r ) =

R
dr0V(r ; r0)� (r0) is the Hartree potential with the electron density given by

the diagonal of the Green's Function:� (r ) = G(r t; r t+). 2 In frequency domain, the Green's
Function reads:G(r ; r0; ! ) =

R
d(t � t0) G(r ; t; r0; t0) exp(i! (t � t0)). � is called the self-energy

and is in general a dynamic, non-local and non-Hermitian operator.
The Green's Function can be expressed in the spectral representation, also known as Leh-

mann representation:

G(r ; r0; ! ) =
Z

d! 0 A(r ; r0; ! )
! � ! 0 + i� sgn(! 0)

; (1.6)

with an in�nitesimally small, positive� , which ensures thatG is analytic along the real axis.
The spectral function is linked to the imaginary part of the Green's Function as:

A(r ; r0; ! ) = �
1
�

sgn(! )Im fG(r ; r0; ! )g: (1.7)

1This can be derived with the use ofd
dt Â(t) = i[Ĥ; Â(t)] + @tÂ(t) for any quantum-mechanical operatorÂ(t) and

representing the �eld operators in the Heisenberg picture: ̂ (r ; t) = eiĤt  ̂ (r )e� iĤt.
2with t+ � t + � for positive� ! 0

7



CHAPTER 1. THEORETICAL BACKGROUND

For a system of non-interacting electrons Eq. (1.5) reduces to:

�
" j � h0(r )

�
G0(r ; r0; ! ) = � (r � r0); (1.8)

and the non-interacting Green's Function takes the simple form:

G0(r ; r0; ! ) =
X

j

� j(r )� � j(r0)
! � " j + i� sgn(" j � � )

; (1.9)

wheref� igare single-particle wavefunctions. The corresponding spectral function is a sum of
� -functions at the orbital energies! = " i:

A0(r ; r0; ! ) =
X

j

� j(r )� � j(r0)� (! � " j): (1.10)

The interacting Green's Function (also called “full” or “dressed” Green's Function) is con-
nected toG0 through Dyson's equation:

G(r ; r0; ! ) = G0(r ; r0; ! ) +
Z

dr1

Z
dr2 G(r ; r1; ! )� (r1; r2; ! )G0(r2; r0; ! ): (1.11)

In a simpli�ed notation, this readsG = G0 + G� G0 and is illustrated graphically in Fig. 1.1
using standard Feynman diagrams. It can also be used as a de�nition for the self-energy:
� = G� 1 � G� 1

0 . Similarly, the non-interacting and the full Green's Function can symbolically
be written asG0(z) = (z� ĥ0 � VH)� 1 andG(z) = (z� Ĥ)� 1, respectively, wherêH = ĥ0 + VH + �
and z is a complex number. In this de�nition, the self-energy collects all electron-electron
interactions that go beyond the Hartree level, that means all exchange and correlation contribu-
tions. Therefore� = � xc can be regarded as a non-local and energy-dependent analogous of the
exchange-correlation potential in DFT.

Figure 1.1: Schematic representation of the Dyson equation (1.11). By iteratively inserting the same
de�nition for G on the right-hand side, it becomes an in�nite expansion in powers of the self-energy:
G = G0 + G0� G0 + G0� G0� G0 + G0� G0� G0� G0 + : : :.
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1.2. QUASIPARTICLES

1.2 Quasiparticles

An alternative way of writing Eq. (1.6) is to expandG in the full complex plane in a set of
complete basis functionsf QP

i g: 3

G(r ; r0; z) =
X

j

 QP
j (r )�  QP

j (r0)

z � " QP
j

: (1.12)

In the discrete part of the spectrum,f" QP
i gare solutions to the quasiparticle equation:

�
" QP

i � h0(r ) � VH(r )
�
 QP

i (r ) �
Z

dr0� (r ; r0; " QP
i ) QP

i (r0) = 0: (1.13)

These functions are the quasiparticle states and the energies correspond to excitation energies:

 QP
i� (r ) =

D
N � 1; i

���  ̂ (r )
��� N;0

E

 QP
i+ (r ) =

D
N;0

���  ̂ (r )
��� N + 1; i

E
and " QP

i� = EN
0 � EN� 1

i

and " QP
i+ = EN+1

i � EN
i

when " QP
i < �

when " QP
i � � ;

(1.14)

wherej N;0i stands for the groundstate of theN-particle system andj N � 1; ii for the i-th ex-
cited state of theN � 1-particle system. Accordingly,EN

0 and EN� 1
i are the total energies.

� = EN+1
0 � EN

0 is the chemical potential. From Eq. (1.14), it becomes clear that the quasipar-
ticle states describe the removal or addition of an electron and the corresponding energies are
electron removal and addition energies. Fori = 0, they are equal to the negative ionization
potential (IP) and electron a� nity (EA), respectively. Thus, the fundamental band gap is given
as:

Egap = IP � EA = " QP
0+ � " QP

0� = EN+1
0 + EN� 1

0 � 2EN
0 : (1.15)

In principal, the QP energies and wavefunctions are not equal to the eigenvalues and eigenfunc-
tions de�ned by Eq. (1.5):

(" n(! ) � h0(r ) � VH(r ))  n(r ; ! ) �
Z

dr0� (r ; r0; ! ) n(r0; ! ) = 0; (1.16)

with which the Green's Function can be expressed as:

G(r ; r0; ! ) =
X

m

 m(r ; ! )�  m(r0; ! )
! � " m(! )

: (1.17)

These eigenvalues are in general complex and frequency-dependent and the eigenfunctions are
non-orthogonal. However, for! i = Ref" n(! i)g= " QP

i , the eigenvector n(r ; ! i) coincides with
the QP wavefunction QP

i (r ) (except for normalization) and is denoted i("
QP
i ) =  QP

i =jj QP
i jj2. If

the imaginary part of" n(! i) is small, the spectrum shows a peak at the quasiparticle energy. Its
broadening is related to the lifetime of the quasiparticle. In other cases, where (! � Ref" n(! )g)
and Imf" n(! )gare small, so-called satellites appear in the spectrum [8]. In the continuous part
of the spectrum,G posesses a branch cut and the quasiparticle energies become complex. The
real part of" QP

i represents some average energy of a group of excited states and the imaginary
part the spread in energy of these states [5].

3This follows directly from Eq. (1.1) by inserting the identity 1=
P

i j N � 1; i i h N � 1; i j, performing Fourier
transformation and using analytical continuation.

9



CHAPTER 1. THEORETICAL BACKGROUND

Only for non-interacting electrons, the eigenvalues are real and the QP wavefunctions can
be written as single Slater determinants. The excitations are then true single-particle excitations
with energies! = " j.

The norm of the quasiparticle wavefunction (1.14) is given by:

jj QP
i jj2 =

D
 i("

QP
i )

���1 � � 0(" QP
i )

��� i("
QP
i )

E� 1
� Zi; (1.18)

where� 0(" QP
i ) = d

d! � (! )
���
! =" QP

i
. For non-interacting electrons, the QP norm can be either 1 or

0, corresponding to single- and multiple-particle excitations, respectively. In weakly correlated
systems, states with norm� 1 are “quasi” single-particle excitations and only those are usually
called quasiparticles.

1.3 Hedin's Equations

A formally exact way of calculating the self-energy is given by a set of four coupled equations,
known as Hedin's equations:

self-energy: � (1; 2) = i
Z

d(34)G(1;3)� (3; 2; 4)W(4;1+); (1.19)

screened potential: W(1;2) = V(1;2) +
Z

d(34)V(1;3)P(3;4)W(4;2); (1.20)

polarization: P(1;2) = � i
Z

d(34)G(1;3)G(4;1+)� (3; 4; 2); (1.21)

vertex function: � (1; 2; 3) = � (1; 2)� (1; 3) +
Z

d(4567)
@� (1;2)
@G(4;5)

G(4;6)G(7;5)� (6; 7; 3);

(1.22)

where (j) denotes (r j; t j) andV(1;2) = V(r1; r2)� (t1 � t2) is the Coulomb potential.
The screened potentialW can also be expressed through the dielectric function� = 1 � VP

asW(1;2) =
R

d(3) � � 1(1; 3)V(3;2).
These equations could in principal be solved self-consistently, along with the Dyson equa-

tion (1.11), starting from a trial Green's Function, e.g.G0, and then iterating until the self-
energy converges. This is however, due to their complicated structure, impossible to do in
practice.

1.4 The GW approximation

A simple ansatz can be made by setting the second term in the vertex function to zero, which
yields P = � iGG and� = iGW. This choice seems at �rst somewhat arbitrary. However, it
gains a clear physical interpretation when compared to Hartree-Fock theory (HF), in which the
self-energy is given as a product of the Green's Function and the bare Coulomb interaction:
� HF = iGV. Here, electron-electron interaction only occurs through the Hartree- and the ex-
change potential, that means that there is no correlation – the electrons are quasi independent.
On the other hand, correlation is to a large extent determined by screening (in fact, for weakly
correlated systems, these two terms are often used interchangeably). Thus, by replacing the

10



1.4. THE GW APPROXIMATION

Figure 1.2: Comparison of the GW, HF and RPA self-energies. The screened potential is linked to the
full Coulomb potential through a Dyson-like equationW = V + VGGWandWRPA = V + VG0G0WRPA

(see Fig. 1.3).

bare Coulomb interactionV by the screened interactionW in the self-energy, dynamical corre-
lation is introduced. In Fig. 1.2, the Feynman diagram for the GW self-energy is shown, along
with corresponding expressions for the HF and the Random Phase Approximation (RPA) for
comparison.

In real space and time domain, the GW self-energy is simply given as a product:

� (r ; t; r0; t0) = iG(r ; t; r0; t0)W(r ; t; r0; t0); (1.23)

which becomes a convolution in frequency domain:

� (r ; r0; ! ) =
i

2�

Z
d! 0ei�! 0

G(r ; r0; ! + ! 0)W(r ; r0; ! 0); (1.24)

where the ini�nitesimal� ensures the correct time-ordering in case of a static potential,W(! =
0). Using the spectral representation for the Green's Function and an analogous expression for
the screened interaction, the real part of� breaks into two parts [11]:� = � COH + � SEX with
the �rst term arising from the poles in the Green's Function and the second from the poles in
W. � SEX can be identi�ed as a dynamically screened version of the Fock exchange term and is
therefore called “screened exchange”.� COH describes the dynamic interaction of a particle with
the charge that it induces in its surrounding, that means a dynamical “Coulomb hole”.
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CHAPTER 1. THEORETICAL BACKGROUND

1.4.1 Linearized QP equation

The GW approximation provides a direct guideline on how to �nd the quasiparticle wavefunc-
tions and their spectrum: First, one has to construct the Green's Function and the screened
potential from an initial guess, e.g. from a system of (e� ectively) non-interacting electrons with
wavefunctionsf s

i gand energiesf" s
i g. This allows then for the calculation of� and determina-

tion of new wavefunctions and energies from the quasiparticle equation (1.13). From these, a
new Green's Function and potential can be build up and the whole procedure can be iterated
until self-consistency is reached. However, Eq. (1.13) requires the self-energy itself to be given
at the quasiparticle energy" QP

i which is exactly the quantity one wants to �nd. This is extremely
complicated to solve directly. Instead, the QP equation can be linearized using �rst-order per-
turbation theory: Assume that the initial wavefunctions are solutions toĤe� = ĥ0 + VH + Vxc,
whereVxc is some e� ective exchange-correlation potential. Then the full Hamiltonian di� ers
from Ĥe� by � xc � Vxc. If the initial wavefunctions are close to the true QP wavefunctions, this
di� erence will be small and one can use perturbation theory in (� xc � Vxc). In �rst order, this
yields for the quasiparticle energies:

" QP
i = " s

i + Zs
i �



 s

i j� xc(" s
i ) � Vxcj s

i
�

; (1.25)

with a renormalization factor:

Zs
i =



 s

i j1 � � 0
xc("

s
i )j 

s
i
� � 1 : (1.26)

Zs
i is an approximation to the QP norm (1.18) and is a measure for how well the quasiparticle

wavefunction is represented by s
i , e.g. if the quasiparticle state can be described by e� ectively

non-interacting electrons.
Within this approach, new wavefunctions can be found by replacingVxc with the e� ective

self-energy operator
P

i j j s
i ih s

i j� xc(" s
i ))j 

s
j ih s

j j in the Hamiltonian and �nding the new eigen-
vectors. This is know as quasiparticle self-consistent GW (QPscGW) [12], as opposed to the
full self-consistent GW (scGW) [13], in which the self-energy is calculated for all frequencies
and the Green's Function is evaluated through Dyson's equation (1.11).

1.4.2 G0W0

In practice, Kohn-Sham orbitals and eigenvalues from a DFT calculation are often used as input
for a GW calculation and the quasiparticle spectrum is evaluated non-selfconsistenly from Eq.
(1.25) without updating the Green's Function or the screened potential, that means only one
iteration is made. This is known as the “one-shot” GW or G0W0 approximation and has become
a standard tool in electronic structure theory.W0 is hereby equal to the RPA screened potential,
as depicted in Fig. 1.3. Even though this approach is based on several crude simpli�cations,
namely: 1. the GW approximation itself, 2. non-selfconsistency and 3. linearization of the
QP equation, it gives a very good balance between accuracy and computational costs. Its great
success can be understood by the following:

1. The GW approximation is physically well motivated for weakly correlated systems by
the concept of screening, as outlined in the beginning of this section.

2. Self-consistency does not necessarily improve results. This is due to the fact that addi-
tional terms are introduced to the self-energy, which would cancel out when the full many-
body theory is considered, e.g. by taking the vertex function (1.22) into account [14].
Calculating vertex corrections, however, is enormously costly.
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1.4. THE GW APPROXIMATION

3. The linearized QP equation is a good approximation as long as the initial wave functions
already describe the true QP wavefunctions fairly well, even though this may not hold for
the eigenvalues. Then, G0W0 can give signi�cant corrections to the energies, allowing for
accurate bandstructure calculations.

Of course, there are several drawbacks and limitations: A major problem is the starting point is-
sue, since the results depend on the initial wavefunctions and energies and can vary signi�cantly
depending on the input. A well-considered choice may be crucial in order to minimize errors.
This issue can only be overcome by performing self-consistency. Otherwise, it is a trueab-
initio method, meaning that no empirical parameters are required, and it is system-independent
(which is not the case for most funtionals in DFT). Unfortunately, all this comes at the price
of a much higher computational cost, as will be elucidated in detail in the next chapter. And
while the lower part of the spectrum can be calculated with good accuracy, G0W0 usually goes
completely wrong in the high energy range and thus cannot describe satellites, for instance.
Finally, for strongly correlated materials, the whole quasiparticle picture does not hold and the
GW approximation is expected to fail.

Several approaches exist, that go beyond the one-shot approximation without having to deal
with all of the complications and problems of the full self-consistent scheme. In the eigenvalue-
scGW, for instance, only the energies are being updated during the iterations while the wave-
functions are being kept on the Kohn-Sham level [15]. Furthermore, energies and/or wavefunc-
tions can be updated in the Green's Function only with a �xed initial screened potential, which
corresponds to GW0 [16,17].

Figure 1.3: De�nition of the screened potentialW in the G0W0 approximation. Similar to Fig. 1.1, it
gives an in�nite sum over bubble diagrams (G0G0) and is equal to the screened potential in the Random
Phase Approximation. Each bubble corresponds to the creation and annihilation of one electron-hole
pair. Within this approximation, these pairs are non-interacting.
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CHAPTER2

IMPLEMENTATION IN GPAW

GPAW is an electronic structure code based on the projector-augmented wave (PAW) method
[18, 19], in which the true wavefunctions are replaced by smooth auxiliary wavefunctions in-
side atom-centered augmentation spheres. A detailed description of the GPAW code is given
in Ref. [20]. Originally, wavefunctions were represented on a real-space grid [21], but later,
linear combination of atomic orbitals (LCAO) basis sets [22] and more recently, plane wave
representation have been introduced.

In this chaper, all details of the implementation of the G0W0 approximation within GPAW
are presented. It follows mainly Ref. [23]. The GW self-energy is calculated from the in-
verse dieelectric function,� � 1, in the Random Phase Approximation [24] given as a matrix in a
plane wave basis. The frequency-dependence of� can either be evaluated explicitly on a grid
(“full frequency dependent method”) or modelled in the Plasmon Pole Approximation (PPA)
by Godby and Needs [25]. Furthermore, the static limit leads to the so-called static COHSEX
approximation.

Special care is required for the divergent terms of the screened potential in the long wave-
length limit q ! 0. This divergence can be treated both analytically and numerically. Another
feature is a truncation scheme for the Coulomb potential. This is immensely important for two-
dimensional materials in supercell calculations in order to eliminate spurious interaction e� ects
between periodically repeated layers.

The calculation of the GW self-energy,� , includes sums overk points, both occupied and
empty bands as well as plane waves and, for the full frequency dependent method, an integration
over frequencies – in principal up to in�nity. In practice, all summations have to be limited
and integrations must be carried out numerically, imposing a number of convergence issues.
This also makes GW calculations much more complicated and computationally demanding as
compared to groundstate DFT.
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CHAPTER 2. IMPLEMENTATION IN GPAW

2.1 Calculation of the self-energy

The G0W0 self-energy can be split into two contributions:� GW = VX + � c, whereVX is the
nonlocal exchange potential as in Hartree-Fock theory, and� c is the correlation part. In the
following, the latter will simply be denoted as the self-energy� = � c. By introducing the
di� erence between the screened and the bare Coulomb potentialW = W � V, it reads:

� (r ; r0; ! ) =
i

2�

Z
d! 0G(r ; r0; ! + ! 0)W(r ; r0; ! 0): (2.1)

In this way, the exact exchange is separated from the actual GW calculation. Since the screened
potential approaches the bare Coulomb potential for large! , W goes to zero and the frequency
integration becomes numerically stable.

Using Bloch statesjnki , wheren andk denote band index andk-point index, respectively,
for the spectral representation of the Green's Function (1.9) and expanding in plane waves, the
diagonal terms become:

� nk � hnkj� (! )jnki

=
1



X

GG0

1:BZX

q

allX

m

i
2�

1Z

�1

d! 0WGG0(q; ! 0)
� nk

mk� q(G)� nk
mk� q(G0)�

! + ! 0 � " s
mk� q + i� sgn(" s

mk� q � � )
; (2.2)

with the pair density matrices de�ned as:

� nk
mk� q(G) �

D
nk

���ei(q+G)r
���mk� q

E
: (2.3)


 = 
 cell � Nk is the total volume,
 cell the volume of the unit cell andNk the number ofk
points. The sums in Eq. (2.2) run over plane waves with wave vectorsG andG0, all di� er-
encesq betweenk points in the �rst Brillouin zone and all band indicesm, respectively. The
wavefunctions and corresponding eigenvalues," s

nk, are taken from a Kohn-Sham groundstate
calculation. The potential reads:

WGG0(q; ! ) =
4�

jq + Gj

�
� � 1

GG0(q; ! ) � � GG0

� 1
jq + G0j

; (2.4)

where� � 1
GG0(q; ! ) is the inverse dielectric matrix, which is obtained in the Random Phase Ap-

proximation with a symmetrized Coulomb kernel inG andG0:

� GG0(q; ! ) = � GG0 �
4�

jq + Gj
� 0

GG0(q; ! )
1

jq + G0j
; (2.5)

from the non-interacting, time-ordered density response function:

� 0
GG0(q; ! ) =

2



1:BZX

k

X

n;n0

�
f s
nk � f s

n0k+q

� � nk
n0k+q(G)� nk

n0k+q(G0)�

! + " s
nk � " s

n0k+q + i� sgn(" s
n0k+q � " s

nk)
; (2.6)

with occupation numbersf s
nk. Details on the implementation of the linear density response

function and the calculation of the pair density matrices with PAW corrections are given in
Ref. [24].

The quasi-particle spectrum is then obtained from Eq. (1.25) as:

" QP
nk = " s

nk + Zs
nk � Re



nk

���� (" s
nk) + Vx � Vxc

���nk
�

; (2.7)
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2.1. CALCULATION OF THE SELF-ENERGY

with a renormalization factor given by:

Zs
nk =

�
1 � Re



nk

���� 0(" s
nk)

���nk
� � � 1

: (2.8)

The derivative of the self-energy with respect to the frequency is calculated analytically from
Eq. (2.2):

� 0(" s
nk) = �

1



X

GG0

1:BZX

q

allX

m

i
2�

1Z

�1

d! 0WGG0(q; ! 0)
� nk

mk� q(G)� nk
mk� q(G0)�

�
" s

nk + ! 0 � " s
mk� q � i�

�2 ; (2.9)

where� = sgn(" s
mk� q � � ).

The calculation of the exact exchangehnkjVxjnki contributions is done seperately in a dif-
ferent part of the GPAW code. This can therefore be done on a di� erent level of accuracy than
for the self-energy.

In the current implementation,� nk is only evaluated for energies! = " s
nk and only its

real part is stored. This means, that no further information on the spectrum like quasiparticle
lifetimes, line shapes and satellites is available. For semiconductors, however, there exists
an energy region around the quasiparticle gap for which the imaginary part of the self-energy
is zero and quasiparticle peaks become renormalized� -functions. The size of this region is
determined by the underlying Kohn-Sham bandgap in the G0W0 approximation [26]. Since the
main focus of this work is the calculation of quasiparticle bandstructures around the Fermi level,
this simpli�cation is reasonable. On the other hand, an extension to analysing the complex and
frequency-dependent self-energy is trivial and may be done in the future. This will in particular
be of interest for metallic systems [27,28].

Furthermore, only the diagonal terms of the self-energy are evaluated. In principal, deter-
mining the o� -diagonal elements,hnkj� (! )jn0ki , would allow for calculation of quasiparticle
wavefunctions and subsequently lead to the (quasiparticle) self-consistent GW method.

2.1.1 Full frequency-dependent method

The frequency integration in Eq. (2.2) can be carried out for positive values of! 0 only due to
time-reversal symmetry of the screened potential,W(� ! ) = W(! ), by rewriting the integral as:

I (! ) �

1Z

�1

d! 0 W(! 0)
! + ! 0 � " s

mk� q � i�
(2.10)

=

1Z

0

d! 0W(! 0)

0
BBBB@

1
! + ! 0 � " s

mk� q � i�
+

1
! � ! 0 � " s

mk� q � i�

1
CCCCA

Then, two di� erent ways of calculating� nk are available:
In the �rst method, the double sum overG andG0 is carried out �rst as a matrix multiplica-

tion of � (G)� � (G0) andWGG0. Then, the frequency integration is performed numerically. This
is done seperately for each pair of (nk) and (mk� q).

The second method reverses this order and is similar to a Hilbert transform: The numerical
frequency integration is done �rst, but for" s

mk� q > � and" s
mk� q < � separately, denoted byI+

17



CHAPTER 2. IMPLEMENTATION IN GPAW

andI � , respectively. De�ning! = ! � " s
mk� q, four cases for the integral can be distinguished:

! � 0 and " s
mk� q > � :
1Z

0

d! 0W(! 0)
 

1
j! j + ! 0 + i�

+
1

j! j � ! 0 + i�

!
= I+(j! j);

! � 0 and " s
mk� q < � :
1Z

0

d! 0W(! 0)
 

1
j! j + ! 0 � i�

+
1

j! j � ! 0 � i�

!
= I � (j! j);

! < 0 and " s
mk� q > � :
1Z

0

d! 0W(! 0)
 

1
�j ! j + ! 0 + i�

+
1

�j ! j � ! 0 + i�

!
= � I � (j! j);

! < 0 and " s
mk� q < � :
1Z

0

d! 0W(! 0)
 

1
�j ! j + ! 0 � i�

+
1

�j ! j � ! 0 � i�

!
= � I+(j! j);

which can be summarized as:

I (! ) = sgn(! )I sgn(! )�sgn(" s
mk� q� � )(j! j): (2.11)

Summing overG andG0 then gives the contributions to� (! ) for every (mk� q) represented on a
�nite, positive frequency grid,f! ig. The self-energy at the input eigenvalue,� (! = " s

nk), is found
by linear interpolation between the two closest points on the grid with! i � j " s

nk � " s
mk� qj < ! i+1,

again for everym andq seperately.
The same methods apply for the derivative.

2.1.2 Plasmon Pole Approximation

In the Plasmon Pole Approximation (PPA), all the transitions from occupied to unoccupied
statesn ! n0 that sum up to the to the inverse dielectric function (similar to Eq. (2.6)) are
averaged to form one single collective excitation, known as plasmon:

� � 1(! ) /
X

n! n0

Rn! n0

! � ! n! n0 + i�
�

R�
n! n0

! + ! n! n0 � i�

�
R

! � !̃ + i�
�

R
! + !̃ � i�

; (2.12)

with some averaged spectral functionR. The imaginary part consists only of single peaks at the
main plasmon frequencies,� !̃ GG0(q). Thus,� � 1

GG0(q; ! ) can be modeled as:

� � 1
GG0(q; ! ) = � GG0 + RGG0(q)

 
1

! � !̃ GG0(q) + i�
�

1
! + !̃ GG0(q) � i�

!
; (2.13)

where the spectral function,RGG0(q), is assumed to be real. The two terms account for positive
and negative frequencies, respectively. Using the Sokhatsky-Weierstrass theorem,

lim
� ! 0+

1
x � i�

= P
(

1
x

)
� i�� (x); (2.14)
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Figure 2.1: Real and imaginary parts of the head of the inverse dielectric function� � 1
00 (q; ! ) of a sil-

icon bulk test system forq = (1=2;1=2;1=2). The PPA model (dashed lines) is compared to the fully
frequency-dependentab-initio results (full lines). A broadening of� = 0:2 eV andE0 = 1 Hartree have
been used. The imaginary part of the PPA function consists of a single peak at the plasmon frequency.
The real part is given by the Kramers-Kronig relation: Ref� � 1(! )g= 1=�

R1
�1 d! 0Imf� � 1(! 0)g=(! 0 � ! ).

The inset is a zoom-in on the y-axis. Both in the low and high energy range, the overall shape of� � 1(! )
is well described by the model function.

whereP denotes the Cauchy principal value, the real and imaginary parts of the potentialW =
(� � 1 � � )V are given as:

Re
n
WGG0(q; ! )

o
= RGG0(q)P

(
1

! � !̃ GG0(q)
�

1
! + !̃ GG0(q)

)
4�

jq + Gjjq + G0j
; (2.15)

and

Im
n
WGG0(q; ! )

o
= � � RGG0(q) (� (! � !̃ GG0(q)) + � (! + !̃ GG0(q)))

4�
jq + Gjjq + G0j

; (2.16)

respectively. Similar expressions are found for the non-interacting Green's Function, so that the
convolution in Eq. (2.1) can be carried out analytically and the real part of the self-energy (2.2)
becomes:
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where the in�nitesimal� is maintained to ensure numerical stability, when the denominator
goes to 0.

The model dielectric function (2.13) is required to reproduce theab-initio dielectric function
in the static limit! 1 = 0 and at some frequency! 2 = iE0. The latter is chosen to be imaginary,
since� � 1(! ) is smooth along the imaginary axis. This method is known as the Plasmon Pole
Approximation of Godby and Needs [25]. From

� � 1(q; ! 1) =
� 2RGG0(q)
!̃ GG0(q)

; (2.18)

� � 1(q; ! 2) =
� 2RGG0(q)!̃ GG0(q)

E2
0 + !̃ 2

GG0(q)
; (2.19)

one obtains the plasmon frequency and the spectral function:

!̃ GG0(q) = E0

s
� � 1(q; ! 2)

� � 1(q; ! 1) � � � 1(q; ! 2)
; (2.20)

RGG0(q) = �
!̃ GG0(q)

2
� � 1(q; ! 1): (2.21)

The Plasmon Pole Approximation is valid for systems where the dielectric response is dom-
inated by its main plasmon excitation. Then, the overall shape of� � 1(! ) will be determined by a
single resonance at the plasmon frequency and all other details of its structure will be averaged
out in the frequency integration for the self-energy in Eq. (2.1). This is illustrated in Fig. 2.1.

2.1.3 Static COHSEX

A static approximation assumes that the main contributions to the GW self-energy (2.2) arise
from terms, where! � " s

mk� q is small compared to the energy of the main excitation in the
screened potential, that is essentially the plasmon energy [8]. By setting! � " s

mk� q = 0, the
Coulomb hole and screened exchange parts of the self-energy� xc become frequency-indepen-
dent and read:

� COH
nk =

1
2


X

GG0

X

q

allX

m

WGG0(q; 0)� nk
mk� q(G)� nk�

mk� q(G0); (2.22)

� SEX
nk = �

1



X

GG0

X

q

occX

m

WGG0(q; 0)� nk
mk� q(G)� nk�

mk� q(G0); (2.23)

respectively. This is known as the static COHSEX approximation. In real space representation,
they are given as:

� COH =
1
2

� (r � r0)
�
W(r ; r0; ! = 0) � V(r ; r0)

�
; (2.24)

� SEX = �
occX

j

� �
j (r )� j(r

0)W(r ; r0; ! = 0); (2.25)

from which the interpretation as static Coulomb hole and screened exchange becomes clear.
The QP spectrum is evaluated as:

" QP
nk = " s

nk +
D
nk

���� SEX + � COH � Vxc

���nk
E

: (2.26)
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2.1.4 Divergence of the screened potential

The head (G = 0 andG0 = 0) and wings (G = 0 or G0 = 0) of the screened potential (2.4)
diverge as 1=q2 and 1=q, respectively, in the long wavelength limitq ! 0. However, for an
in�nitely dense k-point sampling, these divergencies are lifted in the calculation of the self-
energy (2.2). This can be seen by replacing the sum overq by an integral over the volume of
the 1. Brillouin zone: X

q

!



(2� )3

Z


 BZ

dq =



(2� )3

Z
dq4� q2: (2.27)

Assuming� � 1
00 (q ! 0) to be isotropic,W00(q = 0) can be found by integrating the divergent

part 4�=q2 over a small sphere with volume
 0
BZ = 
 BZ=Nk (this corresponds to a radiusq0 =

(6� 2=
 )1=3). This yields:

W00(q = 0; ! ) =
2

�

 
6� 2




!1=3 h
� � 1

00 (q ! 0; ! ) � 1
i
: (2.28)

and similar for the wings:

WG0(q = 0; ! ) =
1

jGj


�

 
6� 2




!2=3

� � 1
G0(q ! 0; ! ); (2.29)

with the dielectric matrix taken in the optical limit.
Alternatively, these values can also be obtained by numerical averaging on a very �neq0-

point grid around the� -point.

2.1.5 Truncation of the Coulomb potential

In supercell calculations for systems which are in�nite and periodic in two dimensions (2D
systems), the long range Coulomb interaction can be cut o� along the non-periodic direction,z,
in order to avoid arti�cial image charge e� ects from neighboring cells [29]:

ṽ2D(r ) =
� (R� j rzj)

jr j
; (2.30)

where� is the step function andR the truncation length. Fourier transformation to reciprocal
space yields:

ṽ2D(G) =
4�
G2

"
1 + e� GkR

 
Gz

Gk
sin(GzR) � cos(jGzjR)

!#
; (2.31)

whereGk andGz are the parallel and perpendicular components ofG, respectively. ForR =
Lz=2, whereLz is the length of the unit cell in the non-periodic direction, this becomes [30]:

ṽ2D(G) =
4�
G2

�
1 � e� GkR cos(jGzjR)

�
: (2.32)

ForGk ! 0, the expression of Eq. (2.31) and thereby also Eq. (2.32) is not well de�ned. It
is therefore replaced by numerical averaging on a �ne uniformq0-point grid around the� -point
over a small volume
 0

BZ:

ṽ2D(Gk = 0) =
1


 0
BZ

Z


 0
BZ

dq0ṽ2D(Gz + q0): (2.33)

The truncated Coulomb potential is used both for the calculation of the dielectric function
and of the self-energy.
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Figure 2.2: Computational time for a small bulk silicon test system with full parallelization overq
points on 1, 2, 4 and 8 Intel Xeon cores. The actual time spent for the whole calculation is shown in
black, while the CPU time (sum of the times spent on all CPUs) is in red. For perfect parallelization the
CPU time would be constant and the total time would divide by the number of cores. Deviances are due
to initialization of the calculations, postprocessing and communication between the cores.
(2 � 2 � 2) k points, 89 plane waves and bands and 1064 frequency points were used in the calculations.

2.2 Exact exchange contributions

The exact exchange contributions are given in plane wave representation as:

hnkjVxjnki = �
�



X

m

X

k0

f s
mk0

X

G0

jCnkmk0(G0)j2

jk � k0 � G0j2
; (2.34)

where
Cnkmk0(G0) =

X

G

c�
nk(G)cmk0(G + G0); (2.35)

andcnk(G) are plane wave coe� cients. Treatment of the divergent termk = k0 andG0 = 0
follows Ref. [31], while the calculation of the PAW corrections is described in Ref. [20].

2.3 Computational details

By default, the calculation of the self-energy is fully parallelized overq points. As shown for
the example of 8q points in Fig. 2.2, the parallelization is very e� cient, meaning that the
total computational time scales very well with the number of available cores. For everyq, the
inverse dielectric function� � 1

GG0(q; ! ) is calculated on a given frequency grid as a matrix inG
andG0 using the GPAW implementation of the linear density response function as described
in Ref. [24], but modi�ed for time-ordering. From this, the screened potentialWGG0(q; ! ) is
constructed. Then, Eqs. 2.2 and 2.9 are evaluated for every matrix elementjnki as described
in the previous section. For calculations including the� point only, that means �nite systems,
parallelization over bandsmis used instead. Since the arrays� � 1

GG0(! ) andWGG0(! ) can become
very large for high plane wave cuto� s, they can be split and distributed over di� erent cores with
additional frequency and plane wave parallelization. This reduces the required memory on each
core.
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Figure 2.3: Computational time as function of the number of (a) frequency points and (b) bands for a
bulk silicon test system with (3� 3 � 3) k points. A cuto� energy of 100 eV (corresponding to 89 plane
waves) was used. For (a), 89 bands were included, while the PPA was applied for (b). The time spent
on the calculation of the screened potential only (of the self-energy from the screened potential only) is
shown in red (blue). Dashed lines are linear �ts to the data points.

The calculation of� nk scales asN! � Nb � N2
k � N2

G with number of frequency points, bands,
k points and plane waves, respectively. This is demonstrated in Figs. 2.3 and 2.4 for a silicon
bulk test system on a single 64-bit Intel Xeon core. The graphs also show that the ratio of the
computational times spent on the calculation of the screened potential and the self-energy alone
depends strongly on the parameters used. For a large number ofk points, the computation of
the screened potential becomes the bottleneck, since this has to be done seperately for everyq
in the 1. Brillouin zone and the calculation of the response function (2.6) itself involves a sum
over allk points.

2.3.1 Parameters

All parameters for a GW calculation are de�ned in a GW object and are listed in Table 2.1.

� file is a GPAW �le from which all wavefunctionsjnki and energy eigenvalues" s
nk used

as starting point as well as general informations on the system are read. It is created in a
preceeding groundstate calculation.

� nbandsis the number of bands to be included in the summations for the response function
(2.6) and the self-energy (2.2).

� bands is a list of band indices for which the quasi-particle spectrum 2.7 should be evalu-
ated. Often, only a few bands around the Fermi level are requested.

� kpoints is a list of k-point indices for which the quasi-particle spectrum 2.7 should be
evaluated. This can be a line of points along a certain direction of the Brillouin zone, for
example.

� e skn can be de�ned to use self-de�ned starting point eigenvalues" s
nk di� erent from the

groundstate. This can be used to perform eigenvalue self-consistent GW calculations, for
instance.
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Figure 2.4: Computational time as function of the squared number of (a)k points and (b) plane waves
for a bulk silicon test system. For (a), 89 bands and plane waves and for (b), 100 bands and (3� 3 � 3) k
points were used. The PPA was applied in all calculations. The number ofk points in (a) correspond to
samplings of (2� 2� 2) up to (9� 9� 9). The number of plane waves in (b) correspond to cuto� energies
from 50 up to 300 eV.

� eshift shifts all unoccupied bands of the starting point energy eigenvalues by the given
value in eV. This corresponds to applying a constant scissors operator like the derivative
discontinuity, for example.

� wde�nes the frequency grid on which� (! ) andW(! ) are evaluated. In the static COH-
SEX approximation, it is simply put to! = 0, while the two values! 1 = 0 and! 2 = iE0

are used in the PPA. For the full frequency-dependent method, a non-uniform grid is
created as depicted in Fig. 2.5.

� ecut is the plane wave energy cuto� in eV and determines the size of the matrices� GG0

and WGG0 (local �eld e� ects). For everyq, all plane waves with a maximum kinetic
energy (G + q)2=2 = Ecut are included.

� eta is the broadening parameter given in eV for the calculation of the response function
(2.6) and in the PPA for Eq. (2.17). For the static COHSEX approximation, it is set to
� = 0:0001 eV, while it is chosen accordingly to the frequency grid for the full frequency-
dependent method as� (! ) = 4� ! .

� ppa enables the use of the Plasmon Pole Approximation.

� E0de�nes the PPA �tting frequency.

� hilbert trans can be used to switch between the two di� erent ways of calculating the
self-energy in the full frequency-dependent method, as explained in Section 2.1.1.

� wpar is the number of cores for parallelizing over frequencies and plane waves in the full
frequency-dependent method.

� vcut='2D' enables use of the Coulomb truncation.

� txt de�nes the name of the �le to which the output from the GW calculation is written.
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Table 2.1: Parameters of the GW object. The number of bands,nbands, and the plane wave cuto�
energy,ecut , are always equal in the calculation of the response function (2.6) and the self-energy (2.2).

name type default value
file string None
nbands integer equal to number of plane waves
bands numpy.ndarray all up tonbands
kpoints numpy.ndarray all irreducible k points
e skn numpy.ndarray None
eshift �oat None
w numpy.ndarray None
ecut �oat 150 eV
eta �oat 0:1 eV
ppa boolean False
E0 �oat 27:2114 eV
hilbert trans boolean False
wpar integer 1
vcut string None
txt string None

Figure 2.5: For the full frequency-dependent method, a non-uniform grid is de�ned byw = [wlin,
wmax, dw]. It is linear in the lower part up towlin with a constant grid spacingdw. Abovewlin , the
grid spacing increases linearly up to the maximum frequencywmax.

Two functions can be used from the GW object:

� get exact exchange(ecut=None, communicator=world, file='EXX.pckl')
calculates the exact exchange and exchange-correlation contributions and stores the re-
quired matrix elementshnkjVxjnki andhnkjVxcjnki for later use.

� get QPspectrum(exxfile='EXX.pckl', file='GW.pckl')
performs the actual GW calculation and adds the di� erent contributions for the QP spec-
trum together.

Further details are documented on the GPAW homepage [32].

2.3.2 Convergence

In principal, all GW calculations need to be checked carefully for convergence with respect
to all parameters used. The broadening parameter� and the �tting frequencyE0 for the PPA,
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Figure 2.6: Dependence of the direct band gap at the� point on the (a) �tting parameterE0 and (b)
broadening� in the PPA for a bulk silicon test system with (3� 3� 3) k points. A cuto� energy of 100 eV
and 89 bands were used. All calculations were performed with the LDA functional as starting point, that
means G0W0@LDA.

however, are often kept at their default values of 0:1 eV and 1 Hartree, respectively, since results
are rather insensitive to variations around them. This is illustrated in Fig. 2.6 for the case of the
direct band gap of silicon.

For the full frequency-dependent method, results have to be converged with respect to the
frequency grid used, e.g. the density and the total number of frequency points. This is shown
in Fig. 2.7 (a) for the dependence of the� -point band gap on the linear grid spacing� ! and
the frequency! lin up to which the grid is linear. The maximum frequency is kept constant
at 150 eV. In general,! max only needs to be slightly larger than the largest energy di� erence
" s

nk � " s
mk� q that occurs in the summation (2.2), as can be seen in Fig. 2.7 (b). The frequency grid

should re�ect the spectral structure which exhibits in principal very sharp and irregular features
for low energies, while it is more broad and smooth in the high range. Well converged results are
usually found for� ! = 0:05 eV and! lin = ! max=3, which results in a few thousand frequency
points in practice. Choosing a nonuniform grid in this way may increase the computational
speed signi�cantly without any loss of accuracy.

Much more care is to be taken for the convergence with respect to the numberk points and
the plane wave cuto� . This already holds for the exact exchange contributions, as demonstrated
in Fig. 2.8, which shows the Hartree-Fock band gap. The HF bandstructure was obtained non-
selfconsistently from LDA wavefunctions and eigenvalues as:

" HF
nk = " s

nk + hnkjVx � Vxcjnki : (2.36)

Due to the long-range nature of the exchange potential, a high number ofk points is required in
order to obtain well-converged results. However, thek-point dependence of the GW self-energy
is less severe, since the screened interaction is more short-ranged. As shown in Fig. 2.9 (a),
the GW band gap converges much faster with respect tok points, while the dependence on the
plane wave cuto� energy is similar. Furthermore, the curves showing the dependence on the
cuto� energy only di� er by a vertical o� set for di� erentk-point samplings. That means, that
results converge independently with respect to these two parameters.

On the other, hand it becomes clear from Fig. 2.9 (b) that the convergence of the band gap
with respect to the number of bands is not independent fromEcut. A too low plane wave energy
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Figure 2.7: Convergence of the direct band gap at the� -point with respect to the frequency grid for
the silicon test system with (3� 3 � 3) k points, 100 eV plane wave cuto� energy and 89 bands. For
(a), the maximum frequency is 150 eV and for (b), the linear grid spacing is 0:1 eV. E�

gap is found to be
well converged (within 20 meV) for� ! = 0:1 eV and! lin = 50 eV. This corresponds to 548 frequency
points. ! max hardly e� ects the results as long as it is larger than 100 eV (the energy di� erence between
the highest and the lowest band).

cuto� may lead to a wrong value, which seems converged with respect to the number of bands,
Nb. Therefore,Nb should always be adapted toEcut.

These observations allow for a general strategy for convergence tests: One series of calcu-
lations with varyingEcut for a low k-point sampling and another series with increasing number
of k points for a �xed (low) value of the cuto� energy. It is convenient to check the convergence
for the non-selfconsistent HF bandstructure, which is usually fast and easy to do. Thereby, the
computational e� orts can be minimized. From these results, the `optimal' parameters for the
actual GW calculation can be determined. The number of bands included in the evaluation of
the self-energy should be chosen so that the energy of the highest band is close to the plane
wave cuto� energy. This is the default option. The use of the Plasmon Pole approximation is
about 5-20 times faster than the full frequency dependent method. Its quality, however, needs
to be checked for every system.

These observations only serve as a rough guideline. For di� erent materials, the convergence
behavior can change signi�cantly. They will be one central topic in the following chapters.

To conclude this chapter, a typical input script and the corresponding output are shown in
Figs. 2.10 and 2.11. The direct QP band gap of bulk silicon can be read o� from the last lines
of the output as 3:28 eV, which is very close to the experimental value of 3:40 eV [34] and in
good agreement with other implementations [23, 35]. In order to determine the indirect gap, a
�ner k-point sampling should be used.
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Figure 2.8: Hartree-Fock� -point band gap of bulk silicon as function of the (a) plane wave cuto� energy
and (b)k-point sampling. The calculations were performed non-selfconsistently from LDA wavefunc-
tions and eigenvalues. Good convergence is reached forEcut = 150 eV, while ak-point sampling of at
least (9� 9 � 9) is required.

Figure 2.9: G0W0 � -point band gap of bulk silicon as function of (a) plane wave cuto� energy and (b)
number of bands. For (a) the number of bands equal the number of plane waves corresponding toEcut,
while (3 � 3 � 3) k points were used for (b). All calculations were performed with LDA wavefunctions
and eigenvalues as starting point. The exact exchange contributions were determined seperately with
a higher, �xed value ofEcut. That means, that the curves shown depend on the correlation part of the
self-energy only (for a givenk-point sampling). In comparison to Fig. 2.8, the scale on the y-axis is much
smaller.
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import numpy as np
from ase.structure import bulk
from gpaw import GPAW, FermiDirac
from gpaw.wavefunctions.pw import PW
from gpaw.response.gw import GW

a = 5.431
atoms = bulk('Si', 'diamond', a=a)

calc = GPAW(mode=PW(200),
kpts=(9,9,9),
xc='LDA',
eigensolver='cg',
occupations=FermiDirac(0.001),
txt='Si groundstate k9.txt')

atoms.set calculator(calc)
atoms.get potential energy()

calc.diagonalize full hamiltonian()
calc.write('Si groundstate k9.gpw','all')

gw = GW(file='Si groundstate k9.gpw',
nbands=None,
bands=np.array([2,3,4,5]),
kpoints=None,
ecut=150.,
ppa=True,
txt='Si GWk9 ecut150.out')

gw.get exact exchange()

gw.get QPspectrum()

Figure 2.10: Example script for a GW calculation in GPAW for bulk silicon. A plane wave basis up to
a kinetic energy of 200 eV and the LDA functional is used for the groundstate. The G0W0 bandstructure
is evaluated for allk points in the irreducible Brillouin zone for a (9� 9 � 9) k-point sampling and the
two highest valence and two lowest conduction bands. The plane wave cuto� is 200 eV (as given by the
groundstate calculation) for the exact exchange contributions and 150 eV for the self-energy.
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GPAW version 0.9.1.10481
-----------------------------------------------
GW calculation started at:
Tue Aug 20 00:10:28 2013
-----------------------------------------------
Use eigenvalues from the calculator.
------------------------------------------------
calculating Exact exchange and E XC
Use planewave ecut from groundstate calculator: 200.0 eV
------------------------------------------------
non-selfconsistent HF eigenvalues are (eV):
[[[ 4.16253746 4.16271098 12.19495873 12.19495872]

...
[ 2.42342032 2.4234209 10.83576913 13.33986919]]]

Lowest eigenvalue (spin=0) : -6.831460 eV
Highest eigenvalue (spin=0): 148.298072 eV

Plane wave ecut (eV) : 150.0
Number of plane waves used : 169
Number of bands : 169
Number of k points : 729
Number of IBZ k points : 35
Number of spins : 1

Use Plasmon Pole Approximation
imaginary frequency (eV) : 27.21
broadening (eV) : 0.10

Coulomb interaction cutoff : None

Calculate matrix elements for k = :
[ 0. 0. 0.]
...

[ 0.44444444 0.44444444 0.44444444]

Calculate matrix elements for n = :
[2 3 4 5]

calculating Self energy
Finished iq 0 in 0:24:23, estimated 18:41:31 left.
...
Finished iq 45 in 18:25:56, estimated 0:15:34 left.

WwGG takes 14:59:26
Self energy takes 3:26:31
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reading Exact exchange and E XC from file
------------------------------------------------
Kohn-Sham eigenvalues are (eV):
[[[ 5.13518868 5.1351951 7.66534713 7.66534713]

...
[ 3.96136002 3.96136002 6.58726608 8.45939817]]]

Occupation numbers are:
[[[ 2.00000000e+00 2.00000000e+00 7.44015195e-44 7.44015195e-44]

...
[ 2.00000000e+00 2.00000000e+00 7.44015195e-44 7.44015195e-44]]]

Kohn-Sham exchange-correlation contributions are (eV):
[[[-13.52403727 -13.52403428 -11.78313739 -11.78313739]

...
[-13.20283986 -13.20283986 -12.62234213 -10.9711573 ]]]

Exact exchange contributions are (eV):
[[[-14.49668849 -14.49651839 -7.25352579 -7.2535258 ]

...
[-14.74077956 -14.74077899 -8.37383909 -6.09068628]]]

Self energy contributions are (eV):
[[[ 0.43563965 0.43563883 -4.09443116 -4.09443151]

...
[ 0.93440746 0.93438013 -3.82047071 -4.44281029]]]

Renormalization factors are:
[[[ 0.77244275 0.77244309 0.77209811 0.77209854]

...
[ 0.76569843 0.76569572 0.78009198 0.77452521]]]

GW calculation finished in 18:57:06
------------------------------------------------
Quasi-particle energies are (eV):
[[[ 4.72037799 4.72051267 8.00134912 8.00134904]

...
[ 3.49923634 3.49921748 6.92117067 8.79837744]]]

Figure 2.11: (Abridged) output from the example script. The calculation ran on two 8-core HP DL160
G6 nodes with two 64-bit Intel Nehalem Xeon X5570 quad-core CPUs each running at 2.93 GHz [33].
Results are sorted by spins (blocks),k points (rows) and bands (columns).
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CHAPTER3

SOLIDS

Any new implementation needs to be tested thoroughly and compared with other exisiting
codes. The GW method has been known for more than 50 years and has been applied to real
systems since the late 1980's. Up to today, a large number of results from GW calculations for
simple materials have been well established in literature. Only about 10 years ago, progress
in the development of computational resources made it possible to investigate more complex
structures and perform calculations for a broader range of systems. But even though the GW
method is now a standard tool in many electronic structure codes and its advantages and draw-
backs have been intensively discussed, it has not been used in systematic studies in the same
way as traditional methods, namely DFT, have. This is mostly due to its immense computational
requirements. However, as more powerful supercomputers become available, this is starting to
change and numerous applications are gaining interest.

This chapter starts with a discussion of results for a number of simple semiconductors and
insulators – systems which have been extensively studied both in theory and by experiment –
and an assessment of the di� erent approximations. Band gaps obtained at the G0W0@LDA
level are in very good agreement with results from literature and experimental data. The Plas-
mon Pole approximation is found to perform very well, whereas the static COHSEX fails com-
pletely. LDA as a standard DFT functional drastically underestimates band gaps, due to two
main problems: First, it contains large self-interaction errors. These can be reduced if hybrid
functionals are used instead. Hartree-Fock on the other hand is self-interaction free, but com-
pletely neglects correlation e� ects and thereby overshoots gaps. Secondly, density functional
theory su� ers in general from the so-called band gap problem. Here, the band gap is de�ned as
the di� erence between Kohn-Sham energies at the conduction band minimum and the valence
band maximum, which is not equal to the fundamental or quasiparticle band gap. The di� erence
is given by the derivative discontinuity,� xc [4].

Of special interest is therefore a comparison with the GLLBSC potential [36, 37], which is
non-local and allows for the calculation of� xc. With only slight additional computational e� ort,
it cures some of the main de�ciencies of DFT.

Investigation of the quasiparticle bandstructure illustrates that the main e� ect of the GW
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approximation lies in an almost constant shift of the occupied and unoccupied bands, similar to
the application of a scissors operator.

Following is a G0W0 study of gold as one example of a metallic system, where the band-
structure is e� ected in an inhomogeneous way.

Furthermore, the GW method is applied to a series of layered perovskites, which are poten-
tial new candidates for photocatalytic water splitting. In order for a semiconductor to be capable
of converting sunlight into electrical energy, one requirement is that its electronic band gap lies
within a certain energy window. The G0W0 calculations help to con�rm results from a vast
screening study, performed with the GLLBSC potential. In this way, e� ciency and accuracy
can be combined in the search for new materials.

Finally, a comparison of calculated band gaps with G0W0, GLLBSC and the hybrid func-
tional HSE06 is made for 20 randomly chosen materials with di� erent geometry and chemical
properties, for which no experimental data is available, providing an estimate of the accuracy
of the di� erent methods.
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Figure 3.1: Calculated vs. experimental band gaps for Ne, Ar, LiF, MgO, AlN, BN, C, NiO, ZnS, ZnO,
GaN, AlP, CdS, SiC, GaAs, Si and Ge (from right to left in descending order). Data taken from Refs. [38]
and [39].

3.1 Semiconductors and insulators

3.1.1 Band gaps

The GW approximation is a trueab-initio method and therefore universally applicable for elec-
tronic structure calculations. This is in contrast to DFT, in which a thoughtful choice of the
functional has to be made, depending on the kind of system and the properties one is inter-
ested in. Most functionals are designed to meet special requirements, often by �tting them to
experimental data of a test set. This leaves them with a big uncertainty when applied to new
materials and errors are often hard to estimate. On the other hand, the GW approximation is
based on fundamental physical observations. As pointed out in Sec. 1.4, its validity is well
justi�ed for weakly correlated systems, in which correlation is dominated by screening e� ects.
Screening is expected to play a particularly large role for systems with a small band gap, while
it diminishes for large gaps. Therefore, GW acts as an intermediate between many of the DFT
functionals, which overestimate screening and thereby underestimate band gaps, and Hartree-
Fock theory, which does not contain screening at all. HF band gaps are typically found to be
much too large. An interesting alternative is given by the hybrid functionals, in which a fraction
of the DFT exchange is replaced by exact exchange and which thus balance between the two
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Table 3.1: Crystal structures for the ten semiconductors and insulators studied.

structure lattice constant in Å
Si diamond 5.431
InP zincblende 5.869
GaAs zincblende 5.650
AlP zincblende 5.451
ZnO zincblende 4.580
ZnS zincblende 5.420
C diamond 3.567
BN zincblende 3.615
MgO rocksalt 4.212
LiF rocksalt 4.024

Figure 3.2: Convergence of the direct QP band gap of diamond with respect to (a) plane wave cuto�
energy and number of bands for a (9� 9 � 9) k-point sampling and (b) number ofk points for 200 bands.

opposites. Typical results from literature are shown in Fig. 3.1 for Hartree-Fock, the local den-
sity approximation (LDA), the generalized gradient approximation PBE functional by Perdew,
Burke and Ernzerhof [40], the range-seperated hybrid HSE functional by Heyd, Scuseria and
Ernzerhof [41] and G0W0@PBE. They clearly illustrate the above mentioned problems of DFT
and HF.

As a �rst test application for the GW implementation in GPAW, ten di� erent semiconductors
and insulators with band gaps ranging from 1 to 15 eV of both direct and indirect nature have
been chosen. Their geometric structures are listed in Table 3.1. For the groundstate calculations
and evaluation of the exact exchange contributions, a plane wave basis set with a kinetic energy
up to 800 eV was used. All GW calculations were performed with LDA wavefunctions and
eigenvalues as starting point, that means G0W0@LDA. Convergence with respect tok points,
plane wave cuto� energy and number of bands was checked for all systems individually. This
is shown for the direct band gap of C as one example in Fig. 3.2. For all systems, convergence
within around 20 meV is reached forEcut = 200 � 300 eV and a few hundred empty bands. A
k-point sampling of (9� 9 � 9) was found su� cient for InP, GaAs, ZnO, ZnS, MgO and LiF,
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CHAPTER 3. SOLIDS

Figure 3.3: Calculated band gaps for the di� erent methods described in the text

which all have a direct band gap at the� -point, whereas (15� 15� 15)k points were used for Si,
AlP, C, BN, which have an indirect band gap. The �nerk-point sampling also ensures a good
resolution of the bandstructure to determine the valence band maximum and conduction band
minimum.

A frequency grid with typically 1000 to 3000 grid points was used for the full frequency
dependent method. The broadening parameter� was set to 0:2 eV in the Plasmon Pole approx-
imation and 10� 4 eV in the static COHSEX approximation.

Additional calculations were done with non-selfconsistent HF from LDA orbitals and ener-
gies and with PBE0, a hybrid method based on the PBE functional, in which 1/4 of the PBE ex-
change contributions are non-selfconsistently replaced by exact exchange. Further comparisons
were made with self-consistent GLLBSC calculations [37], which use the PBEsol correlation
potential [42] and an e� cient orbital-dependent approximation to the exact exchange optimized
e� ective potential [43].

The calculated band gaps are summarized in Table 3.2 and Fig. 3.3 and compared to ex-
perimental reference data. In all cases, LDA drastically underestimates the band gap by up to
a factor of 4, as for GaAs. It performs poorly for both the systems with low and with large
gaps with a mean absolute error (MAE) of 2 eV and a mean relative error (MRE) of around 50
%. Even larger errors are found for Hartree-Fock with 5:7 eV (180 %) on average. The highest
deviations occur for Si, InP and GaAs. Screening is particularly important in these systems with
small gaps. The relative error decreases from 350 % for Si to 50 % for LiF. The results for PBE0
lie inbetween these two extremes, as expected for a hybrid method. Quantitative agreement,
however, is still poor, in particular for systems with small band gaps. The static COHSEX ap-
proximation seems to give a slight improvement over LDA with 1:5 eV MAE. However, some
results are even qualitatively wrong. For example, it predicts indirect band gaps for InP and
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3.1. SEMICONDUCTORS AND INSULATORS

Table 3.3: Comparison of G0W0 band gaps. Details about methodological di� erences are described in
the text.

present Ref. [39] Ref. [45] experiment
Si 1.13 1.12 0.90 1.17
InP 1.36 . 1.25 1.42
GaAs 1.75 1.30 1.31 1.52
AlP 2.42 2.44 2.15 2.45
ZnO 2.24 2.12 . 3.44
ZnS 3.32 3.29 3.24 3.91
C 5.66 5.50 5.49 5.48
BN 6.34 6.10 . 6.25
MgO 7.61 7.25 6.77 7.83
LiF 13.84 13.27 . 14.20
MAE 0.31 0.43 0.38

GaAs, whereas ZnO becomes almost metallic. Also for ZnS, the gap is even smaller than with
LDA. This means that the inclusion of only static screening is clearly insu� cient. On the other
hand, G0W0 results are in very good agreement with experiment when dynamical screening is
taken into account, both with PPA and full frequency dependence with mean errors of 0:35 eV
(9,5 %) and 0:31 eV (8,6 %), respectively. For all systems studied, the PPA turns out to be an
excellent approximation to the frequency dependence of the dielectric function with obtained
band gaps deviating by 0:2 eV at most for LiF.

Table 3.3 shows a comparison with two similar GW studies. In Ref. [39], the full frequency-
dependent G0W0 was used with PBE wavefunctions and eigenvalues as starting point. The
implementations are to a large extent similar. One di� erence worth mentioning is the inclu-
sion of core-valence interaction in the exchange part [23], which is not present in this work.
The results agree very well with an average absolute deviation of 0:21 eV. The only notable
di� erences are for GaAs and the two materials with the widest gaps, MgO and LiF, probably
due to the choice of a di� erent starting point. The band gaps of Ref. [45] were obtained with
full frequency-dependent G0W0@LDA and are systematically smaller by 0:31 eV on average.
That implementation uses a mixed basis set in an all-electron linear mu� n-tin orbital frame-
work, which is fundamentally di� erent from the PAW method. Better quantitative agreement
can therefore not be expected. Other recent works [46–48] report band gaps in the same range
as the values presented here.

Overall, the G0W0 approximation gives very good band gaps for most of the semiconduc-
tors and insulators in this study. Noticeable deviations from the experimental values are only
found for LiF and ZnO where the calculated gaps are about 0:4 and 1:2 eV too small, respec-
tively. For LiF, results are very sensitive to changes in the lattice constant. A slightly smaller
lattice constant of 3:972 Å, which is the experimental value corrected for zero-point anharmonic
expansion e� ects [49], yields a 0:4 eV larger band gap.

The quasiparticle band gap of ZnO has been intensively discussed in literature. Calculated
G0W0 are typically 1 eV too low [50–53], both in the zincblende and the wurtzite structure. The
results presented here are for the zincblende structure only, although this phase is not found to be
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Figure 3.4: Convergence of the band gap of zinc oxide for G0W0@LDA with the plasmon pole approx-
imation. The number of bands is chosen equally to the number of plane waves corresponding to the
respective cuto� energy, i. e. 300 eV equal� 1100 plane waves and bands.

stable in experiment [54]. It was chosen for consistency with Ref. [39]. Additional calculations
for the wurtzite structure gave around only 0:1 eV smaller gaps, both with LDA, G0W0@LDA
and GLLBSC. Thus, all conclusions made here are expected to hold for the wurtzite structure
as well. In Refs. [55] and [56], the low value of the QP band gap was attributed to a very
slow convergence of the self-energy with respect to the number of bands. Ref. [55] �nds a
converged band gap of 3:4 eV for 3000 bands using pseudo-potentials, whereas the all-electron
calculations of Ref. [56] yield only 2:99 eV after extrapolation to in�nite number of bands.
Both studies used the LDA functional as starting point. In the present work, good convergence
is already reached forEcut = 100 eV and around 200 bands, as can be seen in Fig. 3.4. A
major technical di� erence between the current implementation and the one of Ref. [55] is the
model used for the Plasmon Pole approximation, namely the method by Godby and Needs in
contrast to the one by Hybertsen and Louie [35]. The latter �ts the model dielelectric function
only to the static limit, but requires Johnson'sf -sum rule [57] to be ful�lled. However, as
pointed out in Ref. [58], this can lead to a wrong convergence behavior and too large band gaps
for ZnO as compared to evaluating the frequency dependence explicitely. This is consistent
with the results presented here, where the PPA reproduces the results from the full frequency-
dependent method. The calculations in Ref. [56] in a full-potential linearized augmented-plane-
wave method on the other hand depend strongly on the special set of basis functions chosen.
In Ref. [59], an e� ective-energy technique was applied, which avoids the summations over an
in principle in�nite number of empty states. In this way, a band gap of 2:56 eV was obtained.
The drastic underestimation of the band gap of ZnO thus seems to be a systemtatic error of
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G0W0 on top of LDA or GGA. In Ref. [60], this was explained by a wrong positioning of
the d-bands. With an onsite DFT+U correction, a band gap of 3:30 eV was found, in very
good agreement with experiment. Good results were also achieved using HSE as starting point,
yielding 3:22 eV [60] and 3:14 eV [61] and eigenvalue self-consistent GW calculations with
3:20 eV [39].

The orbital-dependent GLLBSC potential gives overall good band gaps with a mean aver-
age error of 0:41 eV compared to experiments and close to the GW results for most systems.
Only for GaAs, the band gap is found considerably lower, while it is too large for MgO and LiF.
As with GW, the band gap of ZnO is underestimated by more than 1 eV. In all GLLBSC cal-
culations, the derivative discontinuity is added explicitely to the eigenvalues of the unoccupied
bands. This shift is around 50 % of the Kohn-Sham band gap for the investigated structures and
has therefore an essential impact on the bandstructure.

3.1.2 Bandstructures

The bandstructure of diamond is shown in Fig. 3.5 (a) for LDA and G0W0@LDA. With both
methods, the valence band maximum is at the� point and the conduction band minimum close
to the X point along the� -X direction giving an indirect band gap of 4:12 eV and 5:66 eV,
respectively. With the GW approximation, the valence bands are shifted down in energy by
around 0:7 eV. The opposite holds for the conduction bands, which are shifted up in energy by
roughly the same value. Thus, the e� ect of the GW self-energy is an opening of the band gap.
These shifts are almost constant across the whole Brillouin zone, leaving the shape of the bands
unchanged. This is comparable to applying a scissors operator.

The same holds for Si, as shown in Fig. 3.5 (b), with a constant downshift of the occupied
bands of around 0:5 eV, and a constant upshift of the unoccupied bands of around 0:3 eV. This
leads to an increase of the indirect band gap, which is located between the� - and a point close
to X.

For GaAs, as shown in Fig. 3.5 (c), the main e� ect of the GW approximation can be seen
in the conduction bands, whereas the valence bands remain nearly unchanged. Unlike for the
previous two examples, the shift of the unoccupied bands to higher energies is not entirely con-
stant but varies between 0:4 and 1:0 eV. The largest change occurs at the� -point, giving rise to
a signi�cant increase of the direct band gap. Thereby, the calculated G0W0 gap is exceptionally
high compared to experiment and previous studies.

Overall, for a number of simple semiconductors and insulators, the self-energy can be ap-
proximated by a simple scissors operator to correct the Kohn-Sham energy spectrum in an easy
and e� cient way [62].

3.2 Metals

In noble metals, many-body correlation e� ects typically in�uence the bandstructure in a non-
trivial way, which cannot be accounted for by a simple scissors operator. Self-energy corrections
are found to be band andk-point dependent and may not even be of the same sign among
occupied and unoccupied bands [63]. A correct quasiparticle description is thus essential in
order to determine the electronic structure correctly, in particular the position and width of the
d bands and energies of interband transitions [64,65].

41



CHAPTER 3. SOLIDS

Figure 3.5: Bandstructure of (a) diamond, (b) Si and (c) GaAs, interpolated by splines from a (15� 15�
15)k-point sampling. Bands are aligned to the respective LDA valence band maximum.
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Figure 3.6: Calculated bandstructure of fcc gold with LDA (black lines) and G0W0@LDA with PPA (red
dots) and full frequency dependence (blue diamonds). The highest occupied bands have 5d character,
whereas the lowest unoccupied band arises from 6spelectrons. The Fermi level is set to 0.

Fig. 3.6 shows the Kohn-Sham and quasiparticle bandstructure of gold in the fcc structure
with a lattice constant of 4:079 Å, obtained with the LDA functional and with G0W0@LDA,
respectively. Only 5d and 6sp states were considered for valence electrons. With the GW
approximation, thed-band width increases by up to 0:5 eV, since the upper bands are moved
up in energy while the lower bands are moved down. Larger deviations up to 1 eV are found
for the low-lyings and the unoccupieds-p band. However, the e� ects are signi�cantly smaller
when the full frequency dependent method is used instead of the Plasmon Pole approximation.
It is clear that the shifts in energy are not constant throughout the Brillouin zone but vary for
di� erentk points and bands.

The e� ect of including 5spsemicore states is shown in Fig. 3.7 with PBE wavefunctions
and eigenvalues as starting point. Chosing the PBE instead of the LDA functional does not
change the Kohn-Sham bandstructure. The semicore states, which lie around 50 eV deeper in
energy than the valence states, have no impact on the electronic structure around the Fermi level
within DFT. On the other hand, signi�cant changes can be seen within the GW approximation,
in particular a downshift of thed bands when the semicore states are included. These shifts
arise mainly from the exact exchange contributions.

These results agree well with the calculations of Ref. [66] using pseudopotentials. In that
study, it was shown that QP self-consistent GW calculations are necessary in order to bring

43



CHAPTER 3. SOLIDS

Figure 3.7: PBE (black lines) and G0W0@PBE bandstructures without (green triangles) and with (purple
squares) inclusion of 5sp semicore states. GW calculations were performed with the Plasmon Pole
approximation.

the position of thed bands in better quantitative agreement with experiments. Also, spin-orbit
coupling and relativistic e� ects should be considered.

3.3 Perovskites

Perovskites are a group of structures of the same kind as CaTiO3 with the general chemical
formula ABX3, where A and B is a large and a small cation, respectively. X is an anion, com-
monly oxygen, nitrogen or halogens. In extensive screening studies, new potential candidates
for one- and two-photon water-splitting could be identi�ed among 19.000 oxides, oxynitrides,
oxysul�des, oxy�uorides and oxy�uoronitrides in the cubic perovskite structure [67, 68]. One
important requirement for a material to be a good photocatalyst, that means to be able to con-
vert sunlight into chemical energy, is that the electronic band gap lies within the visible light
range and is well positioned with respect to the redox potential of water. For the one-photon
water-splitting process, this implies a gap between 1:5 and 3 eV with a valence band edge above
1:23 eV and a conduction band edge below 0 eV. Furthermore, high charge carrier mobility and
chemical and structural stability are needed. In these studies, the GLLBSC potential was used
for the calculation of the electronic bandstructure, after being tested on a set of 40 metal oxides
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Figure 3.8: Convergence of the band gap of LaTiO2N for G0W0@LDA in the plasmon pole approxima-
tion with respect to the plane wave cuto� energy and number of bands, which is varied with the number
of plane waves corresponding toEcut.

Figure 3.9: Calculated band gaps for 20 cubic perovskites. GLLBSC results are shown with and without
explicit addition of the derivative discontinuity,� xc.
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for which a good overall agreement with experimental data was found [67].
In order to further assess the reliability of this method, additional GW calculations were per-

formed for 20 cubic perovskites for which the desired electronic properties had been predicted
by GLLBSC. Throughout the study, a (7� 7 � 7) k-point sampling, 150 eV plane wave cuto�
energy and 150 bands have been used. A careful examination of the convergence of the band
gap was done for LaTiO2N as one example and is illustrated in Fig. 3.8. The chosen parameters
gave a good balance between e� ciency and accuracy. Furthermore, the PPA was compared to
the full frequency dependent method for this system, giving almost identical values for the band
gap. Since the number of atoms and the symmetry group are identical for all structures, the
same set of parameters was used consistently. Also, the number of valence electrons is similar
in all cases. The expected accuracy is around 0:1 eV.

Fig. 3.9 shows the calculated band gaps from LDA, PBE0, G0W0 and GLLBSC, respec-
tively. GLLBSC results are shown with and without the derivative discontinuity,� xc, added to
the Kohn-Sham gap. In all cases,� xc increases the gap by around 30 % and gives therefore an
essential contribution to the total gap. The total gaps from GLLBSC agree well with the quasi-
particle gaps from G0W0 with a mean average error of 0:3 eV. In comparison, the PBE0 results
deviate much stronger and are considerably higher in some cases. LDA gaps are drastically
lower, indicating a very poor description of the electronic structure for all systems in this study.

In conclusion, the results suggest that the GLLBSC potential can provide a cheap way to de-
termine electronic band gaps of novel materials, that are possible candidates for photocatalytic
water splitting, with much better accuracy than convential functionals. The G0W0 approxima-
tion as a much more advanced method, on the other hand, is orders of magnitude slower and
can therefore not be used for screening purposes. It can, however, help to con�rm the outcomes
of GLLBSC calculations for systems which seem especially promising.

3.4 The Materials Project database

The Materials Project database [69] contains results from computational studies of the elec-
tronic structure of materials from the ICSD database [70], which is the most complete repository
for experimental data of crystal structures. It serves as a complementary source of information
for materials, where no or only insu� cient experimental results for the electronic structure is
available and helps to analyse and compare theoretical �ndings. High-throughput materials de-
sign has become feasible in the last decade due to the rapid increase in computational resources.
However, this is still out of reach for many-body methods like the GW approximation and there-
fore, cheaper methods have to be used instead, generally at the cost of reduced accuracy.

Here, the electronic structure of 20 randomly chosen compounds from the Materials Project
database is calculated with G0W0@LDA and compared to LDA, GLLBSC and HSE06, a range-
separated hybrid functional [71,72].

Quasiparticle gaps were obtained in the G0W0 approximation in a plane wave representation
using LDA wavefunctions and eigenvalues as input. The initial Kohn-Sham states and energies
have been calculated in a plane wave basis with kinetic energies up to 600 eV. The same value is
used for determining the exact exchange contributions. The GW self-energy has been carefully
converged with respect tok points, number of bands and plane wave cuto� energy for each
material individually. Typically, a (7� 7 � 7) k-point sampling, 100 - 200 eV energy cuto�
and unoccupied bands up to the same energy (a few hundred bands in total) were found to
be su� cient in order to converge band gaps within less than 0:1 eV. Both, the Plasmon Pole
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Figure 3.10: � point band gaps for 20 structures from the Materials Project database. The results shown
for G0W0 were obtained with the full frequency dependent method.

Table 3.4: Mean absolute errors in eV of the� -point band gap of the materials from Fig. 3.10 for the
di� erent methods compared to each other.

GLLBSC G0W0

LDA PBE w/o � xc incl. � xc @LDA HSE06
LDA . 0.15 1.07 2.13 1.56 1.43
PBE 0.15 . 0.93 1.98 1.41 1.28
GLLBSC w/o � xc 1.07 0.93 . 1.01 0.56 0.53
GLLBSC incl. � xc 2.13 1.98 1.01 . 0.75 0.86
G0W0@LDA 1.56 1.41 0.56 0.75 . 0.34
HSE06 1.43 1.28 0.53 0.86 0.34 .
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Table 3.5: Mean relative errors of the� -point band gap of the materials from Fig. 3.10 for the di� erent
methods compared to each other.

GLLBSC G0W0

LDA PBE w/o � xc incl. � xc @LDA HSE06
LDA . 0.09 0.35 0.51 0.43 0.43
PBE 0.10 . 0.30 0.47 0.38 0.38
GLLBSC w/o � xc 0.67 0.50 . 0.25 0.15 0.16
GLLBSC incl. � xc 1.26 1.02 0.34 . 0.23 0.26
G0W0@LDA 0.88 0.69 0.18 0.17 . 0.08
HSE06 0.90 0.71 0.21 0.19 0.08 .

approximation and the explicit frequency dependence of the dielectric function,� (! ), have been
used, yielding almost identical results (within 50 meV) for all materials, except for NaO3, where
the full frequency dependent method gives a� 0:8 eV lower� point gap.

For all materials in this study, comparison between the di� erent methods is shown by means
of the direct� -point gap, in order to avoid the need for interpolation of the bandstructure in
case that the minimum of the conduction band is not located at a high symmetry point in the
Brillouin zone. The results are illustrated in Fig. 3.10. Mean absolute and mean relative errors
for all methods compared to each other are given in Tab. 3.4 and 3.5, respectively. A very good
agreement is found between G0W0 and HSE06 with a mean absolute error of 0:33 eV and a
mean relative error of 0:08. Typically, HSE06 underestimates band gaps of semiconductors and
insulators [72] as it is also the case with G0W0@LDA (see previous sections). In comparison,
the GLLBSC results are much larger on average when the derivative discontinuity is included,
while the agreement with HSE06 and G0W0 is reasonably well when� xc is not added to shift the
unoccupied bands. Since GLLBSC+ � xc often overestimates band gaps [67], the right values
are expected to lie somewhere in between.

The bandstructures of ZrS2 and BaHfN2 are shown as two examples in Figs. 3.11 and 3.12.
For ZrS2, no considerable di� erences in the two highest valence and the two lowest conduction
bands can be seen for GLLBSC, G0W0@LDA and HSE06 and the band gap at the� point is
thus almost the same with all three methods. This is clearly di� erent for BaHfN2: While the
valence bands are similar, large deviations are found for the conduction bands. Throughout the
Brillouin zone, the position of the second unoccupied band is a� ected much stronger by the
di� erent methods than the position of the �rst one. In particular, the order of bands is reversed
at the� point for G0W0 compared to GLLBSC, while they are almost degenerate for HSE06.

In the GLLBSC method, the derivative discontinuity,� xc, is added as as constant shift to
all unoccupied bands. As illustrated for BaHfN2, this might result obviously in a de�cient
description of the conduction states. This might be one reason for the large discrepancies of
calculated gaps for many materials of this study.
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Figure 3.11: Bandstructure of ZrS2. Bands have been aligned to the respective valence band maxima.

Figure 3.12: Bandstructure of BaHfN2. Bands have been aligned to the respective valence band maxima.
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2D MATERIALS

2-dimensional (2D) materials are characterized by non-periodicity in one of the spatial direc-
tions. This includes not only �at monolayers, but also surfaces and interfaces, for example. The
physics in these systems is often completely di� erent than in 3 dimensions.

Dynamical screening plays a particularly important role at interfaces between semiconduc-
tors, where changes in the charge density lead to the formation of an interface dipole [73], and
between metals and an insulators, where it takes the form of an image charge e� ect [74,75].

One model system for studying the impact of screening and exploiting the advantages of
the GW approximation over DFT is graphene/hexagonal-boron nitride (h-BN). Recently, it has
been shown thath-BN serves as an ideal substrate for graphene, due to its great stability, low
roughness and high charge carrier mobility [76]. Furthermore, these and similar graphene-
based 2D heterostructures have opened up new possibilities for the design of novel electronic
and photonic devices with unique physical properties [77–80].

In this chapter, �rst the Kohn-Sham and quasiparticle bandstructures of freestanding sheets
of graphene andh-BN are discussed. Compared to LDA, G0W0 increases the Fermi veloc-
ity and the band gap, respectively. For boron nitride adsorbed on graphene, screening e� ects
are illustrated by varying the distance between the two slabs and by changing the number of
graphene layers. As a technical aspect, it is shown that truncating the Coulomb interaction in
the perpendicular direction is crucial for GW calculations of 2-dimensional systems.

Another 2D material, which has gained much attention in the past years is single layer
MoS2 [81–84]. Whereas strong photoluminescence suggests a direct band gap in experiment,
there is disagreement even on the type of gap in theory and among various GW studies, in
particular. Here, a very careful analysis of the dependence of the quasiparticle gap on the cell
size and the number ofk points in G0W0 calculations is given. The results explain why previous
studies found reasonable band gaps, even though a Coulomb truncation had been neglected in
the calculations. The fully converged G0W0@LDA band gap is indirect with a value of 2:58 eV
when the experimental lattice constant is used. Applying strain leads to a transition to a direct
gap.
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Figure 4.1: Convergence of the direct G0W0 band gap of a freestandingh-BN sheet with respect to
(a) plane wave cuto� energy and corresponding number of bands and (b) interlayer separation with and
without truncating the Coulomb interaction in the direction perpendicular to the slab. Dashed lines are for
a (15� 15� 1) and straight lines for a (45� 45� 1) k-point sampling. The interlayer separation is de�ned
as the distance between the centers of the slabs in neighboring supercells. Even much higher interlayer
distances than the ones shown here would be required for the curve with the untruncated interaction to
reach the results obtained with the Coulomb truncation.

4.1 Graphene/ hexagonal-boron nitride

Graphene and hexagonal-boron nitride both form perfectly �at honeycomb structures with very
similar lattice constants, which in these studies is set to the experimental value forh-BN of
2:503 Å [85] for both materials. In addition to the parameters discussed in the previous chapters
for bulk structures, GW results need to be converged with respect to the cell size for two-
dimensional materials, which de�nes the distance between layers in neighboring supercells.
For h-BN, the convergence behaviour of the direct band gap at the K point, calculated with
G0W0@LDA, as a function of the plane wave cuto� energy and the interlayer separation is
shown in Fig. 4.1. For the untruncated (1=r) interaction, a numerical integration around eachq
point has been used for the head of the screened potential:

W00(q) =
1


 q

Z


 q

dq0V(q0)� � 1
00 (q0)

�
1


 q
� � 1

00 (q)
Z


 q

dq0V(q0); (4.1)

where
 q is a small volume aroundq.
Without truncating the Coulomb interaction, the value of the band gap depends strongly on

the separation and increases drastically between 5 and 15 Å. And even for 30 Å, it is far from
being converged. Using a truncation of the Coulomb potential, as described in Sec. 2.1.5, corre-
sponds to extending the interlayer separation to in�nity, and thus makes the calculations largely
independent of the cell size. This results in, that with the truncation, convergence is already
reached for a separation of 20 Å. The calculated gap is signi�cantly higher than without use of
the truncation, even for very large separations. The very slow convergence of the quasiparticle
gap and the necessity of correcting for the spurious long-range interaction in periodic supercell
calculations for slabs and surfaces has previously been discussed in Refs. [86–88]. From Fig.
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Figure 4.2: Bandstructure of graphene. The zero of energy is set to the Fermi level. Not shown are the
results with GLLBSC since they lie almost completely on top of LDA.

4.1 (a), one can see that the use of the Coulomb truncation does not a� ect the convergence with
respect to the plane wave energy cuto� and number of bands, which again is in all calculations
set equal to the number of plane waves according toEcut, other than by a constant shift. This
is not the case for thek-point dependence (see Fig. 4.1 (b)). A more detailed discussion of
the convergence of the band gap of a 2D material with respect to thek-point sampling and the
interlayer separation with and without truncating the Coulomb interaction will be given in the
next section.

All further calculations are performed with 30 Å interlayer separation (unless otherwise
stated), Coulomb truncation and (45� 45 � 1) k-point sampling. The bandstructure of a free-
standing graphene sheet is plotted in Fig. 4.2. The typical Dirac cone can be seen at the K point.
LDA and GLLBSC yield almost identical curves, whereas G0W0 a� ects in particular strongly
the slope of the valence and conduction band at the Fermi level. This gives a large reduction of
the Fermi velocity, which can be derived as:

vF =
a
2h

� E
� k

; (4.2)

wherea is the lattice constant,h = 4:1357�10� 15 eVs andk given in units of the reciprocal lattice
vectors. The calculated values are 0:87�106 m=s (LDA), 0:87�106 m=s (GLLBSC) and 1:17�106 m=s

(G0W0@LDA), respectively. The latter is in excellent agreement with corresponding results
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Figure 4.3: Bandstructure ofh-BN, aligned to the top of the LDA valence band.

from previous calculations [89,90] and state-of-the-art experiments [91].
For h-BN, the calculated valence band maximum lies with all three methods at the K point,

as shown in Fig. 4.3. However, LDA and GLLBSC predict a direct band gap of 4:57 eV and
7:94 eV, respectively, whereas an indirect gap of 6:58 eV is found with G0W0@LDA. The direct
transition at the K point is 7:37 eV. This is a result of a very inhomogeneous shift of the
conduction bands in particular, which are moved up in energy by around 3 eV at the K point,
but only by around 1:5 eV at the� point, compared to LDA. For GLLBSC, the e� ect is opposite
with a larger upshift at the� point. In a previous study [92], 6:37 and 6:0 eV were obtained
within the G0W0 approximation for the lowest indirect and direct quasiparticle gap, respectively.
These calculations were, however, performed for an interlayer separation of only 13:5 Å and
with a lowk-point sampling. According to Fig. 4.1 (b), these parameters are not converged and
the direct band gap is therefore around 1 eV too low.

Three di� erent possibilites of stacking oneh-BN and one graphene layer on top of each
other are sketched in Fig. 4.4. Geometry optimization using the LDA functional yields the en-
ergetically most favorable structure to be con�guration (c) with a distance of 3:18 Å between
the layers, which agrees well with Ref. [93]. For this geometry, the Kohn-Sham and quasiparti-
cle bandstructures are shown in Fig. 4.5. The di� erent bands originating from either one of the
two isolated layers can easily be identi�ed: The highest valence and lowest conduction band
still exhibit the linear dispersion at the K point typical for graphene. However, both with LDA,
GLLBSC and G0W0, a small gap of around 50 meV is introduced, which is consistent with
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(a) (b) (c)

Figure 4.4: Di� erent geometric structures for a graphene/hexagonal-boron nitride heterostructure. (a)
The hexagons are placed on top of each other. (b) The N atom is placed on top of one C atom, while the
B atom is centered above a graphene hexagon. (c) The B atom is placed on top of one C atom, while
the N atom is centered above a graphene hexagon. A perspective view is chosen for clarity. Both lattices
have the same size with a lattice constant of 2:503 Å and are separated by 3:18 Å.

Figure 4.5: Bandstructure of graphene/h-BN in the con�guration (c) of Fig. 4.4 for the equilibrium
distanced = 3:18 Å.
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Figure 4.6: h-BN gap at the K point as function of the distance to the graphene sheet. Ford ! 1 , it
approaches the value of the freestandingh-BN monolayer, as indicated by a dashed horizontal line. The
blue dashed line is a �t of the G0W0 results to a function/ 1=d. A cell height of 60 Å was used.

Figure 4.7: h-BN band gap at the K point for di� erent numbers of adsorbed graphene layers. GLLBSC
results are shown without and with explicit inclusion of the derivative discontinuity,� xc, which becomes
0 when one or more graphene layers are present. A cell height of 60 Å was used.

previous calculations [93,94]. Furthermore, the Fermi velocity is reduced to 0:78� 106 (LDA),
0:78� 106 (GLLBSC) and 1:01� 106 m=s (G0W0@LDA), respectively. This decrease is expected
when graphene is adsorbed on a substrate due to an increase of the dielectric screening [95].
The second highest occupied and unoccupied bands can be attributed to the boron nitride sheet.
Especially with LDA, these bands hardly change, compared to the isolated layer, with ah-BN
gap at the K point of 4:67 eV. With G0W0, on the other hand, this gap decreases to 6:35 eV.
With GLLBSC, this value is 5:84 eV. These observations imply that, although there is no direct
coupling between the layers, the electronic structure is e� ected considerably by long-ranged
screening e� ects, which are not accounted for by a local potential.

This is further demonstrated in Fig. 4.6, where the distance between the graphene and the
boron nitride sheet is varied. The value of theh-BN gap, which is de�ned as the transition
energy between the second highest valence and the second lowest conduction band at the K
point, remains almost constant with LDA and GLLBSC. Only for a very small distance, a
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slight deviation is seen. This might be due to the formation of a chemical bond. For distances
larger than 4 Å, the calculated gaps are the same as for the freestanding boron nitride, which
indicates that screening is not described correctly within these methods. In contrast, the GW
gap increases monotoneously with the distance between the layers and slowly approaches the
value for a singleh-BN sheet. Above 4 Å, this behaviour can be described by a function that
is inversely proportional tod, which is expected within a simple picture of nonlocal screening.
A classical image charge model predicts a 1=d dependence for the band gap reduction in a
metal/semiconductor heterojunction [74,75].

Another way of tuning the screening in ah-BN/graphene heterojunction is to change the
number of graphene layers on which the boron nitride sheet is adsorbed. This is demonstrated
in Fig. 4.7. Again, theh-BN gap is constant within LDA and GLLBSC. For the latter, however,
there is a jump in the size of the gap when going from 0 (freestanding boron nitride) to 1
graphene layer, when the derivative discontinuity,� xc is explicitely included. This is simply
because� xc vanishes for metallic systems, as it is the case when one or more graphene layers
are present. With G0W0, the gap decreases by 1 eV, when adding one layer of graphene and by
another 0:15 eV, when adding the second layer. This can be understood in the way that a thicker
metal substrate enhances the screening which leads to a reduction of the gap. For more than two
graphene layers, the GW gap does not change any further. This would presumably correspond
to a system with a single boron nitride sheet adsorbed on bulk graphite.

4.2 Molybdenum disul�de

The quasiparticle bandstructure of monolayer molybdenum disul�de (MoS2) has been studied
intensively in literature over the past few years, both with one-shot and self-consistent GW
methods. However, there remains ambiguity on the size and even on the type of the band gap.
Reported values lie in the range from 2:6 to 3 eV and both direct and indirect gaps have been
found with G0W0. A summary is given in Table 4.1 and will be discussed in detail at the end of
this section.

Throughout the present study, the 4sand 4p semicore states of molybdenum were included.
LDA and exact exchange calculations were done in a plane wave basis with kinetic energies up
to 400 eV. A plane wave cuto� energy of 50 eV and 200 bands were used for the calculation
of the dielectric function and the GW self-energy, which was found su� cient to converge band
gaps to within 10 meV. Results shown here were all obtained within the Plasmon Pole approxi-
mation. Quasiparticle energies calculated with the full frequency dependent method di� ered by
only around 0:1 eV.

First, the bandstructure is presented in Fig. 4.8 for the experimental lattice constant for bulk
MoS2 of 3:16 Å. The LDA band gap is direct at the K point with a value of 1:77 eV. A second
minimum in the conduction band lies along the� -K direction, yielding a smallest indirect gap
of 1:83 eV. This order is changed for G0W0@LDA which gives 2:77 and 2:58 eV for the direct
and indirect transition energies, respectively.

When comparing these values to previous results, one has to consider that the gaps depend
strongly on the number ofk points, the interlayer distance,L, as de�ned in Fig. 4.9, and whether
or not a truncation scheme for the Coulomb interaction is applied. This is shown in Fig. 4.10.
Following conclusions can be drawn:

� For the 1=r interaction, enlargingL leads to a strong increase of the gaps.

57



CHAPTER 4. 2D MATERIALS

Table
4.1:C

alculated
G0 W

0
band

gaps,used
param

eters
and

com
parison

w
ith

literature.

E
gap (eV

)

R
ef.

starting
point

a
(Å

)
num

ber
ofk

points
layer

separation
(Å

)
direct

indirect
T

his
w

ork
LD

A
3.16

45
�

45
�

1
23

(truncatedV
)

2.77
2.58

T
his

w
ork

LD
A

3.19
45

�
45

�
1

23
(truncatedV

)
2.65

2.57
T

his
w

ork
LD

A
3.255

45�
45

�
1

23
(truncatedV

)
2.41

2.51
R

ef.[96]
LD

A
3.15

18
�

18
�

1
24

2.41
�

2.40
R

ef.[97]
P

B
E

3.16
12�

12
�

1
19

�
2.60

2.49
R

ef.[97]
P

B
E

3.19
12�

12
�

1
19

2.50
�

2.55
R

ef.[97]
P

B
E

3.255
12�

12
�

1
19

2.19
2.19

R
ef.[98]

LD
A

3.16
8

�
8

�
2

19
2.96

–
R

ef.[99]
P

B
E

3.18
12�

12
�

1
20+

1=L
extrapolation

2.97
3.26

R
ef.[99]

P
B

E
3.18

12�
12

�
1

20
�

2.60
�

2.85
R

ef.[100]
LD

A
3.11

12
�

12
�

1
13

2.57
–

R
ef.[101]

H
S

E
3.18

6�
6

�
1

15
2.82

�
3.00

R
ef.[102]

P
B

E
3.19

15�
15

�
1

15
2.66

–

58



4.2. MOLYBDENUM DISULFIDE

Figure 4.8: Bandstructure of monolayer MoS2 obtained from a (45� 45 � 1) k-point sampling, 23 Å
interlayer separation and use of the truncated Coulomb interaction. The top of the valence band has been
set to 0.

� For the truncated interaction, an increase of the number ofk-points gives a signi�cant
reduction of the gaps.

Since applying the truncation corresponds toL ! 1 , there exists a region, where these two
e� ects cancel each other. This demonstrates that the interlayer separation and thek-point grid
cannot be regarded as independent parameters. The interplay becomes clear from Fig. 4.11,
where the direct band gap is shown as a function of the interlayer separation for di� erentk-point
samplings. The inverse plot allows for extrapolation of the data to in�niteL. The extrapolated
values are expected to converge towards the results obtained with truncation of the Coulomb
interaction. Without the truncation, convergence of the gap with respect to either the number of
k points or the layer separation alone gives wrong values. With (9� 9� 1) k points, for example,
the direct band gap goes to 3:7 eV for L ! 1 , which is around 1 eV too large. In contrast, a
calculation withL = 23 Å and 21k points in the in-plane directions seems well converged, but
the obtained gap is too small. Due to these two errors, which are of di� erent sign, the evaluated
quasiparticle gaps are identical for di� erent sets of parameters. This is where the curves cross
the dashed horizontal lines. For example yield (9� 9� 1) k points andL = 23 Å or (15� 15� 1)
k points andL = 33 Å the same result of 2:77 eV as (45� 45 � 1) k points and in�nite layer
separation. Fig. 4.12 shows all calculated results and interpolated values in a contour plot as a
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Figure 4.9: De�nition of interlayer separationL for monolayer MoS2 in a periodic supercell.

Figure 4.10: Direct (straight lines) and indirect (dashed lines) G0W0 band gap of monolayer MoS2 as
function of (a) interlayer separation for ak-point sampling of (15� 15 � 1) and (b) number ofk points
(in one of the in-plane directions) forL = 23 Å.

function of 1=L and number ofk points.
The band gaps reported in previous studies were all obtained with lowk-point samplings,

small interlayer separations and without Coulomb truncation. All parameters and calculated
values are summarized in Table 4.1. From the previous discussion of the convergence behaviour,
the rather good agreement between those results and this work seems coincidental. Furthermore,
almost all of these calculations were done with a singlek point in thezdirection (perpendicular
to the layer). For small unit cells, this is not su� cient in order to obtain converged results.
Additional calculations demonstrated that the gap size increases by around 0:2 - 0:3 eV when 3
k points are used along thez-axis forL = 13 Å, for example.

Another important issue, one has to keep in mind when comparing the data, is the e� ect
of strain. As pointed out in Ref. [97], even a slight increase of the lattice constant,a, leads to
signi�cant changes in the electronic bandstructure. The present calculations predict a reduction
of the direct band gap by around 0:1 eV for a = 3:19 Å, which corresponds to 1 % strain. The
indirect gap, on the other hand, is almost una� ected. Fora = 3:255 Å, the direct gap is further
reduced, leading to a transition from an indirect to a direct band gap material.
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Figure 4.11: Direct G0W0 band gap of monolayer MoS2 for di� erentk-point samplings and interlayer
separations without use of the truncated Coulomb interaction. Dotted lines serve as a guide for the eye
to extrapolate to in�niteL. The dashed horizontal line indicate the values obtained with the truncated
Coulomb interaction. Also shown are results forL = 6:145 Å, which corresponds to bulk MoS2.

All in all, the careful examination of the dependence of the electronic structure on the di� er-
ent parameters, as presented in Fig. 4.11 and Table 4.1, shows that the current implementation
reproduces most of the results for the direct band gap reported in literature, given the same
set of parameters. The fact that they are in good agreement with the fully converged values is
mainly due to a fortunate cancellation of errors. For the experimental lattice constant of 3:16 Å,
the G0W0@LDA band gap is found to be indirect with a value of around 2:6 eV. Choosing the
PBE functional as starting point is not expected to give noticeable changes. On the other hand,
both partially self-consistent GW0 [97] and quasiparticle self-consistent GW [98] calculations
have yielded direct band gaps of 2:75 � 2:80 eV.

Experimentally, single-layered MoS2 is a direct gap semiconductor [83] with a band gap
of around 1:9 eV [82]. It is known that there are strong excitonic e� ects in this system, which
lead to the formation of bound electron-hole pairs [96]. The experimentally measured value
corresponds then to the optical gap, which is smaller than the quasiparticle gap by the exciton
binding energy.
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Figure 4.12: Contour plot of the direct G0W0 band gap as a function of the inverse interlayer distance
and number ofk points in one of the in-plane directions with the full 1=r interaction. Contour lines are
separated by 0:1 eV. Interpolation from splines was used.
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MOLECULES

Molecules can be regarded as 0-dimensional systems, since their spatial extent is �nite in all
directions. This means, that in all electronic structure codes which require periodic boundary
conditions, calculations have to be performed in su� ciently large supercells in order to circum-
vent arti�cial e� ects from interactions between molecules in neighboring cells. The electronic
structure of �nite systems consists of a discrete spectrum of well-seperated energy levels. This
would correspond to a completely �at bandstructure, which can be restricted to the� -point only.
Instead of Bloch waves, the eigenfunctions are given as molecular orbitals.

The energy gap between the highest occupied molecular orbital (HOMO) and the lowest
unoccupied molecular orbital (LUMO) is typically on the size of several eV for an isolated
molecule in the gas phase. From a physicist's point of view, they are large gap insulators.
Screening is therefore expected to play a minor role and HF methods usually describe the elec-
tronic structure reasonably well. Most DFT functionals on the other hand, tend to underestimate
the gaps dramatically. Furthermore, unoccupied states are in principal not accessible with DFT,
and only the HOMO energy can be interpreted in a physically meaningful way as the negative
ionization potential (IP), given the correct functional [4].

Adsorbing a molecule on a metal surface leads to an alignment of the molecular orbitals
with respect to the Fermi energy of the metal and to a decrease of the HOMO-LUMO gap.
This is a direct consequence of dynamical screening and can therefore not be described with
DFT [103–106]. Instead, the correct physics is captured by GW as quasiparticle theory, which
enables quantitatively accurate modeling of electron transport in molecular junctions [107–111],
for example.

This chapter gives a discussion of the calculated IPs of 32 small molecules. G0W0 results
are in much better agreement with experiment than various DFT based methods, but still around
0:5 eV too low on average. This systematic deviation can be explained by a suboptimal choice
of the starting point, namely LDA. The problem of extreme slow convergence of the HOMO
energy with respect to the plane wave cuto� energy and number of bands is resolved by applying
a simple extrapolation scheme. A detailed analysis of the frequency-dependence of the self-
energy illustrates the underlying physics.
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Finally, the frontier orbitals of benzenediamine are studied as a typical example for a struc-
ture used in molecular electronics.
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Figure 5.1: Ionization potential of water as function of (a) the plane wave cuto� energy and (b) the
inverse plane wave cuto� energy for G0W0@LDA. The dashed line in (b) shows a linear �t of the data
points withEcut > 100 eV (1=Ecut < 0:01 eV� 1). Extrapolation to 0 eV� 1 (in�nite cuto� energy) gives a
value of 12:1 eV.

5.1 Ionization potentials

In order to study the performance of the implementation for �nite systems, the quasiparticle
energies of 32 small molecules in the gas phase were calculated with the G0W0 approxima-
tion and compared to results from non-selfconsistent Hartree-Fock, LDA, PBE0 and GLLBSC.
Their geometric structures were taken from the Atomic Simulation Environment database [112].
3:5 Å of vacuum were added in each direction of the supercell. For all groundstate calculations,
plane waves with kinetic energies up to 400 eV were used as basis functions. In literature, linear
combinations of atomic orbitals (LCAO) are usually preferred as basis functions for molecular
systems. In this way, even small basis sets are often su� cient in order to describe the spatially
localized electronic states with good accuracy. With plane waves, this can only be achieved with
a very high number of basis functions. On the other hand, the size of the plane wave basis can
be increased freely for a systematic control over the quality of the basis, which is particularly
important for GW calculations. This is very di� cult to assess with LCAO.

The G0W0@LDA results for the ionization potential of a water molecule are shown in Fig.
5.1 (a) for di� erent values of the plane wave cuto� energy used in the calculation of the GW self
energy. The exact exchange contributions were determined with a �xed cuto� energy of 400 eV.
In all cases, the number of bands in the calculation of� was chosen accordingly toEcut. Even for
400 eV, which corresponds to more than 8000 plane waves and bands, the IP does not seem to
be fully converged. This extremely slow convergence behaviour has been observed previously
for a benzene molecule [113, 114]. A data �t to the linear function IP(Ecut) = IP(1 ) � A=Ecut

allowed for extrapolation to in�nite basis size. A similar scheme has been applied for the
valence band maximum in rutile TiO2 [115]. As demonstrated in Fig. 5.1 (b), a linear function
of 1=Ecut �ts the data points perfectly forEcut > 100 eV. Its intersection with the y-axis gives
an IP of 12:1 eV.

This extrapolation scheme has been applied to all 32 molecules by a linear �t of the calcu-
lated IPs for plane wave cuto� energies between 200 and 400 eV. Examples are shown in Fig.
5.2. The Plasmon Pole approximation was used in all GW calculations presented here. Addi-
tional calculations were performed with the full frequency-dependent method for comparison.
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Figure 5.2: Calculated IPs with G0W0@LDA and linear �tting of the data points with extrapolation to
in�nite number of plane waves and bands (Ecut = 0).

Deviations in the QP energies were smaller than 0:1 eV.
All IPs obtained from extrapolation are listed in Table 5.1, along with results from LDA,

non-selfconsistent HF on top of LDA, PBE0 with 1/4 of PBE exchange replaced non-selfcon-
sistently by exact exchange and GLLBSC and compared to experimental data taken from Ref.
[116]. LDA and PBE0 predict much too small values with mean absolute errors of 4:8 and
3:5 eV, respectively. Also GLLBSC underestimates IPs by 1:8 eV on average. This is not
surprising, since it is a method designed for calculating the electronic structure of solids. HF on
the other hand overestimates the IP for most molecules with a MAE of 1:1 eV. Best results are
found with the GW approximation, where the MAE is less than 0:6 eV. Still, many IPs are too
low and the mean signed error is� 0:3 eV. This systematic error may be attributed to the use
of LDA wavefunctions as starting point, which are most likely a bad representation of the true
quasiparticle wavefunctions.

A comparison of the G0W0 results with previous studies on the same set of molecules is
shown in Fig. 5.4. The calculated IPs agree overall well with Ref. [117], in which also LDA
wavefunctions and eigenvalues were used as starting point, but with a Gaussian basis set. The
values spread with a mean absolute error of 0:32 eV, but with similar magnitude for both pos-
itive and negative deviations, so that the mean signed error is only 0:02 eV. In comparison
to the all-electron G0W0@PBE calculations of Ref. [118], in which numerical atomic orbitals
were used as basis set, a systematic deviation is found with a MAE of 0:36 eV and a MSE of
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Figure 5.3: Calculated IPs for the 32 molecules listed in Table 5.1 plotted against the experimental
values. The dashed line indicates equality.

Figure 5.4: Di� erence in calculated IPs with respect to (a) Ref. [117] and (b) Ref. [118].
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Table 5.1: Theoretical IPs calculated with di� erent methods as described in the text. Experimental data
is given in the last column. All values are in eV. The last rows shows the mean absolute error and the
mean signed error with respect to experiment.

Molecule LDA HF@LDA PBE0 GLLBSC G0W0@LDA experiment
LiH 4.37 8.96 5.38 7.30 7.79 7.90
LiF 6.08 14.15 7.95 10.16 10.53 11.30
NaCl 4.74 10.00 5.95 6.94 8.72 9.80
CO 8.72 14.61 10.15 12.51 13.48 14.01
CO2 8.75 14.69 10.09 11.93 13.05 13.78
CS 6.76 11.88 8.00 9.81 10.69 11.33
C2H2 6.81 11.21 7.79 9.41 11.22 11.49
C2H4 6.48 10.54 7.37 8.62 10.74 10.68
CH4 9.19 15.22 10.68 13.58 14.45 13.60
CH3Cl 6.68 12.32 8.01 9.53 11.55 11.29
CH3OH 6.09 13.18 7.77 8.77 10.98 10.96
CH3SH 5.21 10.21 6.37 7.33 9.78 9.44
Cl2 6.53 11.67 7.77 9.12 10.93 11.49
ClF 7.38 13.46 8.85 10.54 12.14 12.77
F2 9.27 18.44 11.50 13.43 14.66 15.70
HOCl 6.20 12.39 7.68 8.72 10.78 11.12
HCl 7.56 12.86 8.87 10.96 12.28 12.74
H2O2 6.15 13.76 7.97 8.86 11.05 11.70
H2CO 5.98 12.64 7.58 8.44 10.64 10.88
HCN 8.64 13.35 9.72 11.89 13.27 13.61
HF 9.53 18.29 11.67 14.18 15.02 16.12
H2O 7.12 14.42 8.87 10.46 12.07 12.62
NH3 6.02 12.20 7.52 8.89 10.83 10.82
N2 9.85 16.59 11.54 13.77 14.72 15.58
N2H4 5.54 11.75 7.02 8.04 10.30 8.98
SH2 5.83 10.58 6.97 8.27 10.27 10.50
SO2 7.58 13.37 8.89 10.08 11.68 12.50
PH3 6.23 10.77 7.31 8.74 10.70 10.59
P2 6.17 9.38 6.93 8.80 9.70 10.62
SiH4 8.10 13.57 9.41 12.09 12.92 12.30
Si2H6 6.82 11.30 7.84 9.15 11.04 10.53
SiO 6.97 12.24 8.21 9.53 10.70 11.49
MAE 4.84 1.11 3.46 1.83 0.56 .
MSE -4.84 0.99 -3.46 -1.83 -0.30 .
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0:30 eV. These errors are expected regarding the di� erent starting points and basis sets. Com-
paring the results of Ref. [117] with Ref. [118] gives almost the same MAE and MSE (0:30 eV
and 0:28 eV, respectively). Very similar deviations are also found between these results and
Ref. [119], where an accurate basis set of Wannier functions augmented by numerical atomic
orbitals was used. Discrepancies in the calculated values are therefore within the accuracy of
di� erent implementations.

A much better agreement with experiment was found for HF and hybrid functionals as
starting point for G0W0 [117, 119], whereas this does not necessarily seem to be the case with
self-consistent GW [118–120].

5.2 Frequency-dependence of the self-energy

For all molecules in this study, both the HOMO and the LUMO energies decrease with larger
plane wave cuto� energies (meaning that the IPs increase). Since the exact exchange contri-
butions are left unchanged, this results from the correlation part of the self-energy only. This
might be surprising at �rst, since one could expect that a larger basis set, e.g. number of plane
waves, would enhance the screening which would shift the occupied orbitals down in energy. A
closer look at the frequency-dependence of the self-energy,� (! ), helps to understand this seem-
ing con�ict. This is shown for the HOMO and LUMO of the CO molecule in Fig. 5.5, as one
example. The imaginary part of� (! ) is to a large extent built up by the poles of the convolution
of the Greens' Function and the screened potential,� (! ) =

R
d! 0G(! + ! 0)W(! 0). W itself

has poles at all transition energies between occupied and unoccupied states,! n! n0, whileG has
poles at all energies" s. Thus, the poles of� lie between (2" min � " max) and (2" max � " min), where
" min and" max are the lowest and highest input eigenvalues, respectively. As a consequence of
this asymmetry, including more bands gives larger contributions to the imaginary part of� (! )
in the high energy range, whereas the lower part of the spectrum is less e� ected. This is clearly
seen in Fig. 5.5 (a), by comparing the light and dark blue curves (for the HOMO) for positive
and negative values of! , and correspondingly the orange and red curves (for the LUMO). The
real and imaginary parts of the self-energy are related by the Kramers-Kronig relation:

Ref� (! )g=
1
�

P
( Z

d! 0 Im f� (! 0)g
! 0 � !

)
(5.1)

The correlation contributions to the quasiparticle energies are in the G0W0 approximation given
by the value of the real part of the self-energy at the starting point eigenvalues, as indicated by
the dashed lines in Fig. 5.5 (b). The real part of� (! ) changes sign around the HOMO-LUMO
gap, where its structure is dominated by large resonance/antiresonance peaks. As more empty
states are added and the imaginary part extends to higher energies, the real part is pushed down,
in particular for high! as a consequence of the asymetric structure of Imf� g. This lowers the
antiresonance peak and thereby the correlation.

5.3 BDA

One of the most commonly studied organic molecules is benzene with its delocalized system
of � electrons. For example, it is used as a model system for electronic transport in molecular
junctions, where the molecule is attached to metal electrodes via anchor groups, e.g. amino
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Figure 5.5: (a) Imaginary and (b) real parts of the self-energyhnj� (! )jni for the HOMO and LUMO lev-
els of the CO molecule and two di� erent plane wave cuto� energies. Dashed lines indicate the respective
LDA eigenvalues. The lowest input eigenvalue," min, is around 30 eV, while the highest," max, is around
50 eV and 100 eV, respectively. Thus, Imf� (! 0)gis only non-zero in the range from� 110 to 130 eV and
� 160 to 230 eV, respectively.
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Figure 5.6: Geometric structure of benzenediamine,para-C6H4(NH2)2.

groups [121]. The transport properties are to a large extent determined by the alignment of the
molecular frontier orbitals with respect to the metal Fermi level. For theoretical predictions, it
is therefore essential to obtain a correct description of the electronic structure of the molecule
in the gas phase at �rst.

The frontier orbitals of benzenediamine (C6H8N2, as sketched in Fig. 5.6) have been cal-
culated in the same way as described for the small molecules in Chapter 5.1, but in a larger
unit cell with 5 Å of vacuum added in each direction around the molecule. This was found
necessary in order to converge the DFT energies. The extrapolation scheme has been applied
both to the HOMO and the LUMO. Additional HF and GW calculations have been made with
PBE as starting point. All results are summarized in Table 5.2. No large di� erences can be
seen between the results with LDA and PBE, and consequently non-selfconsistent HF and GW
calculations also give very similar results for the two di� erent starting points. G0W0 leads to a
drastic opening of the gap, with a large downshift of the HOMO energy and an increase of the
LUMO energy. With HF, these e� ects are even bigger.

The extrapolated IP of the BDA molecule is 7:47 eV with G0W0@PBE, which is in re-
markably good agreement with the result of 7:3 eV reported in Ref. [122], which also used a
plane wave basis, but a di� erent extrapolation scheme, and the experimental value of 7:34 eV
[123,124].

The results of a previous study of the same molecule are presented in Table 5.3. It is impor-
tant to note that a double-zeta atomic orbital basis set has been used, compared to plane waves
in the present study. In principal, both methods are expected to give identical results, given
that the basis sets are complete. For LCAO, this requires basis functions of very good quality,
while for plane waves, the cuto� energy needs to be su� ciently high. Large di� erences can be
seen for the Hartree-Fock results, both for the energies of the frontier orbitals and the HOMO-
LUMO gap. Two reasons may be used for an explanation: First, the neglection of core-valence
exchange in the current calculations. According to Ref. [110], however, these contributions are
expected to be rather small, generally less than 0:4 eV for the frontier orbitals of benzene-like
molecules. Therefore, the role of self-consistency is much more important, which seems to shift
both the HOMO and LUMO signi�cantly and decrease the HF gap by more than 1 eV. Also for
GW, there is a large discrepancy between the orbital energies. The gap size, on the other hand, is
very similar. This might be due to a cancellation of errors in the exchange and in the correlation
contributions using DFT wavefunctions instead of doing self-consistent calculations. The last
column of Table 5.3 states the results of PBE total energy di� erence calculations, which can be
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Table 5.2: Frontier orbitals and HOMO-LUMO gap of the BDA molecule. All values are in eV.

LDA PBE HF@LDA HF@PBE G0W0@LDA G0W0@PBE
HOMO -4.00 -4.05 -8.05 -8.04 -7.51 -7.47
LUMO -0.88 -0.82 4.33 4.33 1.41 1.45
gap 3.12 3.23 12.38 12.37 8.92 8.92

Table 5.3: Results from Ref. [110] in eV.

PBE scHF scGW � Etot (PBE)
HOMO -4.1 -7.2 -6.2 -6.8
LUMO -0.9 3.9 2.9 2.3
gap 3.2 11.1 9.1 9.1

regarded as reference values. In this method, HOMO and LUMO energies are obtained by cal-
culating the electronic groundstate with an extra electron explicitely added to or removed from
the system. In comparison, the DFT gaps are vastly underestimated which is a consequence
of self-interaction errors in the functionals. These are not present within Hartree-Fock by con-
struction. Instead, neglect of correlation, which is here equal to the lack of orbital relaxations,
leads to a large overestimation of the gap [110]. In contrast, the GW approximation naturally
includes these e� ects via the screened interaction.
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