Bioaccumulation and Ecotoxicity of Carbon Nanotubes

Jacokson, Petra; Raun Jacobsen, Nicklas; Baun, Anders; Birkedal, Renie; Kühnel, Dana; Alstrup Jensen, Keld; Vogel, Ulla Birgitte; Wallin, Håkan

Publication date: 2013


General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying the publication in the public portal.

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
INTRODUCTION

Carbon nanotubes (CNT) are thin, long hollow fiber-like nanomaterials composed of a single, double or multiple layers of rolled graphen. CNT provide a wide application potential, but pose unique toxicity. Pristine and functionalized CNT reside in water differently, and therefore pose different risks of exposure. Pristine CNT are hydrophobic and aggregate in water. Many CNT are therefore functionalized for better dispersion; or dispersants are used. Natural organic material can also modify CNT and aid dispersion. The large specific surface area may accommodate pollutant adhesion and thus influence CNT toxicity in itself and/or toxicity of co-pollutants. A literature review has been performed. (Jackson P et al., 2013 Chemistry Central Journal in print)

Table 1 CNT aquatic pelagic toxicity

<table>
<thead>
<tr>
<th></th>
<th>Extremely Toxic</th>
<th>Very Toxic</th>
<th>Toxic</th>
<th>Harmful</th>
<th>Not Toxic</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWCNT invertebrates</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DW_CNT invertebrates</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MWCNT invertebrates</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>


Figure 3

Dose descriptors for aquatic benthic toxicity. Lowest LC50, LOEC, NOEC observed.

RESULTS AND DISCUSSION

CNT do not cross biological barriers readily. When ingested, CNT are subsequently excreted. When internalized, only a minimal fraction translocates into other body compartments. Thus, bioaccumulation is limited; however organisms containing CNT or organisms with CNTs adhering to the outer surface may be a source of CNT in the food chain, potentially leading to biomagnification.

CNT toxicity depends on exposure, model organism, CNT type and dispersion state. Aquatic organisms are more affected than terrestrial organisms. Invertebrates are more sensitive than vertebrates, with SWCNT being more toxic than MWCNT. The CNT fiber shape, length, length/diameter ratio and dispersion affect toxicity. Direct mechanical effects are observed in plants, bacteria, and fish, were the CNT pierce and damage cells. Indirect mechanical effects are observed in algae, crustaceans and insects, where an interaction with the outer body surface occurs, leading to interference with growth and movement.

Conclusion

For the hazard assessment of ecotoxicological effects of CNT, the exposure scenario and exposure route have to be derived from the CNT usage. The surface modifications and dispersion method are important factors affecting toxicity. The reported effect concentrations are above current environmental concentrations. However, more robust data are needed for future estimates. Future studies with benchmark materials are required to clarify uncertainties about exposure/efect relationships. The exposure characterization is an essential part of result reporting.

NATIONAL RESEARCH CENTRE FOR THE WORKING ENVIRONMENT, DENMARK