Differences in the Texture of Chalk as observed by NMR

Katika, Konstantina; Addassi, Mouadh; Alam, Mohammad Monzurul; Fabricius, Ida Lykke

Publication date: 2014

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Differences in the Texture of Chalk as observed by NMR

Konstantina Katika, Mouadh Adassi, M. Monzurul Alam and Ida Lykke Fabricius

In this study, three cases under investigation illustrate how changes in the surface-to-volume ratio of chalk affect the low-field Nuclear Magnetic Resonance signal:

1. Outcrop chalk saturated with high salinity brine showed that saturation with divalent ions can cause major shifts in the T2 curve.

2. Fluid samples where precipitation reactions caused shifts in the T2 curve due to the creation of crystals within the fluid.

3. Two types of chalk with different surface-to-volume ratio, saturated with the same brines produced different NMR signals.

- NMR signal decay time (known as relaxation time) is affected by the solid phase:
 - Long distance from the pore walls means long decay times.
 - In smaller distances, NMR relaxation is affected by the solid.
 - Transverse relaxation rate, 1/T2:
 \[
 \frac{1}{T_2} = \frac{S}{\rho V}
 \]
 - S: surface relaxivity
 - \(\rho\): surface-to-volume ratio

- Differences in the rock texture:
 - Precipitants within the pore space
 - Variations in the bound water thickness

- May affect the transverse relaxation time by altering the surface relaxivity or the surface-to-volume ratio in the following equation:

\[
\frac{1}{T_2} = \frac{S}{\rho V}
\]

- As observed from the following results:

- Brines that contain precipitants after contact with chalk:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Concentration (g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnesium chloride solution</td>
<td>58.1</td>
</tr>
<tr>
<td>Calcium chloride solution</td>
<td>67.7</td>
</tr>
</tbody>
</table>

- Outcrop chalk with high surface-to-volume ratio saturated with divalent ions:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MA-Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porosity (%)</td>
<td>~42</td>
</tr>
<tr>
<td>Grain density (g/cm³)</td>
<td>~2.71</td>
</tr>
<tr>
<td>Permeability (mD)</td>
<td>~6</td>
</tr>
<tr>
<td>Carbonate content (%)</td>
<td>~99</td>
</tr>
<tr>
<td>Specific surface (m²/g)</td>
<td>~1.7</td>
</tr>
<tr>
<td>Specific surface of the IR (m²/g)</td>
<td>~50</td>
</tr>
<tr>
<td>Surface relaxivity (μm/s)</td>
<td>~0.9</td>
</tr>
</tbody>
</table>

- Brines with precipitants Concentration (g/L)

- T2 Distribution of chalk with high vs. low surface-to-volume ratio

- NMR Relaxation in the homogenous system of brine saturated chalk:

- Low field NMR was successfully used to identify changes in the surface-to-volume ratio.

- Samples with high surface-to-volume ratio result in smaller relaxation times. Samples saturated with Mg-rich brines, brines containing precipitants, and chalk with different texture illustrate this.

Acknowledgement

The financial support from DONG energy, Maersk oil, Danish energy agency, and DTU is gratefully acknowledged.

DTU Civil Engineering
Department of Civil Engineering

CERE
Center for Energy Resources Engineering

* Katika et al., Nuclear magnetic resonance and sound velocity measurements of chalk saturated with magnesium rich brine, Poromechanics V, 967-968, (2013).
* Katika et al., Nuclear magnetic resonance and sound velocity measurements of chalk saturated with magnesium rich brine, Poromechanics V, 967-968, (2013).