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Abstract 

In this paper we analyze individual propensity to voluntary travel behavior change combining concepts from 
theory of change with the methodologies deriving from behavioral models. In particular, following the theory of 
voluntary changes, we set up a two-week panel survey including soft measure implementation, which consisted 
of providing car users with a personalized travel plan after the first week of observation (before) and using the 
second week to monitoring the post-behavior (after). These data have then been used to estimate a Mixed Logit 
for the choice to use a personal vehicle or a light metro; and a Multinomial Logit for the decision to change 
behavior. Results from both models show the relevance of providing information about available alternatives to 
individuals while promoting voluntary travel behavioral change. 
 
© 2013 The Authors. Published by Elsevier Ltd. 
Selection and peer-review under responsibility of SIDT2012 Scientific Committee. 

Keywords: Soft Measure; Personalized Travel Plan; Behavioral models; Theory of change. 

1. Introduction 

The reduction of financial resources for investment in the public transport sector, both for ensuring existing 
services and providing new ones poses yet another challenge, that is to convince an increasingly large number of 
travelers to opt for public transport, especially for daily trips. To encourage people to make better use of existing 
transport services, by choosing, where is possible and reasonable, to use alternative transport of private car, 
increased demand that equates to increased revenue, thereby achieving the objective of maintaining the current 
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level of services provision even when faced with a significant reduction in the resources available for managing 
them. In this context, in many situations today the transport services provided are underutilized even when they 
offer a convincing and better alternative to private car use. Our research focuses on this topic, and aims to test the 
introduction of so-called Soft Measures to promote the use of public transport.  

Soft measures, also referred to as “Voluntary Travel Behavior Change programs” (VTBC) (Ampt, 2003) or 
“smarter choices” (Cairns et al., 2004), are aimed at motivating individual voluntary car use reduction in terms of 
either mode shift, switch of destination and mode or trip evaporation (not making a trip at all) (Sloman et al., 
2010). 

A common aspect of soft measures in general, is the need for a rigorous detection of behavioral changes so as 
to evaluate their effectiveness. In most commercial interventions, a behavior change is measured by independent 
firms (other than soft measures developers) as the change in household travel mode and the reduction in car 
travel distance before and after the intervention. However, there is no general consensus regarding the definition 
of “behavioral change” (see Workshop B2 at the International Congress on transport survey methods, scoping the 
future while staying on track, 2011). 

The objective of this work is to contribute to the debate on behavioral change, analyzing the propensity of 
individuals for voluntary travel behavioral change, by exploratory analyses of observed behaviors before and 
after a soft measure implementation and modeling the underlying factors that cause a behavioral change.  

From a methodological standpoint, two models are proposed. The first model is a Mixed Logit model that 
combines before and after data (drawn from wave 1 and wave 2 respectively), because two sets of revealed 
preferences are gathered on the choice of car-only vs. park-and-ride. The difference with a traditional 
revealed/stated preference discrete choice model successfully is that, a possible mode change (from car-only to 
light metro) is not due to some attributes variation (as in the traditional model with reference point) but to an 
increased level of information and awareness of the other (existing) alternative. 

 
The second model presented in this paper, is a Multinomial Logit that describes the behavioral change process 

through the decision to not to change behavior at all, to change in the weeks to come, to change in the monitoring 
week. Specifically, the choice of car-only users to switch to park-and ride alternative (1) during the one-week 
after survey, (2) in the following weeks or (3) not to change at all is estimated. This second model compared to 
the first one moves the attention to an individual level (as opposite to the trip attribute level) offering the 
opportunity to estimate the individual characteristics underlying the process of change. 

 
The rest of the paper is organized as follows: Section 2 reports an overview of the existing literature on 

behavioral theories and behavioral change models, Section 3 reports the methodology proposed in this paper to 
analyze travel behavioral change, Section 4 describes the data collection and reports an exploratory analysis of 
the data. Section 5 discusses the model results, and finally Section 6 reports conclusions and suggestions for 
further research.  

2. Literature overview  

There is no general theory of human behavioral change, including travel behavioral change. However, many 
alternative theories originating from different fields (i.e. psychology, health, leisure, physical activity, etc.) have 
been proposed and reported in the literature leading to Models of behavior and Theories of change (Parker et al., 
2007, Anable et al., 2006, Darnton, 2008). Models of behavior identify the underlying factors of specific choice 
events or a specific behavior, as opposed to Theories of change that try to detect how behaviors change over time 
and through steps. In this perspective the second approach is more pragmatic because it aims to promote and 
encourage a behavioral change.  
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Despite these differences, there are many overlaps between the two bodies of theories and they can be 
considered complementary; understanding both is necessary in order to develop effective approaches to behavior 
change (Darnton, 2008). 

Briefly, the most important Models of behavior are built upon standard economic theory which refers to those 
choice behaviors – as for example travel behavior – based on a rational evaluation of alternatives’ costs and 
benefits (utility maximization). Over the time this theory has been combined with powerful analytical techniques 
able to model current choices and forecast future ones. However, a number of studies, mainly from psychological 
field have highlighted deviation from the rational behavior (“bounded rationality”, Simon, 1982). Indeed, the 
behavioral economy integrates the economic theory with psychological studies to represent the individual 
decision making as constrained by contextual factors (see Cherchi, 2012 for a recent review).  

In particular, it is now recognized that consumers have inherent preferences (a favored combination of 
attributes) and through trial and error learn what they like; preferences stabilize over time but can change under 
external circumstances that force individuals to rethink of the reasons of their initial choice. This behavior has 
been extensively studied as part of the habit/inertia problem both in presence of (real or hypothetical) changes in 
the external environment (e.g. Morikawa 1994; Swait et al., 2004; Bradley & Daly 1997; Cantillo et al., 2007; 
Srinivasan & Bhargavi, 2007; Yáñez et al., 2009; Cherchi & Manca, 2011) or under stable conditions, i.e. no 
external changes (Ramadurai & Srinivasan, 2006; Cherchi & Cirillo, 2008; Cherchi et al., 2013). These studies 
pointed out that at past behavior is a strong predictor of future behavior, in particular, if there are no external 
changes, individuals will repeat exactly the same choices. On the other hand, presenting a choice context in a way 
that helps the individuals to overcome their own preconceptions highlights the potential benefits and supports 
their choices, without limiting personal freedom (Thaler & Sustain, 2008). But no works have yet studied the 
effect of this voluntary behavior in a mode choice model. 

The so-called Theories of change (i.e. which study the dynamical evolution of the individual behavior across 
time) are essentially learning programs directed primarily at achieving behavior change, by breaking habits, or 
pursuing organizational change (Lewin’s Change Theory, Darnton, 2008). For example, a theory of change 
represented by the “Staged Models” describes the change as a process articulated in a number of phases that lead 
to the final change (Prochaska & Velicer, 1997).  

In addition to these theories, a number of policies have been implemented by Governments to incentivize 
behavioral changes among existing alternatives. The social marketing is often used to involve the community in 
the behavioral change programs, in particular to achieve relevant social objectives in the context of health 
(Gardner & Stern, 1996) and environment (Defra, 2008). In the transportation field, the behavioral change 
programs have been applied through the Travel Demand Management (also referred as Mobility Management, 
Cairns et al., 2008) and further through the so called soft measures (Bamberg et al., 2011) also called Voluntary 
Behavioral Changes Programs (VTBC) (Ampt, 2003). The latter are based on social marketing techniques and 
information to motivate, support and encourage behavioral change. 

Under various names and different details VTBC have been implemented mainly at a personal and community 
level (mass communication), in different countries, especially in Australia, UK, Japan, Germany, Austria, etc. 
(Richter et al., 2011). The mass communication programs are also referred as Travel Awareness Campaigns 
(Jones and Sloman, 2003) and Public Transport Information and Marketing (PTIM) (INPHORMM, 1998, 
TravelWise UK; see Cairns et al., 2004 for a review of PTIM). The former have the objective to increase 
individual awareness of each one’s travel choice effects on environment and health; the PTIM are more or less 
promotional campaigns that try to increase the attractiveness of public transport. As opposed to mass 
communication, various programs defined as Personalized Travel Planning (PTP) aim at providing individuals 
with travel-related information that is specifically based on their daily activity-travel needs. Some examples of 
PTP are Travel Feedback Programs (Fuji & Taniguchi, 2006), Individualized Marketing and Travelsmart (Brög 
et al., 2009), Personal Journey Plans (Halden, 2008), and Travel Blending (Ampt, 2003). 
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PTP programs can be defined as based on a set of motivational drivers (social, economical, psychological, 
etc.) drawn by classical behavioral models and on a number of steps to follow in order to change habits and 
decisions as in theories of change.  

 
The contribution of this work is to provide a first explorative analysis of the results from a Personalized Travel 

Planning, using two different modeling approaches. 
The first one interprets the underlying factors of the choice of car-only vs. park-and-ride (as “Models of 

behavior”). The second estimates which are the individual’s variables involved in a behavioral change described 
as a dynamic process in the time (as Theories of change).  

3. A model for the voluntary changes 

3.1. A mixed Logit mode choice model to account for the effect of personal information 

In order to measure the effect of the information on the mode choice behavior, a joint mixed Logit (ML) 
model that uses data collected before and after providing the information, has been estimated. In particular, the 
specification includes the car-only vs. park and ride (“P&R”) choice, using before (wave 1) and after (wave 2) 
data. The goal of this model is to test the effect on the mode choice of the personal information provided to each 
individual between the first and the second week. This is achieved by specifying in the utility of the P&R, in the 
wave 2, a variable for the personalized plan effect.  

Although the data in the two waves are collected with the same method and in the same context, a scale effect 
can occur due to unknown effects. To account for that a joint model is estimated, following the typical theory of 
the joint revealed/state preference model, estimating the scale factor between the two waves. As well known, the 
scale factor also in the mixed Logit model is inversely related to the variance of the extreme value type 1 (EV1) 
error terms and it allows to get equal variance across datasets. 

 
The joint ML model used in this paper has the following formulation:  

 
     
                                                   (1) 
 
 

Where w1 and w2 are respectively wave 1 “before” and wave 2 “after” the individual has been provided with 
the new information about P&R; q is the individual, j are the alternatives and d is the day of the trip (as all the 
trips for the same individual have been recorded along a week in both waves). So Vw1 and Vw2 are the systematic 
components of utility for wave 1 and 2 respectively; εw1 and εw2 are EV1 random terms, which represent the 
typical MNL probability; 1 2,w wμ μ  are the additional random term normally distributed with zero mean and 
variance 

1 2
2 2,w wμ μ

σ σ  to be estimated. It allows to account for panel correlation (i.e. among answers from the same 
individual).  

Finally, φ is the scale parameter that allows the two utilities to have the same variance. 
In theory, as the data refer to both before (wave 1) and after (wave 2) there is no need to consider the scale 

factor. However, in this study, as the users were presented with their personalized travel plan prior to conducting 
wave 2, the process of evaluating the alternatives may be different and this justifies at least testing for 
heteroskedasticity. 

The systematic utilities are specified as followed: 
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                       (2) 
 

 
Where TTw1

qj,d and TTw2
qj,d are the vectors of travel time; Cw1

qj,d and Cw2
qj,d are the vectors of travel cost. 

In particular for the CAR alternative: 
 
 

                           (3) 
 

where: 
• Tcar-only  is the travel time by car-only (from origin to destination),  
• Tp is the travel time by car looking for parking, 
• Tw is the walking time from car parking to destination. 

 
 

                                       (4) 
 
where: 
• Ccarkm is the travel cost by car per km, 
• distOr-Dest is the distance between the origin and the final destination, 
• Cpark is the parking cost. 
 

For the P&R alternative: 
 
 

                 (5) 
 

where: 
• Tcar is the travel time by car from origin to park-and ride, 
• Twait is the waiting time at the Metro station, 
• Tm is the travel time by Metro, 
• Twalk1 is the walking time from park-and ride to Metro station, 
• Twalk2 is the walking time from Metro station to destination. 
 
 

 
                 (6) 
   

where: 
• Ccarkm is the travel cost by car per km, 
• distOr-P&R is the distance between the origin and the park-and ride, 
• Cticket is the ticket metro cost. 
 

Benefitsw2
qj,d is a variable that measure the benefit presented in the personal travel program (PTP). For car 

users, it represents the benefit achievable from switching from car-only to park and ride. βBenefits is the relative 
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parameter that measures the effect of providing the personalized plan. In particular, the benefits specified in the 
model are the monetary saving and the calories consumptions, then equation (2) becomes: 

 
                                                            (7) 

 
 

Where Beurow2
qj,d is a variable that represents, for the individual q, the benefits associated with the alternative 

j. This variable is specific to the P&R alternative in wave 2 for the user prospective P&R. In particular: 
 

         
2
, , & ,
w
qj d qCAR d qP R dBeuro = −C C                                                      (8)  

 
Where:  
• CqCAR,d is the annual cost of the car only trip, 
• CqP&R,d is the annual cost of the P&R trip mode.  

 
Bcalw2

qj,d is a variable that represents, for the individual q, the benefits expressed in terms of calories burned, 
and associated with the alternative j. This variable is specific to the P&R alternative in wave 2 for the user 
prospective P&R. In particular:  
 

         ,

2 1
, & ,qCAR d

w w
qj d qP R dBcal = −Cal Cal

                                                                                                             (9) 
        

Where:  
• Calw1

qCAR,d are the calories consumed by each individual, in the first week, computed on the basis of the 
number of meters walked from and to the place where the car was parked, 

• CalqP&R,d are the calories consumed by each individual, computed on the basis of the number of meters 
walked from and to the metro station. 

 
From a certain standpoint this method, especially for the attribute of cost, can be interpreted as a reference 

point (Kanheman & Tversky, 1979 and 1984; Masiero & Hensher, 2011), as it accounts for the difference 
between the attribute experimented in wave 1 and the attribute proposed in the personalized travel plan.  

The quantitative feedback (value of the benefit) may have an important effect in this context since most of the 
users could have a mistaken perception of his/her reference point. In particular, what is interesting is that the 
reference values of these attributes are observed by the analyst during wave 1 (passive collection) and not 
revealed by the user during the survey (active collection).  

3.2. A MNL to measure the voluntary travel behavior change  

The second model estimated is a Multinomial Logit (MNL) to measure the trade-off between car-only and 
park-and ride. Differently from the standard applications in the mode choice context, in this case we estimate the 
probability of changing mode in the coming weeks versus the probability of not changing. This can then be 
interpreted as a propensity to change.  
The variables used to determine the propensity to change, are those related to the answers provided by the 
participants in the questionnaires handed out at the beginning and at the end of the survey. These are discrete 
variables that are also coded as dummy in order to test the best specification.  
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Let q=(1,2,….Q) and i=(1,2,…I) be the indexes respectively for the individuals and for the behavior change 
options, The following equation represents the structural equation of the choice model: 

   
                                                                 (10) 

 
In equation (5) Uqi is the random utility associated with the alternative i for the qth individual, xqi is a column 

vector of the attributes (including a constant), βi the corresponding coefficient vector (column), and εqi the EV1 
error term that captures the unobserved effects of the utility function associated with the choice i.  

In particular in the following model the index i represents the three alternatives available to the car user: (1) 
change travel mode in wave 2, (2) change travel mode in the coming weeks (3) not change and not willing to 
change. The vector xqi of the attributes simply contains the individuals’ personal and travel characteristics and not 
the specific characteristics of the alternative. 

4. Data Analysis 

The data used in this study is derived from the implementation of a Personalized Travel Planning (PTP) 
conducted in Cagliari (Italy) from February 2011 to February 2012, which promoted the usage of a light metro, in 
service since 2008.  

The program involved in two-weeks data collection (before and after the soft measure implementation) of 
activity travel patterns using a GPS active data logger (smart phone with built-in GPS and activity diary 
application), called Activity Locator (Meloni et al., 2011). The survey also collected detailed information on 
individual and household socio-demographic and attitudes. 

The behavior change suggested by the soft measure implementation was related to mode switch from car-only 
to park-and-ride (using the light metro) for the trips observed during one week activity-travel diary (before 
intervention, wave 1). The participants’ responses to the proposed soft measure were monitored during a second 
week, which immediately follows introduction of the measure (after intervention, wave 2). At the end of the 
wave 2 all participants were also asked, in the event no behavior changes were detected during the second week, 
whether they were considering changing in the weeks to come.  

The behavioral change in this work was suggested by supplying each participant with a personalized travel 
plan between the first and the second week of survey. From a conceptual point of view, this study assumed that, 
following the submission of a personalized travel plan, individuals might reconsider their own mode choice 
behavior (change their behavior). Each personalized travel plan was created on the basis of the activity-travel 
information gathered during the first wave and distributed in a pocket size pamphlet. It included: (1) general 
information on the light metro service (change of mode parking facilities, stations, schedules, where to purchase 
tickets, ticket types etc.), (2) detailed information about the recommended travel plan (which parking facilities to 
use, at which station to board the train, travel time, at which station to alight and walking time from station to 
destination), (3) a cost/benefits table comparing current travel mode (car alone) with the recommended travel 
plan (car + light metro). The cost/benefits table was constructed on the basis of the observed/stated frequency of 
one or more trips and shows the potential variation between travel attributes of current behavior and of behavior 
ensuing from changing to the park & ride mode, i.e. (1) time spent in car, time spent in light metro, etc., (2) cost 
of the trip (including cost of parking indicated by the user), (3) Calories burned, (4) CO2 emitted. 

4.1. Sample description 

The analysis included 85 participants, 21 park and rider users (P&Rs) and 64 car-only users, with a female 
slight preponderance in both groups (54.1% against 45.9% males). Considering the age groups, the whole sample 
is uniformly distributed among 18–30 (31.8%), 31–40 (35.3%) and over 41 (32.9%). The age groups are similarly 

qi i qi qiU β ε= +x
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distributed among P&Rs and car users. As for employment status, P&Rs are students (19.0%), employees 
(66.7%) or self-employed (14.3%), whereas car users are students (15.6%), employees (51.6%), self employed 
(28.1%) and unemployed (4.7%). The majority of P&Rs are unmarried (85.7%) as opposed to the car users where 
marital status is more evenly balanced (51.6% single, 48.4% married). All participants possess a driving license 
and are car owners, but the kilometers traveled by car by each individual annually vary: 76.2% of the P&Rs 
travel less than 15,000 km (9.5% 15,000–20,000 km, 14.3% more than 20,000 km) against 50% of the car users 
(32.8% 15,000–20,000 km, 17.2% more than 20,000 km). Regarding household characteristics, household size in 
both groups is: 1–2 people (41.2%, 28.6% for P&Rs and 45.4% for car users), 3–4 (48.2%, 61.9% for P&Rs 43.8 
for car-only), while the remainder is composed of 5 or more members (10.6%, 9.5 for P&Rs and 10.5% for car-
only). Children are present in 28.2% of the families (both P&Rs and car-only), 23.8% for P&Rs 29.7% for car-
only. Lastly, 68.2% of the households in both classes owns from 1 to 2 cars while the remainder owns 3 or more. 

4.2. Travel dataset 

A total of 614 trips (324 in the wave 1 and 290 in the wave 2) were collected. Travel mode distribution in 
wave 1 was 67% for car as driver and 33% P&R. In wave 2, after the provision of personalized travel plan, the 
P&R mode registered a positive change, increasing by 10% from 33% to 43%, against a 10% decrease in car 
driver, to 57%. Table 1 provides a description of the level of service of the park & ride alternative and for the car-
only mode. 

 

Table 1. Travel mode distribution for waves 1 and 2 and overall 

  

Over all Wave 1 Wave 2 

Nb. Modal Split Nb. Modal Split Nb. Modal Split 

Car-only  382 62% 218 67% 164 57% 

Park and Ride 282 46% 106 33% 126 43% 

Total 614 100% 324 100% 290 100% 

 
The cost of travelling by car (for the car as driver mode and P&R alternative), has been calculated 

proportionately to the distance traveled for a kilometer cost of 0.40 Euros. At the end of wave 2, all the car users 
were invited to complete a final questionnaire for providing feedback on their experience and especially their 
propensity to change. Table 2 shows the relative frequency distribution of the car users answers at the end of the 
second wave: more than 89% of the sample had decided to change, 34% actually already changed during the 
monitoring week. 
 

Table 2. Decision to change travel behaviour 

 Car-only users 

 N % 
Decision not to change behavior at all 7 11% 
Decision to change in the weeks to come 35 55% 
Decision to change in the monitoring week 22 34% 
Total 64 100% 
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5. Model results 

5.1. The mixed Logit model to account for the effect of the PTP 

In this section we describe the results of the mode choice models between car and P&R, Table 3 reports the 
best specifications obtained after an extensive analysis, where we carefully tested many different utility 
specifications. 

In particular, as expected, we found that the scale parameter was not significantly different from 1. It was then 
set equal to 1 in the final estimation, and then not reported in the table 3. We note that the sign of all the 
coefficients is consistent with the microeconomic theory or the expectations. In particular, all the parameters 
associated to the level-of-services (LOS) are negative and highly significant (t-test >1.96), except for the time 
spent looking for parking in both waves. The difference in significance of the same parameter between wave 1 
and wave 2 can be related to a poor relevance allocated to searching for parking among car users. For what 
concerns the socioeconomic variables, the only coefficients significant at 95% are marital status (“married”) 
(wave 1 and 2) and gender (“Male”) (wave 1 and 2).  

The variables Beuro and Bcal, which describe the effect of personalized information related to P&R 
alternative have been included as specific of the park-and ride alternative in wave 2, in order to associate them to 
the behavior change. We note that the parameter associated to the “personalized information” is positive, which 
reveals that given the same LOS attributes in wave 1 and wave 2, the utility to park-and ride increases with the 
level of information related to the light metro alternative. Regarding the significance, the coefficient of Bcal is 
significant at 95% while for the coefficient of Beuro we can reject the hypothesis that it is different from zero 
only at 86% (in a one-tail test). This is consistent with the fact that an economic benefit is not too high 
corresponding to a trade-off from car-only to park-and ride because the car user must sustain anyhow the costs 
relating to the use of the car from the origin to the light metro parking. 

Note that the constants (wave 1 and wave 2) are not really significant, which indicates that the parameters are 
able to reproduce the phenomenon under study. Finally, we calculated the Subjective Value of Time (SVT) for 
both alternatives, SVT is the amount that a traveller would be willing to pay in order to save one unit of time, in 
this case we have:  

 

        
&

& &

&

&

0.764, 1.476

P R CAR

P R P R CAR CAR

P R CAR

P R CAR

V V
T T T TSVT SVTV VC C
C C

δ δ
δ β δ β
δ δβ β
δ δ

= = = = = =
                                                     (11) 

Where: 
TP&R =Tcar +Twait +Tm  

CAR car onlyT T −=  

Results shows clearly that the car-only users SVT is greater than P&R users SVT, which means that car-only 
users have a willingness to pay higher than P&R users to reduce travel time. 
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Table 3. Mixed Logit model results 

ML Estimate t-test 

Constant_P&R (wave 1) -5.18 -1.31 
Constant_P&R (wave 2) -5.47 -1.56 
P&R Attributes 
Travel time by car from origin to park-and ride plus waiting time plus travel time by Metro (wave 1 & wave 2) -0.17 -1.94 
Walking time from park-and ride to Metro station(wave 1) -4.64 -3.45 
Walking time from park-and ride to Metro station(wave 2) -4.13 -3.19 
Walking time from Metro station to destination (wave 1 & wave 2) -0.96 -3.04 
Car-only Attributes 
Travel time by car-only (from origin to destination) (wave 1 & wave 2) -0.62 -3.75 
Walking time from car parking to destination (wave 1 & wave 2) -1.21 -4.54 
Travel time by car looking for parking (wave 1) -0.21 -1.03 
Travel time by car looking for parking (wave 2) -0.15 -0.84 
P&R and Car only Attributes  
Travel cost (wave 1 & wave 2) -1.71 -2.54 
Individual characteristics 
Gender “Male” (wave 1 & wave 2) 3.95 2.45 
Marital Status “Married” (wave 1 & wave 2) 4.11 2.61 
Personalized information  
Beuro - Personalized information  (wave 2) 0.002  1.48 
Bcal - Personalized information  (wave 2) 19.1 1.96 
L(max) -63.572 

L(C) -313.404 

ρ2 0.808 

N. individuals 85 

Sample size 614 

5.2. The MNL to measure the Voluntary travel behavior change  

Table 4 reports the results obtained estimating a MNL model that describes the behavioral change process, i.e. 
the probability to change mode in the monitoring week or sometime later in the future, as opposite to the decision 
to not resign the car usage. In particular, the attributes are defined at individual level and include (1) individual 
characteristics, (2) household socioeconomic, (3) travel behavior and cost, and (4) pro-environmental efforts 
(measured in a deterministic way and not by using indicators, as acquired from questionnaires). Finally, a 
measure of the daily monetary saving reported in the personalized travel plan (difference between trip cost by car 
and trip cost by light metro) has been included.  

Looking at the results in the table, individuals from households with kids are more likely to change in general 
and slightly more in the weeks to come. This can still be related to the monetary saving involved and shows that 
some time is required to re-arrange activity-travel patterns in families with high household responsibilities. 

Additionally, individuals with high monthly expenditure are more likely to change, probably due to the higher 
relevance for them of the monetary saving involved in the mode trade-off.  

Further individuals who don’t live in the central urban area (Living in Metropolitan area and Living in Suburb 
area parameters) are more likely to change in the weeks to come. 
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For what concerns travel behavior and cost parameters, individuals who travel more than 25k kilometers each 
year, are less likely to change their travel mode behavior. This indicates, as expected, that travel behaviors highly 
based on car usage are difficult to be modified (inertia effect). However, individuals with high work trips 
frequency are more likely to change (at least in the second week). This fact is connected to the number of work 
activities located around the light metro corridor.   

An interesting set of parameters is represented by the pro-environmental efforts. It appears that individuals 
that usually devote high effort to recycling and energy saving are more likely to change behavior, indicating that 
acquiring pro-environmental styles in different daily habits can be relevant to stimulate also travel behavioral 
changes. The last parameter estimated in the model is related to the monetary daily savings involved if the 
suggested mode is integrated in the individual travel behavior. As showed in the table, individuals presented with 
a saving are more likely to change mode. 

Finally, as shown in the first row of the table, the alternatives to change in the weeks to come or to change in 
the second week (week 2) have significant and negative constants. This result appears to suggest a general low 
preference among participants to change travel mode (probably also due to habits), and especially to change in 
the weeks to come. This aspect confirms the presence of inertia factors in car use behaviors and confirms the 
importance of policies that promote voluntary behavior change through marketing campaign and information 
about available alternatives. A last note worth to be highlighted is the accordance between parameters’ signs 
between the option to change in the weeks to come and during the monitoring week. This result seems to indicate 
many similarities between who has immediately changed and those who have admitted to need more time to 
change their behavior. These correspondences are promising for a final positive outcome among a wider group of 
individuals. This is confirmed by a post-survey started three months after the end of the project that has revealed 
how a percentage of the individuals that stated to plan on changing in the weeks to come has actually changed 
mode behavior.  

 

Table 4. Results of the behavioral change model 

  Not to change at all Change in the weeks to come Change in the second week 

Constant  - -7.36 (-5.88) -3.82 (-3.94) 

Presence of children  - 5.70 (5.88) 3.97 (4.50) 

Monthly expenditure for transport (>100euro)  - 2.32 (2.79) 1.82 (2.36) 

Living in Metropolitan area  - 2.34 (2.29) - 

Living in Suburb area  - 1.15 (1.92) - 

Km traveled > 25,000 km/year  - - -1.71 (-2.61) 

High Recycling efforts  - 2.30 (3.35) - 

High Energy saving effort  - 3.08 (3.47) 2.59 (3.16) 

High trip frequency for work  - - 1.74 (3.56) 

Monetary saving involved in the mode shift  - - 0.93 (2.20) 

L(max) -105.766 

L(C) -180.172 

ρ2 0.413 

N. individuals 64 
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6. Conclusion 

The objective of this work is to contribute to the debate on behavioral change, analyzing the propensity of 
individuals for voluntary travel behavioral change. Two models have been estimated, the first measures the effect 
of personal travel programs in the mode choice behavior, the second one analyses the voluntary travel behavior 
change choice. Both models showed how the information provided during a personalized travel plan is significant 
on increasing the utility of the proposed alternative and on stimulating a change in behavior. An important result 
is related to the type of information presented to car-users. Indeed, quantitative measures of benefits involved in a 
behavior change have been found significant.  

From a methodological standpoint, the results presented in this paper reinforce the basic assumption that 
behavioral model and theories of change can work together in order to make voluntary behavior change programs 
more effective. Further, from a conceptual point of view, the positive effect of the information provided on the 
mode choice and behavioral change needs to be taken into account from the governments when planning new 
policy intervention. Most of the car drivers are in fact not aware of their alternatives and most of the times they 
are not able to quantify possible benefits deriving from behavior changes. Changing travel behavior, especially 
for a car user requires great efforts and supporting the behavioral change process needs it’s a critical aspect. 

Another result of this study highlighted that there are individual habits, such as pro-environmental efforts, that 
characterize a higher probability to change also travel mode behavior. This is an interesting aspect, since it means 
that educating the community to adopt sustainable behavior of any type will have an indirect effect on 
individuals’ propensity to change travel behavior as well. 

Finally, the work presented in this paper will be further improved jointly estimating the two proposed models 
in order to properly study the relation between the preference for a certain mode and the propensity for changing.  
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