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ABSTRACT

The GPAW electronic structure code, developed at the physics department at the Technical Uni-
versity of Denmark, is used today by researchers all over the world to model the structural,
electronic, optical and chemical properties of materials. They address fundamental questions
in material science and use their knowledge to design new materials for a vast range of appli-
cations. Todays hottest topics are, amongst many others, better materials for energy conversion
(e.g. solar cells), energy storage (batteries) and catalysts for the removal of environmentally
dangerous exhausts.

The mentioned properties are to a large extent governed by the physics on the atomic scale,
that means pure quantum mechanics. For many decades, Density Functional Theory has been
the computational method of choice, since it provides a fairly easy and yet accurate way of
determining electronic structures and related properties. However, it has several drawbacks. A
conceptual problem is the drculty of interpreting the calculated results with respect to exper-
imentally measured quantities, resulting in, for example, the “band gap problem” in semicon-
ductors. A practical issue is the necessity of adapting the method with respect to the system one
wants to investigate by choosing a certain functional or by tuning parameters.

A succesful alternative is the so-called GW approximation. It is mathematically precise and
gives a physically well-founded description of the complicated electron interactions in terms of
screening. It provides a direct link to experimental observables through the concept of quasi-
particles. Furthermore, it is parameter-free and thereby equally applicabledredt kinds
of systems. Its downside lies in its immense computational costs that limit its use in practice.
Often, only the GW, approach is considered, which can be regarded as the lowest level of the
GW approximation.

This thesis documents the implementation of th#\g approximation in GPAW. It serves
two purposes: First, it can be read as a manual by anyone who is interested in doing GW cal-
culations with GPAW. All features and requirements are explained in detail and many examples
are given. This provides a full understanding of how the code works and how the outcome
should be interpreted. Secondly, it gives an extensive discussion of calculated results for the
electronic structure of 3-dimensional, 2-dimensional and nite systems and comparison with
other implementations, methods and experiments. It shows that bandstructures, band gaps and
ionization potentials can be obtained accurately wigh\ig for many di erent materials. But
also exceptions are pointed out, where higher levels of the GW approximation might be neces-
sary.






RESUNE

GPAW er et program, der bruges til at beregne elektroniske strukturer og er blevet udviklet
pa Institut for Fysik pd Danmarks Tekniske Universitet. Det benyttes i dag af forskere i hele
verden til at modellere materialers fysiske, elektroniske, optiske og kemiske egenskaber. Herved
undersgges grundliggende problemstillinger indenfor materialvidenskab og resultaterne har en
lang reekke anvendelser. Nogle af tidens mest spaendende emner er at nde nye materialer til
baeredygtig energiproduktion (f. eks. solceller), energiopbevaring (batterier) og katalysatorer,
der nedbryder miljgskadelige udstadninger.

De ovennavnte egenskaber afggres hovedsageligt af fysikken pa den atomare skala, dvs.
kvantemekanikken. | mange artier har teethedsfunktionalteori veeret den fortrukne beregn-
ingsmetode, for den er en forholdsvis enkel, men samtidig ngjagtig metode, til at bestemme den
elektroniske struktur og de relaterede egenskaber. Men den viser sig ogsa at have visse ulemper.
Et konceptuelt problem er at relatere de beregnede resultater med eksperimentelle malinger. Det
farer, f. eks. til det sdkaldte bandgab-problem i halvledere. Et praktisk problem er, at man er
ngdt til at veelge et bestemt funktionale som er velegnet for systemet i undersggelsen eller at
tilpasse en parameter.

Den sakaldte GW approksimation tilbyder et lovende alternativ. Den er matematisk praecis
og beskriver fysikken for den komplicerede elektron-vekselvirkning i den meningsfulde form af
afskeermningseekter. Beregninger kan knyttes direkte til eksperimentelle resultater ved hjeelp
af konceptet kvasi-partikler. Derudover er metoden fri for parametre og kan anvendes til mange
forskellige slags systemer. Praktisk saetter den hgje kompleksitet dog graenser. Ofte bruges kun
GoWo, der kan betegnes som det laveste niveau af GW approksimationen.

Denne afhandling dokumenterer implementeringen @iVgapproksimationen i GPAW.

Den har to mal: For det farste kan den leeses som en brugermanual til dem, der selv vil lave
GW beregninger med GPAW. Alle funktioner beskrives i detaljer ved hjeelp af mange eksem-
pler. P& den made forklares der grundigt om kodens drift og om hvordan resultaterne bgr
opfattes. For det andet diskuteres og vurderes beregninger af den elektroniske struktur af 3-
dimensionale, 2-dimensionale og nite systemer ved at sammenligne med resultater fra andre
implementeringer, metoder og eksperimenter. Bandstrukturer, bandgabs og ionisationspoten-
tiale for mange forskellige materialer kan preecist bestemmes rgé6.Gvien der vises ogsa
undtagelser, hvor der kan veere brug for et hgjere niveau af GW approksimationen.

Vi
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INTRODUCTION

Computational atomic-scale materials design is about the theoretical prediction of new mate-
rials that possess certain physical and chemical characteristics which enable their use for new
technologies. Materials, that can possibly be used to build better and faster electronic devices,
more powerful and longlasting batteries for electric carscient solar cells or catalysts that
reduce toxic gases in industrial exhausts, just to name a few.

The structures are simulated atom by atom on the computer and suitable theoretical models
are used to calculate their properties. At the atomic scale, the physics is determined completely
by quantum mechanics, where particles araide objects with a limited probability of existing
at a certain point in time and space, mathematically represented by wavefunctions. Interacting
particles behave collectively and are thus attributed to many-body wavefunctions. The elec-
tronic structure of a system is entirely described by its Hamiltonian. It collects the operators for
the kinetic energies of the electrons and the ionic cores, the Coulomb attraction and repulsion
between all charged particles and interactions with external elds. The wavefunctions and the
energy spectrum of the system are given by its eigenfunctions and eigenvalues, respectively.
This is written down in compact form in the Sddinger equation. However, it is in practice
impossible to solve the Sabdinger equation directly, other than for the simplest model sys-
tems. Leaving out the ionic contributions (which can normally be separated), the complications
arise from the electron-electron interactions.

Various approximations have been developed and successfully applied over the years. The
simplest idea is to treat the electrons as if they were not interacting with each other. Then,
the many-body wavefunction is just a product of single-particle wavefunctions, or, when tak-
ing Pauly's exclusion principle into account, a Slater determinant, which is fully antisymmetric
under exchange of two particles. This is the idea behind Hartree-Fock theory [1], where the
electron-electron interactions are reduced to a Hartree term, which describes the Coulomb re-
pulsion of an electron with the total electron density, and an exchange term, which accounts
for the antisymmetric nature of electrons. All that is left out here, is what is usually refered
to as “correlation”. In Density Functional Theory| [2], the system of interacting electrons is
mapped onto an auxiliary system ofextively non-interacting electrons under the requirement
that the electron density, which is as opposed to the wavefunction an observable, of these two
systems are identical. In this scheme, wavefunctions and energies are given as eigenfunctions
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Figure 1: Schematic picture of (a) Photo Electron Spectroscopy (PES) and (b) Inverse Photo Electron
Spectroscopy (IPS). In (a), an electron is removed from the system by absorption of a photon with energy
h . In (b), an electron is added to the system under emission of a photon. The binding energy (relative
to the vacuum levelE,yo) is then given age = Exin - h , whereEyi, is the kinetic energy of the free
electron.Eg| corresponds to the energy of a state in a valence and conduction band, respeggvsly.

the Fermi level.

and -values of an eective Kohn-Sham Hamiltonian|[3]. However, complications do not van-

ish, but are only transferred into an exchange-correlation functional. Development of elaborate
functionals has been work in progress for many decades and great results have been achieved.
Today, Density Functional Theory is one of the most common methods for calculating elec-
tronic structures. Still, a number of problems cannot be overcome: A practical issue is that
there is a variety of dierent functionals to choose from and many of them are designed for
special purposes, often by tuning parameters to t experimental data. In this sense, it is not a
100 %ab-initio method. More fundamentally, it is a groundstate theory. That means that in
principle, total energies can be calculated exactly, whereas the Kohn-Sham wavefunctions and
eigenvalues lack a meaningful physical interpretation. Physicists usually think of an electronic
structure as a series of bands, which are being lled up by a certain number of eled{rons,

The occupied (valence) and unoccupied (conduction) states are separated by the Fermi level,
Er. In experiment, the energies of the valence and conduction bands are typically measured
by Photo Electron and Inverse Photo Electron Spectroscopy, respectively, as sketched in Fig.
[1. These processes include the removal or addition of one electron and are thus not properties
of the N-electron groundstate. The fundamental energy gap is de ned as tkeedice in the

lowest electron addition and removal energigg, and can be written as:

Egp=Es Eq=Ep™+E) ' 2E; (1)

whereE}) andE}) ! are the groundstate energies of the system WitandN 1 electrons,
respectively. Eq[ (1) allows in principle for determining the gap from three groundstate calcu-
lations for the neutral and single positive and negative charged system. However, this cannot
be done for periodic systems like semiconductors. In terms of (exact) Kohn-Sham energies, the
gap is given by:

Egap = Efl(N) n K‘S(N) + XC = EgKaSp+ XC; (2)

where"(N) is thei-th eigenvalue of th&l-electron system and. the derivative discontinuity
[4], which in practice can only be estimated.
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Figure 2: Schematic picture of the concept of screening. On the left side, electrons are non-interacting
and the potential seen outside emerging from one electron is the full Coulomb potential. Interacting
electrons tend to repel each other. As sketched on the right side, this leads to the formationeuftae e

positively charged cloud surrounding each electron. This Coulomb hole screens the Coulomb potential.

An alternative approach that avoids these problems is established by many-body perturba-
tion theory. Instead of trying to solve the Sodmger equation for the wavefunctions, one wants
to determine the Green's Function, which describes the propagation of a particle (electron or
hole) through the groundstate of the system. This corresponds exactly to the situations depicted
in Fig.[]. These and similar excitations are “quasi” single-particle-like and called quasiparti-
cles. The important dierence to a real single-particle excitation is that the full response of all
particles in the system to that excitation is included in the quasiparticle itself, e.g. all correlation
e ects. Quasiparticles have in general nite lifetimes and their specti‘Lﬁﬁg is given by the
poles of the Green's Function. The fundamental gap is then simply:

Egap =" 0Q+P "oQP: (3)

Hence,'§" are equal to the lowest electron removal and addition enefgigéntroduced above.
The Green's Function can be de ned through an equation of motion, which contains the self-
energy operator, a non-local and energy-dependent analogous of the exchange-correlation po-

tential. Unfortunately, it is practically impossible to calculate it exactly. However, it is straight-
forward to expand it systematically using perturbation theory. In the GW approximaltion [5], the
self-energy is taken to rst order in the screened potential. This seems rather crude at rst sight,
but turns out to give an excellent description of weak correlation. The basic idea of screening
is illustrated in Fig] P: When an electron is added to the system, it polarizes its surrounding and
thereby induces its own Coulomb hole, which reduces the potential.

This thesis presents GW calculations for solids, molecules and two-dimensional materi-
als. Quasiparticle energies were obtained with rst-order perturbation theory from Kohn-Sham
wavefunctions and eigenvalues in the so-callgdgor non-selfconsistent GW approximation.

It is organized as follows:

Chaptef 1 introduces the theory of Green's Functions and sets the mathematical frame-
work for the GW approximation.

Chapter[ 2 contains all computational details of the implementation developed in this
project as well as extensive convergence tests.
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Chaptef B presents calculations for semiconductors, insulators and metals. Bandstructures
and band gaps are compared to results from literature, other methods and experiments,
where available.

Chaptef # discusses special issues that occur for two-dimensional systems for the exam-
ples of single sheets of graphdmexagonal boron-nitride and MeS

Chaptef b focusses on the lonization Potentials oetent molecules and gives insight
into the structure of the self-energy.

Each chapter is preceded by a seperate introduction and can be read to a large extent indepen-
dently from the rest of the thesis.



CHAPTER1

THEORETICAL BACKGROUND

This chapter gives a brief introduction to the underlying theory of the GW approximation as
pointed out by Hedin in 1965 [5]. The theoretical description is given in the framework of
many-body perturbation theory (MBPT) in which the central quantities are the Green's Function
G and the self-energy. In principal, they contain all information on a given system, similar

to the Hamiltonian and wavefunctions as de ned by the 8dhrger equation. As opposed

to groundstate theories like density functional theory (DFT), MBPT inherentgroways to
calculate excited state properties and the corresponding wavefunctions can be interpreted as
guasiparticle (QP) states. This allows for the calculation of the fundamental band gap, for
example, which is de ned by the derence of electron removal and addition energies. Since all
other electrons in the system will respond to that additional electron or hole, the gap is clearly
not a groundstate property. These complicated interactions are known as correlaits @
screening. A further major problem of most DFT functionals is the self-interaction éfror [6]
which arises from incomplete cancellation of the interaction of an electron with itself in the
Hartree and exchange-correlation terms.

In MBPT, the Green's Function is a solution to the equation of motion in which the self-
energy appears as a non-Hermitian, nonlocal and frequency-dependent operator. Determining

is therefore the key to nding the electronic structure.

As will be shown in Sectiof 1|3, the self-energy can in principal be evaluated exactly
through a set of four coupled integro-drential equations, known as Hedin's equations. How-
ever, this turns out to be impossible to do in practice, even for simple systems. In fact, it is as
complicated as solving the Sd@dinger equation directly (or as nding the one true exchange-
correlation functional in DFT) and therefore, approximations need to be made. It is, however,
possible to write down systematic expansions of the self-energy and various approaches exist,
depending on dierent aspects of the underlying physics. Feynman diagrams provide an easy
and instructive way of interpreting and calculating theadent terms, and some of them can be
summed up to in nite order. Exxpanding the self-energy to rst order in the screened potential
W reads simply: = IiGW. This turns out to give an astonishingly good description of the
physics of weakly-correlated materials and has become the highly successful GW approxima-
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tion.

A mathematical rigorous introduction to quantum-mechanical Green's Functions and Feyn-
man diagrams can be found in Ref. [7], whereas the GW approximation is discussed in detail in
the reviews|[8-10].

Throughout this chapter, spin indices are suppressed in order to simplify the notation. The
extension to spin-dependent quantities is straightforward. Atomic unitsrfe = e = 1) are
used.



1.1. GREEN'S FUNCTIONS

1.1 Green's Functions

In second quantization, the time-ordered single-particle Green's Function reads:
D n_ . &
Gr:t;r%t%= T “(r;t) Y%t ; (1.1)

where” and Y denote fermionic annihilation and creation operators, respectively, which ful Il
the anticommutator relations:
n, R o]
(rs0; Y0%1) o= (1O (1.2)
The expectation valu& ::i is to be taken with respect to tHé-particle groundstate of the
system.T is the time-ordering operator which ensures that the eld operators on which it acts
are ordered in ascending time argumeinbm right to left:

) (%t fort>t°

n, -+\ "y, 0. O—E
T (r;t) (r’to) _.3 “y(rO;tO)A(r;t) fort < t&

(1.3)

With this, the physical interpretation of the Green's Functjon|(1.1) becomes clear: It de-
scribes the propagation of an electron created at space coordimaie timet® and annihilated
at another point in space, and a later time through the groundstate of the system. The
opposite holds for a hole. Note that even though the Green's Funtign (1.1) describes the prop-
agation of a single particle, the full information of the interacthiglectron system is contained
through the expectation value.

For a system of electrons which interact via the Coulomb potexiglr®) = ﬁq e.g.
where thze Hamiltonian takes the fozrm:

H= dr Ay(r;t)ho(r)A(r;t)+% dr  dro Y)Y OVE:r) %O (r:t);  (1.4)

the evolution of the Green's Function is governed by an equation of m(ﬁion:
Z

(" ho(r) Va(r)G@rr%1)  dr® (@ r®n)er®it )= (r 1% (1.5)

wherehy collects gl one-body terms such as the kinetic energy and interaction with an external
potential. Vy(r) = drV(r;r9 (r9 is the Hartree potential with the electron density given by
the diagonal of the Green'sgrunction(r) = G(rt; rt*). E] In frequency domain, the Green's
Function readsG(r;r%! ) = dt tOG(r;t;r%t9)exp! (t t9). is called the self-energy
and is in general a dynamic, non-local and non-Hermitian operator.

The Green's Function can be expressed in the spectral representation, also known as Leh-
mann representation: 7
0y = o Arr%) |
G(r;r5t)y=d . ;

I 10+isgn(9

with an in nitesimally small, positive , which ensures thab is analytic along the real axis.
The spectral function is linked to the imaginary part of the Green's Function as:

(1.6)

Ar;r®1) = }sgnq NIMEG(r;r%! )g: 1.7)

This can be derived with the use §#(t) = i[H; A(t)] + @A(t) for any quantum-mechanical operatt) and
representing the eld operators in the Heisenberg pictufe;t) = €7t (r)e At
2witht*  t+ for positive ! 0
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For a system of non-interacting electrons Eq.]|(1.5) reduces to:
"I ho(r) Go(r;r%1)y= (r r9; (1.8)
and the non-interacting Green's Function takes the simple form:

X i) ()

Go(r;r%1) = Iy +isgn(; )

(1.9)

i

wheref jgare single-particle wavefunctions. The corresponding spectral function is a sum of
-functions at the orbital energiés=";:

X
Ao(rirSly = () ) ¢ (1.10)

The interacting Green's Function (also called “full” or “dressed” Green's Function) is con-
nected tdGq through Dyson's equation:

Z YA
G(rr®%1 ) =Go(r;r%1 )+ dry  draG(rire!) (rara! )Go(rar®!): (1.11)

In a simpli ed notation, this read& = Gy + G Gy and is illustrated graphically in Fi. 1.1

using standard Feynman diagrams. It can also be used as a de nition for the self-energy:
= G! G, Similarly, the non-interacting and the full Green's Function can symbolically

be written a39(2) = (z hy V) 'andG(@) = (z H) 1, respectively, wherél = hy+ Vy +

andz is a complex number. In this de nition, the self-energy collects all electron-electron

interactions that go beyond the Hartree level, that means all exchange and correlation contribu-

tions. Therefore= . can be regarded as a non-local and energy-dependent analogous of the

exchange-correlation potential in DFT.

— ()

Go Gy G

Figure 1.1: Schematic representation of the Dyson equafion [1.11). By iteratively inserting the same
de nition for G on the right-hand side, it becomes an in nite expansion in powers of the self-energy:
G=Gog+Gg Gog+Gg Gg Gog+Gg Gg Gg Gg+:::.



1.2. QUASIPARTICLES

1.2 Quasiparticles

An alternative way of writing Eq[(1]6) is to expar@lin the full complex plane in a set of
complete basis functiorfs g

X ¥ 09

G(r;r%2 = o (1.12)
j Z
In the discrete part of the spectrufﬁi‘,gpgare solutions to the quasiparticle equation:
Z
"OPho(r)  Va(r)  2(r) O (r;r%"") Frr9=o0: (1.13)

These functions are the quasiparticle states and the energies correspond to excitation energies:

D R E

o) = N Li (r) N;OE and "*=E EM!' when "< (1.14)

®r)= N;0 ") N+1Li and SP EMY EN when "% '
wherejN; Oi stands for the groundstate of thieparticle system angN  1;ii for thei-th ex-
cited state of theN  1-particle system. Accordinglye)' and EN ! are the total energies.

= Eg*!  EY is the chemical potential. From E¢. (1}14), it becomes clear that the quasipar-

ticle states describe the removal or addition of an electron and the corresponding energies are
electron removal and addition energies. or O, they are equal to the negative ionization
potential (IP) and electron anity (EA), respectively. Thus, the fundamental band gap is given
as:

Egp=IP EA="F "=Ey+E}Y 26N (1.15)

In principal, the QP energies and wavefunctions are not equal to the eigenvalues and eigenfunc-
tions de ned by Eq.[(1}5):
Z

(') ho(r) V() alrst)  dr® (%) K%)= 0; (1.16)
with which the Green's Function can be expressed as:

X _ _
G(r;r%!) = m(f!J )"mra(r)o,! ).

These eigenvalues are in general complex and frequency-dependent and the eigenfunctions are
non-orthogonal. However, fdr; = Ref" (! )g= "', the eigenvector (r;! ;) commdes with

the QP wavefunction °7(r) (except for normalizatlon) and is denoted" %") = F5j ¥R If

the imaginary part of,(! ;) is small, the spectrum shows a peak at the quasiparticle energy. Its
broadening is related to the lifetime of the quasiparticle. In other cases, wherBé¢f" (! )9

and Imf" (! )gare small, so-called satellites appear in the spectrum [8]. In the continuous part

of the spectrumG posesses a branch cut and the quasiparticle energies become complex. The
real part of'iQP represents some average energy of a group of excited states and the imaginary
part the spread in energy of these stateés [5].

(1.17)

3This follows directly from Eq.l) by inserting the identity=1l' ;jN 1;iihN 1;ij, performing Fourier
transformation and using analytical continuation.



CHAPTER 1. THEORETICAL BACKGROUND

Only for non-interacting electrons, the eigenvalues are real and the QP wavefunctions can
be written as single Slater determinants. The excitations are then true single-particle excitations
with energied =";.

The norm of the quasiparticle wavefunctipn (1.14) is given by:

 opy D Eq
TG I N G BTG B/ (1.18)
where 0("iQP) = di, (! ), _.ee. For non-interacting electrons, the QP norm can be either 1 or

0, corresponding to single-' and multiple-particle excitations, respectively. In weakly correlated
systems, states with norml are “quasi” single-particle excitations and only those are usually
called quasiparticles.

1.3 Hedin's Equations

A formally exact way of calculating the self-energy is given by a set of four coupled equations,
known as Hedin's equations:

z
self-energy: (1;2)=i d(34)G(1;3) (3;2;4)W(4;1%); (1.19)
Z
screened potential: W(1;2)=V(1;2)+ d(34)V(3; 3)P(3;4)W(4; 2), (1.20)
z
polarization: P(1;2)= i d(34)G(1;3)G(4;1%) (3;4;2); (1.21)

Z

vertex function: (1,2:3)= (L2) (1;3)+ d(4567)@(1;2)

@5(4,5)

G(4,6)G(7;5) (6;7;3);
(1.22)

where () denotesi(j; t;) andV(1;2) = V(ry;r2) (1 tp) is the Coulomb potential.

The scregned potenti# can also be expressed through the dielectric functienl VP
asW(1;2)= d(3) (1;3)V(3;2).

These equations could in principal be solved self-consistently, along with the Dyson equa-
tion (1.11), starting from a trial Green's Function, e @y, and then iterating until the self-
energy converges. This is however, due to their complicated structure, impossible to do in
practice.

1.4 The GW approximation

A simple ansatz can be made by setting the second term in the vertex function to zero, which
yieldsP = iGG and = iGW. This choice seems at rst somewhat arbitrary. However, it
gains a clear physical interpretation when compared to Hartree-Fock theory (HF), in which the
self-energy is given as a product of the Green's Function and the bare Coulomb interaction:
HF = iGV. Here, electron-electron interaction only occurs through the Hartree- and the ex-

change potential, that means that there is no correlation — the electrons are quasi independent.
On the other hand, correlation is to a large extent determined by screening (in fact, for weakly
correlated systems, these two terms are often used interchangeably). Thus, by replacing the

10



1.4. THE GW APPROXIMATION

Figure 1.2: Comparison of the GW, HF and RPA self-energies. The screened potential is linked to the
full Coulomb potential through a Dyson-like equatidh= V + VGGWandWRPA = V + VGoGoWRPA

(see Fig[ 13).

bare Coulomb interactio¥ by the screened interactidil in the self-energy, dynamical corre-
lation is introduced. In Figd. 1}2, the Feynman diagram for the GW self-energy is shown, along
with corresponding expressions for the HF and the Random Phase Approximation (RPA) for
comparison.

In real space and time domain, the GW self-energy is simply given as a product:

(r;t;r%t9) = iG(r: t; r% OW(r: t; r%t9; (1.23)
which becomes a convolution in frequency domain:
. Z
(r%1)= o ot (st + 1 Wt O, (1.24)

where the ini nitesimal ensures the correct time-ordering in case of a static poteW(al,=

0). Using the spectral representation for the Green's Function and an analogous expression for
the screened interaction, the real part dbreaks into two parts [11]: = ©°"+ SEXith

the rst term arising from the poles in the Green's Function and the second from the poles in
W. SEXcan be identi ed as a dynamically screened version of the Fock exchange term and is
therefore called “screened exchange®°" describes the dynamic interaction of a particle with

the charge that it induces in its surrounding, that means a dynamical “Coulomb hole”.

11



CHAPTER 1. THEORETICAL BACKGROUND

1.4.1 Linearized QP equation

The GW approximation provides a direct guideline on how to nd the quasiparticle wavefunc-
tions and their spectrum: First, one has to construct the Green's Function and the screened
potential from an initial guess, e.g. from a system ofgetively) non-interacting electrons with
wavefunctiond Sgand energie§'°g This allows then for the calculation ofand determina-

tion of new wavefunctions and energies from the quasiparticle equétionj (1.13). From these, a
new Green's Function and potential can be build up and the whole procedure can be iterated
until self-consistency is reached. However, Eq. (1.13) requires the self-energy itself to be given
at the quasipatrticle energﬁp which is exactly the quantity one wants to nd. This is extremely
complicated to solve directly. Instead, the QP equation can be linearized using rst-order per-
turbation theory: Assume that the initial wavefunctions are solutio$eto= ﬁo + Vy + Vi,
whereV,. is some eective exchange-correlation potential. Then the full Hamiltoniareds

from He by « Vi If the initial wavefunctions are close to the true QP wavefunctions, this

di erence will be small and one can use perturbation theory,in (Vy). In rst order, this

yields for the quasiparticle energies:

Frsrzs (D) Ved T (1.25)
with a renormalization factor:
Ze= 1 it (1.26)

Z? is an approximation to the QP norfn (I].18) and is a measure for how well the quasiparticle
wavefunction is represented by, e.g. if the quasiparticle state can be described wctvely
non-interacting electrons.

Within this apprgach, new wavefunctions can be found by repla¢jggvith the e ective
self-energy operator j;j ih 7 «("?))] J.Sih fj in the Hamiltonian and nding the new eigen-
vectors. This is know as quasiparticle self-consistent GWs@Q@W) [12], as opposed to the
full self-consistent GW<gdGW) [13], in which the self-energy is calculated for all frequencies
and the Green's Function is evaluated through Dyson's equation (1.11).

1.4.2 Wy

In practice, Kohn-Sham orbitals and eigenvalues from a DFT calculation are often used as input
for a GW calculation and the quasiparticle spectrum is evaluated non-selfconsistenly from Eq.
(1.28) without updating the Green's Function or the screened potential, that means only one
iteration is made. This is known as the “one-shot” GW g approximation and has become

a standard tool in electronic structure thedhy is hereby equal to the RPA screened potential,

as depicted in Fid. 1}3. Even though this approach is based on several crude simpli cations,
namely: 1. the GW approximation itself, 2. non-selfconsistency and 3. linearization of the
QP equation, it gives a very good balance between accuracy and computational costs. Its great
success can be understood by the following:

1. The GW approximation is physically well motivated for weakly correlated systems by
the concept of screening, as outlined in the beginning of this section.

2. Self-consistency does not necessarily improve results. This is due to the fact that addi-
tional terms are introduced to the self-energy, which would cancel out when the full many-
body theory is considered, e.g. by taking the vertex funcfion [1.22) into acgount [14].
Calculating vertex corrections, however, is enormously costly.

12



1.4. THE GW APPROXIMATION

3. The linearized QP equation is a good approximation as long as the initial wave functions
already describe the true QP wavefunctions fairly well, even though this may not hold for
the eigenvalues. Then @/, can give signi cant corrections to the energies, allowing for
accurate bandstructure calculations.

Of course, there are several drawbacks and limitations: A major problem is the starting point is-
sue, since the results depend on the initial wavefunctions and energies and can vary signi cantly
depending on the input. A well-considered choice may be crucial in order to minimize errors.
This issue can only be overcome by performing self-consistency. Otherwise, it is abtrue
initio method, meaning that no empirical parameters are required, and it is system-independent
(which is not the case for most funtionals in DFT). Unfortunately, all this comes at the price
of a much higher computational cost, as will be elucidated in detail in the next chapter. And
while the lower part of the spectrum can be calculated with good accurgdy, Gsually goes
completely wrong in the high energy range and thus cannot describe satellites, for instance.
Finally, for strongly correlated materials, the whole quasiparticle picture does not hold and the
GW approximation is expected to fail.

Several approaches exist, that go beyond the one-shot approximation without having to deal
with all of the complications and problems of the full self-consistent scheme. In the eigenvalue-
scGW, for instance, only the energies are being updated during the iterations while the wave-
functions are being kept on the Kohn-Sham leve| [15]. Furthermore, energiks amyefunc-
tions can be updated in the Green's Function only with a xed initial screened potential, which
corresponds to GW16,17].

Go

Go

Figure 1.3: De nition of the screened potentidV in the GWg approximation. Similar to Fi.l, it

gives an in nite sum over bubble diagrantSyGp) and is equal to the screened potential in the Random
Phase Approximation. Each bubble corresponds to the creation and annihilation of one electron-hole
pair. Within this approximation, these pairs are non-interacting.
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CHAPTERZ

IMPLEMENTATION IN GPAW

GPAW is an electronic structure code based on the projector-augmented wave (PAW) method
[18,/19], in which the true wavefunctions are replaced by smooth auxiliary wavefunctions in-
side atom-centered augmentation spheres. A detailed description of the GPAW code is given
in Ref. [20]. Originally, wavefunctions were represented on a real-space| grid [21], but later,
linear combination of atomic orbitals (LCAO) basis sets|[22] and more recently, plane wave
representation have been introduced.

In this chaper, all details of the implementation of th@/g approximation within GPAW
are presented. It follows mainly Ref. [23]. The GW self-energy is calculated from the in-
verse dieelectric function, 1, in the Random Phase Approximation [24] given as a matrix in a
plane wave basis. The frequency-dependenceaain either be evaluated explicitly on a grid
(“full frequency dependent method”) or modelled in the Plasmon Pole Approximation (PPA)
by Godby and Needs [25]. Furthermore, the static limit leads to the so-called static COHSEX
approximation.

Special care is required for the divergent terms of the screened potential in the long wave-
length limitq! 0. This divergence can be treated both analytically and numerically. Another
feature is a truncation scheme for the Coulomb potential. This is immensely important for two-
dimensional materials in supercell calculations in order to eliminate spurious interacéotse
between periodically repeated layers.

The calculation of the GW self-energy, includes sums ovek points, both occupied and
empty bands as well as plane waves and, for the full frequency dependent method, an integration
over frequencies — in principal up to in nity. In practice, all summations have to be limited
and integrations must be carried out numerically, imposing a number of convergence issues.
This also makes GW calculations much more complicated and computationally demanding as
compared to groundstate DFT.
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CHAPTER 2. IMPLEMENTATION IN GPAW

2.1 Calculation of the self-energy

The GW, self-energy can be split into two contributions®V = Vy + ., whereVy is the
nonlocal exchange potential as in Hartree-Fock theory, and the correlation part. In the
following, the latter will simply be denoted as the self-energy .. By introducing the
di erence between the screened and the bare Coulomb powattiah  V, it reads:
. Z
(r;r%1) = ZL d O°G(r;r% ! +19W(r;r%1 9: (2.1)

In this way, the exact exchange is separated from the actual GW calculation. Since the screened
potential approaches the bare Coulomb potential for larg#' goes to zero and the frequency
integration becomes numerically stable.

Using Bloch stategki, wheren andk denote band index arldpoint index, respectively,
for the spectral representation of the Green's Funcfior) (1.9) and expanding in plane waves, the
diagonal terms become:

nk tkj (! )inki
1 X e 2 e 4(G) 1k 4(GO)

| —
= = — d! "Weeo(q;! 9 - , ; (2.2)
GG ¢ m21 b+10 ;kq+lsgn(r§rkq )
with the pair density matrices de ned as:
D E
m o(G)  nké@rmk g : (2.3)

= cell N is the total volume, .o the volume of the unit cell andll, the number ok
points. The sums in Eg[ (2.2) run over plane waves with wave ve@aaad G°, all di er-
encegy betweerk points in the rst Brillouin zone and all band indices, respectively. The
wavefunctions and corresponding eigenvaligs, are taken from a Kohn-Sham groundstate
calculation. The potential reads:

_ 1
Weeo(Q;! ) = csold!)  ago Jq+—G(ﬁ (2.4)

ja+Gj

where ;Lo(q;! ) is the inverse dielectric matrix, which is obtained in the Random Phase Ap-
proximation with a symmetrized Coulomb kernel@andG®.

4 1
o(q; ! ) = 0o T 0 o(q; ! ).—; (2.5)
ee °¢ Ja+Gj °T g + GY
from the non-interacting, time-ordered density response function:
(q 2 Xz X fs s n0k+q(G) n°k+q(GO) . (2 6)
0 y - - + n n n ! "
GG o nk n%k+q I+ ﬁk ﬁ%q +i sgn('3 Ak ﬁk

with occupation numberg; . Details on the implementation of the linear density response
function and the calculation of the pair density matrices with PAW corrections are given in
Ref. [24].

The quasi-particle spectrum is then obtained from Eq. {1.25) as:

=Nt i Renk ("S)+ Vi Vienk 2.7)
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2.1. CALCULATION OF THE SELF-ENERGY

with a renormalization factor given by:
Z5%=1 Renk "3)nk (2.8)

The derivative of the self-energy with respect to the frequency is calculated analytically from

Eq. (2.2):

A k nk
1 X HzR — mk 4(G) T 4(G°)
rsy= = 5 OWeco(q; ! ) —mk 9=~ M 5 (2.9)
where =sgn('§1kq ).

The calculation of the exact exchanigejV,jnki contributions is done seperately in a dif-
ferent part of the GPAW code. This can therefore be done onereint level of accuracy than
for the self-energy.

In the current implementation, . is only evaluated for energids = "> and only its
real part is stored. This means, that no further information on the spectrum like quasiparticle
lifetimes, line shapes and satellites is available. For semiconductors, however, there exists
an energy region around the quasiparticle gap for which the imaginary part of the self-energy
is zero and quasiparticle peaks become renormaliziohctions. The size of this region is
determined by the underlying Kohn-Sham bandgap in th&Gapproximation|[26]. Since the
main focus of this work is the calculation of quasiparticle bandstructures around the Fermi level,
this simpli cation is reasonable. On the other hand, an extension to analysing the complex and
frequency-dependent self-energy is trivial and may be done in the future. This will in particular
be of interest for metallic systenis [27,28].

Furthermore, only the diagonal terms of the self-energy are evaluated. In principal, deter-
mining the o -diagonal elementdnkj (! )jn%i, would allow for calculation of quasiparticle
wavefunctions and subsequently lead to the (quasiparticle) self-consistent GW method.

2.1.1 Full frequency-dependent method

The frequency integration in Eq. (2.2) can be carried out for positive value$ arily due to
time-reversal symmetry of the screened poteni], ! ) = W(! ), by rewriting the integral as:

71 —

W(!
(1) d! °| T (,,SO) | (2.10)
L ! ! m q
’ :
— 1 1
= d' OW(l Cﬁ% +| 0 ns | + | | 0 ns |
0 ' ' mk ¢ ' ' mk q

Then, two di erent ways of calculating,x are available:
In the rst method, the double sum ov&randGPis carried out rst as a matrix multiplica-
tion of (G) (G% andWggo. Then, the frequency integration is performed numerically. This
is done seperately for each pair ofk) and fnk q).
The second method reverses this order and is similar to a Hilbert transform: The numerical
frequency integration is done rst, but fof, q> and">, q < separately, denoted Hy
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CHAPTER 2. IMPLEMENTATION IN GPAW

andl , respectively. De ning" =1! "> i four cases for the integral can be distinguished:
™ 0 and "} 4>
Z !
— 1 1
VY = 1*(Ti):
dr W( 9 R T T 1" (T7));
0
™ 0 and "} 4<
Z !
— 1 1
0 e
WO e Yy e g O
0
< 0 and "y >
Z !
_ 1 1
1 oW = i)
dr W(t 9 TErrorT T TE 0w I (T));
0
< 0 and "}y 4 <
Z !
_ 1 1
O - + /= .
$WED S T T o - o

0
which can be summarized as:

1(!) = sgn{)1%9") %00 ) (jr): (2.11)

Summing oveG andGPthen gives the contributions tq! ) for every (nk q) represented on a
nite, positive frequency gridfT;g The self-energy at the input eigenvalu€, = "2 ), is found
by linear interpolation between the two closest points on the gridiwithj "> "~ qj < T,
again for everymandq seperately.

The same methods apply for the derivative.

2.1.2 Plasmon Pole Approximation

In the Plasmon Pole Approximation (PPA), all the transitions from occupied to unoccupied
statesn ! n°that sum up to the to the inverse dielectric function (similar to (2.6)) are
averaged to form one single collective excitation, known as plasmon:

0y | R Rt
! !n!n0+i !+!n!n0 |

n no’
R R ]
T+ L +r i’

(2.12)

with some averaged spectral functiBnThe imaginary part consists only of single peaks at the
main plasmon frequencies! ggo(q). Thus, ;5.(d;! ) can be modeled as:

1
Feeo(q) + i '+ Fgeo(Q)

where the spectral functioRsgo(q), is assumed to be real. The two terms account for positive
and negative frequencies, respectively. Usin% th)e Sokhatsky-Weierstrass theorem,
1 1

I!irg+X : =P " I (X); (2.14)

I
: (2.13)

coo@:!) = seo+ Reco(q) !




2.1. CALCULATION OF THE SELF-ENERGY

15
w (eV)

Figure 2.1: Real and imaginary parts of the head of the inverse dielectric func&ﬁm;! ) of a sil-

icon bulk test system foq = (1=2;1=2;1=2). The PPA model (dashed lines) is compared to the fully
frequency-dependeb-initio results (full lines). A broadening of = 0:2 eV andEg = 1 Hartree have

been used. The imaginary part of the PPA function consists of a siﬁgle peak at the plasmon frequency.
The real part is given by the Kramers-Kronig relationfRe&(! )g= 1= | d! ®%Imf (! Og! © 1).

The inset is a zoom-in on the y-axis. Both in the low and high energy range, the overall shapg f

is well described by the model function.

whereP denotes the Cauchy principal value, the real and imaginary parts of the poWntial

( * )Varegivenas:
n_ 0 ( 1 1 ) 4
Re Weel@it) =Reedl®® T Foo@ THToo@ mromrey O
and
M Woe@i1) = Roool@(( Tocl@)* ( el rargr (216

respectively. Similar expressions are found for the non-interacting Green's Function, so that the
convolution in Eq.[(2.]1) can be carried out analytically and the real part of the self-epergy (2.2)
becomes:

8
21X XX g 4 R@

Ref = Reg — —- .. : G) (G
nkd § 6o g m 2 jq+ G]]q + GOJ mk q( ) mk q( (5
- Lk

- - 2.17
P e Teal® 1 T Thy Tea@ri o

a 1 1 %?_

ns +r 0( ) | + I ns r 0( ) | 81

- mk g T+ eeold - mc g - ccold '
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CHAPTER 2. IMPLEMENTATION IN GPAW

where the in nitesimal is maintained to ensure numerical stability, when the denominator
goes to 0.

The model dielectric functiof (2.1.3) is required to reproducethnitio dielectric function
in the static limit! ; = 0 and at some frequen¢y, = iEq. The latter is chosen to be imaginary,
since (! ) is smooth along the imaginary axis. This method is known as the Plasmon Pole
Approximation of Godby and Needs [25]. From

2Rcc0(q)
Ygity) = —— 2.18
@' = F o (2.18)
2Rcc0(9)" ceo(q)
gty = ; 2.19
one obtains the plasmon frequency and the spectral function:
s
1(;! 2)
M oo = E ; 2.20
() 0 Q.1 ) 1q.12) ( )
M sao
Ro@) = oD gy, 221

The Plasmon Pole Approximation is valid for systems where the dielectric response is dom-
inated by its main plasmon excitation. Then, the overall shape'@f ) will be determined by a
single resonance at the plasmon frequency and all other details of its structure will be averaged
out in the frequency integration for the self-energy in £q.[(2.1). This is illustrated if Fjg. 2.1.

2.1.3 Static COHSEX

A static approximation assumes that the main contributions to the GW self-eperpy (2.2) arise
from terms, wheré "> is small compared to the energy of the main excitation in the
screened potential, that is essentially the plasmon engrgy [8]. By sétting’, q =0 the
Coulomb hole and screened exchange parts of the self-engrdpecome frequency-indepen-

dent and read:
1 X XA

= Wece(d:0) i 4(G) e ofGY; (2.22)
GG g m

SEX 1 X X Xe k k

nk = - WGGU(q;O) prk q(G) rr’]nk q(GO)1 (223)
GG g m

respectively. This is known as the static COHSEX approximation. In real space representation,
they are given as:

COH

% r % w@r:r%t =0) v(r:;r9 ; (2.24)

Xcce
SEX

.0 — .
-0 J(rOW(r;r% 1 = o), (2.25)
J
from which the interpretation as static Coulomb hole and screened exchange becomes clear.

The QP spectrum is evaluated as:
E

D
n et nk S OOy nk (2.26)
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2.1. CALCULATION OF THE SELF-ENERGY

2.1.4 Divergence of the screened potential

The head ¢ = 0 andG° = 0) and wings G = 0 or G° = 0) of the screened potentidl (2.4)
diverge as % and 1, respectively, in the long wavelength linit! 0. However, for an

in nitely dense k-point sampling, these divergencies are lifted in the calculation of the self-
energy [(2.R). This can be seen by replacing the sum @usr an integral over the volume of
the 1. Brillouin zone: X Z Z

dqg = dg4 o* (2.27)

BZ

Assuming ,3(q ! 0) to be isotropicWoo(g = 0) can be found by integrating the divergent
part 4=q? over a small sphere with volume3, = g,=Ni (this corresponds to a radia8 =

(6 2= )¥®). This yields:
!

_ 2 62%°h i
Wop(q=0;!)= — — w@! o) 1: (2.28)
and similar for the wings:
[
_ 1 627
Weo(q=0;!) = G co@! O1); (2.29)

with the dielectric matrix taken in the optical limit.
Alternatively, these values can also be obtained by numerical averaging on a veg§ ne
point grid around the -point.

2.1.5 Truncation of the Coulomb potential

In supercell calculations for systems which are in nite and periodic in two dimensions (2D
systems), the long range Coulomb interaction can be ca@ng the non-periodic direction,
in order to avoid arti cial image charge ects from neighboring cell5 [29]:

#0(r) = —(Rjr’j ). (2.30)
where is the step function ani the truncation length. Fourier transformation to reciprocal
space yields: " 14

#P(G) = 4 1+ e GR i sinG,R) cos(G4jR) ; (2.31)
G2 Gy

whereGy andG; are the parallel and perpendicular component& pfespectively. FOR =
L,=2, whereL, is the length of the unit cell in the non-periodic direction, this becomes [30]:

#°(G) = % 1 e ®Rcos{G4R) : (2.32)

ForGc! 0, the expression of Ed. (2]31) and thereby also [Eq.[2.32) is not well de ned. It
is therefore replaced by numerical averaging on a ne unifgfmoint grid around the -point

over a small volume §:
Z

#P(Gy = 0) = io dq°¥?°(G, + qY: (2.33)

BZ |

Bz

The truncated Coulomb potential is used both for the calculation of the dielectric function
and of the self-energy.
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Figure 2.2: Computational time for a small bulk silicon test system with full parallelization aver
points on 1, 2, 4 and 8 Intel Xeon cores. The actual time spent for the whole calculation is shown in
black, while the CPU time (sum of the times spent on all CPUSs) is in red. For perfect parallelization the
CPU time would be constant and the total time would divide by the number of cores. Deviances are due
to initialization of the calculations, postprocessing and communication between the cores.

(2 2 2)kpoints, 89 plane waves and bands and 1064 frequency points were used in the calculations.

2.2 Exact exchange contributions

The exact exchange contributions are given in plane wave representation as:

X X X JCrkmko(GO)J? |

mkjVyjnki = — s L LIS bt (2.34)
e mk© o jk ko GOjZ
where X
Coumo(GY) = € (G)Cyo(G + GY; (2.35)
G

andc.(G) are plane wave coecients. Treatment of the divergent tekn= k® andG°® = 0
follows Ref. [31], while the calculation of the PAW corrections is described in Ref. [20].

2.3 Computational details

By default, the calculation of the self-energy is fully parallelized ay@oints. As shown for

the example of &) points in Fig.[2.R, the parallelization is very eient, meaning that the
total computational time scales very well with the number of available cores. For gvthg
inverse dielectric function,g(q;! ) is calculated on a given frequency grid as a matriGin

and G° using the GPAW implementation of the linear density response function as described
in Ref. [24], but modi ed for time-ordering. From this, the screened poteiigke(q;! ) is
constructed. Then, Egs. 2.2 gnd]2.9 are evaluated for every matrix elgikieats described

in the previous section. For calculations including thgoint only, that means nite systems,
parallelization over bands s used instead. Since the arrayg,(! ) andWggo(! ) can become

very large for high plane wave cute, they can be split and distributed over elient cores with
additional frequency and plane wave parallelization. This reduces the required memory on each
core.
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Figure 2.3: Computational time as function of the number of (a) frequency points and (b) bands for a
bulk silicon test system with (3 3 3) k points. A cuto energy of 100 eV (corresponding to 89 plane
waves) was used. For (a), 89 bands were included, while the PPA was applied for (b). The time spent
on the calculation of the screened potential only (of the self-energy from the screened potential only) is
shown in red (blue). Dashed lines are linear ts to the data points.

The calculation of  scalesadl, N, NZ NZ with number of frequency points, bands,
k points and plane waves, respectively. This is demonstrated in[Figs. 2[3 and 2.4 for a silicon
bulk test system on a single 64-bit Intel Xeon core. The graphs also show that the ratio of the
computational times spent on the calculation of the screened potential and the self-energy alone
depends strongly on the parameters used. For a large numkerodrdits, the computation of
the screened potential becomes the bottleneck, since this has to be done seperately &pr every
in the 1. Brillouin zone and the calculation of the response funcfion (2.6) itself involves a sum
over allk points.

2.3.1 Parameters

All parameters for a GW calculation are de ned in a GW object and are listed in [Table 2.1.

file isa GPAW le from which all wavefunctiongki and energy eigenvalué§ used
as starting point as well as general informations on the system are read. It is created in a
preceeding groundstate calculation.

nbandsis the number of bands to be included in the summations for the response function
(2.9) and the self-energly (2.2).

bandsis a list of band indices for which the quasi-particle spectru 2.7 should be evalu-
ated. Often, only a few bands around the Fermi level are requested.

kpoints is a list ofk-point indices for which the quasi-particle spectium 2.7 should be
evaluated. This can be a line of points along a certain direction of the Brillouin zone, for
example.

e_skn can be de ned to use self-de ned starting point eigenvalljgsli erent from the
groundstate. This can be used to perform eigenvalue self-consistent GW calculations, for
instance.
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Figure 2.4: Computational time as function of the squared number ok @ints and (b) plane waves
for a bulk silicon test system. For (a), 89 bands and plane waves and for (b), 100 bands énd 33k
points were used. The PPA was applied in all calculations. The numigpaints in (a) correspond to
samplingsof (2 2 2)upto (9 9 9). The number of plane waves in (b) correspond to ceoergies
from 50 up to 300eV.

eshift shifts all unoccupied bands of the starting point energy eigenvalues by the given
value in eV. This corresponds to applying a constant scissors operator like the derivative
discontinuity, for example.

wde nes the frequency grid on which(! ) andW(! ) are evaluated. In the static COH-
SEX approximation, it is simply put tb = 0, while the two value$s ; = 0 and! , = iEj

are used in the PPA. For the full frequency-dependent method, a non-uniform grid is
created as depicted in F[g. R.5.

ecut is the plane wave energy cutan eV and determines the size of the matrices
and Wgeo (local eld e ects). For everyy, all plane waves with a maximum kinetic
energy G + g)>=2 = E¢ are included.

eta is the broadening parameter given in eV for the calculation of the response function
(2.6) and in the PPA for Eq[ (2.]l7). For the static COHSEX approximation, it is set to

= 0:0001 eV, while itis chosen accordingly to the frequency grid for the full frequency-
dependent method a¢l ) =4 ! .

ppaenables the use of the Plasmon Pole Approximation.
EOde nes the PPA tting frequency.

hilbert _trans can be used to switch between the twoetient ways of calculating the
self-energy in the full frequency-dependent method, as explained in Section 2.1.1.

wpar is the number of cores for parallelizing over frequencies and plane waves in the full

frequency-dependent method.
vcut='2D"' enables use of the Coulomb truncation.

txt de nes the name of the le to which the output from the GW calculation is written.
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Table 2.1: Parameters of the GW object. The number of bamibgnds, and the plane wave cuto
energyecut, are always equal in the calculation of the response fungtioh (2.6) and the self-¢nefrgy (2.2).

name type default value
file string None
nbands integer equal to number of plane waves
bands numpy.ndarray all up tabands
kpoints numpy.ndarray all irreducible k points
e_skn numpy.ndarray None
eshift oat None
w numpy.ndarray None
ecut oat 150eV
eta oat 0:1leV
ppa boolean False
EO oat 27:2114eV
hilbert _trans boolean False
wpar integer 1
vcut string None
txt string None
. 5
ST o
s =) X
I | | | | .
Hrrrrrr I I I -
0 w

Figure 2.5: For the full frequency-dependent method, a non-uniform grid is de nesvby [wlin,
wmax, dw] Itis linear in the lower part up twlin with a constant grid spacindw Abovewlin , the
grid spacing increases linearly up to the maximum frequevwogax

Two functions can be used from the GW object:

get _exact _exchange(ecut=None, communicator=world, file="EXX.pckl’)
calculates the exact exchange and exchange-correlation contributions and stores the re-
quired matrix elementinkjV,jnki andmkjV,nki for later use.

get _QPspectrum(exxfile="EXX.pckl’, file="GW.pckI')
performs the actual GW calculation and adds theedent contributions for the QP spec-
trum together.

Further details are documented on the GPAW homepage [32].
2.3.2 Convergence

In principal, all GW calculations need to be checked carefully for convergence with respect
to all parameters used. The broadening paramegerd the tting frequencyg, for the PPA,

25



CHAPTER 2. IMPLEMENTATION IN GPAW

Figure 2.6: Dependence of the direct band gap at thgoint on the (a) tting parameteEg and (b)
broadening in the PPA for a bulk silicon test system with (3 3) k points. A cuto energy of 100 eV

and 89 bands were used. All calculations were performed with the LDA functional as starting point, that
means @Wo@LDA.

however, are often kept at their default values:aféVv and 1 Hartree, respectively, since results
are rather insensitive to variations around them. This is illustrated if Fig. 2.6 for the case of the
direct band gap of silicon.

For the full frequency-dependent method, results have to be converged with respect to the
frequency grid used, e.g. the density and the total number of frequency points. This is shown
in Fig.[2.7 (a) for the dependence of thepoint band gap on the linear grid spacing and
the frequency i, up to which the grid is linear. The maximum frequency is kept constant
at 150eV. In general, hax Only needs to be slightly larger than the largest energgmdince
"o ok q that occurs in the summati .2), as can be seen irpﬂg. 2.7 (b). The frequency grid
should re ect the spectral structure which exhibits in principal very sharp and irregular features
for low energies, while itis more broad and smooth in the high range. Well converged results are
usually found for ! = 0:05eV and ;, = ! 11»=3, which results in a few thousand frequency
points in practice. Choosing a nonuniform grid in this way may increase the computational
speed signi cantly without any loss of accuracy.

Much more care is to be taken for the convergence with respect to the nkmpbiats and
the plane wave cuta This already holds for the exact exchange contributions, as demonstrated
in Fig.[2.8, which shows the Hartree-Fock band gap. The HF bandstructure was obtained non-
selfconsistently from LDA wavefunctions and eigenvalues as:

"= "t MKV, Vigjnki - (2.36)

Due to the long-range nature of the exchange potential, a high numkgodaits is required in
order to obtain well-converged results. However,kimoint dependence of the GW self-energy
is less severe, since the screened interaction is more short-ranged. As showr in|Fig. 2.9 (a),
the GW band gap converges much faster with respekpimints, while the dependence on the
plane wave cuto energy is similar. Furthermore, the curves showing the dependence on the
cuto energy only dier by a vertical oset for di erentk-point samplings. That means, that
results converge independently with respect to these two parameters.

On the other, hand it becomes clear from 2.9 (b) that the convergence of the band gap
with respect to the number of bands is not independent tgm A too low plane wave energy
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2.3. COMPUTATIONAL DETAILS

Figure 2.7: Convergence of the direct band gap at thpoint with respect to the frequency grid for
the silicon test system with (33 3) k points, 100 eV plane wave cutenergy and 89 bands. For
(a), the maximum frequency is 150 eV and for (b), the linear grid spacing. B\Q E,is found to be
well converged (within 20 meV) for! = 0:1eV and! ;, = 50eV. This corresponds to 548 frequency
points.! max hardly e ects the results as long as it is larger than 100 eV (the energyatice between
the highest and the lowest band).

cuto may lead to a wrong value, which seems converged with respect to the number of bands,
Np. Therefore N, should always be adapted EQ,.

These observations allow for a general strategy for convergence tests: One series of calcu-
lations with varyingEg for a low k-point sampling and another series with increasing number
of k points for a xed (low) value of the cutoenergy. It is convenient to check the convergence
for the non-selfconsistent HF bandstructure, which is usually fast and easy to do. Thereby, the
computational eorts can be minimized. From these results, the "optimal’ parameters for the
actual GW calculation can be determined. The number of bands included in the evaluation of
the self-energy should be chosen so that the energy of the highest band is close to the plane
wave cuto energy. This is the default option. The use of the Plasmon Pole approximation is
about 5-20 times faster than the full frequency dependent method. Its quality, however, needs
to be checked for every system.

These observations only serve as a rough guideline. Fereint materials, the convergence
behavior can change signi cantly. They will be one central topic in the following chapters.

To conclude this chapter, a typical input script and the corresponding output are shown in
Figs.[2.1D anfl 2.11. The direct QP band gap of bulk silicon can be refm the last lines
of the output as 28 eV, which is very close to the experimental value @03V [34] and in
good agreement with other implementations [23, 35]. In order to determine the indirect gap, a
ner k-point sampling should be used.
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Figure 2.8: Hartree-Fock -point band gap of bulk silicon as function of the (a) plane wave cettergy
and (b)k-point sampling. The calculations were performed non-selfconsistently from LDA wavefunc-
tions and eigenvalues. Good convergence is reachefl:fpr 150 eV, while ak-point sampling of at

least (9 9 9)isrequired.

Figure 2.9: GoW, -point band gap of bulk silicon as function of (a) plane wave cwgoergy and (b)
number of bands. For (a) the number of bands equal the number of plane waves correspoBgling to
while (3 3 3) k points were used for (b). All calculations were performed with LDA wavefunctions

and eigenvalues as starting point. The exact exchange contributions were determined seperately with
a higher, xed value ofE.. That means, that the curves shown depend on the correlation part of the
self-energy only (for a givek-point sampling). In comparison to F[g. 2.8, the scale on the y-axis is much

smaller.
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import numpy as np

from ase.structure import bulk

from gpaw import GPAW, FermiDirac
from gpaw.wavefunctions.pw import PW
from gpaw.response.gw import GW

a = 5431
atoms = bulk('Si', 'diamond’, a=a)

calc = GPAW(mode=PW(200),
kpts=(9,9,9),
Xc='LDA',
eigensolver='cg’,
occupations=FermiDirac(0.001),
txt="Si _groundstate _k9.txt')

atoms.set _calculator(calc)
atoms.get _potential _energy()

calc.diagonalize  _full _hamiltonian()
calc.write('Si  _groundstate _k9.gpw','all’)

gw = GW(file='Si _groundstate _k9.gpw',
nbands=None,
bands=np.array([2,3,4,5]),
kpoints=None,
ecut=150.,
ppa=True,
txt='Si _GWk9_ecut150.out’)

gw.get _exact _exchange()

gw.get _QPspectrum()

Figure 2.10: Example script for a GW calculation in GPAW for bulk silicon. A plane wave basis up to
a kinetic energy of 200 eV and the LDA functional is used for the groundstate. W\ Bandstructure

is evaluated for alk points in the irreducible Brillouin zone for a (99 9) k-point sampling and the
two highest valence and two lowest conduction bands. The plane waveisi200 eV (as given by the
groundstate calculation) for the exact exchange contributions and 150 eV for the self-energy.
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CHAPTER 2. IMPLEMENTATION IN GPAW

GPAW version 0.9.1.10481
GW calculation started at:
Tue Aug 20 00:10:28 2013

calculating Exact exchange and E _XC

Use planewave ecut from groundstate calculator: 200.0 eV
non-selfconsistent HF eigenvalues are (eV):

[ 4.16253746 4.16271098 12.19495873 12.19495872]

[  2.42342032 2.4234209 10.83576913 13.33986919]]]
Lowest eigenvalue (spin=0) : -6.831460 eV
Highest eigenvalue (spin=0): 148.298072 eV

Plane wave ecut (eV) : 150.0
Number of plane waves used . 169
Number of bands : 169
Number of k points . 729
Number of IBZ k points : 35
Number of spins 1

Use Plasmon Pole Approximation
imaginary frequency (eV) . 27.21
broadening (eV) : 0.10

Coulomb interaction cutoff : None

Calculate matrix elements for k = :
[ 0. 0. 0]

[ 0.44444444 0.44444444 0.44444444]

Calculate matrix elements for n = :
[2 3 4 5]

calculating Self energy
Finished ig 0 in 0:24:23, estimated 18:41:31 left.

Finished iq 45 in 18:25:56, estimated 0:15:34 |eft.
WWGG takes 14:59:26
Self energy takes 3:26:31
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reading Exact exchange and E_XC from file

Kohn-Sham eigenvalues are (eV):
[[[ 5.13518868 5.1351951 7.66534713 7.66534713]

[ 3.96136002 3.96136002 6.58726608 8.45939817]]]

Occupation numbers are:
[[[ 2.00000000e+00 2.00000000e+00 7.44015195e-44 7.44015195e-44]

[ 2.00000000e+00 2.00000000e+00 7.44015195e-44 7.44015195e-44]]]

Kohn-Sham exchange-correlation contributions are (eV):
[[[-13.52403727 -13.52403428 -11.78313739 -11.78313739]

[-13.20283986 -13.20283986 -12.62234213 -10.9711573 ]]]

Exact exchange contributions are (eV):
[[[-14.49668849 -14.49651839 -7.25352579 -7.2535258 ]

[-14.74077956 -14.74077899 -8.37383909 -6.09068628]]]

Self energy contributions are (eV):
[[[ 0.43563965 0.43563883 -4.09443116 -4.09443151]

[ 0.93440746 0.93438013 -3.82047071 -4.44281029]]]

Renormalization factors are:
[[[ 0.77244275 0.77244309 0.77209811 0.77209854]

[ 0.76569843 0.76569572 0.78009198 0.77452521]]]

GW calculation finished in 18:57:06

Quasi-particle energies are (eV):
[[[ 4.72037799 4.72051267 8.00134912 8.00134904]

[ 3.49923634 3.49921748 6.92117067  8.79837744][]

Figure 2.11: (Abridged) output from the example script. The calculation ran on two 8-core HP DL160
G6 nodes with two 64-bit Intel Nehalem Xeon X5570 quad-core CPUs each running at 2.93 GHz [33].
Results are sorted by spins (blockspoints (rows) and bands (columns).

31






CHAPTER3

SOLIDS

Any new implementation needs to be tested thoroughly and compared with other exisiting
codes. The GW method has been known for more than 50 years and has been applied to real
systems since the late 1980's. Up to today, a large number of results from GW calculations for
simple materials have been well established in literature. Only about 10 years ago, progress
in the development of computational resources made it possible to investigate more complex
structures and perform calculations for a broader range of systems. But even though the GW
method is now a standard tool in many electronic structure codes and its advantages and draw-
backs have been intensively discussed, it has not been used in systematic studies in the same
way as traditional methods, namely DFT, have. This is mostly due to its immense computational
requirements. However, as more powerful supercomputers become available, this is starting to
change and numerous applications are gaining interest.

This chapter starts with a discussion of results for a number of simple semiconductors and
insulators — systems which have been extensively studied both in theory and by experiment —
and an assessment of the dient approximations. Band gaps obtained at th&/§@LDA
level are in very good agreement with results from literature and experimental data. The Plas-
mon Pole approximation is found to perform very well, whereas the static COHSEX fails com-
pletely. LDA as a standard DFT functional drastically underestimates band gaps, due to two
main problems: First, it contains large self-interaction errors. These can be reduced if hybrid
functionals are used instead. Hartree-Fock on the other hand is self-interaction free, but com-
pletely neglects correlation ects and thereby overshoots gaps. Secondly, density functional
theory su ers in general from the so-called band gap problem. Here, the band gap is de ned as
the di erence between Kohn-Sham energies at the conduction band minimum and the valence
band maximum, which is not equal to the fundamental or quasiparticle band gap. Enerdie
is given by the derivative discontinuity,. [4].

Of special interest is therefore a comparison with the GLLBSC potentigl [36, 37], which is
non-local and allows for the calculation of.. With only slight additional computational ert,
it cures some of the main de ciencies of DFT.

Investigation of the quasiparticle bandstructure illustrates that the maict ®f the GW

33



CHAPTER 3. SOLIDS

approximation lies in an almost constant shift of the occupied and unoccupied bands, similar to
the application of a scissors operator.

Following is a GW, study of gold as one example of a metallic system, where the band-
structure is eected in an inhomogeneous way.

Furthermore, the GW method is applied to a series of layered perovskites, which are poten-
tial new candidates for photocatalytic water splitting. In order for a semiconductor to be capable
of converting sunlight into electrical energy, one requirement is that its electronic band gap lies
within a certain energy window. Theg®/, calculations help to con rm results from a vast
screening study, performed with the GLLBSC potential. In this waygiency and accuracy
can be combined in the search for new materials.

Finally, a comparison of calculated band gaps wigWg, GLLBSC and the hybrid func-
tional HSEOG6 is made for 20 randomly chosen materials witledint geometry and chemical
properties, for which no experimental data is available, providing an estimate of the accuracy
of the di erent methods.
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Figure 3.1: Calculated vs. experimental band gaps for Ne, Ar, LiF, MgO, AIN, BN, C, NiO, ZnS, ZnO,
GaN, AlIP, CdS, SiC, GaAs, Si and Ge (from right to left in descending order). Data taken fronm Refs. [38]
and [39].

3.1 Semiconductors and insulators

3.1.1 Band gaps

The GW approximation is a trusb-initio method and therefore universally applicable for elec-
tronic structure calculations. This is in contrast to DFT, in which a thoughtful choice of the
functional has to be made, depending on the kind of system and the properties one is inter-
ested in. Most functionals are designed to meet special requirements, often by tting them to
experimental data of a test set. This leaves them with a big uncertainty when applied to new
materials and errors are often hard to estimate. On the other hand, the GW approximation is
based on fundamental physical observations. As pointed out i Séc. 1.4, its validity is well
justi ed for weakly correlated systems, in which correlation is dominated by screeniegi®
Screening is expected to play a particularly large role for systems with a small band gap, while
it diminishes for large gaps. Therefore, GW acts as an intermediate between many of the DFT
functionals, which overestimate screening and thereby underestimate band gaps, and Hartree-
Fock theory, which does not contain screening at all. HF band gaps are typically found to be
much too large. An interesting alternative is given by the hybrid functionals, in which a fraction

of the DFT exchange is replaced by exact exchange and which thus balance between the two
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Table 3.1: Crystal structures for the ten semiconductors and insulators studied.

structure lattice constant in A
Si diamond 5.431
InP zincblende 5.869
GaAs zincblende 5.650
AlP zincblende 5.451
Zn0O zincblende 4,580
ZnS zincblende 5.420
C diamond 3.567
BN zincblende 3.615
MgO rocksalt 4.212
LiF rocksalt 4.024

Figure 3.2: Convergence of the direct QP band gap of diamond with respect to (a) plane wave cuto
energy and number of bands fora (9 9) k-point sampling and (b) number kfpoints for 200 bands.

opposites. Typical results from literature are shown in[Fig. 3.1 for Hartree-Fock, the local den-
sity approximation (LDA), the generalized gradient approximation PBE functional by Perdew,
Burke and Ernzerhof [40], the range-seperated hybrid HSE functional by Heyd, Scuseria and

Ernzerhof([41] and @No@PBE. They clearly illustrate the above mentioned problems of DFT
and HF.

As a rsttest application for the GW implementation in GPAW, tenelient semiconductors
and insulators with band gaps ranging from 1 to 15eV of both direct and indirect nature have
been chosen. Their geometric structures are listed in TaBle 3.1. For the groundstate calculations
and evaluation of the exact exchange contributions, a plane wave basis set with a kinetic energy
up to 800eV was used. All GW calculations were performed with LDA wavefunctions and
eigenvalues as starting point, that mea¥g@LDA. Convergence with respect kopoints,
plane wave cuto energy and number of bands was checked for all systems individually. This
is shown for the direct band gap of C as one example in[Figj. 3.2. For all systems, convergence
within around 20 meV is reached f&i,; = 200 300eV and a few hundred empty bands. A
k-point sampling of (9 9 9) was found su cient for InP, GaAs, ZnO, ZnS, MgO and LIF,
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CHAPTER 3. SOLIDS

Figure 3.3: Calculated band gaps for the @irent methods described in the text

which all have a direct band gap at thegoint, whereas (1515 15)k points were used for Si,

AIP, C, BN, which have an indirect band gap. The repoint sampling also ensures a good
resolution of the bandstructure to determine the valence band maximum and conduction band
minimum.

A frequency grid with typically 1000 to 3000 grid points was used for the full frequency
dependent method. The broadening parameteas set to @ eV in the Plasmon Pole approx-
imation and 10*eV in the static COHSEX approximation.

Additional calculations were done with non-selfconsistent HF from LDA orbitals and ener-
gies and with PBEO, a hybrid method based on the PBE functional, in whabf the PBE ex-
change contributions are non-selfconsistently replaced by exact exchange. Further comparisons
were made with self-consistent GLLBSC calculatidng [37], which use the PBEsol correlation
potential [42] and an ecient orbital-dependent approximation to the exact exchange optimized
e ective potential/[43].

The calculated band gaps are summarized in Table 3.2 anfl Fig. 3.3 and compared to ex-
perimental reference data. In all cases, LDA drastically underestimates the band gap by up to
a factor of 4, as for GaAs. It performs poorly for both the systems with low and with large
gaps with a mean absolute error (MAE) of 2 eV and a mean relative error (MRE) of around 50
%. Even larger errors are found for Hartree-Fock withé/ (180 %) on average. The highest
deviations occur for Si, InP and GaAs. Screening is particularly important in these systems with
small gaps. The relative error decreases from 350 % for Si to 50 % for LiF. The results for PBEO
lie inbetween these two extremes, as expected for a hybrid method. Quantitative agreement,
however, is still poor, in particular for systems with small band gaps. The static COHSEX ap-
proximation seems to give a slight improvement over LDA withdV MAE. However, some
results are even qualitatively wrong. For example, it predicts indirect band gaps for InP and
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Table 3.3: Comparison of @WNg band gaps. Details about methodologicalatiences are described in
the text.

present Ref. [39] Ref. [45] experiment

Si 1.13 1.12 0.90 1.17
InP 1.36 . 1.25 1.42
GaAs 1.75 1.30 1.31 1.52
AIP 2.42 2.44 2.15 2.45
ZnO 2.24 2.12 ) 3.44
ZnS 3.32 3.29 3.24 3.91
C 5.66 5.50 5.49 5.48
BN 6.34 6.10 . 6.25
MgO 7.61 7.25 6.77 7.83
LIF 13.84 13.27 . 14.20
MAE 0.31 0.43 0.38

GaAs, whereas ZnO becomes almost metallic. Also for ZnS, the gap is even smaller than with
LDA. This means that the inclusion of only static screening is clearly irsent. On the other
hand, GW, results are in very good agreement with experiment when dynamical screening is
taken into account, both with PPA and full frequency dependence with mean erro85e\0

(9,5 %) and B1eV (8,6 %), respectively. For all systems studied, the PPA turns out to be an
excellent approximation to the frequency dependence of the dielectric function with obtained
band gaps deviating by.®DeV at most for LiF.

Table[3.B shows a comparison with two similar GW studies. In Ref. [39], the full frequency-
dependent @V, was used with PBE wavefunctions and eigenvalues as starting point. The
implementations are to a large extent similar. Oneedence worth mentioning is the inclu-
sion of core-valence interaction in the exchange pari [23], which is not present in this work.
The results agree very well with an average absolute deviatiom2dfeY. The only notable
di erences are for GaAs and the two materials with the widest gaps, MgO and LiF, probably
due to the choice of a derent starting point. The band gaps of Ref.| [45] were obtained with
full frequency-dependent 8V @LDA and are systematically smaller by3Q eV on average.

That implementation uses a mixed basis set in an all-electron lineamnatin orbital frame-

work, which is fundamentally dierent from the PAW method. Better quantitative agreement
can therefore not be expected. Other recent works [46—48] report band gaps in the same range
as the values presented here.

Overall, the @W, approximation gives very good band gaps for most of the semiconduc-
tors and insulators in this study. Noticeable deviations from the experimental values are only
found for LiF and ZnO where the calculated gaps are abeutdd 12 eV too small, respec-
tively. For LiF, results are very sensitive to changes in the lattice constant. A slightly smaller
lattice constant of 872 A, which is the experimental value corrected for zero-point anharmonic
expansion eects [49], yields a @ eV larger band gap.

The quasiparticle band gap of ZnO has been intensively discussed in literature. Calculated
GoW) are typically 1 eV too low [50-53], both in the zincblende and the wurtzite structure. The
results presented here are for the zincblende structure only, although this phase is not found to be
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Figure 3.4: Convergence of the band gap of zinc oxide feifp@LDA with the plasmon pole approx-
imation. The number of bands is chosen equally to the number of plane waves corresponding to the
respective cuto energy, i. e. 300 eV equal 1100 plane waves and bands.

stable in experiment [54]. It was chosen for consistency with Ref. [39]. Additional calculations
for the wurtzite structure gave around onll @V smaller gaps, both with LDA, §V,@LDA

and GLLBSC. Thus, all conclusions made here are expected to hold for the wurtzite structure
as well. In Refs.[[55] and [56], the low value of the QP band gap was attributed to a very
slow convergence of the self-energy with respect to the number of bands.| Ref. [55] nds a
converged band gap of8eV for 3000 bands using pseudo-potentials, whereas the all-electron
calculations of Ref.[[56] yield only :29 eV after extrapolation to in nite number of bands.
Both studies used the LDA functional as starting point. In the present work, good convergence
is already reached fdE,; = 100eV and around 200 bands, as can be seen i Fig. 3.4. A
major technical dierence between the current implementation and the one of|Ref. [55] is the
model used for the Plasmon Pole approximation, namely the method by Godby and Needs in
contrast to the one by Hybertsen and Loui€g [35]. The latter ts the model dielelectric function
only to the static limit, but requires Johnsorfssum rule [57] to be ful lled. However, as
pointed out in Ref. [58], this can lead to a wrong convergence behavior and too large band gaps
for ZnO as compared to evaluating the frequency dependence explicitely. This is consistent
with the results presented here, where the PPA reproduces the results from the full frequency-
dependent method. The calculations in Ref| [56] in a full-potential linearized augmented-plane-
wave method on the other hand depend strongly on the special set of basis functions chosen.
In Ref. [59], an e ective-energy technique was applied, which avoids the summations over an
in principle in nite number of empty states. In this way, a band gap:662V was obtained.

The drastic underestimation of the band gap of ZnO thus seems to be a systemtatic error of
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GoWy on top of LDA or GGA. In Ref. [[60], this was explained by a wrong positioning of

the d-bands. With an onsite DFIU correction, a band gap of3® eV was found, in very

good agreement with experiment. Good results were also achieved using HSE as starting point,
yielding 322 eV [60] and 3L4 eV [61] and eigenvalue self-consistent GW calculations with
3:20eV [39].

The orbital-dependent GLLBSC potential gives overall good band gaps with a mean aver-
age error of @1 eV compared to experiments and close to the GW results for most systems.
Only for GaAs, the band gap is found considerably lower, while it is too large for MgO and LiF.
As with GW, the band gap of ZnO is underestimated by more than 1eV. In all GLLBSC cal-
culations, the derivative discontinuity is added explicitely to the eigenvalues of the unoccupied
bands. This shift is around 50 % of the Kohn-Sham band gap for the investigated structures and
has therefore an essential impact on the bandstructure.

3.1.2 Bandstructures

The bandstructure of diamond is shown in Fig] 3.5 (a) for LDA agVg@LDA. With both
methods, the valence band maximum is at thmint and the conduction band minimum close
to the X point along the -X direction giving an indirect band gap ofl2 eV and %6eV,
respectively. With the GW approximation, the valence bands are shifted down in energy by
around 07 eV. The opposite holds for the conduction bands, which are shifted up in energy by
roughly the same value. Thus, theeet of the GW self-energy is an opening of the band gap.
These shifts are almost constant across the whole Brillouin zone, leaving the shape of the bands
unchanged. This is comparable to applying a scissors operator.

The same holds for Si, as shown in Hig.|3.5 (b), with a constant downshift of the occupied
bands of around:B eV, and a constant upshift of the unoccupied bands of arol3 e\ This
leads to an increase of the indirect band gap, which is located betweendhd a point close
to X.

For GaAs, as shown in Fi§. 3.5 (c), the maineet of the GW approximation can be seen
in the conduction bands, whereas the valence bands remain nearly unchanged. Unlike for the
previous two examples, the shift of the unoccupied bands to higher energies is not entirely con-
stant but varies betweerddand 10 eV. The largest change occurs at thpoint, giving rise to
a signi cant increase of the direct band gap. Thereby, the calculagéd, Gap is exceptionally
high compared to experiment and previous studies.

Overall, for a number of simple semiconductors and insulators, the self-energy can be ap-
proximated by a simple scissors operator to correct the Kohn-Sham energy spectrum in an easy
and e cient way [62].

3.2 Metals

In noble metals, many-body correlationexts typically in uence the bandstructure in a non-
trivial way, which cannot be accounted for by a simple scissors operator. Self-energy corrections
are found to be band andpoint dependent and may not even be of the same sign among
occupied and unoccupied bands|[63]. A correct quasiparticle description is thus essential in
order to determine the electronic structure correctly, in particular the position and width of the
d bands and energies of interband transitions [64, 65].
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Figure 3.5: Bandstructure of (a) diamond, (b) Si and (c) GaAs, interpolated by splines from a@.5
15) k-point sampling. Bands are aligned to the respective LDA valence band maximum.
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Figure 3.6: Calculated bandstructure of fcc gold with LDA (black lines) anfig @ LDA with PPA (red
dots) and full frequency dependence (blue diamonds). The highest occupied bandsdhaher&cter,
whereas the lowest unoccupied band arises frap électrons. The Fermi level is set to 0.

Fig.[3.6 shows the Kohn-Sham and quasiparticle bandstructure of gold in the fcc structure
with a lattice constant of:879 A, obtained with the LDA functional and withy@/,@LDA,
respectively. Only 5 and 6sp states were considered for valence electrons. With the GW
approximation, thel-band width increases by up to5®V, since the upper bands are moved
up in energy while the lower bands are moved down. Larger deviations up to 1eV are found
for the low-lying s and the unoccupies p band. However, the ects are signi cantly smaller
when the full frequency dependent method is used instead of the Plasmon Pole approximation.
It is clear that the shifts in energy are not constant throughout the Brillouin zone but vary for
di erentk points and bands.

The e ect of including 5sp semicore states is shown in Fig.]3.7 with PBE wavefunctions
and eigenvalues as starting point. Chosing the PBE instead of the LDA functional does not
change the Kohn-Sham bandstructure. The semicore states, which lie around 50 eV deeper in
energy than the valence states, have no impact on the electronic structure around the Fermi level
within DFT. On the other hand, signi cant changes can be seen within the GW approximation,
in particular a downshift of the bands when the semicore states are included. These shifts
arise mainly from the exact exchange contributions.

These results agree well with the calculations of Refl [66] using pseudopotentials. In that
study, it was shown that QP self-consistent GW calculations are necessary in order to bring
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Figure 3.7: PBE (black lines) and §Wo@ PBE bandstructures without (green triangles) and with (purple
squares) inclusion of 5p semicore states. GW calculations were performed with the Plasmon Pole
approximation.

the position of thed bands in better quantitative agreement with experiments. Also, spin-orbit
coupling and relativistic eects should be considered.

3.3 Perovskites

Perovskites are a group of structures of the same kind as Gaiii® the general chemical
formula ABX3, where A and B is a large and a small cation, respectively. X is an anion, com-
monly oxygen, nitrogen or halogens. In extensive screening studies, new potential candidates
for one- and two-photon water-splitting could be identi ed among 19.000 oxides, oxynitrides,
oxysul des, oxy uorides and oxy uoronitrides in the cubic perovskite structure [67, 68]. One
important requirement for a material to be a good photocatalyst, that means to be able to con-
vert sunlight into chemical energy, is that the electronic band gap lies within the visible light
range and is well positioned with respect to the redox potential of water. For the one-photon
water-splitting process, this implies a gap betwedndnd 3 eV with a valence band edge above
1:23 eV and a conduction band edge below 0 eV. Furthermore, high charge carrier mobility and
chemical and structural stability are needed. In these studies, the GLLBSC potential was used
for the calculation of the electronic bandstructure, after being tested on a set of 40 metal oxides
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Figure 3.8: Convergence of the band gap of LatXDfor GoWo@LDA in the plasmon pole approxima-
tion with respect to the plane wave cutenergy and number of bands, which is varied with the number
of plane waves corresponding Egy.

Figure 3.9: Calculated band gaps for 20 cubic perovskites. GLLBSC results are shown with and without
explicit addition of the derivative discontinuityc.
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for which a good overall agreement with experimental data was found [67].

In order to further assess the reliability of this method, additional GW calculations were per-
formed for 20 cubic perovskites for which the desired electronic properties had been predicted
by GLLBSC. Throughout the study, a (77 7) k-point sampling, 150 eV plane wave cuto
energy and 150 bands have been used. A careful examination of the convergence of the band
gap was done for LaTiéN as one example and is illustrated in Fig]3.8. The chosen parameters
gave a good balance betweenaency and accuracy. Furthermore, the PPA was compared to
the full frequency dependent method for this system, giving almost identical values for the band
gap. Since the number of atoms and the symmetry group are identical for all structures, the
same set of parameters was used consistently. Also, the number of valence electrons is similar
in all cases. The expected accuracy is aroudeV.

Fig.[3.9 shows the calculated band gaps from LDA, PBEQWgand GLLBSC, respec-
tively. GLLBSC results are shown with and without the derivative discontinuify, added to
the Kohn-Sham gap. In all cases, increases the gap by around 30 % and gives therefore an
essential contribution to the total gap. The total gaps from GLLBSC agree well with the quasi-
particle gaps from @V, with a mean average error 0f3V. In comparison, the PBEO results
deviate much stronger and are considerably higher in some cases. LDA gaps are drastically
lower, indicating a very poor description of the electronic structure for all systems in this study.

In conclusion, the results suggest that the GLLBSC potential can provide a cheap way to de-
termine electronic band gaps of novel materials, that are possible candidates for photocatalytic
water splitting, with much better accuracy than convential functionals. TN®,@pproxima-
tion as a much more advanced method, on the other hand, is orders of magnitude slower and
can therefore not be used for screening purposes. It can, however, help to con rm the outcomes
of GLLBSC calculations for systems which seem especially promising.

3.4 The Materials Project database

The Materials Project database [69] contains results from computational studies of the elec-
tronic structure of materials from the ICSD database [70], which is the most complete repository
for experimental data of crystal structures. It serves as a complementary source of information
for materials, where no or only inswcient experimental results for the electronic structure is
available and helps to analyse and compare theoretical ndings. High-throughput materials de-
sign has become feasible in the last decade due to the rapid increase in computational resources.
However, this is still out of reach for many-body methods like the GW approximation and there-
fore, cheaper methods have to be used instead, generally at the cost of reduced accuracy.

Here, the electronic structure of 20 randomly chosen compounds from the Materials Project
database is calculated with)®&,@LDA and compared to LDA, GLLBSC and HSEOQ6, a range-
separated hybrid functional [[/1,72].

Quasiparticle gaps were obtained in th@\s approximation in a plane wave representation
using LDA wavefunctions and eigenvalues as input. The initial Kohn-Sham states and energies
have been calculated in a plane wave basis with kinetic energies up to 600 eV. The same value is
used for determining the exact exchange contributions. The GW self-energy has been carefully
converged with respect to points, number of bands and plane wave cuémergy for each
material individually. Typically, a (7 7 7) k-point sampling, 100 - 200 eV energy cuto
and unoccupied bands up to the same energy (a few hundred bands in total) were found to
be su cient in order to converge band gaps within less thdre®. Both, the Plasmon Pole
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Figure 3.10: point band gaps for 20 structures from the Materials Project database. The results shown
for GoWp were obtained with the full frequency dependent method.

Table 3.4: Mean absolute errors in eV of thepoint band gap of the materials from Fig. 3.10 for the
di erent methods compared to each other.

GLLBSC GWo

LDA PBE w/o . incl. . @LDA HSEO6
LDA . 0.15 1.07 2.13 1.56 1.43
PBE 0.15 . 0.93 1.98 1.41 1.28
GLLBSC WO 1.07 0.93 . 1.01 0.56 0.53
GLLBSCincl. 2.13 1.98 1.01 . 0.75 0.86
GoWo@LDA 1.56 1.41 0.56 0.75 . 0.34
HSEO6 1.43 1.28 0.53 0.86 0.34
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Table 3.5: Mean relative errors of the-point band gap of the materials from Fig. 3.10 for theetent
methods compared to each other.

GLLBSC GWo
LDA PBE w/o . incl. . @LDA HSEO6
LDA . 0.09 0.35 0.51 0.43 0.43
PBE 0.10 . 0.30 0.47 0.38 0.38
GLLBSC WO 0.67 0.50 . 0.25 0.15 0.16
GLLBSCincl. 1.26 1.02 0.34 . 0.23 0.26
GoWo@LDA 0.88 0.69 0.18 0.17 . 0.08
HSEO6 0.90 0.71 0.21 0.19 0.08

approximation and the explicit frequency dependence of the dielectric funcflop have been
used, yielding almost identical results (within 50 meV) for all materials, except forNalere
the full frequency dependent method gives &8 eV lower point gap.

For all materials in this study, comparison between thedint methods is shown by means
of the direct -point gap, in order to avoid the need for interpolation of the bandstructure in
case that the minimum of the conduction band is not located at a high symmetry point in the
Brillouin zone. The results are illustrated in Hig. 3.10. Mean absolute and mean relative errors
for all methods compared to each other are given in[Tab. 3.4 ahd 3.5, respectively. A very good
agreement is found between\8, and HSEO6 with a mean absolute error 33eV and a
mean relative error of:08. Typically, HSE06 underestimates band gaps of semiconductors and
insulators|[72] as it is also the case witlh\&@LDA (see previous sections). In comparison,
the GLLBSC results are much larger on average when the derivative discontinuity is included,
while the agreement with HSEO06 ang\@, is reasonably well when,. is not added to shift the
unoccupied bands. Since GLLBSC . often overestimates band gaps|[67], the right values
are expected to lie somewhere in between.

The bandstructures of Zg&nd BaHfN are shown as two examples in Figs. 3.11 [and]|3.12.
For ZrS, no considerable derences in the two highest valence and the two lowest conduction
bands can be seen for GLLBSCg\@,@LDA and HSEO06 and the band gap at theoint is
thus almost the same with all three methods. This is clearlgréint for BaHfN: While the
valence bands are similar, large deviations are found for the conduction bands. Throughout the
Brillouin zone, the position of the second unoccupied band ected much stronger by the
di erent methods than the position of the rst one. In particular, the order of bands is reversed
atthe point for GWy compared to GLLBSC, while they are almost degenerate for HSEOG.

In the GLLBSC method, the derivative discontinuity,, is added as as constant shift to
all unoccupied bands. As illustrated for BaHfNhis might result obviously in a de cient
description of the conduction states. This might be one reason for the large discrepancies of
calculated gaps for many materials of this study.
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Figure 3.11: Bandstructure of Zr§ Bands have been aligned to the respective valence band maxima.

Figure 3.12: Bandstructure of BaHf) Bands have been aligned to the respective valence band maxima.
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CHAPTER4

2D MATERIALS

2-dimensional (2D) materials are characterized by non-periodicity in one of the spatial direc-
tions. This includes not only at monolayers, but also surfaces and interfaces, for example. The
physics in these systems is often completelyedent than in 3 dimensions.

Dynamical screening plays a particularly important role at interfaces between semiconduc-
tors, where changes in the charge density lead to the formation of an interface (dipole [73], and
between metals and an insulators, where it takes the form of an image chage®!| 75].

One model system for studying the impact of screening and exploiting the advantages of
the GW approximation over DFT is graphénexagonal-boron nitriden{BN). Recently, it has
been shown thadt-BN serves as an ideal substrate for graphene, due to its great stability, low
roughness and high charge carrier mobility|[76]. Furthermore, these and similar graphene-
based 2D heterostructures have opened up new possibilities for the design of novel electronic
and photonic devices with unique physical properties|[77-80].

In this chapter, rst the Kohn-Sham and quasiparticle bandstructures of freestanding sheets
of graphene andh-BN are discussed. Compared to LDAg\®, increases the Fermi veloc-
ity and the band gap, respectively. For boron nitride adsorbed on graphene, screestty e
are illustrated by varying the distance between the two slabs and by changing the number of
graphene layers. As a technical aspect, it is shown that truncating the Coulomb interaction in
the perpendicular direction is crucial for GW calculations of 2-dimensional systems.

Another 2D material, which has gained much attention in the past years is single layer
MoS, [81-+84]. Whereas strong photoluminescence suggests a direct band gap in experiment,
there is disagreement even on the type of gap in theory and among various GW studies, in
particular. Here, a very careful analysis of the dependence of the quasiparticle gap on the cell
size and the number &fpoints in GW, calculations is given. The results explain why previous
studies found reasonable band gaps, even though a Coulomb truncation had been neglected in
the calculations. The fully converged\®,@LDA band gap is indirect with a value of38 eV
when the experimental lattice constant is used. Applying strain leads to a transition to a direct

gap.
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Figure 4.1: Convergence of the directg®/y band gap of a freestandifgBN sheet with respect to

(a) plane wave cutoenergy and corresponding number of bands and (b) interlayer separation with and
without truncating the Coulomb interaction in the direction perpendicular to the slab. Dashed lines are for
a (15 15 1)and straightlines for a (4545 1)k-point sampling. The interlayer separation is de ned

as the distance between the centers of the slabs in neighboring supercells. Even much higher interlayer
distances than the ones shown here would be required for the curve with the untruncated interaction to
reach the results obtained with the Coulomb truncation.

4.1 Graphene/ hexagonal-boron nitride

Graphene and hexagonal-boron nitride both form perfectly at honeycomb structures with very
similar lattice constants, which in these studies is set to the experimental valbeBfdrof

2:503 A [85] for both materials. In addition to the parameters discussed in the previous chapters
for bulk structures, GW results need to be converged with respect to the cell size for two-
dimensional materials, which de nes the distance between layers in neighboring supercells.
For h-BN, the convergence behaviour of the direct band gap at the K point, calculated with
GoWo@LDA, as a function of the plane wave cut@nergy and the interlayer separation is
shown in Fig[ 4.]L. For the untruncated(1Linteraction, a numerical integration around egch

point has been used for the head of the screened potential:
Z

Woo(q) = =l da®V(q%) o(a°)
a9 7
= @ deV(a) (4.1)
q
where 4 is a small volume around.

Without truncating the Coulomb interaction, the value of the band gap depends strongly on
the separation and increases drastically between 5 and 15A. And even for 30A, it is far from
being converged. Using a truncation of the Coulomb potential, as described jn Sgc. 2.1.5, corre-
sponds to extending the interlayer separation to in nity, and thus makes the calculations largely
independent of the cell size. This results in, that with the truncation, convergence is already
reached for a separation of 20 A. The calculated gap is signi cantly higher than without use of
the truncation, even for very large separations. The very slow convergence of the quasiparticle
gap and the necessity of correcting for the spurious long-range interaction in periodic supercell
calculations for slabs and surfaces has previously been discussed in Refs| [86—88]. From Fig.
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Figure 4.2: Bandstructure of graphene. The zero of energy is set to the Fermi level. Not shown are the
results with GLLBSC since they lie almost completely on top of LDA.

4.7 (a), one can see that the use of the Coulomb truncation doesewuitthe convergence with
respect to the plane wave energy cusmd number of bands, which again is in all calculations
set equal to the number of plane waves accordinggtg other than by a constant shift. This

is not the case for thk-point dependence (see Fjg.]4.1 (b)). A more detailed discussion of
the convergence of the band gap of a 2D material with respect toploent sampling and the
interlayer separation with and without truncating the Coulomb interaction will be given in the
next section.

All further calculations are performed with 30 A interlayer separation (unless otherwise
stated), Coulomb truncation and (4%5 1) k-point sampling. The bandstructure of a free-
standing graphene sheet is plotted in 4.2. The typical Dirac cone can be seen at the K point.
LDA and GLLBSC yield almost identical curves, whereagNg a ects in particular strongly
the slope of the valence and conduction band at the Fermi level. This gives a large reduction of
the Fermi velocity, which can be derived as:

Ve = a E.
FT2h K
wherea s the lattice constanh, = 4:1357 10 *®eVs andk given in units of the reciprocal lattice

vectors. The calculated values ar80 10° m= (LDA), 0:87 10° m%(GLLBSC) and 117 10° m=
(GoWo@LDA), respectively. The latter is in excellent agreement with corresponding results

(4.2)
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Figure 4.3: Bandstructure ofi-BN, aligned to the top of the LDA valence band.

from previous calculations [89, 00] and state-of-the-art experiments [91].

For h-BN, the calculated valence band maximum lies with all three methods at the K point,
as shown in Fig. 4]3. However, LDA and GLLBSC predict a direct band gap53feV and
7:94 eV, respectively, whereas an indirect gap:68&V is found with QW @LDA. The direct
transition at the K point is:37eV. This is a result of a very inhomogeneous shift of the
conduction bands in particular, which are moved up in energy by around 3 eV at the K point,
but only by around B eV at the point, compared to LDA. For GLLBSC, the ect is opposite
with a larger upshift at the point. In a previous study [92],:87 and 60 eV were obtained
within the GW, approximation for the lowest indirect and direct quasiparticle gap, respectively.
These calculations were, however, performed for an interlayer separation of 0Bl &8d
with a low k-point sampling. According to Fif. 4.1 (b), these parameters are not converged and
the direct band gap is therefore around 1 eV too low.

Three di erent possibilites of stacking orffeBN and one graphene layer on top of each
other are sketched in Fig. 4.4. Geometry optimization using the LDA functional yields the en-
ergetically most favorable structure to be con guration (c) with a distanceld A8 between
the layers, which agrees well with Ref. [93]. For this geometry, the Kohn-Sham and quasiparti-
cle bandstructures are shown in KHig.]4.5. Thestient bands originating from either one of the
two isolated layers can easily be identi ed: The highest valence and lowest conduction band
still exhibit the linear dispersion at the K point typical for graphene. However, both with LDA,
GLLBSC and GW,, a small gap of around 50 meV is introduced, which is consistent with
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(@ (b) (c)

Figure 4.4: Di erent geometric structures for a graphegagonal-boron nitride heterostructure. (a)

The hexagons are placed on top of each other. (b) The N atom is placed on top of one C atom, while the
B atom is centered above a graphene hexagon. (c) The B atom is placed on top of one C atom, while
the N atom is centered above a graphene hexagon. A perspective view is chosen for clarity. Both lattices
have the same size with a lattice constant:603 A and are separated byl8 A.

Figure 4.5: Bandstructure of graphefteBN in the con guration (c) of Fig for the equilibrium
distanced = 3:18 A,

55



CHAPTER 4. 2D MATERIALS

Figure 4.6: h-BN gap at the K point as function of the distance to the graphene sheetl For |, it
approaches the value of the freestandiFi§N monolayer, as indicated by a dashed horizontal line. The
blue dashed line is a t of the §\, results to a function 1=d. A cell height of 60 A was used.

Figure 4.7: h-BN band gap at the K point for derent numbers of adsorbed graphene layers. GLLBSC
results are shown without and with explicit inclusion of the derivative discontinuity,which becomes
0 when one or more graphene layers are present. A cell height of 60 A was used.

previous calculations [93, 94]. Furthermore, the Fermi velocity is reduce¥& 0 (LDA),

0:78 10° (GLLBSC) and 101 10 ms (GoW,@LDA), respectively. This decrease is expected
when graphene is adsorbed on a substrate due to an increase of the dielectric sdreening [95].
The second highest occupied and unoccupied bands can be attributed to the boron nitride sheet.
Especially with LDA, these bands hardly change, compared to the isolated layer, kvBiNa

gap at the K point of 67 eV. With GW,, on the other hand, this gap decreases:8»6V.

With GLLBSC, this value is B4 eV. These observations imply that, although there is no direct
coupling between the layers, the electronic structure ected considerably by long-ranged
screening eects, which are not accounted for by a local potential.

This is further demonstrated in Fig. 4.6, where the distance between the graphene and the
boron nitride sheet is varied. The value of i8N gap, which is de ned as the transition
energy between the second highest valence and the second lowest conduction band at the K
point, remains almost constant with LDA and GLLBSC. Only for a very small distance, a
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slight deviation is seen. This might be due to the formation of a chemical bond. For distances
larger than 4 A, the calculated gaps are the same as for the freestanding boron nitride, which
indicates that screening is not described correctly within these methods. In contrast, the GW
gap increases monotoneously with the distance between the layers and slowly approaches the
value for a singlen-BN sheet. Above 4 A, this behaviour can be described by a function that

is inversely proportional td, which is expected within a simple picture of nonlocal screening.

A classical image charge model predicts = Hependence for the band gap reduction in a
metalsemiconductor heterojunction [74,75].

Another way of tuning the screening inheBN/graphene heterojunction is to change the
number of graphene layers on which the boron nitride sheet is adsorbed. This is demonstrated
in Fig.[4.7. Again, thér-BN gap is constant within LDA and GLLBSC. For the latter, however,
there is a jump in the size of the gap when going from O (freestanding boron nitride) to 1
graphene layer, when the derivative discontinuity, is explicitely included. This is simply
because ,. vanishes for metallic systems, as it is the case when one or more graphene layers
are present. With §W,, the gap decreases by 1 eV, when adding one layer of graphene and by
another @15 eV, when adding the second layer. This can be understood in the way that a thicker
metal substrate enhances the screening which leads to a reduction of the gap. For more than two
graphene layers, the GW gap does not change any further. This would presumably correspond
to a system with a single boron nitride sheet adsorbed on bulk graphite.

4.2 Molybdenum disul de

The quasiparticle bandstructure of monolayer molybdenum disul de @yilb&s been studied
intensively in literature over the past few years, both with one-shot and self-consistent GW
methods. However, there remains ambiguity on the size and even on the type of the band gap.
Reported values lie in the range fron62to 3 eV and both direct and indirect gaps have been
found with GW,. A summary is given in Table 4.1 and will be discussed in detail at the end of
this section.

Throughout the present study, thednd 4p semicore states of molybdenum were included.
LDA and exact exchange calculations were done in a plane wave basis with kinetic energies up
to 400eV. A plane wave cutoenergy of 50 eV and 200 bands were used for the calculation
of the dielectric function and the GW self-energy, which was foundg@ent to converge band
gaps to within 10 meV. Results shown here were all obtained within the Plasmon Pole approxi-
mation. Quasiparticle energies calculated with the full frequency dependent metleoddiby
only around QL eV.

First, the bandstructure is presented in 4.8 for the experimental lattice constant for bulk
MoS; of 3:16 A. The LDA band gap is direct at the K point with a value ofleV. A second
minimum in the conduction band lies along the direction, yielding a smallest indirect gap
of 1:.83eV. This order is changed fory®&,@LDA which gives 277 and 258 eV for the direct
and indirect transition energies, respectively.

When comparing these values to previous results, one has to consider that the gaps depend
strongly on the number dfpoints, the interlayer distanck, as de ned in Fig[ 4.9, and whether
or not a truncation scheme for the Coulomb interaction is applied. This is shown in Fip. 4.10.
Following conclusions can be drawn:

For the X interaction, enlargind. leads to a strong increase of the gaps.
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Table 4.1: Calculated GWq band gaps, used parameters and comparison with literature.

_m@mv Am<v
Ref. starting point a(A) number ofk points layer separation (A) direct indirect
This work LDA 3.16 45 45 1 23 (truncated/) 2.77 2.58
This work LDA 3.19 45 45 1 23 (truncated/) 2.65 2.57
This work LDA 3.255 45 45 1 23 (truncated/) 2.41 2.51
Ref. [96] LDA 3.15 18 18 1 24 2.41 2.40
Ref. [97] PBE 3.16 12 12 1 19 2.60 2.49
Ref. [97] PBE 3.19 12 12 1 19 2.50 2.55
Ref. [97] PBE 3.255 12 12 1 19 2.19 2.19
Ref. [98] LDA 3.16 8 8 2 19 2.96 -
Ref. [99] PBE 3.18 12 12 1 20+1=L extrapolation 2.97 3.26
Ref. [99] PBE 3.18 12 12 1 20 2.60 2.85
Ref. [100] LDA 3.11 12 12 1 13 2.57 -
Ref. [101] HSE 3.18 6 6 1 15 2.82 3.00
Ref. [102] PBE 3.19 15 15 1 15 2.66 -
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4.2. MOLYBDENUM DISULFIDE

Figure 4.8: Bandstructure of monolayer Me®btained from a (45 45 1) k-point sampling, 23 A
interlayer separation and use of the truncated Coulomb interaction. The top of the valence band has been
setto 0.

For the truncated interaction, an increase of the numbérpuints gives a signi cant
reduction of the gaps.

Since applying the truncation correspondd.td 1 , there exists a region, where these two

e ects cancel each other. This demonstrates that the interlayer separation kipabitiegrid

cannot be regarded as independent parameters. The interplay becomes clear fiom|Fig. 4.11,
where the direct band gap is shown as a function of the interlayer separationéoglk-point
samplings. The inverse plot allows for extrapolation of the data to in hitd he extrapolated
values are expected to converge towards the results obtained with truncation of the Coulomb
interaction. Without the truncation, convergence of the gap with respect to either the number of
k points or the layer separation alone gives wrong values. Witt9(91) k points, for example,

the direct band gap goes to/®V forL ! 1 , which is around 1 eV too large. In contrast, a
calculation withL = 23 A and 21k points in the in-plane directions seems well converged, but
the obtained gap is too small. Due to these two errors, which are efelit sign, the evaluated
guasiparticle gaps are identical for érent sets of parameters. This is where the curves cross
the dashed horizontal lines. For example yield @ 1)k points and. = 23Aor (15 15 1)

k points andL = 33 A the same result of:27 eV as (45 45 1)k points and in nite layer
separation. Fid. 4.12 shows all calculated results and interpolated values in a contour plot as a
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CHAPTER 4. 2D MATERIALS

Figure 4.9: De nition of interlayer separatioth. for monolayer Mo$ in a periodic supercell.

Figure 4.10: Direct (straight lines) and indirect (dashed linegW%& band gap of monolayer MoSas
function of (a) interlayer separation forkgpoint sampling of (15 15 1) and (b) number ok points
(in one of the in-plane directions) far= 23 A.

function of I=L. and number ok points.

The band gaps reported in previous studies were all obtained witlk-loeint samplings,
small interlayer separations and without Coulomb truncation. All parameters and calculated
values are summarized in Taple}4.1. From the previous discussion of the convergence behaviour,
the rather good agreement between those results and this work seems coincidental. Furthermore,
almost all of these calculations were done with a sitkgdeint in thez direction (perpendicular
to the layer). For small unit cells, this is not saient in order to obtain converged results.
Additional calculations demonstrated that the gap size increases by ar@un@:8eV when 3
k points are used along tlreaxis forL = 13 A, for example.

Another important issue, one has to keep in mind when comparing the data, isetie e
of strain. As pointed out in Ref. [97], even a slight increase of the lattice constdefds to
signi cant changes in the electronic bandstructure. The present calculations predict a reduction
of the direct band gap by aroundl@V fora = 3:19 A, which corresponds to 1 % strain. The
indirect gap, on the other hand, is almost ueeted. For = 3:255 A, the direct gap is further
reduced, leading to a transition from an indirect to a direct band gap material.

60



4.2. MOLYBDENUM DISULFIDE

Figure 4.11: Direct Wy band gap of monolayer MeSor di erentk-point samplings and interlayer
separations without use of the truncated Coulomb interaction. Dotted lines serve as a guide for the eye
to extrapolate to in niteL. The dashed horizontal line indicate the values obtained with the truncated
Coulomb interaction. Also shown are results for 6:145 A, which corresponds to bulk MeS

All'in all, the careful examination of the dependence of the electronic structure on tae di
ent parameters, as presented in Fig.]4.11 and TaBle 4.1, shows that the current implementation
reproduces most of the results for the direct band gap reported in literature, given the same
set of parameters. The fact that they are in good agreement with the fully converged values is
mainly due to a fortunate cancellation of errors. For the experimental lattice constah6é¥,3
the GWo@LDA band gap is found to be indirect with a value of arourgle?/. Choosing the
PBE functional as starting point is not expected to give noticeable changes. On the other hand,
both partially self-consistent GWO97] and quasiparticle self-consistent GW[98] calculations
have yielded direct band gaps a3 2:80eV.

Experimentally, single-layered Mg@3s a direct gap semiconductor [83] with a band gap
of around 19 eV [82]. It is known that there are strong excitoniceets in this system, which
lead to the formation of bound electron-hole palirs| [96]. The experimentally measured value
corresponds then to the optical gap, which is smaller than the quasiparticle gap by the exciton
binding energy.
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Figure 4.12: Contour plot of the direct @Vo band gap as a function of the inverse interlayer distance
and number ok points in one of the in-plane directions with the fullrlinteraction. Contour lines are
separated by:Q eV. Interpolation from splines was used.
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CHAPTERD

MOLECULES

Molecules can be regarded as 0-dimensional systems, since their spatial extent is nite in all
directions. This means, that in all electronic structure codes which require periodic boundary
conditions, calculations have to be performed in siently large supercells in order to circum-
vent arti cial e ects from interactions between molecules in neighboring cells. The electronic
structure of nite systems consists of a discrete spectrum of well-seperated energy levels. This
would correspond to a completely at bandstructure, which can be restricted tegbmt only.
Instead of Bloch waves, the eigenfunctions are given as molecular orbitals.

The energy gap between the highest occupied molecular orbital (HOMO) and the lowest
unoccupied molecular orbital (LUMO) is typically on the size of several eV for an isolated
molecule in the gas phase. From a physicist's point of view, they are large gap insulators.
Screening is therefore expected to play a minor role and HF methods usually describe the elec-
tronic structure reasonably well. Most DFT functionals on the other hand, tend to underestimate
the gaps dramatically. Furthermore, unoccupied states are in principal not accessible with DFT,
and only the HOMO energy can be interpreted in a physically meaningful way as the negative
ionization potential (IP), given the correct functional [4].

Adsorbing a molecule on a metal surface leads to an alignment of the molecular orbitals
with respect to the Fermi energy of the metal and to a decrease of the HOMO-LUMO gap.
This is a direct consequence of dynamical screening and can therefore not be described with
DFT [103+106]. Instead, the correct physics is captured by GW as quasiparticle theory, which
enables quantitatively accurate modeling of electron transport in molecular junctions [107-111],
for example.

This chapter gives a discussion of the calculated IPs of 32 small molecuj#é; 18sults
are in much better agreement with experiment than various DFT based methods, but still around
0:5eV too low on average. This systematic deviation can be explained by a suboptimal choice
of the starting point, namely LDA. The problem of extreme slow convergence of the HOMO
energy with respect to the plane wave cuemergy and number of bands is resolved by applying
a simple extrapolation scheme. A detailed analysis of the frequency-dependence of the self-
energy illustrates the underlying physics.
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Finally, the frontier orbitals of benzenediamine are studied as a typical example for a struc-
ture used in molecular electronics.
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5.1. IONIZATION POTENTIALS

Figure 5.1: lonization potential of water as function of (a) the plane wave cwgnergy and (b) the
inverse plane wave cutoenergy for GWo@LDA. The dashed line in (b) shows a linear t of the data
points withE¢ > 100 eV (EEqy < 0:01eV ). Extrapolation to 0 eV! (in nite cuto energy) gives a
value of 121 eV.

5.1 lonization potentials

In order to study the performance of the implementation for nite systems, the quasiparticle
energies of 32 small molecules in the gas phase were calculated with)WHg &pproxima-

tion and compared to results from non-selfconsistent Hartree-Fock, LDA, PBEO and GLLBSC.
Their geometric structures were taken from the Atomic Simulation Environment database [112].
3:5 A of vacuum were added in each direction of the supercell. For all groundstate calculations,
plane waves with kinetic energies up to 400 eV were used as basis functions. In literature, linear
combinations of atomic orbitals (LCAQO) are usually preferred as basis functions for molecular
systems. In this way, even small basis sets are oftercgnt in order to describe the spatially
localized electronic states with good accuracy. With plane waves, this can only be achieved with
a very high number of basis functions. On the other hand, the size of the plane wave basis can
be increased freely for a systematic control over the quality of the basis, which is particularly
important for GW calculations. This is very dcult to assess with LCAO.

The GW,@LDA results for the ionization potential of a water molecule are shown in Fig.
(5.7 (a) for di erent values of the plane wave cutenergy used in the calculation of the GW self
energy. The exact exchange contributions were determined with a xed eutrgy of 400 eV.

In all cases, the number of bands in the calculationwhs chosen accordingly &, Even for

400 eV, which corresponds to more than 8000 plane waves and bands, the IP does not seem to
be fully converged. This extremely slow convergence behaviour has been observed previously
for a benzene molecule [113,114]. A data t to the linear functiorElRf = IP(1) A=E.y

allowed for extrapolation to in nite basis size. A similar scheme has been applied for the
valence band maximum in rutile T§J115]. As demonstrated in Fi§. 5.1 (b), a linear function

of 1=E.; ts the data points perfectly foE.,; > 100 eV. Its intersection with the y-axis gives

anIP of 121 eV.

This extrapolation scheme has been applied to all 32 molecules by a linear t of the calcu-
lated IPs for plane wave cutcenergies between 200 and 400 eV. Examples are shown in Fig.
[5.4. The Plasmon Pole approximation was used in all GW calculations presented here. Addi-
tional calculations were performed with the full frequency-dependent method for comparison.
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Figure 5.2: Calculated IPs with @Vo@LDA and linear tting of the data points with extrapolation to
in nite number of plane waves and bands(; = 0).

Deviations in the QP energies were smaller thanel¥.

All IPs obtained from extrapolation are listed in Taple|5.1, along with results from LDA,
non-selfconsistent HF on top of LDA, PBEO witilof PBE exchange replaced non-selfcon-
sistently by exact exchange and GLLBSC and compared to experimental data taken from Ref.
[116]. LDA and PBEO predict much too small values with mean absolute errors8card
3:5eV, respectively. Also GLLBSC underestimates IPs eV on average. This is not
surprising, since it is a method designed for calculating the electronic structure of solids. HF on
the other hand overestimates the IP for most molecules with a MAEL@&\L Best results are
found with the GW approximation, where the MAE is less thahdY. Still, many IPs are too
low and the mean signed error i9:3eV. This systematic error may be attributed to the use
of LDA wavefunctions as starting point, which are most likely a bad representation of the true
guasiparticle wavefunctions.

A comparison of the @V, results with previous studies on the same set of molecules is
shown in Fig.[5.4. The calculated IPs agree overall well with Ref.|[117], in which also LDA
wavefunctions and eigenvalues were used as starting point, but with a Gaussian basis set. The
values spread with a mean absolute error:82@V, but with similar magnitude for both pos-
itive and negative deviations, so that the mean signed error is 00Bed¥. In comparison
to the all-electron @NVo@PBE calculations of Ref. [118], in which numerical atomic orbitals
were used as basis set, a systematic deviation is found with a MABG6EY and a MSE of

66
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Figure 5.3: Calculated IPs for the 32 molecules listed in T 5.1 plotted against the experimental
values. The dashed line indicates equality.

Figure 5.4: Di erence in calculated IPs with respect to (a) Ref. [117] and (b) Ref| [118].
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Table 5.1: Theoretical IPs calculated with derent methods as described in the text. Experimental data
is given in the last column. All values are in eV. The last rows shows the mean absolute error and the
mean signed error with respect to experiment.

Molecule LDA HF@LDA PBEO GLLBSC G@Wo@LDA experiment
LiH 4.37 8.96 5.38 7.30 7.79 7.90

LiF 6.08 14.15 7.95 10.16 10.53 11.30
NacCl 4.74 10.00 5.95 6.94 8.72 9.80
CoO 8.72 14.61 10.15 12.51 13.48 14.01
CO, 8.75 14.69 10.09 11.93 13.05 13.78
CS 6.76 11.88 8.00 9.81 10.69 11.33
CoH, 6.81 11.21 7.79 9.41 11.22 11.49
CoH, 6.48 10.54 7.37 8.62 10.74 10.68
CH, 9.19 15.22 10.68 13.58 14.45 13.60
CH5CI 6.68 12.32 8.01 9.53 11.55 11.29
CH3;0OH 6.09 13.18 7.77 8.77 10.98 10.96
CH3SH 5.21 10.21 6.37 7.33 9.78 9.44
Cl, 6.53 11.67 7.77 9.12 10.93 11.49
CIF 7.38 13.46 8.85 10.54 12.14 12.77
F> 9.27 18.44 11.50 13.43 14.66 15.70
HOCI 6.20 12.39 7.68 8.72 10.78 11.12
HCI 7.56 12.86 8.87 10.96 12.28 12.74
H,O, 6.15 13.76 7.97 8.86 11.05 11.70
H,CO 5.98 12.64 7.58 8.44 10.64 10.88
HCN 8.64 13.35 9.72 11.89 13.27 13.61
HF 9.53 18.29 11.67 14.18 15.02 16.12
H,O 7.12 14.42 8.87 10.46 12.07 12.62
NH3 6.02 12.20 7.52 8.89 10.83 10.82
\PS 9.85 16.59 11.54 13.77 14.72 15.58
NoH,4 5.54 11.75 7.02 8.04 10.30 8.98
SH, 5.83 10.58 6.97 8.27 10.27 10.50
SO, 7.58 13.37 8.89 10.08 11.68 12.50
PH; 6.23 10.77 7.31 8.74 10.70 10.59
P> 6.17 9.38 6.93 8.80 9.70 10.62

SiH, 8.10 13.57 9.41 12.09 12.92 12.30
SibHg 6.82 11.30 7.84 9.15 11.04 10.53
SiO 6.97 12.24 8.21 9.53 10.70 11.49
MAE 4.84 1.11 3.46 1.83 0.56

MSE -4.84 0.99 -3.46 -1.83 -0.30
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0:30eV. These errors are expected regarding ther@int starting points and basis sets. Com-
paring the results of Ref. [117] with Ref. [118] gives almost the same MAE and M3B ¥
and 028 eV, respectively). Very similar deviations are also found between these results and
Ref. [119], where an accurate basis set of Wannier functions augmented by numerical atomic
orbitals was used. Discrepancies in the calculated values are therefore within the accuracy of
di erentimplementations.

A much better agreement with experiment was found for HF and hybrid functionals as
starting point for QW [117,119], whereas this does not necessarily seem to be the case with
self-consistent GW [118-120].

5.2 Frequency-dependence of the self-energy

For all molecules in this study, both the HOMO and the LUMO energies decrease with larger
plane wave cuto energies (meaning that the IPs increase). Since the exact exchange contri-
butions are left unchanged, this results from the correlation part of the self-energy only. This
might be surprising at rst, since one could expect that a larger basis set, e.g. humber of plane
waves, would enhance the screening which would shift the occupied orbitals down in energy. A
closer look at the frequency-dependence of the self-enefhy, helps to understand this seem-

ing con ict. This is shown for the HOMO and LUMO of the CO molecule in Hig.|5.5, as one
example. The imaginary part of! ) is to a large extent builp by the poles of the convolution

of the Greens' Function and the screened potenti@l) = d! °G(! +! OwW( 9. W itself

has poles at all transition energies between occupied and unoccupied!statgswhile G has

poles at all energigs,. Thus, the poles of lie between (2min  "max) and (2 max " min), Where

"min @and" nax are the lowest and highest input eigenvalues, respectively. As a consequence of
this asymmetry, including more bands gives larger contributions to the imaginary pgtt Jof

in the high energy range, whereas the lower part of the spectrum is lested. This is clearly

seen in Fig[ 5J5 (a), by comparing the light and dark blue curves (for the HOMO) for positive
and negative values of, and correspondingly the orange and red curves (for the LUMO). The
real and imaginary parts of the self-energy are related by the Kramers-Kronig relation:

‘L emt 09
© T

Ref (1 )g= P (5.1)

The correlation contributions to the quasiparticle energies are ingf\g @pproximation given

by the value of the real part of the self-energy at the starting point eigenvalues, as indicated by
the dashed lines in Fi. 5.5 (b). The real part @f ) changes sign around the HOMO-LUMO

gap, where its structure is dominated by large resorlanteesonance peaks. As more empty
states are added and the imaginary part extends to higher energies, the real part is pushed down,

in particular for high! as a consequence of the asymetric structure df bnThis lowers the
antiresonance peak and thereby the correlation.

5.3 BDA

One of the most commonly studied organic molecules is benzene with its delocalized system
of electrons. For example, it is used as a model system for electronic transport in molecular
junctions, where the molecule is attached to metal electrodes via anchor groups, e.g. amino
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Figure 5.5: (a) Imaginary and (b) real parts of the self-enélngjy (! )jni for the HOMO and LUMO lev-

els of the CO molecule and two dérent plane wave cutoenergies. Dashed lines indicate the respective

LDA eigenvalues. The lowest input eigenvalligin, is around 30 eV, while the highe&t,ax, is around

50eV and 100 eV, respectively. Thus, In{! 9gis only non-zero in the range froml10 to 130 eV and
160 to 230 eV, respectively.
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Figure 5.6: Geometric structure of benzenediamipara-CgH4(NH>),.

groups [121]. The transport properties are to a large extent determined by the alignment of the
molecular frontier orbitals with respect to the metal Fermi level. For theoretical predictions, it
is therefore essential to obtain a correct description of the electronic structure of the molecule
in the gas phase at rst.

The frontier orbitals of benzenediaminegt€zN,, as sketched in Fid. §.6) have been cal-
culated in the same way as described for the small molecules in Clagter 5.1, but in a larger
unit cell with 5A of vacuum added in each direction around the molecule. This was found
necessary in order to converge the DFT energies. The extrapolation scheme has been applied
both to the HOMO and the LUMO. Additional HF and GW calculations have been made with
PBE as starting point. All results are summarized in Tablg¢ 5.2. No largerelices can be
seen between the results with LDA and PBE, and consequently non-selfconsistent HF and GW
calculations also give very similar results for the twoelient starting points. §V, leads to a
drastic opening of the gap, with a large downshift of the HOMO energy and an increase of the
LUMO energy. With HF, these e=cts are even bigger.

The extrapolated IP of the BDA molecule isA7 eV with GW @PBE, which is in re-
markably good agreement with the result a8 @V reported in Ref][122], which also used a
plane wave basis, but a dirent extrapolation scheme, and the experimental value3dfex/
[123]124].

The results of a previous study of the same molecule are presented if Table 5.3. It is impor-
tant to note that a double-zeta atomic orbital basis set has been used, compared to plane waves
in the present study. In principal, both methods are expected to give identical results, given
that the basis sets are complete. For LCAO, this requires basis functions of very good quality,
while for plane waves, the cutcenergy needs to be swiently high. Large dierences can be
seen for the Hartree-Fock results, both for the energies of the frontier orbitals and the HOMO-
LUMO gap. Two reasons may be used for an explanation: First, the neglection of core-valence
exchange in the current calculations. According to Ref.|[110], however, these contributions are
expected to be rather small, generally less thdreV for the frontier orbitals of benzene-like
molecules. Therefore, the role of self-consistency is much more important, which seems to shift
both the HOMO and LUMO signi cantly and decrease the HF gap by more than 1 eV. Also for
GW, there is a large discrepancy between the orbital energies. The gap size, on the other hand, is
very similar. This might be due to a cancellation of errors in the exchange and in the correlation
contributions using DFT wavefunctions instead of doing self-consistent calculations. The last
column of Tabl¢ 5.3 states the results of PBE total energgreéince calculations, which can be
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Table 5.2: Frontier orbitals and HOMO-LUMO gap of the BDA molecule. All values are in eV.

LDA PBE HF@QLDA HF@PBE GW,@LDA GyW,@PBE
HOMO -4.00 -4.05 -8.05 -8.04 -7.51 -1.47
LUMO -0.88 -0.82 4.33 4.33 1.41 1.45
gap 3.12 3.23 12.38 12.37 8.92 8.92

Table 5.3: Results from Ref,[110] in eV.

PBE scHF scGW Eiot (PBE)
HOMO -4.1 -7.2 -6.2 -6.8
LUMO -0.9 3.9 2.9 2.3
gap 3.2 11.1 9.1 9.1

regarded as reference values. In this method, HOMO and LUMO energies are obtained by cal-
culating the electronic groundstate with an extra electron explicitely added to or removed from
the system. In comparison, the DFT gaps are vastly underestimated which is a consequence
of self-interaction errors in the functionals. These are not present within Hartree-Fock by con-
struction. Instead, neglect of correlation, which is here equal to the lack of orbital relaxations,
leads to a large overestimation of the gap [110]. In contrast, the GW approximation naturally
includes these eects via the screened interaction.
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