EERA Design Tool for Offshore wind farm Cluster (DTOC)

Madsen, Peter Hauge; Hasager, Charlotte Bay

Publication date: 2014

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
EERA Design Tool for Offshore wind farm Cluster (DTOC)

PETER HAUGE MADSEN. Director
Charlotte Hasager. Senior scientist
DTU Wind Energy
Project partners

- DTU Wind Energy (former Risø)
- Fraunhofer IWES
- CENER
- ECN
- EWEA
- SINTEF
- ForWind
- CRES
- CIEMAT
- University of Porto
- University of Strathclyde
- Indiana University
- CLS
- Statkraft
- Iberdrola Renovables
- Statoil
- Overspeed
- BARD
- Hexicon
- Carbon Trust
- E.On
- RES
EERA partners

- DTU Wind Energy (former Risø)
- Fraunhofer IWES
- CENER
- ECN
- EWEA
- SINTEF
- ForWind
- CRES
- CIEMAT
- University of Porto
- University of Strathclyde
- Indiana University

- CLS
- Statkraft
- Iberdrola Renovables
- Statoil
- Overspeed
- BARD
- Hexicon
- Carbon Trust
- E.On
- RES

“Design Tool for Offshore wind farm Clusters” is the first EERA project. EERA is based on national science activities.
Background: The EERA JP Wind Energy was officially launched at the SET-Plan conference in Madrid in June 2010. The strategy and main activities of the JP is described in the "Strategic Action Plan" (yearly updated).

The programme vision is:
• to provide strategic leadership for the scientific–technical medium to long term research
• to support the European Wind Initiative and the Technology Roadmap’s activities on wind energy, and on basis of this
• to initiate, coordinate and perform the necessary scientific research.

Joint Programme and Sub-programmes
Wind Conditions. Coordinated by Prof. Erik Lundtang Petersen, DTU Wind Energy (DK)
Aerodynamics. Coordinated by Dr. Peter Eecen, ECN (NL)
Offshore Wind Energy. Coordinated by Dr. John O. Tande, SINTEF (NO)
Grid Integration. Coordinated by Dr. Kurt Rohrig, FhG IWES (DE)
Research Facilities. Coordinated by Dr. Pablo Ayesa Pascual, CENER (ES)
Structural design and materials. Coordinated by Dr. Denja Lekou, CRES (GR)
EERA DTOC funding from EC FP7

Topic ENERGY.2011.2.3-2:
Development of design tools for Offshore Wind farm clusters

Open in call: FP7-ENERGY-2011-1
Funding scheme: Collaborative project

- EERA DTOC is 3.5 years: January 2012 to June 2015
- Budget is 4 m€ hereof 2.9 m€ from EC
- Parallel project is ClusterDesign coordinated by 3E
FP7: Expected impact

• To contribute to the SET-Plan on the development of offshore wind power.

• To demonstrate the capability of designing virtual wind power plants composed of wind farms and wind farm clusters while minimizing the negative spatial interactions, improving the overall power quality output and providing confidence in energy yield predictions.
The objective of this topic is to develop new design tools to optimise the exploitation of individual wind farms as well as wind farm clusters, in view of transforming them into virtual power plants.

Such design tools should integrate:

- Spatial modelling: medium (within wind farms) to long distance (between wind farms) wake effects
- Interconnection optimisation: to satisfy grid connection requirements and provide power plant system service.
- Precise energy yield prediction: to ease investment decisions based on accurate simulations

The project should focus on offshore wind power systems and make optimal use of previously developed models.
The objective of this topic is to develop new design tools to optimise the exploitation of individual wind farms as well as wind farm clusters, in view of transforming them into virtual power plants.

Such design tools should integrate:

- Spatial modelling: medium (within wind farms) to long distance (between wind farms) wake effects
- Interconnection optimisation: to satisfy grid connection requirements and provide power plant system service
- Precise energy yield prediction: to ease investment decisions based on accurate simulations

The project should focus on offshore wind power systems and make optimal use of previously developed models.
WP structure

Year 1
- WP1: Wake models
- WP2: Grid models
- WP3: Energy yield

Year 2
- WP4: Integrating software

Year 3
- WP5: Validation Demonstration
- WP6: Dissemination
EERA DTOC concept

Meteorological data / Cluster layout / Turbine data

Grid data

Wake models

Grid models

Yield models

System services

Energy yield

Optimised Cluster Design
EERA DTOC main components

- Use and bring together existing models from the partners
- Develop open interfaces between them
- Implement a shell to integrate
- Fine-tune the wake models using dedicated measurements
- Validate final tool
<table>
<thead>
<tr>
<th>Name</th>
<th>Partner</th>
<th>Status</th>
<th>Programs</th>
<th>Input/output</th>
<th>Script/GUI</th>
<th>Database interface</th>
<th>IPR</th>
<th>Com</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFDWake</td>
<td>CENER</td>
<td></td>
<td>Fluent, C++, OpenFOAM</td>
<td>ASCII</td>
<td>script</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CorWind</td>
<td>Risoe DTU</td>
<td>Ope</td>
<td>DOS exe Delphi</td>
<td>CSV files</td>
<td>no</td>
<td>no</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>CRES-farm</td>
<td>CRES</td>
<td>Ope</td>
<td>Linux/ Fortran77</td>
<td>ASCII</td>
<td>no</td>
<td>no</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>CRES--flowNS</td>
<td>CRES</td>
<td>Ope</td>
<td>Linux/ Fortran77</td>
<td>ASCII</td>
<td>no</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DWM</td>
<td>Risoe DTU</td>
<td>Ope</td>
<td>Fortran, pc, pc-cluster</td>
<td>ASCII</td>
<td>script</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECNS</td>
<td>ECN</td>
<td>Beta</td>
<td>Linux/ Fortran90</td>
<td>ASCII</td>
<td>no</td>
<td>No</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>EeFarm</td>
<td>ECN</td>
<td>Alpha</td>
<td>Matlab</td>
<td>Matlab scripts</td>
<td>yes</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farm-farm interaction</td>
<td>ECN</td>
<td>Ope</td>
<td>Fortran</td>
<td>ASCII</td>
<td>No</td>
<td>no</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>FarmFlow</td>
<td>ECN</td>
<td>Ope</td>
<td>Delphi</td>
<td>ASCII/ binary</td>
<td>GUI</td>
<td>Yes</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>FlowARSM</td>
<td>CRES</td>
<td>Alpha</td>
<td>Linux/ Fortran77</td>
<td>ASCII</td>
<td>no</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FUGA</td>
<td>Risoe DTU</td>
<td>Ope</td>
<td>Fortran, C, Delphi, pc</td>
<td>ASCII</td>
<td>Script/GUI</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>NET-OP</td>
<td>SINTEF</td>
<td>Proto type</td>
<td>Matlab</td>
<td>ASCII</td>
<td>script</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Skiron/WAM</td>
<td>CENER</td>
<td>Ope</td>
<td>Unix/ Fortran</td>
<td>GRIB</td>
<td>script</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOPFARM</td>
<td>Risoe DTU</td>
<td>Beta</td>
<td>Matlab/C/ Fortran</td>
<td>ASCII</td>
<td>script</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>UAEP</td>
<td>Risoe DTU</td>
<td>Beta</td>
<td>Matlab, pc</td>
<td>ASCII/ binary</td>
<td>no</td>
<td>yes</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>VENTOS</td>
<td>UPorto</td>
<td>Beta</td>
<td>Unix/ Fortran</td>
<td>ASCII</td>
<td>no</td>
<td>yes</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>WAsP</td>
<td>Risoe DTU</td>
<td>Ope</td>
<td>Windows pc</td>
<td>ASCII</td>
<td>Script/GUI</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>WCMS</td>
<td>Fraunhofer</td>
<td>Ope</td>
<td>Matlab/JAVA</td>
<td>OracleDB</td>
<td>yes</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>WRF</td>
<td>Risoe DTU</td>
<td>Ope</td>
<td>Unix, Linux, Fortran90</td>
<td>netCDF</td>
<td>Shell script</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>WRF/ROMS</td>
<td>CIEMAT</td>
<td>Ope</td>
<td>Linux/ Fortran</td>
<td>netCDF</td>
<td>script</td>
<td></td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>
EERA DTOC portfolio of models

<table>
<thead>
<tr>
<th>Name</th>
<th>Partner</th>
<th>Status</th>
<th>Programs</th>
<th>Input/ output</th>
<th>Script/ GUI</th>
<th>Database interface</th>
<th>IPR</th>
<th>Com</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFDWake</td>
<td>CENER</td>
<td></td>
<td>Fluent, C++, OpenFOAM</td>
<td>ASCII</td>
<td>script</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CorWind</td>
<td>Risoe DTU</td>
<td>Ope</td>
<td>DOS exe Delphi</td>
<td>CSV files</td>
<td>no</td>
<td>no +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRES-farm</td>
<td>CRES</td>
<td>Ope</td>
<td>Linux/ Fortran77</td>
<td>ASCII</td>
<td>no</td>
<td>no +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRES--flowNS</td>
<td>CRES</td>
<td>Ope</td>
<td>Linux/ Fortran77</td>
<td>ASCII</td>
<td>no</td>
<td>no +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DWM</td>
<td>Risoe DTU</td>
<td>Ope</td>
<td>Fortran, pc, pc-cluster</td>
<td>ASCII</td>
<td>script</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECNS</td>
<td>ECN</td>
<td>Beta</td>
<td>Linux/ Fortran90</td>
<td>ASCII</td>
<td>No</td>
<td>No +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EeFarm</td>
<td>ECN</td>
<td>Alpha</td>
<td>Matlab</td>
<td>Matlab</td>
<td>Script/ GUI</td>
<td>yes +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farm-farm interaction</td>
<td>ECN</td>
<td>Ope</td>
<td>Fortran, pc, pc-cluster</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FarmFlow</td>
<td>ECN</td>
<td>Ope</td>
<td>Delphi</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FlowARSM</td>
<td>CRES</td>
<td>Alpha</td>
<td>Linux/ Fortran</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FUGA</td>
<td>Risoe DTU</td>
<td>Ope</td>
<td>Fortran, C, pc</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NET-OP</td>
<td>SINTEF</td>
<td>Proto type</td>
<td>Matlab</td>
<td>ASCII</td>
<td>Script</td>
<td>No +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skiron/WAM</td>
<td>CENER</td>
<td>Ope</td>
<td>Unix/ Fortran</td>
<td>GRIB</td>
<td>script</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOPFARM</td>
<td>Risoe DTU</td>
<td>Beta</td>
<td>Matlab/C/ Fortran</td>
<td>ASCII</td>
<td>script</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UAEP</td>
<td>Risoe DTU</td>
<td>Beta</td>
<td>Matlab, pc</td>
<td>ASCII</td>
<td>no</td>
<td>yes +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VENTOS</td>
<td>UPorto</td>
<td>Beta</td>
<td>Unix/ Fortran</td>
<td>ASCII</td>
<td>no</td>
<td>yes +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WAsP</td>
<td>Risoe DTU</td>
<td>Ope</td>
<td>Windows pc</td>
<td>ASCII</td>
<td>Script/ GUI</td>
<td>No +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WCMS</td>
<td>Fraunhofer</td>
<td>Ope</td>
<td>Matlab/JAVA</td>
<td>OracleDB</td>
<td>yes</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WRF</td>
<td>Risoe DTU</td>
<td>Ope</td>
<td>Unix, Linux, Fortran90</td>
<td>netCDF</td>
<td>Shell script</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WRF/ROMS</td>
<td>CIEMAT</td>
<td>Ope</td>
<td>Linux/ Fortran</td>
<td>netCDF</td>
<td>script</td>
<td>yes +</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EERA DTOC portfolio of models

<table>
<thead>
<tr>
<th>Name</th>
<th>Partner</th>
<th>Status</th>
<th>Programs</th>
<th>Input/ output</th>
<th>Script/ GUI</th>
<th>Database interface</th>
<th>IPR</th>
<th>Com</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFDWake</td>
<td>CENER</td>
<td>Ope</td>
<td>Fluent, C++, OpenFOAM</td>
<td>ASCII</td>
<td>script</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CorWind</td>
<td>Risø DTU</td>
<td>Ope</td>
<td>DOS exe, Delphi</td>
<td>CSV files</td>
<td>no</td>
<td>no</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>CRES-farm</td>
<td>CRES</td>
<td>Ope</td>
<td>Linux/ Fortran77</td>
<td>ASCII</td>
<td>no</td>
<td>no</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>CRES--flowNS</td>
<td>CRES</td>
<td>Ope</td>
<td>Linux/ Fortran77</td>
<td>ASCII</td>
<td>no</td>
<td>no</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>DWM</td>
<td>Risø DTU</td>
<td>Ope</td>
<td>Fortran, pc, pc-cluster</td>
<td>ASCII</td>
<td>script</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECNS</td>
<td>ECN</td>
<td>Beta</td>
<td>Linux/ Fortran90</td>
<td>ASCII</td>
<td>No</td>
<td>No</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>EeFarm</td>
<td>ECN</td>
<td>Alpha</td>
<td>Matlab</td>
<td>Matlab</td>
<td>Script/ GUI</td>
<td>yes</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Farm-farm interaction</td>
<td>ECN</td>
<td>Ope</td>
<td>Fortran</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FarmFlow</td>
<td>ECN</td>
<td>Ope</td>
<td>Delphi</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FlowARSM</td>
<td>CRES</td>
<td>Alpha</td>
<td>Linux/ Fortran77</td>
<td>ASCII</td>
<td>No</td>
<td>yes</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>FUGA</td>
<td>Risø DTU</td>
<td>Ope</td>
<td>Fortran, C, Delphi</td>
<td>ASCII</td>
<td>script</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NET-OP</td>
<td>SINTEF</td>
<td>Proto type</td>
<td>Matlab</td>
<td>ASCII</td>
<td>Script</td>
<td>No</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Skiron/WAM</td>
<td>CENER</td>
<td>Ope</td>
<td>Unix/ Fortran</td>
<td>GRIB</td>
<td>script</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOPFARM</td>
<td>Risø DTU</td>
<td>Beta</td>
<td>Matlab/C/ Fortran</td>
<td>ASCII</td>
<td>script</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UAEP</td>
<td>Risø DTU</td>
<td>Beta</td>
<td>Matlab, pc</td>
<td>ASCII/ binary</td>
<td>no</td>
<td>yes</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>VENTOS</td>
<td>UPorto</td>
<td>Beta</td>
<td>Unix/ Fortran</td>
<td>ASCII</td>
<td>no</td>
<td>yes</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>WAsP</td>
<td>Risø DTU</td>
<td>Ope</td>
<td>Windows pc</td>
<td>ASCII</td>
<td>Script/ GUI</td>
<td>No</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>WCMS</td>
<td>Fraunhofer</td>
<td>Ope</td>
<td>Matlab/JAVA</td>
<td>OracleDB</td>
<td></td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WRF</td>
<td>Risø DTU</td>
<td>Ope</td>
<td>Unix, Linux, Fortran90</td>
<td>netCDF</td>
<td>Shell script</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WRF/ROMS</td>
<td>CIEMAT</td>
<td>Ope</td>
<td>Unix/ Fortran</td>
<td>netCDF</td>
<td>script</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
User Requirements
Design and model selection guided by end-users

Two main user groups were identified:
- Strategic planners
- Developers of offshore wind farms

Associated users could be:
- Consultants
- Research institutions
- Manufacturers
- System Operators
Selected user stories

• As a developer I can determine the wake effects of neighbouring wind farm clusters on a single wind farm.

• As a developer I can determine the optimum spacing, position, turbine model and hub height of turbines within an offshore wind farm.

• As a strategic planner I can determine the optimum strategic infrastructure to accommodate offshore wind farm clusters.

• 14 relevant user stories in total
As a developer I can **determine the optimum** spacing, position, turbine model and hub height of turbines within an offshore wind farm.

*Software supports the **comparison** of many design scenarios.*

Comparative reporting enables selection of optimised configurations.

Score for comparison: Levelised Cost of Energy
1. Generate Design Options
 - Scenario 1
 - Scenario 2
 - Scenario 3
 - Scenario 4
 - Scenario 5
 - Scenario 6
 - Scenario 7

2. Evaluate Design Options
 - Wake Model
 - Electrical Model
 - Energy model

3. Compare Design Options

4. Iterate steps 1 to 3

Score: Levelized cost of energy

What decision parameter can we use to compare design options?
A robust, efficient, easy to use and flexible tool created to facilitate the optimised design of individual and clusters of offshore wind farms.

A keystone of this optimisation is the precise prediction of the future long term wind farm energy yield and its associated uncertainty.
Introduction
The “big wake” picture

- Wind farm scale wake model
 - Upstream WF
 - Courtesy of Vattenfall
 - Wind farm scale wake model
 - Target WF
 - http://www.offshore-power.net

- Cluster scale wake model
 - http://www.renewbl.com

AEP

Map:
- BorWin
- HelWin
- Borders
 - Continental shelf/EEZ
 - Exclusive Economic Zone (200 nautical miles)
 - 12 nautical miles border/costal waters
 - International border

- Offshore Wind Farms
 - in operation
 - approved (BSH/states)
 - planned
 - offshore platform, transpower
 - offshore platform, alpha ventus
 - wind farm cluster

Diagram:
- Wind
- Coupling
- Wake info
- Coupling

DTOC
Wind farm scale wake models

- DWM
- WASP/NOJ
- RANS
- CRES flowNS
- Ainslie
- FarmFlow
- FUGA
- GCL
- NOJ
- Engineering
- Simplified CFD
- Full CFD
Selecting the most appropriate models for the different usage scenarios of the design tool
Horns Rev 1 benchmark (DONG energy & Vattenfall)
Lillgrund benchmark (Vattenfall)

Example:
Power deficit along one row

Horns Rev, wd = 270 ± 15°, spacing = 7D, ws = 8 ± 0.5 m/s
Gross energy: FINO-1 test case (BMU)

- Wind speed and direction data (10 minutes)
 From 13/01/2005 to 30/06/2012 (total of 7.5 years data)
 (Generic power curve (1.225 kg/m³))
Gross energy – output parameter checks

- Mean wind speed (before filtering)
- Mean wind speed (after filtering)
- Long term mean wind speed, free decision
- Vertical extrapolation between 100m and 120m
- Gross energy P50
- Gross energy P90
Gross energy P90

Gross Energy P90. Mean value +/- 8.5%
O&M losses

• Offshore Wind Farm
 o Inputs
 o Turbine layout and turbine model
 o Site wave climate
 o Location of O&M base (from 10 to 150 km)
 o O&M strategy
 o SWARM software
Aims of grid layout optimization

- Design tool and procedure assisting the optimization of the electrical design;
- Clustering;
- Grid code compliance;
- Power plant ancillary services;
- Evaluate impact of the variability and the predictability.
Methodology

1. Determine the models chain, interactions, I/O;
2. Establish the data flow/ data gaps according to the user cases;
3. Procedure to fill overcome gaps was investigated:
 1. Automatic electrical data generation
 2. User intervention providing accurate data.
 3. Implementation of a new module
4. Dry runs (based on scenarios)
5. Assessment/ convenience evaluation
Kriegers Flak case study

<table>
<thead>
<tr>
<th>#</th>
<th>Country</th>
<th>Wind farm</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DK</td>
<td>Kriegers Flak A K2</td>
<td>200</td>
</tr>
<tr>
<td>2</td>
<td>DK</td>
<td>Kriegers Flak A K3</td>
<td>200</td>
</tr>
<tr>
<td>3</td>
<td>DK</td>
<td>Kriegers Flak A K4</td>
<td>200</td>
</tr>
<tr>
<td>4</td>
<td>DK</td>
<td>Kriegers Flak B K1</td>
<td>200</td>
</tr>
<tr>
<td>5</td>
<td>DE</td>
<td>EnBW Baltic 2</td>
<td>288</td>
</tr>
<tr>
<td>6</td>
<td>DE</td>
<td>EnBW Baltic 1</td>
<td>48</td>
</tr>
<tr>
<td>7</td>
<td>DE</td>
<td>Baltic Power</td>
<td>500</td>
</tr>
<tr>
<td>8</td>
<td>DE</td>
<td>Wikinger</td>
<td>400</td>
</tr>
<tr>
<td>9</td>
<td>DE</td>
<td>Arkona Becken Südost</td>
<td>480</td>
</tr>
<tr>
<td>10</td>
<td>SE</td>
<td>Kriegers Flak</td>
<td>640</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Branch type</th>
<th>max distance</th>
<th>max power</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>65 km</td>
<td>700 MW</td>
</tr>
<tr>
<td>DC-direct</td>
<td></td>
<td>1000 MW</td>
</tr>
<tr>
<td>DC-mesh</td>
<td></td>
<td>1000 MW</td>
</tr>
<tr>
<td>converter</td>
<td></td>
<td>1000 MW</td>
</tr>
</tbody>
</table>
Kriegers Flak case study results
Expected achievements

- Checking planned grid:
 - Fulfillment of full load flows → calculate component utilization factors.
 - Fulfillment of certain average load flows situations.
 - Checking congestions and voltages.
- Control power:
 - Power reserve
 - Balancing power
- Voltage control
- Enabling market/transport
Model workflow energy yield (WP3)

General Tables

On site mast data (raw) → Filtering → Clean data → Vertical extrapolation → HH Data → Long Term → Virtual data → LT Wind Data

User input? Real data or virtual data?

Availability

Distance to O&M base → Wave conditions

Gross energy

WP1

WP2

Net energy

WP1

WP2

Uncertainty

Net AEP

P50/P90

Cost

Specifications

Lay out

Net Energy

Power curve

Lay out

Power curve

LT Wind Data

Long term ref. masts

Clean data

HH Data

Long Term

Virtual data
Model workflow wake (WP1)

- **Reanalysis Inputs**
 - Dynamical Mesoscale flow model
 - Time Series Database
 - Hybrid Mesoscale wake model
- **Wind farms Layout**
- **Wind farms Power Curve**
 - Statistical-Dynamical
 - Mesoscale Wake Deficits
 - Dynamical
 - CorWind inputs
- **Microscale wake model**
 - Lib, Tab, NetCDF
 - Wind farm Power production
 - AEP calculator
 - Wind farm AEP
Model workflow “Electrical” (WP2)

- Cost Model (DTOC Cost Model, etc)
- Grid Optimization (System Services)
- Inter-array (eeFarm II, …)
- Offshore Optimization (NET-OP, …)
- System Services (WCMS)
- Wake Effects (out of scope)
- Synth. TS (CorWind, meas., etc)
Total tool overview – very complex!

Dynamical Mesoscale flow model
- Wind farm Layout
- Wind farm Power Curve

Microscale wake model
- Mesoscale Wake Deficits
- Power production

Hybrid Mesoscale wake model
- Confined inputs

Reanalysis inputs

Time Series Database

Mesoscale Wake Deficits

Statistical
- Dynamical

Lib., Tab., NetCDF

Wake Effects
(out of scope)

Cost Model
(DTOC Cost Model, etc)

Inter-array
(eefarmII, …)

System Services
(WCMS)

Offshore
Optimization
(NET-OP, …)

Grid Optimization
(Layout)

Grid Optimization
(System Services)

NWP Forecast
(GFS, WRF, etc)

Wake Effects
(Pt Model)

Predictability
(Fh Model)

NWP Forecast
(Synth. TS)

Variable &
Predictability
(Fh Model)

Wake Effects
(Missed)

Inter-array
(eefarmII, …)

Cost Model

System Services
(WCMS)

CorWind inputs

Dynamical
Statistical
Dynamical

Wind farm
Power production

AEP calculator

AEP

WPP1

WPP2

Availability

Net Energy

Layout Opt

Uncertainty

Cost

Cost Model

Gross Energy

Long Term

Vertical extrapolation

Filtering

Time Series Generation

Wake Effects

Forecasting & Predictability

Offshore
Optimization

(on site mast data)

Offshore
Optimization

(Lay out)

Power Curve

Net Energy

Gross energy

% losses

Uncertainty

Cost

Specifications

Parameters

Net AEP

P50/P90

Cost Model

Grid Optimization
(System Services)

Inter-array
(eefarmII, AEDIC)

Inter-array
(eefarmII, …)

Offshore
Optimization

(NET-OP, …)

Offshore
Optimization

(NET-OP, …)

Cost Model

DTOC Cost
Model, etc

Grid Optimization
(System Services)

Grid Optimization
(Layout)

Forecasts & Predictability

Time Series Generation

NWP Forecast

(Synth. TS)

CorWind, meas., etc

Wake Effects

(out of scope)
Open interfaces

- The sub-models are protected by IPR...
- ...but the interfaces in the model chain are going to be open

- File formats for data exchange are based on existing industry standard formats, e.g. the WAsP types based on XML and ESRI shape file standard
DTOC software development timeline

2012
- existing models
- dry runs

2013
- end user requirements
- proof of concept
- prototype

2014
- pre-design
- design
- DTOC V0.5
- DTOC V1.0
- test reports
Validation and demonstration
Rødsand 2 data (E.On)

10 minute statistical data from meteorological mast and Rødsand 2 turbines (No data from neighbouring Nysted farm)
SAR satellite images (CLS, DTU)

Belwind phase I

Thomton phase II

Thomton phase I & III

Wake length

Wake limit

Mooring area for ships

Clear evidence of wake

No evidence of wake
Lidar measurements (ForWind & Fraunhofer IWES)

- Long range wind scanner measurements from fixed positions
- Ship based LIDAR measurements
- EERA DTOC partners requested
- Alpha Ventus SCADA data
Industry partners are very important!

Iberdrola, Statoil, Carbon Trust, Hexicon, Statkraft, E.On, RES
Purpose of the scenarios

– The tool should fulfill the previously defined user requirements:
 • The tool should be useful, easy to use, complete and robust

– Functionality of all modules in EERA DTOC should be proven → All parts of the tool should be activated during the scenarios

– Inventory of user experiences:
 • How steep is the learning curve?
 • Which tutorials should be added?

– The results should LOOK realistic from an expert point of view
What is EERA-DTOC?

EERA-DTOC stands for the European Energy Research Alliance - Design Tool for Offshore Wind Farm Cluster. The project is funded by the EU – Seventh Framework Programme – and runs from January 2012 to June 2015. It is coordinated by the Technical University of Denmark - DTU Wind Energy. The concept of the EERA-DTOC project is to combine this expertise in a common integrated software tool for the optimized design of offshore wind farms and wind farm clusters acting as wind power plants.

A robust, efficient, easy to use and flexible tool created to facilitate the optimised design of individual and clusters of offshore wind farms.

Deliverables
- 7th Framework
Thank you very much for your attention
Support by

EERA DTOC project
FP7-ENERGY-2011-1/ n°282797