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Optimal estimation of diffusion coefbcients from single-particle trajectories
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1Department of Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
2Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
(Received 4 January 2013; revised manuscript received 27 November 2013; published 28 February 2014)

How does one optimally determine the diffusion coefpcient of a diffusing particle from a single-time-lapse
recorded trajectory of the particle? We answer this question with an explicit, unbiased, and practically optimal
covariance-based estimat¢CVE). This estimator is regression-free and is far superior to commonly used
methods based on measured mean squared displacements. In experimentally relevant parameter ranges, it also
outperforms the analytically intractable and computationally more demamdégmum likelihood estimator
(MLE). For the case of diffusion on a Rexible and Buctuating substrate, the CVE is biased by substrate motion.
However, given some long time series and a substrate under some tension, an extended MLE can separate
particle diffusion on the substrate from substrate motion in the laboratory frame. This provides benchmarks that
allow removal of bias caused by substrate Ructuations in CVE. The resulting unbiased CVE is optimal also
for short time series on a Buctuating substrate. We have applied our estimators to human 8-oxoguanine DNA
glycolase proteins diffusing on Bow-stretched DNA, a Buctuating substrate, and found that diffusion coefpcients
are severely overestimated if substrate Buctuations are not accounted for.

DOI: 10.1103/PhysRevE.89.022726 PACS number(s): 816.AS, 87.16.dj, 87.80.Nj, 87.16.wd

I. INTRODUCTION The optimized least-squares BOLSF [17]) improves
on the MSD estimator by including the optimal number of

Diffusion is ublqu!tous in biology, and many cellular oints in the bt 15]. Generalized least squard&LS) fully
processes rely on diffusion as a passive means of trans-

) e . ._accounts for correlations between experimental estimates of
port. Quantitative knowledge of the diffusion coefbcient IS\ 1SDs. These estimators have been proven optimal when
paramount for the precise understanding of these processe; 'earl)-/ dependent on the parameters to be estimad]
Recent developments in [Ruorescent labels have made ese proofs are not valid here, however becausé both
poss_lble to track diffusion of single mol_ecules, €. protems[hese estimators depend nonlinee;rly on thé parameters of
82 SL?E;JZ?]?rSinSEC% ﬁeaﬁggé]s;E)llg]lcfrfgﬁlrj]ﬁzfﬁfls interestNthe diffusion coefbcienD and the variance 2 of

N P ’ . localization errorsNand we show below that OLSF and GLS
[11B13] with time-lapse photography. Data mostly consist of

relatively short time series with considerable experimentaf'< suboptimal.
Vely ; . P . The complicated dependence of the MSDs on data makes it
localization error. This makes it a challenge to determine

diffusion coefbcients. This challenae is even hiaher wher'€Y difbcult to derive anaximum likelihood estimatdMLE)
S . o alleng gn ased onthe MSDs. However, a MLEDfand ?was recently
individuality of diffusion coefpcients is a concern, since one

i . . ; erived based on the much simpler statistics of the single-
then cannot average over multiple trajectories of dncferenttime-lapse displacement$9,20]. This estimator is known to
molecules to reduce statlst|ca] error. oo . be optimal, asymptotically, in the limit of inPnitely long time
The standard approach relies on EinsteinOs classpal "®3{eYies. There it is unbiased and as precise as is possible: Its
for the mean squared displacemef#SD) of a particle ) '

: e ) e ._variance is as small as the CrarrRao bound8].
undergoing free diffusion. It estimates the diffusion coefpcient For some systems, however, it is difbcult or impossible

Fi/ 4]Dtgl'rr]1?sa f\}g%ﬂte“ﬂe;f fgﬁg“&egﬂr\fgeilﬁf ttr:]; '\gggto obtain long time series. Most experiments with individual
' 9 9 g€, iological molecules are limited by RBuorophore lifetimes;

not mean that it is a good way to estimate the OIIfr'“'s'onproteins diffuse out of the beld of view in confocal microscopy;

coefbcient. It is accurate=(inbiased), but when the MSD proteins that diffuse on biopolymers detach. Consequently
is calculated from a single trajectory (or a few), its precision . predominantly consist of short time series, for which

depends on the number of MSD values btted I, [and optimality of MLE is far from guaranteed. In this range we

for good signal-to-noise_ ratio(SNR) th_e precision actu_ally Pnd that a simpleovariance-based estimat{CVE) is better
decregsesrvhen more points are~us_ed n the. b8,[1L6). This since its variance practically reaches the CeaiRao bound
result is counterintuitive if oneOs intuition is based only O - itis unbiased. whereas the more complicated MLE. OLSE
experience with uncorrelated data. It is a fact, neverthelessénd GLS are biaéed This CVE is an exp?icit function (’)f data,
We demonstrate and explain it below. i.e., itis regression-free and is thus orders of magnitude faster
than maximum-likelihood and least-squares estimators.
For diffusion on many cellular structures, on DNA, and

* cvestergaard@gmail.com in lipid membranes, the recorded movement contains a

*Current address: MIT Department of Biological Engineering angcontribution from thermal motion qf the substrate. If the time
Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA;Scale of these thermal Buctuationsis much shorter than the time
pblainey@broadinstitute.org lapse of the recording, they will contribute to the movement as

- henrik.Ryvbjerg@nanotech.dtu.dk a random, uncorrelated error on positions, i.e., a white noise
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on positions. Hence, it can be absorbed in the total variance, SectionIV develops a linear model for the motion of
2, of localization errors, which receives also a contributiona Ructuating substrate, in particular the motion of a taut
from true errors on localization due to photonic shot noise inunstretchable polymer, here DNA. We derive the statistics of
images of the tracked object. diffusion on such a Ructuating substrate. Sectiobuilds on
However, substrate motion needs to be modeled to somthe theory of SedV to extend MLE and CVE to diffusion on
degree beyond white noise if the longest time scale of substrageRuctuating substrate.
motion is comparable to the time lapse or longer. In a taut Section VI specializes these estimators to the case of
region of a substrate, the amplitudes of thermal motion argiffusion on a taut, unstretchable polymer. In this case the
so small that they can be modeled with a linear model. Wedransversal motion of the substrate is directly accessible ex-
take this as our debnition of Otaut.O On a Pnite substraperimentally. We test the estimators on Monte Carlo generated
the spectrum of this thermal dynamics is discrete. When théata, compare their performance, and compare their precision
spectrum of characteristic times is well separated compared to the Craner-Rao bound.
the time lapseNwhich holds for smaller, tauter substratesN  SectionVIl applies the estimators developed in Sécto
only one or a few slowest modes of substrate motion ar¢ime-lapse recorded data of hOGGL1 repair proteins diffusing
resolved by our time-lapse recording, while all higher modesn Buctuating, Bow-stretchedNA and shows that our theory
contribute as a white-noise error on positions. We derive dor diffusion on a Buctuating substrate accurately describes the
MLE that explicitly accounts for substrate RBuctuations in thisdata. SectioiIll concludes.
manner and is optimal for long time series. We also derive an Appendix A and Supplemental Materials (Tables |, I,
unbiased CVE for diffusion on a Buctuating substrate whichand Ill) summarize our acronyms and notati@3][ Many
can be used to obtain unbiased and optimal estimates @&chnical details have been relegated to nine, mostly short,
diffusion coefbcients for short time series, where the MLEappendixes. Appendi®8 discusses application of the GLS
fails. estimator to our estimation task. AppendX gives the
We estimate diffusion coefpbcients of Buorescently markedtatistical properties of covariances and of the CVE for the
human 8-oxoguanine DNA glycolase (hOGG1) repair proteinsase of free diffusion. Appendi@ shows how application of
on DNA from time-lapse measurements. The data havaliscrete sine transformation or discrete Fourier transformation
previously been analyzed using MSD-based methdtlsYVe  decorrelates data. Appendixdescribes the MLE for the case
measure diffusion coefbcients in the rang@BD5 um?/s.  of free diffusion. AppendixF describes the effect of bnite
We show that the DNA Ructuations induce a bias in thetime-lapse recording and motion blur on a power spectrum.
estimates of diffusion coefbcients of upt@Bpum?/s;i.e., we  Appendix G details estimators to be used on a RBuctuating
may overestimate diffusion coefbcients by several times theisubstrate. AppendiA details the variances of these estimators.
actual values if the Ructuations are not taken into account#ppendixl details Monte Carlo simulations of data used to test
The increased resolution that our method offers enables us tstimators. Appendid describes how to apply two statistical
see a clear negative correlation between a proteinOs residetests of agreement between theory and data: PearsénOs
time on the DNA molecule and its diffusion coefbcient. This goodness-of-bt test and thé test for variance.
correlation was hidden when the data were analyzed with
MSD-based methods. The negative correlation is explalned
by a two-state kinetics of hOGG10s diffusion dBNA [22].
Sectionll gives protocols for how to analyze a time series A SINGLE PARTICLE THAT DIFFUSES IN A MEDIUM
of a single particle diffusing on a substrate or in a medium WHICH IS AT REST OR FLUCTUATES

which is Buctuating or at rest. The protocols are kept short, This section gives a Oroad mapO to the practical use of this
with details given in ensuing sections. Thus, Seés aroad article, since few readers will need all its sections to analyze a
map to practical application of this paper. Not all applicationsgiven problem. We give a protocol for how to analyze a time-
need all of the paper, so the road map provides short-cuts. |apse recorded time series of positions of a particle diffusing on
Sectionlll reviews the statistics of time series of a freely a substrate orin a medium that s at rest (8e&) or Buctuates
diffusing particle recorded in the presence of localization(Sec.ll B). In Sec.ll C we give a protocol for how to analyze
error and motion blur and discusses why common MSD-a time series in the specibc case of a particle diffusing on a
based estimators are suboptimal. We describe a rigorouaut, unstretchable, and Ructuating polymer, such as DNA. In
statistical test of whether a recorded trajectory describes frethis case one is helped by the fact that information about the

diffusion. This test is based on the experimentally determinedransversal motion of the substrate is directly observable in the
periodogram of the recorded time series, which is comparedme series.

to the theoretical spectrum of a freely diffusing particle. We

derive the unbiased CVE of the diffusion coefpbcient, for both o ] )

the case in which the variance of localization errors also must A. Diffusion on a substrate or in a medium at rest

be estimated from the same time series and the case where A time series X»)\_, of measured positions of a particle
the variance of localization errors is knovenpriori or has  undergoing free diffusion in a medium or on a substrate at rest
been determined independently. We test the performance of thehould be analyzed as follows.

CVE on Monte Carlo generated data and compare it to other (i) Calculate the set of one-time- Iapse displacements
near-optimal estimators based on the MSDs, to the MLE, an@ x n) , from the time serle%) —08S X n= Xp S Xns1.

to the ultimate limit on the precision of any unbiased estimator, (i) Estlmate the particleOs d|ffu5|on coefbciént(and

the Craner-Rao bound. variance 2 of the localization error if it is not knowa priori)

HOW TO ANALYZE A TIME SERIES OF POSITIONS OF
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from (x n)N., using the CVE as described in S#éitC. The (i) If the DNA is not that taut, then calculatex( n)k. ;,

values ofD and ? determine the SNR; see Ed) (below. If B )iwa 5\ g N ; ;
. 1o = 2% ,and > from (Xn,Yn)n o @S described in

the SNR is smaller than one, and a small bias is of no concerré I Ji=t B )= (nYnln=o oed!

o . . ; ec.Vl. B
gheesrlﬁbg%n% Sz)a:iSI:I rgore efbciently estimated using MLE as (i) If the DNAOs motion has not already been characterized

. by independent measurements, it must be characterized using
N )
(iii) Testwhether the measured data )., agree with the information in the time series<,(,yn)§:0. To this end, use the

|n|t|a_l hypothesis that the particle undergoe; free dlfo_Slon ing, £ givenin SecyI A ontime serieswithl 50, This MLE
medium or on a substrate at restby comparing the periodograi timally estimates the diffusion coefpcidhtof the particle
of (x n)ﬁtl to its expected value, the spectrum, as describe P y P '

in SeclllB e variance 2 of the localization error, and parameterthat
. : characterize the DNAOs motion.

If the data and the theory do not agree, an alternative” . o ~ .
hypothesis should be considered, e.g., that the particle do%s (iv) If the parameters describing the DNAOs motion have

not undergo free diffusion, or that the substrate or mediu een characterized independently by direct measurement or

X nby averaging multiple ML estimates as described in S8,
Ructuates. In the latter case, see the next section]I®ec. then estimat® and 2 optimally by using the bias-subtracted

CVE given in SecVIB.
B. Diffusion on a Buctuating substrate (v) Test the hypothesis that the recorded particle under-
An experimental time series of laboratory coordinates ofgoes free diffusion along the Ructuating DNA molecule by
a particle diffusing on a taut, Buctuating substrate can beomparing the measured periodogram®), ( );N:y“f and
analyzed as follows. R . . ’
(i) If it is reasonable to assume that substrate Ructuationd¥f ) =1 . to their theoretically expected values, the power
are so fast that all they do is contribute to localization errors a§Pectra, as described in S&.C.
a white noise, then follow the procedure described in 8éc.
to test if this hypothesis is true. If it is, use estimates of
diffusion coefbcients as obtained following this procedure.
If the hypothesis is rejected by the data, proceed to step (ii).
(i) From the time seriesxg)\.,, calculate the set of We here review the statistics of time-lapse recorded labo-
one-time-lapse displacements (;, 2:1 asX n= XnS Xng1, ratory coordinates of a particle undergoing free diffusion in a
and from (x )N, calculate the set of periodogram values medium (or on a substrate) at rest in the laboratory. We review
(P, ¢ ): W as described in Sew.A. the statistics ofsmgle—tlme_—lapse dlsplacgmepts of thg particle.
. e . . 2 We also review the statistics of the particleOs experimentally
(iif) Estimate diffusion coefbcienD, variance of . . .
the localization error, and parameterscharacterizing the determined MSDs, and we dlscgss why common e_stlmators
' based on the MSDs are suboptimal (SEEA ). We give a

substrateOs motion using MLE as described in $éc. If rigorous procedure for testing the hypothesis that the particle
the substrateOs motion has been characterized independen{ P 9 yp P

either by direct measurement or by averaging multiple ML dergoes free diffusion in a medium (or on a substrate)

estimates as described in S&tB, use the unbiased CVE at rest (SeclliB). we denve_ a CVE that is _based on
. i . 2 the measured covariances of single-time-lapse displacements.
given in SecV B to estimateD and “.

i ] . § i CVE is simple, explicit, unbiased, and practically optimal as
Compare the measured periodogrd® )24 toits i inla®e diffl1si
(iv) Comp p gramg )=t an estimator of the particleOs diffusion coefbdieand of the
expected values, the power spectrum, as described iIVE&C. ariance 2 of the localization errors on positions (SHEC).
to test whether data support the hypothesis that the particigq give a fast algorithm for the MLE ob and 2. We
undergoes free diffusion on the Buctuating substrate. also give an expression for the CrarRao bound, which
limits the precision of any unbiased estimatordfand 2
C. Diffusion on taut, Buctuating DNA (Secll D). Finally, we compare the performance of estimators

An experimental time series of laboratory coordinates of #f diffusion coefbcients to each other and to the GeafRao
particle diffusing on a taut polymer, such as DNA, reveals the?0Und. This is done using synthetic data generated by Monte
DNAOs transversal motion at the location of the particle. It does@r0 simulations (Sedll E).
this directly, uncontaminated by the particleOs diffusive motion,
because the particle only diffuses in the DNAQOs longitudinal
direction; we qualify this statement below. L&t and y _ _ _
denote the laboratory coordinates in the longitudinal and the 1. Single-time-lapse displacements
transversal direction, respectively, of the particle on the taut Consider a particle diffusing id dimensions. Its trajectory
DNA strand. Then our protocol for how to analyze such atimeis recorded using time-lapse photography. The particleOs
series kn,Yn)h- o is the following. positions are determined in each frame using a localization

(i) If the DNA is (or might be) so taut that the longest algorithm. For a Ruorescent particle, e.g., this algorithm
relaxation time of its Buctuations is much shorter than thewvould be a super-resolution microscopy meth@d][ The
time lapset of measurements, then the protocol in Sea. result is a time series of the particle positiongfs,...,IN,
above should be used to analyze theoordinate of the time measured with constant time lapse. From this time series,
series. If the DNA indeed is this taut, that is conbrmed by thisve form the time series of single-time-lapse displacements
protocol. i, f2,..., Iy debPned by r,=r, S rps1. The series

Ill. ESTIMATION OF THE DIFFUSION COEFFICIENT OF
PARTICLE DIFFUSING ON SUBSTRATE AT REST

A. Statistics of recorded time series

022726-3
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of displacements is stationary, as opposed to the series pkrformance of an estimator is then characterized by the SNR,

positions. Being stationary ensures that averages formed from _ _

the series will converge to their expected valueblas . SNR 2‘2t - Dt _ (6)
Each Cartesian coordinate of a particle diffusing in an 2

isotropic and homogeneous medium is independent. With NQ. ically 1< SNR< 20 [4,5.26E28]. In the following we
loss of generality, we therefore only consider diffusion in oneczﬁ]paﬁé’ estimators by c'o}nparin.g how they pe?form as

dimension below. . ;
Letthe function (t) describe the state of the camerashutterfun.Ctlon of N and SNR' We also compare the variances of
: . _ .~ estimators to the ultimate lower bound on the variance of
during a time lapse . (t) = 0 means closed shutter, while

; any unbiased estimator, the CranrRao bound 18]. These
®>0 m_ean; open §hutt(tar. The scale df) is bxed by variances are only marginally affected by the value of the
the normalization condition,” (t)dt = 1. The measures

; N . _ ) motion blur coefbcientR [25]. So we only discuss the
coordinate of the particleOs position at ttime nt isthen  performance of estimators for the case of maximal exposure

given by P0] time [ ()= Ut , R= 1/6] in the following, but note that
their performances are similar for other value$Rof

ty

Xn = Xpue(tn S 1) (H)dt+ . 1
" .St welln S 1) (1 " @) 2. Mean squared displacements

. . . . Einstein argued in 1905 that the mean length of time-lapse

Here Xy IS the true position of the particle, and the time recorded displacements of a particle suspended in a static

integral describes the motion blur that results from bnitqiquid are not proportional to the elapsed time, and hence

exposure time. The second term describes localization errofS e cannot deduce the particle®s mean velocity from it.

associated with the time-averaged position given by the pr%stead, MSD is proportional to time, and the constant of

'grm. The s#ichasjuc _Vﬁr;?ble‘ IS a normah;ted, Q|screte Iproportionality gives the particleOs diffusion coefbciént,
aussian white noise. as zero mean, unit variance, ze 9). Adding the effects of localization error and motion

gutqct(.)varla;ntche. 'Il'he Ir.ealt,_ positive p_?rr]qmetes the tsk;[andard fblur, we Pnd that the expected value of the measured squared
eviation of the localization error. ThiS €error 1S theé sum o displacement of a diffusing particle is

all localization errors in effect, including substrate motion, if

relevant and of such high frequency that it contributes in this  d(t)> = [x(t) S x(0)]? = 2Dt + 2( 2S2DtR ). (7)

lace.
P From Eq. () the covariance matrix of the measured Since 1905, diffusion coefbcients have been determined

displacementsc 4,...,x n of the diffusing particle is found from trajectories Qf i_ndividual particles with E_oZ)(orvarian_ts_
to be O] thereof [L4,15]. This is OK when data are so rich that precision
is not an issue. When precisida an issue, the MSD is a
(x n)> = 2Dt +2( 2S2DRt ), (2)  poor-to-miserable estimator. Its precision depends strongly on
the extent to which one accounts for the fact that its valdigs,
X nX m1=3(282DRT ), 3) at different timest, = nt are highly correlated [Figl(a)]

[15], when they all are estimated from the same (or a few)
5 time series of positionsy, Xy, . .. ,Xn USINg
XmXn=0 forlnSm|> 1. 4) NED
1

@:v—
"TNSn+1

X S v.\2
Here --- denotes the expected value, and the paranfeter (Xien S )% (®)

the motion blur coefbcient debned by
This fact is not common knowledgel,p,4P14,21,26,30];

1t . neither is the fact that for a good SNReandlinary least squares
T S(HI1 S S(t)]dt, (5)  (OLS) orweighted least squargVLS) bt of a straight line
to d? plotted againsh forn= 1,2,...,nnax N yields an

whereS(t) = & (t)dt [20]. The motion blur coefbcient can  €Stimate foD that becomeworsewhenmorepoints ,d?) are
take values in the interval [0 4]. In practice the camera ncludedinthe bt[Figl(b) [8,15). One mightintuit that more
shutter is usually kept open for the full duration of the data points supplly more mformgnon. Such intuition is based
time lapse, which makeR = 1/6. This is done in order to ©ON €xperience with statistically independent data points. The

maximize the number of photons recorded in an image, thereb lues of the MSD are not statistically independent, however.

R =

minimizing the localization errorl[2,4013,21,25,26]. hey are so strongly correlated that when more values are
Diffusion is a scale-free process, but the root-mean-squareficluded in a bt, the added noise may exceed the added signal.
displacement taking place during a time lapseZDt , This counterintuitive result can be understood by looking

debnes a length, the so-caligiffusion lengtrassociated with at the extreme case where the localization error is zero. In
the time lapse. This length is the amplitude of our signal, théNiS case the least-squares estimator based on the single data

signal being the displacement recorded for each time lapse. TH@int (1,d2), @ = d#/ (2t ), is equal to the MLE oD and is
standard error on this signal is2 , where is the standard ©Optimal; it is unbiased and its precision reaches the @ram
deviation of the localization error as dePned above. For giveRao bound. It is optimal becausé is asufpcient statistitor
lengthN of a time series and motion blur coefpciddtthe  D; all information available in the time series about the value

022726-4
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a
( ) Experiment
— Mean

small; for SNR> 2 the arguments below hold). Here the set

(d?,d?) is almosta sufpcient statistic foD (see also the
discussion of the relationship between the CVE and the MSDs
. below). Thus, additional pointsi(d2) contain almost no new
oLs _ - information aboutD, and if we include them in a less than
R optimal way, i.e., using OLS or WLS, then the precision of our
6N | CR bound — GLS — estimate oD decreases when more points are included.
N This underscores the danger of being naive about statistics:
n ot N max In situations where Eq.7§ is very true, common estimators
based on Eq.§) nevertheless give poor estimates 10r
though accurate, they are not precise. Thus, an excellent
particle-tracking experiment may appear mediocre if common
practice is followed and the analysis is based naively on MSD.
A recent method aims to bnd the optimal number of
MSD points to include in an unweighted OLSRE5[19].
Alternatively, one may include the full covariance matrix of
thed? and bt to alt? in a GLS bt (AppendiB). Both of these
estimators depend nonlinearly on the estimated parameters.
Consequently, theoretical results for their optimality, which
were derived for linear dependence on parametsd §], do

not apply here [FigsL(c)BL(f)].

—~
(=)}
=

Var(D)/D 2

o
z
N

(c) 4

T T T
o0—0 GLS

D/D

(e)

D/D

B. Testing whether a recorded trajectory
describes free diffusion

Equation 4) is as important as Egs2) and @), since
o1 1 10 100 o1 1 10 100 it states that the signature of free diffusionxsnx m 0
SNR SNR for [InS m| > 1. Specibcally, in order for a time series to be
consistent with free diffusion, these covariance estimates must
FIG. 1. (Color online) Performance of MSD-based estimators.scatter about zero [Fig2(a) and 2(d)] with variances that
(a) Experimental MSDsg?,d2, . ..,d2, calculated from simulated depend orD and 2 as (AppendixC)
Brownian motion trajectories. Each color represents one trajectory.
The straight black line shows their expected value,)? . The varx—x—) = 2+ 4 +6 2, 22
values ofd? for differentn values are highly correlated because they ar(x nX m) = NS|nSm| (NS|nS m|)?
are estimated from the same trajectory. The varian(:f afcreases .
with n. (b) Variances of MSD-based estimates of the diffusionHere = 2Dt and = 2S 2DtR are, respectively, the
coefbcienD as a function of the number of MSD points used in the squared diffusion length corresponding to the time lapse and
pt. Variances of ordinary (OLS), weighted (WLS), and generalizedthe variance of the localization error at bnite exposure time.
(GLS) least-squares bts are compared to their information-theoreticalhe estimated covariances are correlated and they are Gaussian
lower limit, the Craner-Rao bound (CR bound), for SNR10.  distributed only in the limit of long time series. This makes
(©)B(f) Mean plus/minus standard error of optimized least-squares Rfyem unsuitable for statistical testing of whether a given time
(OLSF) [19 and GLS estimate® in units of the true valu®. Edge  series of displacements is consistent with free diffusion or
of shaded gray region is the CramRao bound. (c) For unknown ot just like the MSDs are. Instead, one should compare the
noise amplitude andN = 10, the OLSF and GLS estimators are periodogram based on theiscrete sine transfornDST.
biased and qlo not re_ach the CremiRao bound in practice. (d) For Eq. (L1) below] of the measured displacements with its
unknown noise amplitude arld = 100, the OLSF almost reaches o, hoqaq values (the power spectrum) for the case of a
the. Cranm.'-Rello pound anq is practically unbiased, while the GLSfreer diffusing particle. Figure2(b) and 2(e) show such
estimator is signibPcantly biased and does not reach the &R0 eriodoarams and their expected values. The comparison is
bound. (e),(f) For known noise amplitude and (¢)= 10 or (f) P d 9 by the fact th tp iod ) | P di
N = 100, the GLS estimator is practically optimal. made easy by he fact that periodogram vaiues corresponding
to different frequencies are statistically independent of each
other.

)

of D is contained ird_lz. Thus, including more points give®m
new information aboub . If we furthermore treat these points 1. Spectrum of displacements for bnite N

as independent of the prst pointd#) of the measured MSD For guantitative statistical testing of whether a recorded
(as in WLS) or, even worse, also give them the same weightrajectory describes free diffusion, the MSDs and the co-
as given to this brst point (@) (OLS), we actuallydecrease Variance function of the single-time-lapse displacements are
the precision of our estimate 8f by including more points. ~ both impractical due to their complicated distributions and
We extend the example to the case where the localizatiohigh inherent correlations. Instead, one should compare the
error amplitude is unknown but small (it needs not be veryperiodogram B, = 2(k )% [(N + 1)t ] to its expected
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(a) T (d) T T T T T T value,
) P = Theory | = 2 — Theory | .
A ® o MCdata A ® e MCdata Pc= B = ZD(t )2
< 1 < s 2, & 2 18
i x +2[ “t S2DR(t )] 1S cos , (10)
< < N+1
0 0
= < which is called (D, 2)in [20]. Here k  is the DST of
1 I N N TR N B | 1 I R N TR M N | (X 1, X 2y,..., X N),
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 N
Lag j Lag ] .
) 4 S © 4 S k =t sin N+ 1 X n, (12)
— Theory — Theory = + Noise n=1
SNl ._MCdma ql Tt e e B " where the multiplicative ternt  ensures that the DST has the
- 5 1% - 5 s = 1 same physical dimensions as its continuum analodgzabeer
g pmE % . e sine transformThe DST of (x n)ﬁzl is efbciently calculated
& 1f “ e B L~ A using afast sine transformsuch asmaTLAB or SciPyOs dst
o Lt - [32] or as described in33,34]. The N values BL)R., are
O T o oo s oo 0 T on 00 00 800 1000 statistically independent (AppendiX) and are thus suitable
Mode Kk Mode k for statistical testing, e.g., by simple visual inspection, by
(© 60 - (f) 600 - comparing the measured periodogram to its expected values
" — Theory [ — Theory | [Figs. 2(b) and 2(e)], and by comparing the distribution of
3 MC data 3 MCdata normalized values = Bi/ Pk toa distribution with shape
e Y 1= *° ] and scale parameter values, respectivélg,dnd 2 [Figs2(c)
3 O 1 3 300 . and 2(f)]. The latter comparison can be made quantitative
© ok 1° 20 b - with PearsonOs? goodness-of-bt test (Appendd, taking
10 b i 100 | j;ﬁ‘ 4 into account that two paramete3,and 2, were btted (one
0 0 — parameter if 2 was determined independently).
o 1 2 3 4 5 o 1 2 3 4 5 Comparison between the experimentally measured peri-
Pil Py Px/ Px odogram and the theoretically predicted power spectrum is

difbcult for time series of short or intermediate length due to

FIG. 2. (Color online) Statistics of single-time-lapse displace-P0or statistics of these [Fi@(b)]. Since longer time series
ments of a particle diffusing in a medium or on a substrate at res{Fig. 2(€)] may not be available, comparison can be facilitated
(a)D(c) The statistics of a time series of len§tls 100. (d)D(f) The by averaging over multiple time series of particles that show the
same statistics fdd = 1000. (a),(d) Covariance of single-time-lapse same diffusion coefbcients and localization errors. Averaging
displacements calculated from a Monte Carlo (MC) simulated timeover a set of ten such time series of lendth= 100 gives a
series shown inunits @ t and compared to their expected values. dispersion which is the same (to ordéN1) as that of a single
The theoretical covariance shows an isolated large, positive value @itme series of 1000 points [Fig(e).
zero lag, the signature of free diffusion. A small negative value at The statistical test presented here is based on independent
unit lag is the signature of localization errors; motion blur makesstatistics and assumes that we have exact knowledge of their
it less negative and may even change its sign. Consequently, thistribution based on the theoretical results for the measured
value at.unit !ag may be dichuIt to resolvg on a background oftime series [Eq.2)PA)]; i.e., it is aparametric testlt is thus
stochastic noise. (b),(€) Periodogram of single-time-lapse Montenore reliable and more powerful than previously proposed
Carlo generated displacements in unit&xft )* compared to their o515 hased on nonparametric estimates of the autocorrelations

expected values, the power spectrum. The power spectrum s the SUlp 4 air variances or marginal distributions of correlated
of aterm due to localization errors (Noise) and a term due to diffusive

motion of the particle (Diff.). Shown values are block averages Oversmgle-tlme-lapse displacemengs].
10 (b) and 100 (e) periodogram values ea8l].[ This averaging
facilitates comparison by eye with the expected values, the theoretical 3
curve. The gray area marks the 68% conbdence interval (Cl) for For long time series,B, the periodogram obtained
the blocked values, which is equivalent to the mean plus/minus onwith the DST, approaches the periodograf,; =
standard deviation for Gaussian distributed data. On avera8ef2 | x ;|>f obtained with the the discrete Fourier transform
the points should fall in the gray area. The theoretical curve is not dDFT). Here f = 1/(Nt ), and x ¢ is the DFT of

bt to the data, but the ultimate truth, which is known in Monte Carlo( X 1,X 2,...,X N,

simulations. For real experimental data, btting is necessary before

2. Spectrum of displacements in the large-N limit

comparing and should be done to with CVE or MLE as described in N Si2ft

the text. Block averages are shown since the raw periodogram values X =1 € "X n (12)
have a SNR of L 2, which makes visual comparison unpractical. n=1

(c),(f) The normalized periodogram valugs=y B/ B follow a wheref = f, = kf . Itis efbciently calculated usinfast

distribution with shape and scale parameters/d and 2, respec-  goyrier transformation(FFT) such asmaTLAB or SciPyOs
tively. In (a),(b),(d),(e) SNR= 1.5 andR = 1/6 (maximally open fit [32] or as in B334]. In this case one can com-

shutter). pare the periodogran®,; to its expected value, the
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power spectrum, (@) 20 T T (b) 25
- N =10
Pyt (D, 2) _ash N =100 |
~ ~ N x
=2D(t )’+2[ 2t S2DR(t )?[1S cos(2ft ). 5ol il | <
(13) o & g
2 05 | 4 £
The normalized periodogram values 40 = 0
P.¢ /P s (D, 2 should be exponentially distributed 0.0

on the non-negative real numbers with expected value equal
to one. In this case also, the comparison is made quantitative
with PearsonOs? goodness-of-bt test (Appendi, taking
into account that two parametef3,and 2, were btted (one
parameter if 2 was determined independently).

D/D

FIG. 3. (Color online) Distribution of the CVE of the diffusion
coefbcienD (a) and minus-log-likelihood landscape (b) for diffusion
on a substrate at rest. (a) Distribution of CVI@shere measured in
units of the true valu®. The distribution approaches a Gaussian

C. The covariance-based estimator as N is increased. (b) Minus-log-likelihood as a function of the

Equations 2) and @) tell us how to construct simple, Unitless variable debned as = arccot( Dt/ ) (AppendixE)
unbiased estimators fdd and 2 from a single recorded gnr_all/llcénteCa}rloglgleneratedhtlmeserne;qfledgf(h 100. SNR= 2,
trajectory. We replace the expected values in Egs.abd - (maximally open shutter), and”is not knowna priori.

(3) with unbiased estimators of these and solveljoand 2.

This gives unbiased CVEs @f and 2, For importance weighting of estimatesNe.g., when cal-
. culating the weighted mean of estimates from time series
= (X ), X X ne1 (14)  Of different lengthsNthe lengttN of a time series should
2t t ’ be used as weight when possible, since it is known exactly.

B The inverse variance of an estimate should be avoided as
2=R(X n)2+ (2RS1)X nX ne1. (15)  weight when possible. This avoids complications such as
bias due to correlations between the estimated parameters
and the estimated variances; s86][for an example of such
correlations and resulting bias of estimate.

where~~ denotes averages over thetime sexes, ..., X n.

For a particle diffusing il dimensions, estimates are obtained

by averaging over the estimates obtained from dhene-

dimensional time series of individual coordinates. In this ) . )

manner the standard errors on estimates are reduced by afactor 2 Higher moments and probability density of the CVE

U d. _ Higher moments of the distributign(®|D,  2) of estimates
If the value of the parameter? is knowna priori, orifit @ [37] resulting from the CVE for given true valued

has been estimated in advance, as described in Sec. Ill C 3nd 2 are found by differentiating its characteristic function

then the CVE of the diffusion coefbcient reduces to p( |D, ?Nsee AppendixC, Eq. C10Nwith respect to

and setting to zero,

o (X282 ° 6
T 213 2R)t ke ik _PCID, ?) (19)
k
The CVEs ofD [Egs. (L4) and (L6)] are guaranteed to be =0
unbiased and are practically optimal, as long as the SNR is The distribution itself is equal to the inverse Fourier
larger than one (Sedl E). transform of the characteristic function,
. . L
- 1. Varla-nce of the CVE - - p(®|D, 2) - ) 5 p( |D, Z)d ) (20)
Equation (4) results in the following variance of its S
estimate foD (AppendixC), to second order in/N , Thus, the distribution of estimates by CVE, and hence exact
) 6+4 +22 41+ )2 conbdence intervals for estimates, can be found by numerical
var[®) = D? + 5 ,  (17)  Fourier transformation op [Fig. 3(a). This can be done
N N effectively using a FFT algorithm with corrections for end
where = 2/(Dt )S 2R. contributions as described i83,34].
Equation {6), on the other hand, results in the following
variance ofits estimate fonj), 3. Independent determination of the variance of

localization errors

. D?2Q2+4 +3? var( 2) iy . L .
var[@®) = = >— t & 5 5. (18) The position of a diffusing 3uorescent particle is estimated
N(1S 2R) (1S 2R)*(t ) by btting to its measured point-spread function (PSF). When
Here the second term describes the contribution from dhis is done as described i24], one can estimate the variance
stochastic error on our known value fof. This contribution 2 of localization errors directly from the btting procedure.

is proportional to the variance var) of that error, when, as If it is not possible to estimate? directly from the btting
assumed here, the latter error is uncorrelated with the error gorocedure, an alternative approach may be used: If estimates of
(x n)2 2 from many time series are indistinguishable up to stochastic
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(@ * T ] ® 20 | 00 approx. MLE | 2 X nx g1 and d(t )> = (x n)?.Thus,
3+ =1 exact MLE sl =1 exact MLE i . (X )2 + 2 X X .
L — CVE . — CVE [@de — n n n+1 — D)cve- (21)
2t
Q 1 0 10 . . .
a L a CVE is the more precise of the two, however. The estimates
) 0.5 of d(nt )2 and X mX n ,d2and x o x m, respectively,
i do not use the information present in the displacements
2 oo bl . 12 .
01 01 1 10 100 (X 1,X 2,...,x n)inthe same wayd? places less weight
SNR SNR on the end displacements ; and x y, while CVE weights
© 4 —_— Y e ———— all displacements equally (Append®. This makes CVE of
3 oo e M | oo e MLE D more precise than the MSD-based method.
— CVE 15 — CVE B
a o D. Maximum likelihood estimation and the Cramer-Rao bound
° e Using the power spectral density in EGOJ, one can easily
construct a MLE oD and 2 using the periodogram based on
the DSTof (X 1,X 2,...,X n)[EQ. @D][19). The MLE is

usually found by maximizing the logarithm of the likelihood
SNR SNR functionL ( ) with respect to the two parameters: (D, ?)
as detailed in 20]. Appendix E gives a fast algorithm for

FIG. 4. (Color online) Quality of various estimators for the diffu- \L estimation of O, 2) which uses the scale-invariance of
sion coefbcient. Mean plus/minus standard error of estimators givefyae diffusion to reduce the dimensionality of the optimization
in units of the true valu® as function of SNR. Estimatd® obtained problem from two to one dimensions. Besides increasing the
with approximate MLE, MLE, and CVE applied to 1000 Monte ¢noaq of the MLE algorithm, the reduction from two to one
Carlo generated time series of positions of a freely diffusing partidedimensions enables us to inspect the likelihood landscape

recorded with motion blur and noise on positions. Edges of the Shade\%sually as a function of a single parameter and thus ensure that

gray regions represent the information-theoretical lower limit on the . L .
standard error, the CraanRao bound. (a),(c) Time series of length the algorithm has converged to the global minimum [B@).

N = 10. (b),(d) Time series of lengti = 100. All simulations were

performed with shutter time equal to time lapse< 1/6). (a),(b)

For unknown amplitude of localization errors, the MLEs reach and The variance of the MLE is to brst order ifNL given

even surpass the CramRao bound for high SNR, where they are by the Craner-Rao bound ( )31, wherel () is the Fisher

biased. The CVE is unbiased and attains the @raRao bound for  information matrix [Lg]. Its entries are

SNR> 1. (¢),(d) For known amplitude of localization errors, both

MLEs and CVE are unbiased and attain the CeafRao bound for 2InL() B 1 Px() Px()
i g PO P

1. Variance and the Crarar-Rao bound

N

SNR> 1. 1(); =S (22)

with

errors, then these estimates can be averaged to obtain a more
precise estimate of the noise amplitude. Diffusion coefpcients
can then be estimated again, using the average noise varianggd
estimate as a bxed parameter, since this averaged quantity P )

covaries little with the individual time series. In this manner, K- 9ot 18 cos
essentially all information in a time series is used to estimate 2 N+1
its diffusion coefbcienD. This reduces the standard error on  The Craner-Rao bound sets a lower limit on the variance

estimates of the diffusion coefbcient by a factor of up to 1.8 inof any unbiased estimatofl§. An unbiased estimator that
the limit of high SNR and the absence of motion bRr{ 0).  reaches the Craen-Rao bound is thus considered optimal.

Pe() _ 2 1 & s
—5 = At ) 1S2R 1S cos—— (23)

(24)

The standard error of the CVE is reduced by a factarS for For the case in which the amplitudeof the localization
maximally open shutterR = 1/6) [compare Figs4(c) and  error has been estimated independently, and ddlyis
4(d)to Figs.4(a)and4(b)]. estimated from the time series, the Fisher information matrix

isa 1x 1 matrix, i.e., a scalar. This scalar equals

N 1 P«D, 2 °?
4. Relationship between the CVE and the MSDs I (D)= KA (25)
- : ., PD, 3 D
The MSD in Eg. {) suggests how to construct a maximally k=1
Simple_MSD-based estimator of the diffusion coefbcibnt The Craner-Rao bound on the variance of unbiased

from d? and d3: Bnsa= (d2 S d2)/ (2t ). On average, this estimators oD is given by 11 (D). Since MLE is known
maximally simple MSD-based estimator is exactly equivalento saturate the Craen-Rao bound asymptotically & ,

to the CVE ofD: They have the same expected vallle, this bound, 11 (I¥), serves as an estimate (accurate to order
This follows from the relationsd(2t )?> = 2 (x ,)? + UN) of the variance of the MLE ob.
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E. Monte Carlo simulations variance and distribution of the CVE are known. For the MLE,

We tested the CVE on Monte Carlo generated timelniS is only the case asymptotically bis
series. We compared its performance to two near-optimal
MSD-baged gstimatorsNQLSFlE] and the’GLS estimator IV. STATISTICS OF DIFFUSION ON A
(Append|xB)'Nand to the Ogold standard,O MLE (SBED FLUCTUATING SUBSTRATE
and AppendixE) [19], as well as to an approximate MLE . . i o .
[20]. The precision of each estimator was compared to the In this section we derive the statistics of recorded time

Cramer-Rao bound, the ultimate bound on the precision ofSeries of a particle diffusing on a Buctuating, taut substrate. A
any unbiased estimator (Sét.D). Pxed point on such a substrate moves in the laboratory frame.

We brst derive the statistics of this motion (SB¢A). We

then derive the covariance of single-time-lapse displacements

, ) of a particle diffusing on the substrate (Sé@.B). Next,
_Monte Carlo simulation was done as follows. The DST e cajculate the power spectrum of the single-time-lapse

diagonalizes the covariance matrix given in EGBDE)  gisplacements (Setv C). Finally, we consider the specibc

(Appendix D). Thus, it transforms theN displacements g6 of 4 particle diffusing on a taut, incompressible bber or

X n into N independent, normally distributed Otransformed@olymer, such as DNA, and derive the statistics (covariances
displacementsk , with mean zero and variances given by and power spectra) of this motion (S&¢D).

Eq. (10). Suchtransformed displacements were generated from
Gaussian random numbers and transformed back, using the
inverse DST given by a matrid with entries A. Statistics of a Buctuating substrate

2 T Consider a RBuctuating elastic substrate. The substrate is

sin (26)  d-dimensional and of bnite extert,(,L y,L ;) but much larger

(N+ Dt N+1 than the characteristic diffusion length2Dty, of a Qarticle
This gives synthetic data sets with the statistics of time seriedliffusing in or on it. We assume that the substrateOs motion is
of time-lapse recorded freely diffusing particles [E@3E(@)].  massively overdamped, i.e., inertia plays no role.de¢note

1. How to simulate

Mi'j =

We tested our estimators on these data sets. the coordinates of a physical point in the substrate in the refer-
ence frame of the substrate. leést) = [x(st),y(st),z(st)]"
2. Simulation results denote the coordinates of this pointin the reference frame of the

. . laboratory at timeé. Thermal Buctuations or other causes drive
As s_hown in Sec. lll A 2, the MSD—baseq estimators ar&y, o o pstrate out of mechanical equilibrium. We assume that

suboptimal. The CVE and the MLEs practlca_lly reqch thejts excursions from equilibrium are so small that the restoring

Cramer-Rao bound, and the MLES even surpass it for high SN orces are well described as Hookean. Then the dynamics of the

[Figs. 4(a) and 4(b)]; this is possible because the MLEs are is li o fi ial
biased [Figs4(a)and4(b)], which means that the total error of Zlijgbes;ﬁgedless.mear and a superposition of independent spatia

the MLE can be, and is here, smaller than that of any unbiased"r, " the assumptions above and the equipartition theo-

estltmatotr_. This extrzt;\hpreut_smnt CSQGS Aat a CdO_StI’E hQI_V\r/]ever: fem follows that the amplitude of each spatial eigenmode
systemalic errorin the estimatet S ( ppendix ). This . has the dynamics of an overdamped harmonic oscillator at
bias complicates statistical analysis of estimates from mumpl%nite temperature with the same temperature applying to all

time series, since averages and other statistics do not Convergﬁ;enmodes Thus, without knowing the specibc form of these

to their true values. spatial eigenmodes, we know the character of the dynamics
of a given physical point of the substrate: Its distance to its

yequilibrium position evolves as the sum of spatial eigenmodes
) ) 2" Jevaluated at that point of the substrate. Since the spectrum of
1< SNR< 20. There, CVE is the best estimator of diffusion relaxation times of these eigenmodes is discrete for a bnite,

coefbcients. . . ._taut substrate, and faster modes have smaller amplitudes, two
Monte Carlo simulations conbrm that a more precise

: . ) 2 cases are so simple that we can account for the motion of the
eﬁ“m_ate oD can be obtained by usirgpriori knowledge Of_ substrate without knowing its dynamics in detail.

[F!gs. 4(c) a.”d“(d)]- Wezfl_thhermore sge_that the MLE is (i) If the longest relaxation time of the eigenmodes is some-
practically unbiased when< is knowna priori and that both

what shorter than the time lapge, substrate motion appears
the MLE anq the CVE reach the CramRao lower bound for uncorrelated in our recordings, which means it contributes as
SNR> 1 [Figs.4(c) and4(d)].

a white-noise localization error. The CVE derived in Sic.
can then be used to obtain optimal estimates of the diffusion
coefpcients of particles diffusing in or on the substrate.

In conclusion, we bnd that the CVE is to be preferred (ii) If the longestrelaxation time of the eigenmodes is longer
in practice since (i) it is unbiased and practically optimal inthan the time lapset , but all other relaxation times are
experimentally relevant situations. This is not the case for theomewhat shorter than Nwhich is not at all unrealistic;
MLESs, the OLSF, and the GLS estimators, which are biasedsee examples of spectra of relaxation times 28]fithen
(i) The CVE is given by a simple analytical expression; it substrate motion appears in our recordings as a white-noise
is thus regression-free and is orders of magnitude faster thdncalization error plus the thermal motion of one overdamped
the MLEs, the OLSF, and the GLS estimator. (iii) The exactharmonic oscillator. The parameter values characterizing this

Fig. 4 shows, it practically reaches the CrarrRao bound as
long as the SNR is larger than one. In experiments, typicall

3. Conclusion

022726-9



VESTERGAARD, BLAINEY, AND FLYVBJERG PHYSICAL REVIEW E89, 022726 (2014)

overdamped harmonic oscillator may vary across the substrat@here (xn)\-, is a normalized Gaussian white noise, i.e.,
but locally it may be determined experimentally. independenN (0,1) variables.

We consider the motion in the laboratory of a posnof We use that the dimensions of the substrate are large
the substrate. Let(s,t) denote the prst laboratory-coordinate compared to the diffusion length of the particle and Taylor
of this point. In case (ii) above, the autocovariance of thisexpand around the average positi@,of the particle on

coordinate is the substrate. Neglecting terms of orde2D t/L , 1 or
X(t é t |S) — COV(X(S,t),X(S,t )) — KX(S) X(S)egltét |/ X(S), hlgher, we thus have that
27) <
| | | . n 2O )@ e @D
whereK describes the amplitude of the motion ands) its < : '

correlation time. Herey(s) = (2f C,X)sl, wheref ¢ is the
so-calledcorner frequencyf the Lorentzianpower spectrum
thga

of this mOt'O?gUth?,tnTx andfcx depend orsin general. . displacement of the particle along theaxis of the reference
Now let P; denote the power spectrum of a contin- ¢ - Jcib o o ibstrate. and (©= L " xS xEtS
uously recorded variable that describes the substrateOs motl%)rsldt is the displac,ement in int retfné}enc;a frame’ of the

in the laboratory, and let an additional subscript indicate whic . . .
variable. Then the power spectrumst) is r]aboratory of the poirgon the substrate during one time lapse.

where s xn= L " [5(t) S s(t S t )]dtis the diffusive

Xn(®)/ s« = ti ttn”él X (St)/ s x dt describes the degree of
p (subcont) _ Nty GSi2f (81) (t S t]9dt dt stretching of the substrate during thih time lapse. 3
xf T 0 o X Since the substrate motion is uncorrelated with the particleOs
K(9) diffusion, the autocovariance ot , is just the sum of the

= o 2412 autocovariances of the three terms in B{)(We furthermore
2 “ffex(9) +v ] use thatx/ s x and s xn are uncorrelated except for terms
. Kx(9)(1S e>2f ex®)[f ., (52 S f 3] of order D t/L 2. We then get

2 oo g @

wheref = fy = kf with k integer. Here, the last term
describes the effect of Pnite time of measuremgng N t

on the power spectrum. It is included only to provide a
guantitative indicator of how long one must measure to
avoid its contribution. For 2 .xty = tn/ x(S) 1, which X mX n=Cc(InSm|, forlnSm|> 1. (34)
is always the case for situations of practical interest, this

second term in Eq.28) can be ignored. For two- and AV vl .
three-dimensional substrates, similar expressions result fo|_r|ere (9= (x (9 s )?isthe mean degree of stretching

each dimension. brovided that a separation of spatial variabl of the substrate. It is equal to one for three-dimensional and
is possible P P P Tt substrates, and smaller than one for substrates that tend

to bend and twistCy (InS m||S) = cov( X (), X m(d) is
the autocovariance of the displacements oftlteordinate in
B. Covariance of displacements of a particle diffusing on a the laboratory of the poir& on the substrate in the presence
Buctuating substrate of motion blur. It is equal taC, (j[5) = 2G( 19S5 G( S
Observed from the laboratory frame of reference, thellS) S G( + 1[S), whereG; is the autocovariance of the
trajectory of a particle moving on a Buctuating substrate cagoordinate in the laboratory of the poisibn the substrate in
be described by the particleOs trajectory on the subsigte, the presence of motion blur. It is given by
and the consecutive positions in the laboratory of the points
visited on the substrate at the time they are visited, i.e., ot

X2 =4 @Dt/ 3+2 2+ C (09, (32

X nX 1 =S [ 252 (9Dt ]+ Cx (U9, (33)

GGt D= —5 jt St+t|gdtdt
0 = Hs0.), o STy, &

As in the previous section (Sedll), we look at the %MT]KX@) for j =0,
particleOs single-time-lapse displacements,= rn S rnss. = (15¢)? Kyx(®ciSU forj = 0
In practice, the cameraOs shutter is kept open during the 2f cx@F(t 27X '
whole time lapse to maximize the number of photons recorded (35)

[1,2,4D13,21,26] and thus maximize the information content
of recorded time serie®§]. The recorded positions are conse-
guently motion blurred, and a single-time-lapse displaceme
in, e.g., thex direction, is modeled as

wherec = exp[S2f x(dt ].
Nt The covariance [Eqs3@)DPE4)] of single-time-lapse dis-

placements from a Monte Carlo generated time series is shown
t

n in Figs. 5(a) and 5(d). Notice the nonzero value of the co-
X n= T x(8(t),t)dt+  xn variance at unit lag and the negative values with exponentially
ths1 . . . .. . .
. decreasing magnitude at higher lags, characteristic of diffusion
= 1 on a Buctuating substrate, e.g., DNA [Féga)] and biological
—_— + & 1 )
S3 tes X(s(t).1)dt xnst (30) membranes3s, Table 4].
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FIG. 5. (Color online) Statistics of single-time-lapse displace- |G 6. (Color online) Statistics of time-lapse measured time
ments of a pa_rUgIe dlffus!ng ona RBuctuating substrate._PaneIs (@)P(gYries of a hOGG1 protein diffusing on Bow-stretche@NA. The
show the statistics of a time series of lendti= 100, while ()D(1)  time series consist of 293 points measured with maximally open
showstatlstlcsng = _1000. (@),(d) Covariance of single-time-lapse ghytter and time lapsé = 11 ms. In (a),(b),(d),(e) black lines
displacements in units oD t ~ calculated from a Monte Carlo  4re pts of the phenomenological theory (S¥) for diffusion on
(MC) simulated time series and compared to their expected valueNA to data. (a) Covariance of single-time-lapse displacements of
The covariance shows an isolated positive value at zero lag, thie protein along the DNAOs longitudinal direction. Compare this
sum of positive contributions due to diffusion, localization error, Figs. 5(a) and 5(d). (b) Periodogram of the particle®s single-
and substrate Ructuations. The value at unit lag is & sum of bothme_|apse displacements along the DNAOs longitudinal direction.
positive and negative contributions. At higher lag, the covariance i ompare to Figs5(b) and 5(e). (c) Distribution of normalized
negative and decreases exponentially in magnitude, a signature ghrmalized periodogram values; = By /P ¢ ( ) compared
substrate motion. (b),(e) Periodogram of single-time-lapse Montg, 5 theoretically expected exponential distribution. Compare this

Carlo generated displacements in units Dt )? compared to panel to Figs5(c) and5(f). (d) Covariance of the proteinOs measured
their expected values, the power spectrum. Shown values are blogknsversal positions. Compare this to Figga) and 7(d). (e)

averages over 10 (b) or 100 (e) periodogram values ehBlock  periodogram of the particleOs transversal positions. Compare to
averages are shown since the raw periodogram values have a SNfyys 7(b) and 7(e). () Distribution of normalized periodogram
of one, which makes visual comparison unpractical. The gray aregy|yes yi = B /P, () and theoretically expected exponential
marks the 68% conbdence interval (CI) for the block-averaged valuesgyistribution with unit mean. Compare this panel to Figés) and
The power spectrum is composed of three terms: a term due 19(f). Shown values for data in (b) and (e) are block averages,
localization error (Noise), a diffusive (Diff.) term, and a term due 10 g5cp gver 29 periodogram values, and the gray area marks the
substrate (Sub.) motion. (c),(f) The normalized periodogram valueggo, conpdence interval (CI) for the blocked values. The estimated
¢ = B /P¢ () follow an exponential distribution with unit expected parameter values a® = 0.12 pm?sS!, 2= 750 nnf, 2 f.=
value. In (a),(b),(d),(e)R = 1/6 (maximally open shutter), and 44 Hz 1§, = 0.33pm? s, andi, = 0.20 um2 5,
D = 0.31pm?s®!, 2= 1500 nnt (SNR= 1.5), 2f ¢« = 50 Hz,
andK, = 0.37 um?s°%, corresponding to typical values observed
experimentally. As in Seclll, we use it to test whether the recorded motion of
a particle is consistent with diffusion on a Buctuating substrate
(Sec.VC). We do this by comparing the measured peri-
odogram to the power spectrum [Figgb) and5(e)and6(b)]

It is useful to know the power spectrum of measuredand by using that the periodogram values are exponentially
displacements of a particle diffusing on a Buctuating substratalistributed about their expected values, the power spectral

C. Power spectrum of displacements of a particle diffusing on a
Buctuating substrate
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values. We also use this power spectrum to construct a MLE fokoreover, the cameraOs Pnite shutter time acts as a low-pass

the diffusion coefbcierd, the variance 2 of the localization  blter. Consequently, the periodogram should not be compared

error, and parameters characterizing substrate Buctuations, &l the power spectrum based on a continuous-time theory,

from a single measured time series (Séd.). P 248 hut on an aliased and low-pass Pltered version of
As for the covariance of displacements, the power spectrurthat power spectrum (Append§),

is the sum of three terms, the three individual power spectra of

the three independent terms in EgL). We derive expressions (sub) _ Kx(3 @S 1+ 4f . te
for each of them separately. x.f —(2f xR te cx

1. Power spectrum of the diffusive and localization error terms N (1+¢)(1Sc) (38)

LetP; denote the power spectrum of a time series, and let 1+ ¢S 2ccos(2tf )
an additional subscript d? indicate which time series. Thus, - .
the power spectrum 0§ y 1,...,S xn IS with fcx = fcx(S) andc = expS2f cx t ).
e & r & As above, we use that
Ps t =2D(t ){1S[1Scos(2ft )]/3}, (36)

in consequence of the white-noise property of diffusive Pxs = 2[1S cos(2f t )]Pxy (39)

displacements and the low-pass pltering effect of motion blur.

Likewise, the power spectrum of the localization errog,,  up to neglected contributions from the two ends of the series,
isequalto 2t . The DFT of xn= xnS xns1isequal contributions of ordeN S2. Insertion of Eq. 88) into Eq. @9)

to (1S €2ft ) 4+ to order IN . Using that, we bnd that the Yyields the contribution from substrate Buctuations to the
power spectrum of  , , is equal to measured power spectrum.

P f=272t[1Scos2t ). (37)
3. Total power spectrum

Equations86)D@E9) give us the power spectrum of a particle
Since a time series is recorded at a Pnite frame ratdiffusing on a Buctuating substrate recorded in the presence of
fsample= 1/t , its periodogram isliased[31, AppendixF]. motion blur and localization error,

J
Pyt =2 (9°Dt 2+[2 2t $S2 (3°Dt #3|[1Scos(2ft )]
2K« (9)
(2f cx)3tc

2. Power spectrum of substrate Buctuations

1+ (15 )3
1+ c2S 2ccos(2ft )

[1Scos2ft )] ¢S 1+ 4f ¢, tc + (40)

(

Examples of the power spectrum and periodogram of timesuch as DNA. We designate lhy the contour length of this
series of a particle diffusing on a Buctuating substrate ar@olymer. For a one-dimensional substrate of this typeslet
shown in Figs5(b) and5(e). denote the coordinate of a physical point on the substrate as
measured along the contour of the substrate, e.g., the base-pair
number for DNA. Letr(s,t) = [x(s,t),y(s,t),z(s,t)]" denote

The displacements measured in the laboratory frame fofhe coordinates of this point in the laboratory reference frame
the particle diffusing on the substrate are stationary processeg a given timet. Thermal Ructuations and/or other forces
since they are the sum of three time series, each of whiclrive the substrate out of equilibrium and a point on the
is a stationary process; two of them, localization errors andypstrate feels a restoring force. Since the substrate is taut,
the displacements themselves in the reference frame of theyctuations are small and the restoring force is locally well
substrate, even consist of jointly Gaussian distributed termspproximated as Hookean, i.e., proportional to the distance
Consequently, both the real and the imaginary parts of thgy equilibrium. As Fig.6(e) shows, this approximation is
Fourier transform of displacements consist of independentlgxcellent for our purpose. This is conbrmed by theoretical
Gaussian distributed terms (Appenddy. Since the real and jnvestigation of substrates stretched by various meagks [

imaginary parts of the Fourier transform at a given frequencyrhe results presented in this section are easily generalized to
have the same variance, periodogram values are exponentialfyclude multiple modes (Appendig).

distributed about their expected values, being the sum of two
squares of Gaussian values with same variance [E(.
and5(f)]. The periodogram values corresponding to different

frequencies are furthermore independent, except for terms of We consider an inextensible semilexible or Rexible Pber
order IN 2 or higher (AppendixD). or polymer (DNA is inextensible at the stretching forces used

in measurements of diffusion on DNAY]). Since the bberOs
length is Pxed, its longitudinal motion is determined by its
motion in the two transversal directions by the condition
We now consider a particle diffusing on an incompressibley = 1, where the prime denotes the derivative with respect
taut, RBuctuating, Rexible or semilRexible bber or polymerto s. Furthermore, since the bber is taut, we have by Taylor

4. Distribution of the periodogram

1. Fluctuations of a taut polymer in solution

D. Statistics of diffusion on Buctuating, stretched DNA
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expansion Since localization errors are uncorrelated with substrate
1 motion, and since terms of ordeD2/L 2 1 or higher
x 18 E[(y Y+ (z)2. (41)  can be ignored, the autocovarianceyas given by
The bberOs motion in the transversal directions is locally WS y)* = 2+ G(Op), (46)
that of a harmonic oscillator, because we have assumed that we . . .
only resolve the spatial eigenmode with the slowest relaxation YmS y)ynS y) = G(InSm|t [5),
time. We do not know the functional form of this eigenmode, for InSm| 1 (47)

unless we have a dynamical theory for the substrate motion.
However, we manage without by observing that whatevetiere G is the autocovariance of thg coordinate of the
the functional form of that eigenmode is, its only role in substrateOs motion,

describing the motion of a bxed point or narrow region on 2(c81+21 ot ) ) for j =0
the substrate is to specify the amplitude of this motion. Its GGt [5)= @f () YW ’

S . . (189” _k (9)cisU for i =0
dynamics is that of an overdamped harmonic oscillator. So we @t 9 (D) y(S)c or |j \

manage by measuring that unknown amplitude experimentally (48)
at each location of interest. Its associated relaxation time is
also determined experimentally. We then have, e.g., irythe with c = expS2 f .t ). Examples of Monte Carlo simula-

direction, that tions and experimental measurements of the covariance of the
& — S[tSt |/ ,(s) transversal positions of a particle diffusing on Buctuating DNA
y(tStls) v(S) y(s)e y’ (42) are shown in Figs7(a)and7(d) and6(d).
whereKy (s) parametrizes the amplitude af ats, and y(s) is b. Longitudinal motion.The covariance of the measured

its characteristic time. By virtue of the Wiener-Khinchin theo- longitudinal displacements of a patrticle diffusing on a polymer
rem, y(s) = (2f ¢y)°%, wheref ¢ is the corner frequency of is described by Eqs3@)P@4) [Figs. 5(a) and5(d) and6(a),
the Lorentzian power spectrum of theoordinate of substrate except that the autocovariance of the substrateOs po€§tjon,

Ructuation as. is given by
The autocovariance of the longitudinal motion is found o2& 14|
from Eq. @1) by using thay andz are Gaussian distributed, o WKX@) forj =0,
) X GGt |s)= (1Sc2)2 < 2| . (49)
1 s 1 s @t )ZCZKX(S)C I forj = 0.
(=5 y(tls)ds + 5 o(tls)ds  (43)
0 0

The degree of stretchingr tortuosity, (S), is constant along
where y and , are the autocovariancesyfandz and are  a DNA molecule or another polymer stretched by applying a
proportional to y and , respectively, with proportionality force to its ends. It is approximately constant and close to one
constants that only depend snJsually the motion in the two  for a tethered polymer in a strong hydrodynamic 3ow, except
transversal directions contribute equally to the longitudinainear the polymerOs free eR@,p0B44].
motion (for DNA stretched by optical tweezers or a plug
RBow this is exact, for DNA stretched by a shear Bow this 3. Power spectra of displacements of a particle
is approximate?2]). In this casef ¢y = f., = f¢, and hence diffusing on taut DNA

y(8)= 2(s)= (s), s0 Eq. ¢3) reduces to a. Transversal motionThe power spectrum of the

transversal motion is calculated from Ed5) in the same
manner as Eq40) was derived from Eq.31). This gives

Ky(8)

x(tls) = —Kx(S) (6% ©, (44)

The exact forms oK, andK, depend on the substrate and

g , Py = 2t + —2"  c?S1+4f .tc

how it is stretched. They are, in general, unknown, but can be vf 2f )3tc ¢
calculated explicitly for some specibc substrates and methods < .3

of stretching P2). N (1+c)(1Sc) (50)

1+ c2S 2ccos(2f t )

2. Covariances of displacements of a particle See Figs.7(b) and 7(e) and 6(e) for examples of the power

diffusing on taut DNA

spectrunPy ¢ .
a. Transversal motionThe measuredy position of a b. Longitudinal motion.The power spectrum of the
particle diffusing on a RBuctuating polymer is given by particleOs displacements in the longitudinal direction of the
t substrate is derived in the same manner as above and is given
Yn = Yirue(ta S t)dt + W), (45) by

t oo
J

Pyt =2 (5Dt 2+[2 %t S2 (5°Dt #3][1Scos(2ft )]
2K« (S)
(4f )Btc 2

(1+ c®)(1S c?)?3

18cos2ft )] c*S1+8f ctc 2+ S
[1S cos( )] c ct€ 1+ c4S 2c2cos(2ft )

(51)
Figures5(b), 5(e), and6(b) show examples of whét, ; may look like.
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, Less is needed, however, to arrive at exponentially
distributed periodogram values: The longitudinal substrate
Ructuations are not Gaussian distributed, since longitudinal
motion is a nonlinear function of the transversal motion. This
means thatx , is not Gaussian. However, since its Fourier
transform is a weighted sum over all the measureq, it is
approximately Gaussian by virtue of the central limit theorem.
ol 11 P B R R R Furthermore, the measured Fourier transform is a sum of the
0 2 4 6 8101214 0 2 4 6 8101214 Fourier transforms of the three independent terms in &L, (
Lagj Lag of which the two others are Gaussian. The periodogram
(b) 100 U (e) 100 T T T values of the measured longitudinal displacements are thus,
! = MC data ] in practice, exponentially distributed [Figs(c) and5(f) and

. 6(c)] and independent (to orderN 2, AppendixD).

(a) 10 T 71T (d) 10 1 T 1 1 1
—— Theory —— Theory
® o MCdata| ® e MCdata|

2

YnVn+j! 2
Ynyn+j/

V. ESTIMATION OF DIFFUSION COEFFICIENT OF A
PARTICLE DIFFUSING ON A FLUCTUATING SUBSTRATE

Based on the statistics of diffusion on a taut, Buctuating
substrate (SeclV), we here derive two estimators of the
diffusion coefbcient of a particle diffusing on such a substrate
— Theory from a time series of its measured positions. When the
33 MC data substrateOs motion cannot be characterized independently, e.g.,
by direct measurement, and the measured time series is long,
the MLE derived in Sed/ A optimally estimates the particleOs
diffusion coefbcienD, the variance 2 of localization error

i on positions, and parameterscharacterizing the substrateOs
kﬁ_ﬁ_ motion. For the case where substrate motion has been
o 1 2 3 4 5 characterized independently, we derive in S&B.an unbiased

Pil P; Pil Ps CVE which optimally estimate® along with 2 even from

a short time series. We bnally give a procedure for rigorous

FIG. 7. (Color online) Statistics of the time-lapse measuregStatistical testing of whether a recorded time series describes
transversal position of a particle diffusing on a taut but Bexible,frée diffusion on a Buctuating substrate in SécC.
Ructuating Pber, such as DNA. (a),(d) Covariance of the measured
positions in units of 2 calculated from a Monte Carlo (MC) simulated A. Maximum likelihood estimation

tim ri n mpared to their expected values. Th varian . . .
e series and compared fo their expected values. The covariance We construct a MLE of the diffusion coefpciebt, the
shows an positive value at zero lag, the sum of contributions from

. 2 A
localization error and substrate Ructuations, and an exponentié{l"’m‘fjlnce .Of Iocallzatl9n errors, and paramet(-?rs of substrate
otion in the pointS on the substrate. This MLE uses

decrease for higher lags, the signature of substrate Buctuations. (b), iod £ 1h d ti . . f
Periodogram of Monte Carlo generated positions in units of e periodogram of the measured time series as input. |

compared to their expected values, the power spectrum. Shown valu@§® has recordeddl displacements ro, ry,..., ry of a

are block averages over 10 (b) or 100 (e) periodogram values eadP@rticle diffusing on an elastid-dimensional substrate, one

[31]. The gray area marks the 68% conbdence interval (Cl) for thecan calculatel periodograms, one for each coordinate of the

block-averaged values. The power spectrum contains an additiéme series. Since the motion along the coordinate axes are

constant term due to uncorrelated localization errors on positiongldependent, estimates can be obtained for each coordinate

(Noise) and a Lorentzian additive term from the substrateOs motidndividually and averaged afterwards, as in the case of free

(Sub.). (c),(f) The normalized periodogram valugs= B} /P; ( ) diffusion (Seclll).

are exponentially distributed on the positive real axis with unit In thex direction, the periodogram values are

expected value. In (a),(b),(d),(B®)= 1/6 (maximally open shutter), . _ 2

2= 1500, 2f = 25 Hz, andKy = 0.20 um? 1. Per =1 x ¢ I°f, (52)

wheref {f, 2f,...f g}, with f = (Nt ) and
theNyquist frequenci/nyg = 1/ (2t ) = fsampd 2 for N even

c. Distribution of the periodogramThe measured andf.NVq = (NS 1y (ZI\AI,t .) for N odd. Thg DFT X f of
transversal positions of the particle on the substrate is thg1e dlsplacem_ent~s>( n)n-1 IS Calculated efbciently with, e.g.,
sum of two Gaussian distributed terms, so the transversafAT-AB Of SciPyOs ffd2]. . " .
position is Gaussian itself. The real and imaginary parts of Given the measured penoq_ogra.mx( ) t.he.MLE is the
the Fourier transforms of these displacements are thus alt of parameter value$( 2, 9) which maximizes the log-
Gaussian distributed. As a result, their squared moduli arékelihood function

0 100 200 300 400 500
f (/[N t]) f (/[N t])
(c) T L Thelory () 250 T T

20 [ MC data—

Count
Count

exponentially distributed, as demonstrated in Fig&) and fryg )
7(f) and 6(f)]. These exponentially distributed periodogram InL(D, 2, |(® ) )= NPy + X (53)
values are approximately independent (Apperialix f=f P
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The power spectral valugd, ¢ are given by Eq.40). If If these parameters cannot be determined by direct mea-
more than one mode is needed to properly describe thsurement of the substrate motion, estimates can be obtained
substrateOs Ructuations, or if the camera shutter is not kept averaging over MLEs (Sed/IA) obtained from long
open for the full duration of the time lapse, see Apper@ixt  time series of particles with a mean position closestdf

gives expressions for the power spectrBig;  for a multi- ~ we have recorded/ time series that are long enough for
mode theory and for a camera shutter time that is shorter tharliable estimation of (5) = [K«(3),f ¢x(S)], we calculate the

the time lapse. weighted average d€, andfQ, as 45|
If the parameters describing substrate motion have been de- " .
termined independently, they can be used as bxed parameters B = _ m=1 Nm 9m (57)
| ]

in the MLE algorithm. This is done by plugging them into
Eq. (3) and maximizing Ir. with respect to the remaining ] ] ] )
parameters only. In this case, however, a simpler, unbiasefhereNn is the length of thenth time series. The variance of
CVE which also reaches the CramRao bound, should be the weighted average is estimated by

used instead (Sev.B).

M
m:le

— M 4. & 0y
var(8) = =Nl W >3
1. Variance of the MLE MS1 1 Nm

m=

- 2 T i i
We debne = (D, % )'. The covariance matrix of the Thege estimates can then be used in Eif) to obtain
MLE is, to Prstorderin N , equal to the inverse of the Fisher 5.5 qtically optimal and unbiased estimates of the diffusion

(58)

information matrixl , the elements of which are coefbcient [Figss(c) and8(d}].
fryg o p p One may consider alternative approaches to reduce or elim-
Ik = (P )SZL Ixf (54) inate the bias of the original CVE without using ML estimated

f=f j k parameter values, e.g., by adding higher autocovariances to

. , ) , ) ) reduce the bias or by estimating substrate Buctuation param-

The variance of the MLE is estimated by inserting estimatedyes directly, using higher autocovariances. Both approaches
values of in Eg. (54). considerably increase the variance of estimates of the diffusion

If parameters characterizing substrate [Ructuations haV@oeﬂDcient, however, compared to the CVE debned above, and
been estimated independently and used in the MLE, the variience should not be used.

ances of its estimates Bf and 2 are as given in Appendix.
1. Variance of the CVE

s The variance of the unbiased CVE is to ordeiNZ?
Ifindependent estimatekX,fQx) of parameters character- (AppendixH)

izing substrate motion have been obtained, an unbiased CVE

B. Covariance-based estimation

of the diffusion coefbcient can be constructed by subtracting var@®) _ VoD, 2 )+ 2vi(D, 2, )
the bias caused by substrate Ructuations from the CVE that Dz ~ 0% o (92D
was designed for free diffusion [EdL4)]. For a particle with i 2
mean positiors on the substrate, the bias due to substrate + Va( )+_var[bD(0)] + var[_(s) ], (59)
Buctuations is [ (9°D]? e*
o TK (S (S 1Sc 3K B - where we have introduced three functions,
9, = —/——0— 9,
o[Kx®fex®1 = 57 o K« (69 S
with c = exp[S2f <,(3t ]. An unbiased CVE oD is then o N N2
S XA X X g o _ 2 \_ B+ )G+ 4G+ 2GS G
B= 0+ P28 B (97 (56) Vi@, %) N(T )2
201+ )G+2G+ G
where eventual incomplete stretching of the substrate has + N2(t )2 ) (61)
also been taken into account by dividing bys)?. In the
same manner we can derive an unbiased CVEXan the 1 NSty g ANSJ)

case when also the localization error has been characterized Vy( )=
independently. It is given in AppendR. In practice, it is not
more precise than the CVE given by E§6) (Sec.VID). So
one can in all cases use Eg6].
The CVE [Eq. 66)] requires prior knowledge of the

(L), N T NS 9

2NSjS1
+ NS Gs1G+1+ G

parametersK«(3), fcx(5), and (5) that characterize the 3G/I12+C C+C

substrate and its Buctuationss) is often knowra priori. For + N(T )2 + NZ(T )2 (62)
a three-dimensional homogeneous substrate, e.g., itis equal to

one. For a polymer stretched by constant forces applied to itssing =[ 2SS (92Dt/ 3)/[ 3Dt ] and
ends, itis constant and equal to the overall degree of stretching  Cx (jt [5), with C, (jt |9 = 2G(t [9 SG(j S
while K«(5) andf .« (S) are measured experimentally. 1t 9SG + 1)t |[gandG(t |3 giveninEq. 85). A
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C. Testing whether a recorded trajectory describes free
diffusion on a Buctuating substrate

(@) (o) ¢

—T T
O0—0 MLE

As for diffusion on a substrate at rest, we can design atest for
diffusion on a Ructuating substrate based on the periodogram
of the measured time series of the particleOs positions. Fourier

o /_o——_ transformation of the set of displacemenmtsy, X »,...,X n
m/o/T/__‘ decorrelates them (Appendi®), which means that their
T o 20 = 0  periodogramvaluesy ,are uncorrelated (to ordefd 2). This
2f ¢ (Hz) 2f ¢ (Hz) makes them well suited for statistical testing of whether a time
— series describes free diffusion on the Buctuating substrate. The

— (d) 2.0 —_— <
oo MLE | @ ' o—o MLE periodogram valueB} should be compared to their expected
— CvE 15 — CvVE] values, the power spectrum, given by E40)([Figs. 5(b)

2 and 5(e]], and the distribution of their normalized values

or

D/D

(&)
f/
D/D

© *

g —— g 1.0 ¢ = M /P; (9 to an exponential distribution with unit mean
0 os | | [Figs. 5(c) and5(f)]. If a P value is wanted for quantitative
1 . ' comparison, itcan be calculated from , »¢ ..., f,, Using
2 N R 0.0 I S PearsonOs goodness-of-pt test (Appendixwith four btted
oo 0 10 oo %10 parametersD, 2, Ky, andf (two if substrate motion has
2f c (H2) 2f c(H2) been characterized independently).
(e) 4 — T (f) 20 — T
3 o—0 MLE_ O0—0 MLE
\_ CVE 15 | — CVE] VI. ESTIMATION FOR DIFFUSION ON
2 -
FLUCTUATING, TAUT DNA
o 1 QO 1.0 P ) . ~ . . .
o L a We here derive a MLE of a particleOs diffusion coefbcient
05 | : D, variance 2 of localization error, and parameters
tr ] characterizing substrate motion from a recorded time series
e w0 e s o Of the particleGs motion on a taut, Buctuating polymer, e.g., a
2f ¢ (H2) 2f ¢ (H2) DNA strand, optimal for long time series (S&d.A). For the

case when the DNA strand®s motion has been characterized

FIG. 8. (Color online) Quality of various estimators for the dif- independently, we derive an unbiased CVEDoand 2. This
fusion coefbcient for diffusion on a Ructuating, taut, but Rexible one-CVE estimates the diffusion coefpcient much more precisely
dimensional substrate. Mean plus/minus standard error of estimatothan the MLE, which also estimatesand it is optimal even for
given in units of the true valub . Estimated® were obtained with ~ short time series (Se¥l B). We develop a rigorous procedure
MLE and CVE applied to 1000 Monte Carlo generated time seriefor testing whether a recorded time series describes diffusion
of positions of a particle diffusing on a Buctuating substrate recordeén a Ructuating, taut DNA strand (S&d.C). Finally, we test
with motion blur and localization errors. (a),(c),(e) Time series ofthe estimators on synthetic Monte Carlo generated data and
length N = 10. (b),(d),(f) Time series of lengthl = 100. (a),(b)  compare their precision with the information inequality, the

Case of unknown variance? of localization errors and unknown Cramer-Rao lower bound on achievable precision (S8®).
parameters of DNA motion. They are all estimated together @ith

from the same time series. Results: CVE is highly biased for large ) o o
substrate Ructuations 6mall 2f ). MLE is optimal for largeN . For A. Maximum likelihood estimation
smallN, both CVE and MLE fail: Their estimates have systematic \We here construct a MLE for the special case of a
errors (bias) larger than the true value Df (c),(d) Case where particle diffusing on a taut, incompressible bber or polymer
substrate Ructuations have been characterized independently. Resuligich as DNA. This case is special because our observations
Both CVE and MLE practically reach the CramRao bound, but jnclude substrate motion in dimensions in addition to the
only CVE is unbiased. (€),(f) Case where also localization errorgyne dimension of the substrate. This extra information offers
have been characterized independently. Results: Precision of CVEy44 insight. Specibcally, the substrate is stretched along
increases negligibly; compare with (c),(d). MLE increases its bias[he x axis of laboratory coordinates, but in addition to
for large substrate Buctuationsgmall 2f ), especially atsmaM.  yicnacementsc of the particle diffusing along the substrate,
CVE s unbiased. we also observe the particleOs transversal posifiof$e
latter trace the transverse motion of the small region of
the substrate that is visited by a particle diffusing on it.
. In order to use this extra information, we assume that the
linear approximation tdp Os dependence orresults in the  recorded transversal positions and longitudinal displacements
usual formula for linearized error propagation: are uncorrelated. This assumption is not completely true, since
the longitudinal DNA Ructuations are fully determined by the
upstream Ructuations in the two transversal directipasd
B b bp . z. However, the contribution dbcal Ructuations in transverse
varp( )] = ———cov(9, 9). (63)  position to longitudinal displacements at the same locality is
i b so small, simulations show (Appendix that neglecting them
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does not affect estimates noticeably. A comparison between C. Testing whether a recorded trajectory describes free

estimator precision and the approximate CeatRao bound

shows this (Fig8).
The periodograms are calculated as
B =] x ¢ |*f (64)
forf = f, 2f,...,f yygand
= |y |*f (65)
forf = f ,2f ,...,fNy , wheref = 2/[(N+ 1)t ],

while the Nyquist frequencies af@yq debPned above?3] and
fayg = N/[2(N + 1)t ] for N even andf,, = 1/ (2t ) =
f sampid 2 for N odd.

GivenMy; andf); , the MLEO= (I, 2, 9) returns the
set of parameter values= (D, 2, ), which maximizes the
log-likelihood function

Nyq

f Nyq

InL( (R )) =

Fﬁxf
In Px’f + .
f=f x.f

Nyq 5)
+ INPy; + B (66)
f

The power spectral valueBy;
Egs. 61) and 60), respectively.

and Pys are given by

1. Variance of the MLE

The variance of the MLE is, to ordefN , equal to varf) =
| $1 [18]. Here the Fisher information matrixis given by

fyg

— (Pxf )éz P x,f P x,f
f=f Y i i

f Nyq

s, Pyt P
+ (Py,f )Sz_yjf —y.'f
| J

: (67)
f=f

where Py; and Py; are given by Egs.51) and 60),

respectively.

B. Covariance-based estimation

If independent estimates of parameters characterizing su
strate motion can be obtained either by direct measurement
the DNA strandOs Ructuations or from long time series usin
MLE as described in Se¥.B, an optimal and unbiased CVE
of diffusion coefpcients can be constructed. This estimator i

generally as precise as the MLE (S¥¢tD) and is guarantee
to be unbiased even for short time series.

This unbiased CVE of the diffusion coefbcient is given by

Eq. (66), wherebp is given by
3

1S ¢
KX!

bo (Kx,fe) = 17 1
C

(68)
instead of by Eq.%5).

1. Variance of the CVE

The variance of the unbiased CVE is given by Ex$) with
the expression fo& (S ) [Eq. (35)] replaced with Eq.49).

diffusion on Buctuating DNA

To test whether a trajectory describes diffusion along

a taut DNA molecule (or any other taut but RBexible and
RBuctuating bber), the test described in Sé€ is modibed
slightly to account for the fact that we also measure the
DNAQOs transversal motion, which is uncontaminated by the
particleOs diffusive motion. In this case, one should compare
the periodograms of the partcheOs longitudinal, as well as
its transversal, motion, respectlvd-'&f andP?,f , to their
expected values, the power spectra, given by Ef).for x
[Figs. 5(b) and5(e) and 6(b)] and Eq. 60) for y [Figs. 7(b)
and?(e) and6(e). The distributions of the normalized values

xi = Bs IP s (9) [Figs. 5(c) and 5(f) and 6(c)] and

yf = FQ/,f Py (9 [Figs. 7(c) and (f) and6(f)] should be
compared to exponential distributions with unit mean. They
can be compared quantitatively by calculatirg galue based
on PearsonOg goodness-of-bt test (Appendixtaking into
account that bve paramete3, 2, Ky, Ky, andfc, were
btted (two parameters instead of bve if the DNAOs motion was
characterized independently).

D. Monte Carlo simulations

We tested the estimators on simulated data for a particle
diffusing on a taut, but RBexible, Buctuating DNA strand. We
assumed that all but the lowest mode of the DNAOs Ructuations
could be ignored as contributors to the particleOs movement in
laboratory coordinates since this is a signature of taut DNA
[Figs. 6(b) and 6(e)] [22]. Consequently, we simulated only
the lowest mode.

Since the mathematical description of diffusion on a Buctu-
ating substrate contains two or three additional parameters
compared to free diffusion, estimator performance is not
determined by a simple SNR, as was the case for diffusion
on a substrate at rest (Séi¢), but by a complicated interplay
of parameters. Consequently, we did not investigate the whole
parameter space, but a subset which fully covers the parameter
values that we observed in experimental measurements of
hOGG1 proteins diffusing on Row-stretched DN22[. The

NA Ructuations are described locally by three parameters:
l‘) the relaxation rate 2 ., wheref . is the corner frequency
§f the Lorentzian power spectrum of transverse substrate
uctuations; (ii) the amplitude « (S) of longitudinal substrate

guctuatlons and (i) the amplitudé&(S) of transverse
d substrate Buctuations.

For the experimental data (Sedl), we found thaK(S)
does not change between time series though 2varies
between 20 and 50 Hz. In contra¥{,(S) scales withf
asKy = /(2 f ) with coefpcient of proportionality x =
9.2+ 1.2 um?s°2. The precisions of estimators are less
sensitive to the value of?, while varyingD is mathematically
equivalent to a renormalization of the experimental noise,
i.e., a change oK, (5) and 2. So we kept the parameters

«» Ky(8), D, and 2 constant in our simulations and
equal to their experimental mean valu@= 0.3 pm?s°1,

2= 1500 nnf, Ky = 0.20um?s°%, and , = 9.2 um?s52,
while 2f . was varied tenfold, between 10 and 100 Hz.
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Measured displacements were then simulated as described in
AppendixI.
Simulations demonstrate that DNA Ructuations induce a
bias in the estimates of the diffusion coefbcient, which can
be many times larger than the diffusion coefbcient itself, if
these RBuctuations are not accounted for [(Fifa)and8(b)].
For long time series [Fig3(b)], MLE accounts appropriately
for the DNA Ructuations and is practically optimal. For short
time series [Fig.8(a), both the CVE and the MLE fail to
give reliable estimates for the diffusion coefpcient: Though
CVE outperforms MLE and beats the CrarrRao bound by
a factor two or more, this is of no practical interest, because
its estimates come with a bias that may be larger than the true
value of the diffusion coefpcient.
In Figs.8(c)and8(d), DNA Ructuations were characterized
a priori. Both CVE and MLE are seen to be practically optimal
for short as well as long time series.
In Figs. 8(e)and8(f), also the variance ? of localization
errors was determineipriori. This results in a slight increase
in the precision of the CVE as compared to Figf&)and8(d),
while it induces a bias in MLE for slow DNA Ructuations. In ~ FIG. 9. (Color online) Estimated diffusion coefbcients of exper-
this case the CVE should be used. There is, however, for thigentally recorded hOGG1 proteins diffusing on Row-stretched
parameter values examined, virtually no increase in precisioRNA. (2) Estimate$® of diffusion coefpcients versus proteinOs mean
by knowing 2 a priori, over the case where bofh and 2 positionx on the DNA strand as measured from the DNAOs tethered
are estimated from the same time series. end. Req squares: estimates obtained with MLE that accounts f~or
the DNAOs motion (Sevl). Values do not depend on the proteinsO
position onthe DNAP = 0.88). Black diamonds: estimates obtained
with CVE that does not account for DNA motion (Setd.C). An
increase in values appears near the DNAQs free end. (b) Bias of
CVE (black squares) compared to its theoretically expected value
We analyzed a set of hundreds of time series of hOGGtalculated from Eq.68) (cyan circles). The bias increases near the
proteins diffusing on a single DNA molecule that was Bow DNAOs free end, where RBuctuations are larger. (c) Estirdatéshe
stretched over a Covers“p. The proteins were Buorescenﬂ?iﬂ:USion coefbcients as a function of the proteinsO (_esidence time
labeled and visualized with TIRF microscopy; s&][for on DNA.AnonFriviaI correlation is clearly seen betwe@rapdt. (d)
details. Measurements were performed at pH 7.5 and 10 mMN€ average bias over the DNA strand of the CVE, which does not
salt. Images were recorded with a time lapsetof= 11 ms. take DNA Byctuat_lons mtc_) account, does n_ot depend s_lgnlbcant_ly on
A detailed analysis of these dataNand of data taken althe proteinOs residence time on DNA and is equal to |.ts theoretically
different pH and salt concentrationsNis given 2. Herewe ~ ©XPected valueR = 0.27). P values were estimated using dtest
summarize results from this very practical application of thefor variance (Appendi).
estimators introduced above. These results include a two-state
kinetics of the protein. This kinetics remained hidden in the
original analysis of the same data, which was based on MSDy,

VII. ANALYSIS OF INDIVIDUAL hOGG1 PROTEINS
DIFFUSING ON FLUCTUATING DNA

Results show that diffusion coefbcients estimated using the
LE that takes DNA motion into account, do not depend on
a protein® position on the DNA [Fig(a). This means that
neither the DNAOs motion nor a proteinOs average position
in the Row Peld (which depends on a proteinOs position
on the DNA) affect the value of the diffusion coefbcient.
If one does not take the DNAOs Ructuations into account,
We estimated the diffusion coefbciebt, variance of the however, then estimates Bf are severely biased [Fi§(a).
localization error 2, and parameters characterizing the motionThis bias can be estimated experimentally by subtracting the
of the patch of DNA on which the protein diffused while it estimates oD obtained using the MLE that accounts for DNA
was bound to DNA. We did this for time series of len@ith Buctuations, from estimates of obtained with CVE which
50 using the MLE that takes the DNAOs motion into accountioes not [Fig9(b)]. Since a proteinOs limited residence time
(SecVIA). Figure6 shows the covariance and periodogram ofon the DNA limits its movement along the DNA to patches
each coordinate in a single such time series. The theoreticallyf 1 um or smaller, we thus found the bias as function of
expected values for the same covariances and periodogramssition on the DNA with Jum resolution of positions. We
are also shown. They were calculated using parameter valuedso calculate the theoretically predicted bias caused by the
obtained with MLE. DNAQOs Ructuations at these positions [B)](as described
We also estimated diffusion coefbcients from the same timé Sec.V B. These theoretically predicted values for the bias
series using CVE, which does not take substrate Buctuationsf the CVE are in excellent agreement with the experimentally
into account (Sedll C). measured values of the bias [Fig(b)]. We see that this bias

A. Comparing MLE and CVE on long time series to remove
bias in CVE caused by DNA motion, so CVE can be trusted on
short time series, where MLE cannot
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does not depend signibcantly on the proteinsO residence timeone-dimensional stretched-out but unstretchable substrate,
on DNA [Fig. 9(d)]. We used this knowledge of the bias of such as DNA, the substrateOs longitudinal motion is given by
the CVE to correct biased estimates of diffusion coefpcientds transverse motion.

obtained with CVE from time series shorter thih= 50 This model for the DNAOs Ructuations allowed us to derive
[Fig. 9(c)]. For such short series MLE is suboptimal, while a MLE of diffusion coefbcients, the variance of localization
CVE is optimal after its bias has been removed. errors, and parameters describing substrate motion, using both

the transverse and the longitudinal coordinates of a recorded
trajectory of a diffusing particle. Monte Carlo simulations
showed that this MLE is optimal for long time series. We
The procedure just described, using MLE for long andused it on long trajectories to derive the bias of the CVE
CVE for short time series, allowed us to estimate diffusioncaused by substrate Ructuations, and we demonstrated that
coefbcients at the single-molecule level. Results obtained itheoretical predictions agree with experimental measurements
this manner revealed a signibcant negative correlation betweei the bias, which further conPrms our model of the substrateOs
a proteinOs residence time and its diffusion coefpcient duringotion.
its residence [Fig9(c). The simplest explanation of this  We then constructed an unbiased CVE for the case in which
correlation is a two-state kinetics of hOGG1 proteins diffusionsubstrate Ructuations have been characterized independently,
on DNA [22]. This interpretation of data is independently and we showed on Monte Carlo generated data and experi-
conbrmed by the fact that residence times are not exponentiallyiental data that it optimally estimates diffusion coefbcients.
distributed, as they would be in a one-state model, since de- Finally, we used it to estimate diffusion coefpcients from
tachment in a one-state model is a Poisson process. Residersttort, noisy single-particle trajectories of hOGG1 proteins on
times are rather distributed according to a double exponentiauctuating, Bow-stretched DNA and showed that one severely
as predicted by our two-state modaP]. overestimates diffusion coefbcients if substrate RBuctuations
are not taken into account.

B. New results from old data

VIIl. CONCLUSION
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independently of the specibc substrateOs known or unknown

specibc dynamics; and (c) we needed that for a specibc APPENDIX A: SUMMARY OF NOTATION

problem, a strand of DNA that is tethered by one end to a _

plane and stretched by a shear Bow, for which there is no good S€€ the Supplemental Materials (Tables I, 11, and 1) for
theoretical model for its dynamics. summaries of acronyms and notation used in main @3t [

We used that if a substrate is sufbciently taut and its motiod® féw symbols that are used only within the section in which
sufbciently damped, then its dynamics can be linearized to H1€y are debned are not included in these tables. Neither are
good approximation. We also used that a Pnite substrate®s inéfe& few new symbols introduced in the appendixes below, as
pendent degrees of freedom in such a linearized description 2ch is used only within the appendix in which it appears.

a countable set of massively overdamped harmonic oscillators The constant = exp2 f ¢t ) occurs repeatedly in our

in a heat bath, and their spectrum of relaxation times is discretdliased Lorentzian power spectra for substrate motion. Since
and, for a small substrate, well separated. We used that particileese power spectra come in slightly different avors, so does
tracking with Pnite time lapse, and especially with motionC- We have specibed the depnition ofin several places
blur, may resolve only the slowest of these relaxation timesWhere power spectra are described, and we repeat these
while contributions from all higher modes only increased thedePnitions in the Supplemental Materials (Table 28]}
localization error. Even without that, the following rule of thumb should make

We consequently modeled the observable transverse motidiPnfusion impossible: In any power spectrum written using
of a given point on a Buctuating DNA substrate as a massivel§ corner frequencf also occurs explicitly or, in Appendix
overdamped harmonic oscillator in a heat bath, a modeP. occurs through y, = 2f &. It is always that comer
which was conbrmed by Pts to experimental data. We deriveffeduency which enters in the debnitionafised in the same
statistics for this motion which account also for effects dugSPectrum. _
to localization error, Pnite time-lapse recording, and motion As stated in the Supplemental Materials (Tables Il and
blur due to Pnite camera shutter time. We used that foill) [ 23], for ®, 2, K, 9, G, O andf., the OhatO over
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the symbols has the conventional meaning of Oestimator fatill needs to use an iterative procedure to bnd the GLS esti-
parameter(s) denoted by the symbol under the hat.O In a fawate. The estimator in this case, however, practically reaches
places where no misunderstanding seems possible, we hatlee Craner-Rao lower bound and is unbiased [Fi@é) and
used one of these symbols with hat to denote the estimat&(f)].

itself in order to distinguish the estimate of a parameter from

the parameter itself. _ _ APPENDIX C: STATISTICS OF COVARIANCES AND THE
In order to make our notation agree with that of R&fl][ CVE FOR DIFEUSION ON A SUBSTRATE AT REST
which the reader may want to consult for details on the power

spectrum analysis used here, a hat over a symbol means the e here derive expressions for the variancexof, X n+j
discrete-time, bnite-time Fourier transform that one applies téSec. 1 of this appendix), the variance of the CVEDofind
Pnite time series, inthe two cases; andy , while®,; and ? (Sec. 2 of this appendix), and the characteristic function of
M), denote the power spectra based on these Fourier transforn{8® CVE ofD (Sec. 3 of this appendix). Finally, we elaborate
and &; denotes the normalized periodogram values base@n the difference between the CVE Bf and the minimal
on the same Fourier transforms. Similarly, a OtildeORNas if"€an-squared-displacement-based estimator thatuses only the
pildenotes the continuous-time, Pnite-time Fourier transformPrst two MSDs @7, and d?) to estimateD (Sec. 4 of this
as in B1], while a OcheckONas ik , Pk, and yNrefersto ~ appendix).
sine transforms. All of this is stated also in the Supplemental
Materials (Table Ill) R3)]. 1. Variance of estimated covariances
The variance of estimated covariances nX n+j
APPENDIX B: GENERALIZED LEAST-SQUARES is derived directly from their dePnition,x nX s =
ESTIMATOR NSj

ne1 X nX nej/ (N S ). This gives
The GLS estimator off§, 2) is debned as 0
var(X n X n+j)

L= AT SIASAT Sl (B1) A
= W COV(X mX m+j, X nX n+j), (CL)
— [ — J— m,n=1
whered? = (d?,d3,...,d3),Aisa2x N matrix withA,, = , :
2t (NS 2R) and Asn = 2, and meq IS @ Weight matrix where covk,y) denotes the covariance wfandy. Forj > 1,
' — X nX ntj = X mX nej X mej X n = 0.S0

proportional to the covariance matrix df, which is given

in [19]. Since msq depends nonlinearly o® and 2, the 1 NSj

GLS of (D, 2) must be found using an iterative relaxation var(X nX n+j) = g

algorithm as described i@ . (NSJ) m,n=1
If  msgiS knowna priori, the variance of the GLS estimator

is found by taking the expected value of the outer product oﬁfasklﬂg HI]E?;é S)aE\)/S) and the debnitions of and  [23,

X mX n2  (C2)

var(®) = AT Sla élATva\r@)A AT 51 S1 var(x n X n+j) = NS (x n)??
5 81 .
= AT r?qé ' (B2) . 2(N Svj S1) X 2
.. .. NSj)?
where O= (¥, 2)T. The iterative GLS estimator uses and 5 ( D 5 5
estimates msq instead of the true covariance matrixpsg. _ +4 _* 6« 2V (C3)
The estimated covariance matrixysq is correlated withd?, NSj (NSj)?

which means that variance of the iterative GLS does not reducgs | Eq. Q) withj =|nS m|.

to (AT >1A)S!asin Eq. B2) and that the variance of the

iterative GLS estimator is higher than the variance of the .

linear GLS estimator [Figsl(c) and 1(d)]. The difference 2. Variance of the CVE
variance of the GLS estimator does not necessarily approadRanner from Eq.14),

the theoretical value [EgB@)] in the largeN -limit. %

5 .
When 2 is known a priori, the GLS estimator can be var([®) = varl(x g) I, varx ”X2 n1)
reduced to A1) (t)
B= a’ Sl ,aa’ SL.o (527, (B3) COV (X n)2, X nX ne1
wherea, = 2t (n'$ 2R) and + (1 2 : (C4)
msi2 2 = var(@28 2 2)= e+ 4var( 2. (B4)  The individual terms of Eq.Q4) are:
Even when the noise amplitude is knowna priori, msq — 2 248 +122_ 472
depends nonlinearly on the unknown paramé?erSo one varl(x n)?] = N N2’ (C5)
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where we have used that var(n)?]= 2( + 2 )3

cov(( X n)% (X ne1)?) = 2 2 and cof(x n)%(x m)?) =0

form>n+ 1;

2+4 +7 2
NS1

2 2
(N S 12’

var(X nX ns1) = (C6)

since varX nX n+1)=( +2 )2+ 2, cov(X nX n+1s
X ne1X ne2) = % and COVX nX ne1, X mX me1) = 0

J

(1S 4R+ 6R?) 2+ 4(1S 2R+ 2R?)

PHYSICAL REVIEW B9, 022726 (2014)

form>n + 1;

.4 +82
COV((X n)21X nX n+1):S T! (C7)
since COY(X n)% X nX nx1)=2 S4°?2 and

cov((X n)% X mX me1) = Oform>n.

Inserting Eqgs. C5DPC7) in Eq. (C4) gives Eq. 17). The
variance of 2 and the covariance @ and 2 are derived in
the same manner and are, to second ordefin, 1

+ (7S 12R + 8R?) 2

2) =
var( ?) N
1S 2R)? 2+ 4(1S2R)2 + (5S 20R + 16R?) 2
, (IS 2R)? 2+ 4SS 2R)?  + ( ) ? 8)
N2
and
" ~(IS2R)(2+2 +3 2+ 2SS 2 _ (1S2R)( +2 )+ ?
) 2y=9§ S (0°)
cov@®, ?) N1 NZT (C9)
{
The variance for the case when the localization error has 1. Derivation

been characterized independently [E8){ is found in the

same manner.

3. Characteristic function of the CVE
The characteristic function of the CVR, is given by

N+ 1 4 1 .
Inp = T|n o 21|n[(A+ C)?’S B
.1
§5(S1+ S5+ Su + S8), (CL0)
where
L $
n - 2
N+ 1 # ~ Bz B2S4AC o
+ = | 1+ 15 - A s ’
S+ n oA é
(C11)
' '( & Bt B254AC 2$N+12f
1 . 18 1S Bx BsdAC
S.=2In, 15 ( A &
2 1+ 18 B B?S4AC 2 +
2A
(C12)
andA, B, andC are functions of ,
2D
A( )= 1+ N 1+ ), (C13a)
2D 1
(V=357 2 vy (C13b)
. 4D

To derive the characteristic function of the C#Eof D, we
prst note the trivial equality for the distribution Bf around
the true value,

p(®D, = p( xD, ?
< [@S(Xi)z"'zxixwl D x
2t '
(C14)
where X= (X ,X 2,...,Xx n)', and D x=

" 1210 X i. We use the Dirac function written in terms
of its Fourier transform, (x S xg) = gxSxo) o/ (2 ),
and that (x p)2/2= x'I xIN and X nX me1=

x"C x/(N S 1), wherel is the identity matrix and
Cj = ij+1. Thisgives

5 A S A
p@®pD, = S ¢
g 2 (2 N2 Det
xD xd, (C15)

where the covariance matrix ofx,
(4).

We use that both y and C can be diagonalized using
a normalized version of the DST given by the orthogonal
transformation matri}J with entries

Uij =

x 1S given by Eqs.2)D

2 j
N+1S|n N+l (C1e6)

We debPnecy = [USCU]i = 2cos « and note thatPy =

Bl = t [USY  Uli, where = %5. Then
i
p@D, )= —de, (C17)
=2 7 k()
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where

i Pk 1+ Ck

(t)2 N NS1 (C18)

k()=1+

The characteristic function of the CVIp, is dePned as the

Fourier transform of the probability density, Sop( ) =
' k=1 k( )S%

From Eq. C18 we see that y is a second-degree

polynomial in cosg. So it can be written in the formy =
A+ Bcos + Ccog i, whereA, B, andC are given in

Eg. (C13. The logarithm of the characteristic function is thus The sum |-,

PHYSICAL REVIEW E89, 022726 (2014)

withc= 2 and +» = 2+ (2)2S 1. The two last terms in

Eqg. (C23 can be rewritten as

2N+2 i N+2 g ek |
In 1+ =S Ii

k=1 * k=1 1=1

& & 2N+2
. (8L
- I*) k. (C24)
I=1 k=1
ON+2

e*'l « is equal to zero because its argument

given by makes a full circle in the complex plane, except whiesrequal
to an integer timesi? + 2. Thus,
N
S2lnp= In(A+ Bcos (+ Ccog ). (C19) N+2 ti 5 z(g )SZ(N+1)3
k=1 In 1+ =S2N+1) ——u——
k=1 + m=1 2(N + l)m
We use that / 3
N . N+2 =In 1§ 22N (C25)
f(cos ) =S Z[f (L)+ f (SD]+ = f (cos
=1 ( ) 2[ W+ 1S 2 . ( ) Inserting Eq. €25 in Eq. (C23) gives
(C20) b . L«
S(ab)= (N+ 1)In —= +1In@2S J2N*D)
to rewrite Eq. C19) as 2
5 1 3 = In[(ax a2Sp)YN*1S (@ a2S )Ny
S2lnp=S=In[(A+ B+ C)(AS B+ C)] .
2 S(N + 1)In2, (C26)
1 2N+2
+ = In (c21) Wwhere we have used that s = 1.
2 =1 We insert this result into EQGR22) and use Eq.¢21) to get
impli 1 1 -
The last term can be further simplibed, Inp = (N + 1)In(4C) + ~In[(A + C)2$ B2
g 2N+2 2 ) . 4
5 N« SES(a»r ,2C) S 55(as,2C), (C27)
k=1
e a. 0/ ag 01 witha, = B+ B2S 4AC.
=5 InCocosy+ oo cosyt oo To avoid numerical problems, we rewrite EG.27) to get
k=1 Eqg. (C10.
1 2N+2
= = In(as + 2Ccos ) + In(ag + 2C cos
2 =1 (in(a < (@ 9l 4. Difference between CVE and MSD
S (N + 1)In(4C), (C22) The CVE of the diffusion coefbcierid was constructed
as a maximally simple unbiased estimatopfof a particle
where we have debned = B+ B2S 4AC. based on estimates of the covariance function of the particleOs

To simplify the last two terms of EqQQOR2), we debne the recorded single-time-lapse displacements. In this spirit it

sum is also possible to construct a maximally simple unbiased
N+ 2 estimator ®sq of D based on estimates of the brst two
1 - - . . . . "
S(a,b) = 5 In(a+ bcos i) MSDs, d? and d2. While this estimator, given by¥nsq =
k=1 (d2 § d?)/ (2t ), has the same expected value as the CVE of
N+2 D Nthey are both unbiasedNthe two estimators have different
. Infc( + € )( + €5 ¥)] precision,Pnsq being less precise than CVE. This is seen as
=1 follows.
) L2 . From Eg. 8) we have
= (N+ 1)In 2‘ +5 In 1+—i - (X )2+ (x n)2+ (N + 1) wzézl(x )2
k=1 msd = N(N 3 1)
1 2N+2 egi p NS1
RLES , (C23) 42 1 X nX (C28)
k=1 * NS1 '
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while Eq. (L4) gives us 2. Discrete Fourier transformation approximately removes
NS1 statistical dependencies in data

N: (x n)? 2 =1 X nX n+1 . . L .

. lN + . NS 1 (C29) We brieRy review how DFT of a stochastic time series
results in approximately independent data under quite general

Comparison of EqsG28) and (C29) reveals the subtle differ- assumptions. These assumptions are satisbed by time-lapse

ence betweePnsqandDeve: While the CVE ofD weights all  recorded displacements of a single diffusing particle.

the squared displacements evenly [Prst term in B9, We consider a zero-mean stationary stochastic process

the maximally simple MSD-based estimator weights thez(t), which we sample at constant time lapge. The

contributions from the displacements at the start vand thgutocovariance of the resu|[ing sequence (211221 L 1ZN)

end of the time seriesx 1 and X n, by only ¥(N S 1)  depends only on the relative separation in time,

and the rest of the displacements B € 1)/ (N S 1) [prst _ 5

term in Eq. C28)]. These unequal weights on equivalent ZmZn = Gmsn)- (035)

terms represent a suboptimal use of information: A simplé/NVe assume that|G | is summable, i.e.,

calculation proves that it give®ysq a larger variance than

2t ®cve =

Bve has. jIgI< . (D6)
j=0
APPENDIX D: TRANSFORMING THE MEASURED DATA This assumption is satisbed by time series with, e.g., Pnite or
INTO STATISTICALLY INDEPENDENT DATA exponentially decreasing autocovariance. Consequently, it is

We here show how discrete sine transformation of thesatisbed by stationary series from linear dissipative systems

measured set of diffusive displacements on a substrate at re&fven Py white noise, such as diffusion on a substrate that is
ctuating or at rest.

produces statistically independent data. Exact statistical tes 0 .
and practical success with maximum likelihood estimation -ct@denote the DFT af. The off-diagonal ehllem.ents of.the
(Sec. 1 of this appendix) build on this simplibcation. We thengr?l;rsels;/'cl’znqmgg'ﬁﬁg vyniiiweet;(?:lég??gr?grfn i- Sfjg%g“f
review how DFT produces approximately independent dat ' AP . '

P PP y Inaep @ IN = O(UN ) fork = I, while [Z2 /N = O(1) [47].

i tt N f hl I f dat ; o .
(independent to order/l) for & much larger class of data Consequently, for largl , (almost) all information in the time

Sec. 2 of this appendix). Lo ) ) . - .
( PP ) series is contained in the periodogra® = | &%/ (N t ),
and we can ignoreorrelations between different spectral

diffusion on a substrate at rest independence. However, #(,zy, . . . ,zy) are jointly Gaussian
The covariance matrix for the set x= distributedNas is the case for our time seriesNso are the real
(X 1,X 2,...,x n) of measured displacements of a andimaginary parts off, 2, ...,2) (modulo redundancies

particle diffusing in a medium or on a substrate at resgdue toz being real), andhen they are independent to the
[Egs. @)P@)] is a symmetric, tridiagonal Toeplitz matrix. It extent that they are uncorrelated. Thag, N and@/ N
can be written are independent to lowest order ifiNL for k = 1.

We do not need to assume that,¢,, . ..,zy) are jointly

x =[2AS2R)Dt +2 7IS( *S2RDt )M, (D1)  Gaussian distributed, however. A central limit theorem for the

wherel is the identity matrix andj = ;+1. Itis easy to DFT[44 ‘?”Lyfeq“"es thatzgl,zz,; )isan e_rgodlc processN
verify that the set oN vectors M), with entries and ours isNto ensure tha#){/ N)y-.. areindependenand
Gaussian distributed to orde/NL. Since the periodogram
¥ = t sin[kn/ (N + 1)] (D2)  values are proportional @ |?/N , they thus are independent,

2 X
are eigenvectors dfl and consequently eigenvectors of . except for terms of order/lil = or higher.

The associated eigenvalues are APPENDIX E: MAXIMUM LIKELIHOOD ESTIMATOR
= 215 cos[k/ (N + 1]} (D3) FOR DIFFUSION ON A SUBSTRATE AT REST

We here derive an efpcient algorithm for maximum likeli-
hood estimation (Sec. 1 of this appendix) and investigate the
source of the bias of the MLE (Sec. 2 of this appendix) for
diffusion in a medium or on a substrate at rest.

Comparison of Eq.[§2) with Eq. (11) reveals that the matrix
M*>1 composed ofd®), as columns is the matrix equivalent
ofthe DST,i.e.MSt x= | x. Consequently,
T . .

Ixlx = Mt T = P, (B4) 1. Fast MLE algorithm
where P is a diagonal matrix with diagonal entrieBi., Finding the MLE of D and 2 is a two-dimensional
given in Eq. (0). This proves thatk  and k | are  optimization problem. We reduce it to a one-dimensional
uncorrelated fok = I. Since (x ) are Gaussian distributed problem by using the scale-invariance of diffusion. To this
and independentb( )k, being linear combinations of( )y, end, we introduce two new parameters (),
are jointly Gaussian distributed. This implies thiat . and - (2Dt +2 )t - arccot(SNR) (E1)
k | are statistically independent fér= I, the reason being ' ’

that uncorrelated jointly Gaussian distributed variables ardhe parameter obviously is a measure of the SNR. The
independent. parameter describes the overall scale of power spectra and
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periodograms foR = 0, i.e., in the absence of motion blur. wherel is the Fisher information matrix and (I él)ij ]

Specibcally, is the power spectral density of free diffusion The Fisher information matrix is determined using E2g)(
(recorded with localization errors) evaluated in the middle ofSinceL is Gaussian an@, is a brst-degree polynomial I

its frequency range, &t = f nyo/ 2; see Eq.13). and 2, we have that
With P, = B, Eq. E1) used in Eq. 10) gives Py =
F«( ), whereF( ) = axco§ + bysir® with ax = 1S N P, P, .Pn
2R(1S cosi;) and by = 1S cosgk;. The log likelihood o «In[LC)] =S 2 #
then reads n=1 n
1V (kW2 ‘ and
nL (I ahes =85 S5 IR
k=1 k( ) N
_ iPn an kPI"I
(E2) IO InLO)] =
n=1 n
Stationarity of this log likelihood with respect torequires
that Thus, the bias due to skewness is zero (to ordsr)1but

N (k2 we introduce a bias when we requiB®and 2 to be positive.
10 (kW _ (E3) Foragiven experimental realization of the measurements
N, F() there is a Pnite probability that the maximum of liis found
) o _ o ) at a physically meaningless negative value of eifbesr 2.
We use this result to eliminatein the log-likelihood function s probability is not symmetric inY, 2), the maximum
in Eq. (E2) and are left with a one-dimensional optimization js more likely to be in the region?2 < 0 for high SNR and
problem. The value for that solves this problem for a given more Jikely to be in the regio® < 0 for low SNR. Since we
time series is our estimat®. Once it has been found by requireD and 2 to be positive, we introduce positive bias
numerical maximization of EqEp), Eq. E3) gives thezl\/_ILE in 2 and negative bias i for high SNR, and vice versa
for ©. With OandOthus determined, the MLE fol, ) is for low SNR. Since this bias stems from the dispersion of the
dcoL O dsirR © measured likelihood function around its true maximum, we
(1 2 2= ECTERE (E4) expect this bias to be of the same order as the standard error of
the estimates, i.e., that it decreasella¥ 2. This is conbrmed

The one-dimensional optimization problem fois consid- by numerical results [Figgl(a)and4(b)].
erably easier for a computer to solve than the two-dimensional
problem of maximizing the likelihood with respect B and

2 |n practice, this reduction of dimension only speeds up APPENDIXF: THE EFFECT OF FINITE TIME-LAPSE

the MLE algorithm by a factor of two to three, since each RECORDING AND MOTION BLUR ON A
calculation of the likelihood function takes longer, as it now POWER SPECTRUM

involves a double sum and calls to transcendental functions. In order to obtain a power spectrum from an experimenta”y

However, the reduction to one dimension allows us to visualizgneasured time series,)\_ ,, we compute the DFT of the time
the likelihood landscape as a simple plot of a function of onesgrjes as B

parameter, [Fig. 3(b)].

:():

® =

S Si2 kn/N
2. Bias of the MLE Bo=t e zp. (F1)
n=0

Monte Carlo simulations show that the MLEs frand 2
are biased [Figs4(a) and4(b)]. We show here that this is so Here the mode numbésr corresponds to the frequenty =
because they do not admit negative valuefand 2.Such  kf  From Eq. F1) and the identity, = L Ot z(t, S t)dt,
negative values would be physically meaningless, so it makeghich givesz, with motion blur due to a shutter time equal to
sense that the two estimators by design avoid negative valuege time lapse, we have
The cost of this meaningful design is bias, however.

A common source of bias in ML estimators is asymmetry NS1

t
of the likelihood function with respect to the true values, g = gSizkniN Z(t, S t)dt
e.g., skewness. We derive an approximation to the bias of n=0 0
the MLE due to skewness by Taylor expanding the stationarity NS1 .
condition . In[L( )] = O, where = (D, ?)T and | is the - eSi2 kn/N i g2k BSHtnsy |t
partial derivative with respect tg. =0 o N, ¢ §
To order IN , this bias is .
. . > - 1 2 ‘ eéi2kt/tthNS1e§i2 (KSk)n/N
b()=S 1T n[L()] L ()] e o L
e 6 & 5i2 kIN
1 _ 1S e
5 0w WnLON (E5) S 2 (N Tm iy k- (F2)
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Here we have used the inbnite Fourier series

1 .
2(t)= = &2y, (F3)

where the Pnite-continuous-time Fourier transformsare
debned as

tNn

7 = z(t)e> 12Kt n gt (F4)

0

We also used that NS1eé2kWN = 0, except fork = mN
withm Z.

PHYSICAL REVIEW B9, 022726 (2014)

Thus,

2 2(t )ZfCSZ
1S cos(2ft )

t (18 cA)fS3
1+ c2S 2ccos(2ft )’
(F10)

FPeE ) =

From Egs. 28) and F5) we have that

Kx[1 S cos(2f t
4 4t )2

Pf(sub) — )] F_A(per)(f )1 (Fll)

which with some rearrangement of terms gives B§).(

We can then express the expected value of the measured

periodogram, the power spectrupp, in terms of the power
spectrunP ™ of the corresponding continuous-time process

APPENDIX G: ESTIMATION FOR DIFFUSION ON A
FLUCTUATING SUBSTRATE

z(t) as derived in the absence of bnite sampling-time effects e here give estimators of the diffusion coefbciBnand

and localization errors,

(subcont)
f+mf sample

(f + mrsamplgz.

1S cos(2ft )

P(sub):
f 2 2(t ) m=S

(FS)

parameters characterizing experimental conditiodsand ,

for more general cases than the estimators presented in the
main text (Secsv andVl). Sectionl of this appendix presents

a CVE of D for the case when both and 2 have been
estimateda priori. Section2 of this appendix gives estimators

This equation gives the expected value of the power spectrurpoth CVE and MLE) for the case when more than one mode is
for a time-lapse recorded stationary process measured witteeded to describe the substrateOs Ructuations. Finally, Section

maximally open shutter. The same result was founddi® [

3 of this appendix generalizes the estimators given in Section

for time series of inPnite duration. We have here shown tha? to the case when the camera shutter is only kept open for a
it is valid for time series of any Pnite duration as well. This fraction of the time lapse.
is no surprise: For a smooth power spectrum without spikes

and other abrupt changes in value, leakad@h is no issue,
so pnite time of measurement simply makes the spectrum
discrete, such that only takes values that are integer multiples

1. CVE for independently characterized localization errors
If the substrate Ructuations and the localization errors both

of f ,theinverse measurementtime, while the spectral valueave been characterized independently, the bias of the CVE

remain unchangedl].

The inPnite sum ovemn in Eq. (F5) is a so-callegeriodic
summationlt makes={Pe) a periodic function of with period
fsample Ut
form

|:*(per)(f )= F(f + Mf sampig-
mZz

(F6)

Since P(subcon) s 3 | orentzian, we have, apart from-
independent factors,

1 1 1. 1
Ff)s ———= - =S ——— . (F7
®) f2fl2+f2 f2 f2 f2+f2 F7)
From [31, Sec.VI] we have that
1
z fcz"' (f + mfsampltg2
t 18 c?
= - , F8
fo 1+ c2S2ccos(2ft ) (F8)
with c= expS2f .t ). By taking the limitf. 0 on both
sides in this result, we also have that
1 2 2t 2
= (F9)

z (f + mfsamplg2 18 cos(2f t )

. It can be evaluated analytically. It is of the

for free diffusion [Eq. {6)] due to substrate Buctuations is,
with c = expS2f ¢x t ),

4f xt S3+4cSc?

Ky, f = i Ky. 1

bD( X1 C,X) (18 2R)(2f ox t )3 X (G )
So we can construct an unbiased CVE as
N X )2S2 2, N

M= (X n) S bp (K, FQ,), (G2)

2(1S 2R) t
with bp given by Eq. G1).

a. Diffusion on DNA

In the special case of diffusion on a taut polymer such as
DNA (Sec.lV D), the bias is given by

8f ot S3+ 4c2S¢?
(1S2R)(4f .t )3

bo (Kx.f¢) = Kx. (G3)

2. Including higher modes of substrate Ructuations
a. Power spectrum

If multiple modes are needed to describe the substrateOs
motion, these are included in the MLE by replacing the term
of the power spectrum corresponding to substrate Ructuations
[Egs. @0), (50), (51)] with a multimode term.
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In the case of diffusion on a generic multidimensional Buctuating substrate4&{.the power spectrum then is

Pui =2 (3?D(t )?+[2 2t S2 (3°Dt 3|[1Scos(2ft )]
4
(1+c)(1S c)?

L keT K 2x(9?
1+ c2S 2cccos(2ft )

- [1Scos(2ft )] c2S1+ 2 ktc y+
k=1  xk k

(G4)

where s the substrateOs drag coefbcirg(g),k = 1,2, ... are the spatial eigenfunctions of the substrateOs motion with the
slowest relaxation rates,x = 2f &, andc, = exp@S ««t ). If the system is linear, , x does not depend @ K is chosen
such that all modes that contribute signibcantly to the motion, are included. If no theory exists or is known for the eigenmodes
of the substrate motion, the parametergi)k., and [k«(3)]k., can be btted as independent parameters for a Pxed vagje of
i.e., for a given OpointO on the substrate. By a point we here mean a range or area or volume with linear extent large enough tc
contain the observed trajectory of the diffusion particle. We assume that this range or area or volume is small, and hence a point,
compared to the characteristic length scales of those eigenmodes of substrate motion which contribute to the observed motion of
the tracked particle. We debPne taut to mean that this condition is satisbed.
For diffusion on a Buctuating, taut, but Rexible Pber or polymer, such as DNA, the power spectrum of the transversal laboratory

coordinate is

K S =\2 & ~)\3
.1 };k(s) 2S1+2 (tc g+ (1+ )1 S &)

Pyi = Pt tc 1+ c28 2cccos(2ft )
k=1 k' %Kk Cy k

(G5)

with ¢, = expS «t ), while the power spectrum of displacements in the longitudinal laboratory coordinate is
Pt
=2 (5D(t )*+[2 2t S2 (5°D(t )/3][1S cos(2ft )]
keT 2 ° 21 ()2

2
k=1 K 1 k+ )?tc k)

(1+ G)(AS c)®
1+ ¢t S2ccos(2ft )

(G6)

[1SCOS(2ft ) CE’|él+ 2( k+ Dte g +

wherece = exp[S( k+ )t ]

(

As above,y(S) are spatial eigenfunctions of the DNAOsAs for the MLE of the previous sectiof is chosen such
transversal motion, and(S) = Ogyk(s)yI (s)ds, where a that all modes that contribute signiPcantly to the motion, are
prime denotes derivative with respecstavhile  isthedrag included.
coefbcient of the DNA in its perpendicular direction. Note ~ For diffusion on taut, inextensible, but Bexible Pber, such
that the number of contributing modes of substrate motiorS DNA, the bias of the CVE is
in Pxs is K2 when the number of contributing modes of .
substrate motion iy s , and hence by assumptionf , is bp ()= (1S c)®
K. This is because the bxed contour length of the DNA makes i1 K Ck+ D3t )R
the longitudinal motion of a point on the DNA a function of '
its transversal motion. _If also the localization errors have been characterized

When a theory gives the spatial eigenmodes of the DNAQadependentlybp is given by
motion (see22)), it sufbces to bt two parameters, the DNAOs
drag coefbcient for transversal motion and the proteinOs K 2(k+ )t 3+ 40 S,
mean positiors on the DNA. This assumégT is known.  Po( )= AS2R) 1t DAt )3’
If it is not, it should be btted as well. If no such theory kl=1
exists, (K 1, [Xc1 (B)IK,= 1, and Pk ()], must all be ptted
as independent parameters for each given vali@ of

K

X182 (G8)

X1 (8, (G9)

which is inserted in Eq.G2).

3. Camera shutter time shorter than time lapse

b. CVE In experiments the camera shutter is usually kept open

If the substrate Ructuations have been characterized indeluring the whole experiment; i.e., the camera shutter time is
pendently, an unbiased CVE that takes multiple modes of thequal to the time laps&§]. In almost all relevant scenarios this

substrateOs motion into account, is constructed by replaging is optimal since it maximizes the number of photons recorded

in Eq. (66) with in a frame and thus minimizes the localization error. It may be
necessary, e.g., due to excessive motion blur, to open the shutter
K < 3 only for part of the time lapse, i.e, for a time intervat t
bp ()= 1S & X (9. (G7) Inthis case the statistics of the measured time series change.
k=1 Kt We give below the power spectrum and covariance which in
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this case should be used in the MLE and CVE instead of thgiven by
corresponding expressions given in S&t.

GGEit ;)
a. Power spectrum K [2 Sz(lgck)]xk(E)Z forj = 0
If the shutter is held open for the duratior t , Eq. (36) = fl 2[cosh§ 2)31] i ) , (G12)
must be replaced with k=1 kszxk(é)zck' elsewise

Ps.r = 2Dt {t S[IScos@rt )]/3 (G10) From these expressiondp can be calculated abp =

and Eq. 88) with [GGEt; )S G2t ; )/t when |, the amplitude of
- localization errors, is unknown, and &g = [G(50; )S
psub) - 1S cos[2 (f + mfsampid ]Pf(s+urtrx1fcont) G(st ; ))/t when the localization errors have been char-
mes 2 2 A+ mfsampig? samle acterized independently andhence is known. The bids,
2K, (@)t 5 can then be inserted into E&gA) or Eq. (G2), respectively, to
= W 2f . Ssinh(2f ;) construct an unbiased CVE bBf.
C
- . .6
2
» S Olcosh@f . )S 1] (G11) APPENDIX H: VARIANCE OF ESTIMATOR FOR A
1+ c?S2ccos(2ft ) FLUCTUATING SUBSTRATE

where the inbnite sum was done like that in EBS)( by We here derive the variance of estimat@sand 2 for
Poisson resummationThe power spectra must be changedihe giffusion coefbcierd and the variance 2 of localization
accordingly in Eq. 40), Egs. 60) and 61), and Egs. G4D  grrors. We do this for the case when substrate Ructuations
(G6). have been characterized independently and for the case when
both substrate RBuctuations and localization error have been
characterized independently. Sectioof this appendix details

If the shutter is kept open only for some fractioh ofthe  the derivation of the variance of CVE, while Sectidwof this
time lapse, the autocovariance of the substrateOs Buctuationajgpendix details the derivation of the variance of MLE.

b. Covariance

|
1. Derivation of the variance of the CVE

We here derive the variance of the unbiased CVE [B6)]for diffusion on a Buctuation substrate. We ignore the contribution
to the variance from uncertainties ir(S) in the following calculations. Their contribution is found afterwards by standard
propagation of errors. From Eb®) the variance of the unbiased CVE is then

var[(x n)?] + var(xX nX n+1) + cov((X n)% X nX n+1)
4(t )? (t)? (t)?

The variance obp is found by standard propagation of errors as given by &8). The other three terms are calculated as in
Sec.lll C, where we here must take contributions from DNA Ructuations into account as well,

var ® =

+ var(p). (H1)

varl(x o 2 "
N N2
j=1

varl(x )2 = (NS J)coM(X a2 (X ne)))

8 24 413 1UN) 2 8 3813 UN o2 4 NSt
(r FraaSUN) 6+ GSESING G 26, 4 g0
j=1

since
var[(x )= 8( + )?+8( + )G+ 2G, cou(x o)’ (X ne1)?)=2 254 G+ 2C,

cov(x )% (x mj))=2G, > L,

where (5Dt and 28 (3°Dt/ 3;
var(X nX n+1) NSz
NS1 NS1P

var(x n X n+l)

(NSj S1)cov(X nX pe1, X n+j X n+j+1)
_4(+)2+325 22 4+ )GS6GHA(+ )GS2G 4GS+ )GHA G
- NS1 (N S 1) NS1 (N S 1)

C§+Cf 2 NS2 L
+ — + = (NSjS1) GsiG+a+t , (H3)
NS1 (NS1P7 _, 16+ G
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since
var(x nX ne1) = 4( + P+ 2+4( + )GS2 G+ G+ G,
COV(X nX n+1, X ne2 X ne3) = 252 G+ 2( + )G+ GG+ Cf*
COV(X nX ne1, X ne2X ne3) =S G+ QQ+C§.
COV(X nX n+1, X ntj X n+j+1) = G31Ge1 + qzy > 2
2 NS2
Y 2% % )= S & 2 . .
cov(X M2 X nX 1) NménpéNasnwaomnﬂxmu)
_éS( t ), S4 G+8( + )GS41SUNSIL] G
- N N
4 NS2 o
+mj:o(N SjS1GG+y, (H4)

since

cov(( X n)% X nX n+1):§4( + ) é2C€)'|'4'( + )G+ 2GG,
COM(X n)? X n+1X n+2)=S2 G+ 2GG,
coV((X n)% X n+j X nej+1) = 2GG+a, > L

Combining Egs. 12)bH4) gives the variance [Eq50)] of the unbiased CVE debned by E§6]. The variance [Eq.H8)] of
the CVE fora priori determined noise amplitude [Eq52)] is derived in a similar fashion.

2. Variance of B for known variance 2 of localization errors
a. MLE

We here derive an expression for the variance of the NB or the case of diffusion on a Ructuating substrate. We do this
for the case when the substrate RBuctuations have been characterized independently. We also do it for the case when substrat
Ructuations and localization errors both have been characterized independently.

Let denote the parameters that have already been estimated independently, ®ahehlete the estimates. Letdenote the
parameters that we want to estimate using MLE. When we use the estifatebxed parameters in the estimation pthe
errors on®, = 0S | propagate t®. Here denotes the true value of Since the stationarity condition

INnL(O Ox)

1 (4 9x) 0 (HS5)
gives O only as an implicit function of , we cannot use classical propagation of errors to calculate the variafta\ef can,
however, follow a derivation similar to the one that shows the approximate equality between the inverse Fisher information and
the variance of the MLE, and derive a brst-order approximation/fin) bf the variance of.

From the stationarity condition [EgHB)],

0=1,(9%9=1, | x+1 (1 X) j+1,,01 X) «+Op(1)
=LC T X0+ 1 5+ (0 )k k+ Op(d),
since the central limit theorem dictates thaf ( | ,X) = (I )j + Op(1). Thus,
m=SO)MLC T X0+ 1, d+ Op(N®Y, (H6)
wherel ™ = (I g1)mi, and we sum over repeated indices. Then
varOm = m o ( )mizli( 20T Xy+ 1w o by
LX) s O] X)) k3(| "
=)™+ ()™ 1 var O 1 ( yn, (H7)

sincel /(| ,X)and § are uncorrelated.
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b. CVE
When also 2 has been determined independently, the variance of the unbiased CVE is derived as for unknitisn
var ® var[( X n)?] . var( 2) , varlbo( 2, 9] L varl (5)] (H8)
D2 ~ [2 3D@AS2R)t 2 [ (532D(AS2R)t |2 [ (5)°D]? (S
where now, differing from Eq.H2) and with = 2/[ (32Dt ]S 2R,
— 2(1+ )+ (I1SWUN) 2 1+ S(@1S UN
var[(x n)?] = [2 (3)°Dt ]? (a+ ) ,\f )", 8 (5Dt ( )G ,El ) G
2@ 4 NS1 .
+ =+ — .
v e O SIS (HO)
[
APPENDIX I: MONTE CARLO SIMULATIONS OF They position of the DNA measured at timygis thus
DIFFUSION ON DNA Uh
We simulated the laboratory motion of a point on the DNA yOVA = h yPNAG ). (15)
as the motion of a massively overdamped harmonic oscillator g=1

in a heat batr1]. Since we thus simulate only one mode of the ¢ jifrsjve movement of the protein is simulated in a similar
DNAOs motion, we can simulate the coupling between the tw shion

transversal modes and the longitudinal mode exactly without , , ,
having to simulate the motion of the entire DNA strand. We XM (tye 1) = xP™ () + 2Dht D (16)

use that 22] wherem= 1,2,...,(N + 1yh and 2 is a normalized

_ el ® 2 2 Gaussian white noise.
X(sh) = sS 2 % [y (s,)7+ (s t)’]ds We simulated three time series{,yDNA(tm)}fT’:':gl()D’,hh,
.1 s (P (1NN and {xO ()N where we set
=sS E o [Alvy(t)2+ Ale(t)Z]yl(S )st X(téth) =mys(t§/£/h) = Z(th/h) = (TaanCihih = 100, andQ
) by s 5 was chosen such that the DNA thermalized before we sampled
- s y(s.)*+ z(s .t) Yi(s) s the time series. We calculated the longitudinal positions of the
2 o Yi(s)? DNA, xPNA from Eq. (1) and calculated the motion blurred
. TR , , positions{yPNAN | {xDNAIN. . and{xr?‘ff.}ﬁz0 using Eq. (5).
=sS ——[y(s,t)*+ z(s t)], (1) We Pnally summed the DNA motion and the diffusive
2Ky movement and added positional noise to obtain the OmeasuredO
since the motions in the two transversal directions argositions,
ivalent h thay; = z; andf K4 andK, ar nstant i
clong the DA, 7 TG andlGy ave consia o= BTV, (7)

Experimental data are usually measured with the camerahere , is standard white noise. We also calculated the
shutter kept open for the duration of a time lapse So to  transversal positions,
simulate positions we need to integrate over the full time lapse,

1 . Yn = yr?NA + n (18)
yoNA = - yPNA(t, + t)dt, (12) Figures 8(a) and 8(b) present numerical results for the
_ _ 0_ _ _ performance of the MLE that explicitly accounts for DNA
We do this by approximating the integral with a sum, Ructuations, and for the CVE, which does not, as a function
Vh of the relaxation rate 2 .. Figures8(c) and 8(d) compare
yONA o yPNAGL 4 ght ), (13) the performances of the MLE and CVE in the case when the
=1 DNAQOs Ructuations have been characterézpdori. Figures

8(e)and8(f) show the performances of the estimators for the

where 1h is an integer and Eql3) approaches Eqld) as  case when both the DNAOs motion and the localization errors
h- 0. The motion of a transversal mode is equivalent to thé,aye heen characterized independently.

motion of a Brownian particle trapped in an optical trap. We

i DNA i
can thus simulatg according to §1], 1. Correlations between transversal and longitudinal

YOMA(te 1) = €27 NEyDNAG Y4y 3NA, (14) DNA Ructuations
where m= 1,2,...,(N+ 1yh, PNA is a normalized In order to extract as much information as possible about the
Gaussian white noise, and motion of the DNA from the experimental time series, we use
jge— the periodograms of both the longitudinal and the transversal
(1S ee4f Nt )Ky(s) motion, Py ) and @y)s . To do this in practice, we assume
Yo 4f . ' that s and Py ; are independent. However, since the
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to ensure that the observed number of coutsn any bin

i is Poisson distributed. Moreover, the expected number of
counts,E;, should be large enough in every bin to ensure that
the Poisson distribution @; is approximately Gaussian. The
test statistics is

" (0i S Ei)?
E;i '

X2 = (J1)

i=1

If the theory that provides the values f&; is correct,X?
follows a 2 distribution in the limit of many counts in each
bin. Acommon and not-too-demanding rule of thumb demands
O; 5inall bins. If no parameters were btted, the expected
2 distribution hag S 1 degrees of freedom. if parameters
in the theory were determined by btting the theory to the data
before 2 is evaluated, the number of degrees of freedom is
r = r S 1S n. The number 1 is subtracted to account for the

a value of O signibes complete decorrelation). From Monte Carlggct that the total count is known. This numberand X2

generated data witlD = 0.3 pum?/s, f.= 30 Hz, K, = 2.1 um,
Ky = 0.21um, and 2= 1500 nm. The ensemble size i =
10000, the length of time seriesis = 100, and the shutter is kept
open forthe whole time lapse= t . The plot shows that overall itis
a good approximation to assume tﬁ%} andF‘jx,f are uncorrelated.

longitudinal motion of the DNA is dependent on its transversal

motion, ) ; andM; are not completely independent. We
calculated the correlations betwe&); and P ; for an
ensemble of 10 000 Monte Carlo generated time series
lengthN = 100. The correlations betwe&); andP, ; are,

in general, small and can globally be ignored (Fi)). The
maximal value of the correlations isAB, the mean correlation
coefpcient is M085+ 0.0003, while the mean absolute value
of the correlation coefbcient is@ 33+ 0.0002. Furthermore,
the MLE performs practically optimally even when these
correlations are ignored (Fi§).

APPENDIX J: HYPOTHESIS TESTING

We used the following two standard statistical tests to com
pare theory with experimental dat@earsonOs? goodness-
of-bt tes{Sec. 1 of this appendix) and the test for variance
(Sec. 2 of this appendix).

1. PearsonOs? goodness-of-bt test

(o)

are used to calculate the statistical support for the theory, also
known as it$ value, debned as the probability that a repetition
of the experiment and the btting to the data will result in a new

2 value that is larger than the value we obtained by btting to
the existing data.

2. ?testfor variance
The ?test for variance consists of estimating whether the
qispersion of a numbey of observed data pointg, 3, ..., Q

with known variances? is consistent with the assumption that
the points are independently and normally distributed around
their expected values,, »,..., ¢, which are predicted by a
theoretical model. This consistency is the null hypothesis of
the test.

The ?test statistic is
ECEIDS

2 l

i=1 [

X2 =

and follows a 2 distribution withq S p degrees of freedom,
wherep isthe number of model parameters that were estimated
from the data if the null hypothesis is true.

In practice we bin measurements and use the sample
variancess? as estimates of the true variance$ of the
estimated means. Thus, the test statistic is not exactly
distributed. However, since the number of measurements in

PearsonOs? goodness-of-bt test is used to compare aeach bin is larger than 10, the difference between the actual
measured distribution to a theoretical distribution. For usedistribution and the 2 distribution is negligible if the null
in PearsonOs? test, the measured data are divided into ahypothesis is true, and consequentlys Gaussian distributed

number of bing . The number of bins should be large enough

foralli=1,...,g.
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