Differences in the Texture of Chalk as observed by NMR

Katika, Konstantina; Addassi, Mouadh; Alam, Mohammad Monzurul; Fabricius, Ida Lykke

Publication date: 2014

Citation (APA):
Differences in the Texture of Chalk as observed by NMR

Konstantina Katika, Mouadh Adassi, M. Monzurul Alam and Ida Lykke Fabricius

In this study, three cases under investigation illustrate how changes in the surface-to-volume ratio of chalk affect the low-field Nuclear Magnetic Resonance signal:

1. Outcrop chalk saturated with high salinity brine showed that saturation with divalent ions can cause major shifts in the T_2 curve.

2. Fluid samples where precipitation reactions caused shifts in the T_2 curve due to the creation of crystals within the fluid.

3. Two types of chalk with different surface-to-volume ratios, saturated with the same brines produced different NMR signals.

- **NMR signal decay time** (known as relaxation) is affected by the solid phase:
 - **Long distance** from the pore walls means long decay times.
 - **In smaller distances**, NMR relaxation is affected by the solid.
 - **Transverse relaxation rate**, $1/T_2$:
 \[
 \frac{1}{T_2} = \rho \frac{S}{V}
 \]
 where ρ: surface relaxivity, S: surface-to-volume ratio

- Differences in the rock texture
 - Precipitants within the pore space
 - Variations in the bound water thickness

- Brines that contain precipitants after contact with chalk:
 - Calcium chloride solution
 - Magnesium chloride solution
 - Brines with precipitants Concentration (g/L)
 - Calcium chloride solution 67.7
 - Magnesium chloride solution 58.1

- Outcrop chalk with high surface-to-volume ratio saturated with divalent ions:
 - T_2 Distribution of solutions that contain precipitants
 - Delineated water
 - Magnesium chloride solution
 - Calcium chloride solution

- Outcrop chalk with low surface-to-volume ratio saturated with divalent ions:
 - T_2 Distribution of chalk saturated with divalent ions
 - Deionized water
 - MgCl$_2$ solution
 - CaCl$_2$ solution

- NMR Relaxation in the homogenous system of brine saturated chalk:
 - Dry solid (water film)
 - Liquids

- **Low field NMR** was successfully used to identify changes in the surface-to-volume ratio.
- **Samples with high surface-to-volume ratio result in smaller relaxation times.** Samples saturated with Mg-rich brines, brines containing precipitants, and chalk with different texture illustrate this.

Acknowledgement

The financial support from DONG energy, Maersk oil, Danish energy agency and DTU is gratefully acknowledged.