DeepWind. From idea to 5 MW concept

Schmidt Paulsen, Uwe; Aagaard Madsen, Helge; Nielsen, Per Hørlyk; Kragh, Knud Abildgaard; Baran, Ismet; Hattel, Jesper Henri; Ritchie, Ewen; Leban, Krisztina; Svenden, Harald; Berthelsen, Petter A.

Publication date:
2014

Citation (APA):
DeepWind-from idea to 5 MW concept

22-24 January 2014 Trondheim, No

Uwe Schmidt Paulsena
uwpa@dtu.dk

b Helge Aa. Madsen, Per H. Nielsen, Knud A. Kragh
c Ismet Baran, Jesper H. Hattel
d Ewen Ritchie, Krisztina Leban
e Harald Svenden
f Petter A. Berthelsen

a,b DTU Department of Wind Energy, Frederiksborgvej 399 Dk-4000 Roskilde Denmark
c DTU Department of Mechanical Engineering, Produktionstorvet Building 425 Dk-2800 Lyngby Denmark
d Aalborg University, Department of Energy Technology, Pontoppidanstræde 101, DK-9220, Aalborg East Denmark
e Sintef Energy Research Box 4761 Sluppen, NO-7465 Trondheim, Norway
f Marine Technology Centre MARINTEK, Otto Nielsens veg 10, NO-7052 Trondheim, Norway
DeepWind

Contents

• DeepWind Concept
• 5 MW design
• Optimization process results
• Conclusion

 – Controller part: grid compliance
DeepWind
Contents

• DeepWind Concept
• Baseline 5 MW design
• Results from Optimization process
• Conclusion
DeepWind

The Concept

- No pitch, no yaw system
- Floating and rotating tube as a spar buoy
- C.O.G. very low – counter weight at bottom of tube
- Safety system

- Light weight rotor with pulltruded blades, prevailing loads from aerodynamics
- Long slender and rotating underwater tube with little friction
- Torque absorption system
- Mooring system

DeepWind-from idea to 5 MW concept
DeepWind

Concept- Generator configurations

• The Generator is at the bottom end of the tube; several configurations are possible to convert the energy
• Robust integrated bearing technology
• Three selected to be investigated first:
 1. Generator fixed on the torque arms, shaft rotating with the tower
 2. Generator inside the structure and rotating with the tower. Shaft fixed to the torque arms
 3. Generator fixed on the sea bed and tower. The tower is fixed on the bottom (not floating).
DeepWind

Contents

• DeepWind Concept
• Baseline 5 MW design
• Results from Optimization process
• Conclusion
DeepWind

1st BaseLine 5 MW Design Floater

- Design space limitations

Hywind site:
~5000 tons mass
~35/60 sec natural periods in yaw/surge
DeepWind
BaseLine 5 MW Design Blades

- Blade length 200 m
- Blade chord 5 m constant over length
- Blades pulltruded, sectionized GRP
- NACA 0018 and NACA 0025 profiles
DeepWind 5 MW Design Rotor

Geometry

- Rotor radius \((R_0)\) [m] 60.5
- \(H/(2R_0)\) [-] 1.18
- Solidity \((\sigma = Nc/R_0)\) [-] 0.165
- Swept Area \((S_{ref})\) [m²] 11996

![Graph showing the geometry and performance metrics of the DeepWind 5 MW rotor compared to the EOLE 4 MW (1.5, 25) reference.](image-url)
DeepWind
Load cases

- Deterministic flow with Power law wind shear
- Airy waves
- Sea current 0-0.7 m/s

<table>
<thead>
<tr>
<th></th>
<th>H_s [m]</th>
<th>T_s [s]</th>
<th>Current [m/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sea state 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sea state 1</td>
<td>4</td>
<td>9</td>
<td>0.35 for $V_0 < 14$ m/s, 0.7 for $V_0 > 14$ m/s</td>
</tr>
<tr>
<td>Sea state 2</td>
<td>9</td>
<td>13.2</td>
<td>0.35 for $V_0 < 14$ m/s, 0.7 for $V_0 > 14$ m/s</td>
</tr>
<tr>
<td>Sea state 3</td>
<td>14</td>
<td>16</td>
<td>0.35 for $V_0 < 14$ m/s, 0.7 for $V_0 > 14$ m/s</td>
</tr>
</tbody>
</table>

- Water depth 200 m
- Site along Norwegian coast
- Met-ocean data, hindcast©DHI and WF
DeepWind Contents

• DeepWind Concept
• Baseline 5 MW design outline
• Results from Optimization process
• Conclusion
DeepWind
BaseLine 5 MW Design Performance

Performance

<table>
<thead>
<tr>
<th></th>
<th>[kW]</th>
<th>[rpm]</th>
<th>[m/s]</th>
<th>[m/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated power</td>
<td>5000*</td>
<td>5.73*</td>
<td>14</td>
<td>5</td>
</tr>
<tr>
<td>Rated rotational speed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated wind speed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cut in wind speed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cut out wind speed</td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>
DeepWind

Floater performance at Sea states: 0.35 - 0.7 m/s Current

- Pitch
- Roll
 - Magnus forces change with current
DeepWind

Constant blade chord with different profile thickness

- Blade weight from ~ 157 Ton to ~ 45 Ton per blade
- 5000 µm/m limit: complex strain distribution but in control
- Less bending moments and tension during operation
- Potential for less costly pulltruded blades
DeepWind Generator

Legend:
1) Permanent magnet
2) Stator tooth
3) Stator back iron
4) Winding coil
5) Rotor back iron

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside Diameter</td>
<td>5811</td>
</tr>
<tr>
<td>Inside diameter</td>
<td>5346</td>
</tr>
<tr>
<td>Length O/A</td>
<td>2648</td>
</tr>
</tbody>
</table>

Sample segment of the generator produced by the Design Tool.

3D sketch of the active parts of the 6 MW DeepWind Generator.

DeepWind-from idea to 5 MW concept
DeepWind
Magnetic Bearing

• A controlled magnetic bearing was chosen for study in a test rig
• necessary to control the forces generated by the bearing (relationship between the magnetic force and the distance is in unstable equilibrium
• DSP based control system is proposed, using appropriate sensors and a controlled power supply for each direction unstable equilibrium
DeepWind
Baseline 5 MW Electrical system

General diagram of the power transfer system.
DeepWind

Special control challenges with Deepwind

- All active turbine control via generator torque (no pitch control)
- Large 2p variations in aerodynamic torque
- Stator is not fixed,

generator speed = rotor – stator

2p damping with notch filter and PI controller
DeepWind
Fault ride-through capability

- Crucial for grid code compliance
- Illustrates interesting coupling between controls, turbine and mooring dynamics

ALT 1: De-loading system
Absorb excess energy in rotation of the turbine by reducing generator torque

ALT 2: DC chopper system
Dump excess energy via switched resistor in DC link
500 ms voltage dip in the grid, propagated to converter terminals

Resulting DC link voltage increase needs to be limited, to avoid damage and allow ride-through
- Chopper: OK
- De-loading: Not working very well

Generator torque unaffected with chopper system, drastically reduced with de-loading system
DeepWind
Turbine response to grid fault

Chopper system:
Turbine completely unaffected by the fault

De-loading system:
Generator torque rapidly reduced
→ Rotor (turbine) and stator (mooring system) acceleration in opposite directions
→ Severe stress on mooring system
→ Shaft vibrations in turbine

The de-loading scheme does not work with DeepWind's non-fixed stator

But interesting illustration of the coupling between turbine/generator/mooring/controls

DeepWind—from idea to 5 MW concept
DeepWind

Conclusion

- Demonstration of an optimized rotor design
 - Stall controlled wind turbine
 - Pultruded sectionized GRF blades 2 profile sections
 - 2 Blades with ~95 T total weight, ~3½x less weight than 1st baseline 5MW design
 - Less bending moments and tension during operation
 - Potential for less costly pulltruded blades in terms of power capture
- Use of moderate thick airfoils of laminar flow family with smaller CD₀ good Cp and favourable rigidity
- Suite available for designing deep sea underwater, new radial flux synchronous generator module
- Utilizing magnetic bearings for generator module as option
- Generator and Controller implemented in global model
- Floater optimized for most dominant variables
- Grid compliance
DeepWind

Video from Ocean lab testing
Thank You
Questions?

Thanks to the DeepWind consortium:
DTU(DK), AAU(DK), TUDELFT(NL), TUTRENTO(I), DHI(DK), SINTEF(N), MARINTEK(N), MARIN(NL), NREL(USA), STATOIL(N), VESTAS(DK) and NENUPHAR(F).

And
European Commission