Electrochemical reduction of CO2 and H2O into fuels: Cell types and kinetic barriers

Mogensen, Mogens Bjerg

Publication date: 2013

Link back to DTU Orbit

Electrochemical reduction of CO$_2$ and H$_2$O into fuels: Cell types and kinetic barriers

Mogens B. Mogensen, Professor at DTU Energy Conversion

Presented in:
246th ACS National Meeting
Indianapolis, Indiana, USA
Department of Energy Conversion and Storage

DTU = Technical University of Denmark

- Sustainable technologies for energy conversion and storage
- Located on two campuses near Copenhagen, Denmark: Risø and Lyngby
- 230 employees – ca. 100 in electrochemistry
- Our research span from fundamental investigations to component manufacture
- Focus on industrial collaboration and industrially relevant processes
Outline

1. Introduction
2. Motivation and need for electrolysis
3. Vision
4. Types and status of electrolyzer cells
5. Electrocatalysts and kinetics in various electrodes
6. Barrier modeling problems
7. Concluding remarks
Introduction

• There are clear reasons to look for means of promoting fluctuating renewable energy, e.g. photovoltaics and wind turbines:

• Probable anthropogenic climate change by CO₂ emissions

• Limited supply of cheap fossil fuel resources in the long term

• Security of supply and geopolitical consequences of unequal distribution of resources

• Synthetic fuels – CO₂ neutral “green” hydrocarbon fuels - seem particularly benign to replace the fossil fuels.
What to do? – The Danish answer: Energy plan for Denmark

1. 2020: 50 % electricity from Renewables
2. 2035: 0 % fossil energy in power and heat production
3. 2050: 100 % renewable energy

Challenges
1) Increasing share of fluctuating production
2) Liquid fuels will still be needed; biomass is limited
Electrolysis is needed

- Many conversion and storage technologies:
 - Pumping of water to high altitudes
 - Batteries
 - Flywheels
 - Superconductor coil (magnetic storage)
 - Electrolysis – Electrochemical reduction of H₂O and CO₂
 - Thermo-chemical looping
 - Solar Thermal Electrochemical
 - Photo-electrochemical HER and CO₂ reduction

- All are very important! But: first 4 are not for long distance (> 500 km) transport. 3 last are early stage research - may prove efficient in the future.

- Therefore, within a foreseeable future: Electrolysis will become necessary in order to get enough renewable fuels!
Working principle of a reversible Solid Oxide Cell (SOC). The cell can be operated as a SOFC (A) and as a SOEC (B).
Production of syngas

Reaction scheme:
The overall reaction for the electrolysis of steam plus CO$_2$ is:
$$
\text{H}_2\text{O} + \text{CO}_2 + \text{heat} + \text{electricity} \rightarrow \text{H}_2 + \text{CO} + \text{O}_2
$$ (1)

This is composed of the three partial reactions (for SOEC case): At the negative electrode:
$$
\text{H}_2\text{O} + 2\text{e}^- \rightarrow \text{H}_2 + \text{O}^{2-}
$$ (2)
$$
\text{CO}_2 + 2\text{e}^- \rightarrow \text{CO} + \text{O}^{2-}
$$ (3)

and at the positive electrode:
$$
2 \text{O}^{2-} \rightarrow \text{O}_2 + 4\text{e}^-
$$ (4)

Emphasis on oxygen evolution reaction (OER) at low temperatures
- this is by far the slowest reaction

$$
2 \text{H}_2 + \text{CO}_2 \rightarrow \text{CO} + \text{H}_2 (+ \text{H}_2\text{O}) \text{ is also possible}
$$
Synthetic fuels from syngas: why?
The power density argument

• Syngas (H$_2$ + CO): all kinds of synthetic fuel using existing catalysts

• If renewable energy used for electrolysis, the fuel is CO$_2$ neutral!

• Gasoline filling rate of 20 L/min equivalents 11 MW of power and means it takes 2½ min to get 50 l = 1650 MJ on board

• Li-batteries: 8 h to get recharged. For a 300 kg battery package (0.5 MJ/kg) this means a power of ca. 3.5 kW i.e. it takes 8 h to get 150 MJ on board.

• The ratio between their driving ranges is only ca. 5, because the battery-electric-engine has an efficiency of ca. 70 % - the gasoline engine has ca. 25 %.
Visions for synfuels from electrolysis of steam and carbon dioxide

1. Big off-shore wind turbine parks coupled to a large SOEC – produce CH₄ (synthetic natural gas, SNG) - feed into existing natural gas net-work (in Denmark).

2. Large SOEC systems - produce DME, gasoline and diesel - Iceland, Canada, Greenland, Argentina, Australia ... geothermal, hydro, solar and wind.

3. Target market: replacement of natural gas and liquid fuels for transportation

4. All the infrastructure exists!!
Vision, Biomass CO₂ recycling

Short term realisation - CO₂ capture from industrial sources

[Diagram showing the process of converting CO₂ into synthetic petrol/diesel, with steps involving electrolysis, fuel synthesis, and consumption, along with the transport and electricity generation.]
Electrolysis and Fuel Cell Types - reversibility

1. Simple aqueous electrolytes (e.g. KOH or K₂CO₃), room temperature to ca. 100 °C, 0.1 - 3 MPa pressure. The classic versions of alkaline electrolyser and fuel cell are not directly reversible. Low gas solubility in electrolyte.

2. Low temperature “solid” proton conductor membrane (PEM), 60 – 80 °C, and high temperature PEM 120 - 190 °C. Not directly reversible due to materials issues

3. Immobilized aqueous K₂CO₃, Na₂CO₃, KOH in mesoporous structures, solid acids etc. – pressurized 200 – 300 °C, 0.3 – 10 MPa. Probably directly reversible.

4. Molten carbonate electrolytes, fuel cells 650 °C; electrolyser 800 – 950 °C, 0.1 MPa. Electrolytes have very different compositions, so not directly reversible. Only CO₂ electrolysis.

5. High temperature solid oxide ion conductor (stabilized zirconia), 650 – 950 °C, pressurized 0.5 – 2 (5?) MPa. Reversible!

DTU Energy Conversion, Technical University of Denmark
Electrolysis cell type status

- Few types commercialized but - from an energy conversion and storage point of view - none of them are commercial in today's energy markets.

- The classical alkaline electrolyser was commercialized during the first half of the 20th century and is closest to market today, but still too expensive.

- If significant amounts of synfuel via electrolysis in the very near future (the next 1 -5 years) – only the classical alkaline electrolysers is available on some scale – but still relatively limited.

- SOC clearly has a very high potential as reversible fuel cell – electrolyser cell

- New types are under investigation
Electrocatalysis and definition of an electrocatalyst

An electrocatalyst is a catalyst that participates in an electrochemical reaction in an electrode of an electrochemical cells but not consumed

Usually only interested in the electrocatalyst that improve electrode kinetics

Electrocatalytic activity varies with varying electrode potential vs. a reference electrode
Alkaline Electrolysis cells

- The electrolyte is usually ca. 30 wt% KOH in water

- Relative inexpensive electrocatalysts; Ni, MoOx for HER, NiO, CoOx, Ag for OER

- Cathode (negative electrode) reaction:
 \[2 \text{H}_2\text{O} + 2 \text{e}^- \rightarrow \text{H}_2 + 2 \text{OH}^- \]

- Anode (positive electrode) reaction:
 \[2 \text{OH}^- \rightarrow \frac{1}{2} \text{O}_2 + \text{H}_2\text{O} + 2 \text{e}^- \]

- Total: \(\text{H}_2\text{O} \rightarrow \text{H}_2 + \frac{1}{2} \text{O}_2 \)

- Very simple reaction, which in practice may run at temperatures down to 60 °C

- Only \(\text{H}_2 \) production
The main advantage of polymer membrane fuel cell and electrolyser cell is that it is compact and operates at 60 – 80 °C, making the balance of plant relatively inexpensive.

Main problem is cost of cell and stack materials, in particular in case of the electrolyser.

The oxygen electrode cannot use the carbon support used in the PEMFC – expensive Ti alloys are used instead.

Only expensive electrocatalysts, Pt for HER, Pt or IrO₂ for OER

Only H₂ production
Electrocatalysis - A PEM problem

• It is well-known that both H₂ and O₂ electrodes are very sluggish at temperatures below 100 °C and not fast until above ca. 200 °C in acid electrolytes

• However, a lot of confusing data have been reported

• O₂ evolution as a function of pH as example:
Oxygen evolution vs pH

The vertical line indicates a diffusion limiting current density.

b – values are Tafel slopes
Oxygen evolution vs pH

The NTNU data is interpreted as follows:

The diffusion limited species is OH⁻

At low current density or high pH the OER is reduction of OH⁻:
\[2 \text{OH}^- \rightarrow \frac{1}{2} \text{O}_2 + \text{H}_2\text{O} + 2 \text{e}^- \]

At high current density (above the OH⁻ limiting diffusion rate) or low pH the OER is reduction of H₂O:
\[\text{H}_2\text{O} \rightarrow \frac{1}{2} \text{O}_2 + 2 \text{H}^+ + 2 \text{e}^- \]

It seems much easier to oxidize OH⁻ than H₂O or H₃O⁺ into O₂

Thus, stay alkaline!
CO₂ reduction at RT and ambient pressure

Variation of the Faradaic efficiencies of the products in electrochemical reduction of CO₂, obtained in controlled potential electrolysis, 0.1 mol dm⁻³ KHCO₃, at 19 °C.

Our CO$_2$ reduction considerations and experience

- DTU activities during 4 years aiming at H$_2$O and CO$_2$ electrochemical reduction at 200 – 300 °C, pressure up to 50 bar using immobilized aqueous electrolytes and/or solid proton conductor electrolyser cell

- We have 25 years experience in CO$_2$ and H$_2$O reduction using SOEC – 750 – 950 °C.

- To have a chance for commercialization CO$_2$ electrolysis a current density above 1 A cm$^{-2}$ at -0.8 to -1.0 V vs NHE and > 80% yield necessary

- 5 mA cm$^{-2}$ at -1.5 V vs NHE and a yield of CH$_4$ of ca. 45% is very far from the goal
Why pressurized electrolysis at 200 - 300 °C?

- The electrochemical reaction rate by going from 100 °C to 250 °C and from 1 to 25 bar pressure

- The existing catalyst for conversion of syngas into C\textsubscript{x}H\textsubscript{y}O\textsubscript{z} all operate in this temperature range
Dream cell for 200 – 300 °C

Diagram:
- **H₂O**
- **O₂, H₂O**
- **Porous anode**
- **Porous cathode**
- **Solid or immobilized electrolyte, e.g. H⁺ conductor**
- **Gas diffusion electrodes**
- **CO₂**
- **CH₃OH, H₂O, CO₂, ...**
The Norby gap

Possible “gap closing” electrolytes

- **45 wt% KOH immobilized in ca. 50 % porous ceramics**: 0.84 S cm\(^{-1}\) at 200 °C and 25 bar

- **15 wt% K\(_2\)CO\(_3\) (aq.)**: 0.57 S cm\(^{-1}\) at 200 °C measured, ca. 0.3 S cm\(^{-1}\) expected for immobilized electrolyte

 P.L. Mollerup, A.S. Christiansen, N. Bonanos, M.B. Mogensen, submitted for publication 2013

- **Solid acid, CsH\(_2\)PO\(_4\)**: ca. 10\(^{-2}\) S cm\(^{-1}\) at 240 °C (“the limit”).

- **Acceptor doped metal phosphorous oxides such as Ce(PO\(_3\))\(_4\) and CeP\(_2\)O\(_7\)** - high initial conductivity – not stable over time > 100 h

- **BaCe\(_x\)Zr\(_y\)Y\(_z\)O\(_{3-d}\)** might be possible at 300 °C if its grain boundary resistance could be reduced – it can by adding ceria, which makes the material degrade fast in CO\(_2\), so…. ?
Performance of cells with immobilized KOH(aq.) at 40 bar

F. Allebrod, C. Chatzichristodoulou, M.B. Mogensen, *J. Power Sources*, **229** (2013) 22, and in Proc. of this meeting, paper A0705.

Only H₂
Effect of Temperature, Alkaline Electrolysis

Cells with 45 wt% KOH (aq.) immobilized in mesoporous ceramic membrane (electrolyte) and with gas diffusion electrodes. Cathode: Inconel. Anode Ag deposited on Ni.

From: Allebrod, Chatzichristodoulou, Mogensen, J. Power Sources 229 (2013) 22
Effect of carbonates in KOH(aq.) cells

Addition of CO₂ gas to a cell with KOH(aq.) immobilized electrolyte.

CO₂ slows down the electrode kinetics very much almost immediately.
Tests of a cell in single atmosphere of 50 % H\(_2\) + 20 % H\(_2\)O + 30 % N\(_2\). T= 240 °C, anode of Pt, cathode of Cu. Pressure was ramped up from 1 to 40 bar.

Only H\(_2\) CO\(_2\) tested – no CO
Molten carbonate electrolyser cell - I

- Cell types used for molten carbonate fuel cells not usable for electrolysis

- Pure molten Li₂CO₃ above 800 °C has shown feasible as electrolyte, Ti-Al-metal alloy as cathode (CO evolution) and graphite as anode (O₂ evolution)

- Chemical equilibrium of CO₃²⁻ ⇌ CO₂ + O²⁻ is assumed

 - CO₂(l) + 2 e⁻ → CO(l) + O²⁻(l)
 - O²⁻(l) → ½ O₂(l) + 2 e⁻
Molten carbonate electrolyser cell - II

- CO and O₂ very little soluble in molten Li₂CO₃ and they escape into gas phase separately:

- \[\text{CO}_2(l) \rightarrow \text{CO}(g) + \frac{1}{2} \text{O}_2(g) \]

- Pure CO rather than a mixture of CO and CO₂ is produces in contrast to the other two CO₂ electrolysis cells.

- Relatively fast electrode kinetics of ca. 1 A cm⁻² at 1.5 V overvoltage due to the high temperature of 900 °C
Ni-YSZ supported SOC

Ni/YSZ support

Ni/YSZ electrode

YSZ electrolyte

LSM-YSZ electrode
SOEC Cell performance

World record!

$i - V$ curves for a Ni-YSZ-supported Ni/YSZ/LSM SOC: electrolyzer (negative current density) and fuel cell (positive current density) at different temperatures and steam or CO$_2$ partial pressures - balance is H$_2$ or CO. S.H. Jensen et al., International Journal of Hydrogen Energy, 32 (2007) 3253
SOEC Effect of pressure

We get pressurized hydrogen with lower electricity input!

850 °C, 50% H₂ + 50% H₂O, Air

Cell voltage / V

Current density / A/cm²
SOC is being improved significantly

- The above results were from “old fashion” SOC with LSM electrodes and 10 micron electrolyte with ASR of \(0.22 \, \Omega \, \text{cm}^2\) at 850 °C

- Much improved cells have been reported since, see literature from FZ-Jülich, KIT, DTU Risø, The Wachsman group in US, e.g. the FZ-J/KIT paper: F. Han et al., J. Power Sources, 218 (2012) 157. Their best cell was about \(0.1 \, \Omega \, \text{cm}^2\) at 750 °C in electrolyser mode

- These super results have yet to be implemented in stacks and tests also in electrolysis mode
Kinetic models

Fundamental question: To which extent is the classical double layer electrode model and Butler-Volmer kinetics describing electrode kinetics in electrochemistry for energy conversion – and in particular in solid state electrochemistry?

Is simple charge transfer across a well-defined potential barrier the kinetic barrier of practical electrodes such as those of SOC and other electrochemical cells for energy purposes?
Double layer at electrodes in aqueous electrolytes

This is the simplified picture for a metal electrode in a liquid electrolyte.

In real systems the interface is not atomically flat. There will at least be roughness with vacancies, steps and kinks on the surface, where the reactions tend to take place.
Segregation to YSZ surfaces

<table>
<thead>
<tr>
<th>Surface</th>
<th>Impurity layer</th>
<th>~ 0.5 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Layer enriched in Y$_2$O$_3$</td>
<td>~ 5 - 10 nm</td>
</tr>
<tr>
<td></td>
<td>Bulk phase YSZ</td>
<td></td>
</tr>
</tbody>
</table>

a)

<table>
<thead>
<tr>
<th>Surface</th>
<th>Impurity layer</th>
<th>~ 0.5 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Layer enriched in Y$_2$O$_3$</td>
<td>~ 1 nm</td>
</tr>
<tr>
<td></td>
<td>Layer depleted in Y$_2$O$_3$</td>
<td>~ 5 nm</td>
</tr>
<tr>
<td></td>
<td>Bulk phase YSZ</td>
<td></td>
</tr>
</tbody>
</table>

b)

YSZ with glassy surface layers of SiO$_2$, Na$_2$O, CaO +++.

a) Near equilibrium (> 1200 °C) several hours

b) Not near equilibrium - the original surface removed +1 h at 500 °C.

• The exact YSZ surface depend on initial composition and on sample history

• Similar segregations on perovskite surfaces, i.e. ceramic electrodes – for instance Sr enrichment on LSM and LSCo surfaces

SOC electrode structure

Solid oxide cell and the oxygen electrode.

Left: cell structure with 3 thin (10 – 80 µm) layers: fuel electrode (green), electrolyte (beige) and oxygen electrode (blue).

Middle: magnification of composite oxygen electrode.

Right: 3-D picture of how TPB may look on atomic scale. Many different surface sites are possible electrocatalytic active sites.
Space charges in solid state?

This is also a very simplified picture of the double layer and space charge distribution.

Electrolyte

In e.g. YSZ “+” is equivalent to an oxygen vacancy

This means another composition and in some cases new phases.

Also along grain boundaries space charge is also accumulated

This is also a very simplified picture of the double layer and space charge distribution.
Space charges in/on a Li electrode

<table>
<thead>
<tr>
<th>Li</th>
<th>S</th>
<th>E</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>+</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elyt
Some concluding recommendations

• Liquid electrochemistry not feasible to describe SOC or Li-battery electrochemistry

• SOC and many other interfaces are very sensitive to history in general and thermal history in particular and so is electrochemistry - difficult to make equal cells in different institutes /companies

• Thus, searching for one universal rate limiting reaction step for a given type of SOC composite electrode may not be very useful

• Instead the study of various structures and of which physical and chemical properties of solids that give best electrocatalytic activity is recommended (TPB structure very important in SOC – use of 3D FIB-SEM, TEM and in-situ surface analysis, Raman, CAHT-SPM, +++

• Furthermore, better three-dimensional micro-models describing charge transport to and from the electrodes are needed
Acknowledgements

I acknowledge support from our sponsors

- Danish Energy Authority
- Energinet.dk
- EU
- Topsoe Fuel Cell A/S
- Danish Programme Committee for Energy and Environment
- Danish Programme Committee for Nano Science and Technology, Biotechnology and IT
- The work of many colleagues over the years
Thank you for your attention
AFM images showing overview (left) and surface morphology (right) of a 50 μm diameter and 0.5 μm thick LSM microelectrode.
Impedance spectra of LSM microelectrodes measured at OCV at 856 °C in a) pure oxygen, b) air and c) N₂, and d) a double-logarithmic plot of the electrode polarization resistance (R_p) versus the microelectrode diameter, d, derived from the shown impedance spectra. The slopes obtained by linear regression are -1.02 ± 0.04, -1.04 ± 0.00, and -1.62 ± 0.28 in pure O₂, air and N₂ ($pO_2 \approx 10^{-4}$ bar), respectively.
TOF-SIMS of two 100 µm microelectrodes, a not tested reference (upper row) and an electrochemical tested (lower row) for the 4 signals from Si, Mn, Sr and LaO. The lighter, the higher is the signal (the counts) of a given species.
5 fully automatized high temperature and pressure setups – 3 are operational now

Specifications

<table>
<thead>
<tr>
<th>Producer</th>
<th>Custom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vessel material</td>
<td>Inconel 625, Steel</td>
</tr>
<tr>
<td>Volume</td>
<td>500 ml</td>
</tr>
<tr>
<td>P_{max}</td>
<td>95 bar</td>
</tr>
<tr>
<td>T_{max}</td>
<td>300 °C</td>
</tr>
<tr>
<td>Liner material</td>
<td>Ti, PTFE</td>
</tr>
<tr>
<td>$T_{\text{max, PTFE}}$</td>
<td>250 °C</td>
</tr>
</tbody>
</table>

Thermodynamics

\[\text{H}_2\text{O} \rightarrow \text{H}_2 + \frac{1}{2}\text{O}_2 \]

Energy demand (kJ/mol) vs. Temperature (°C)

- **Energy (“volt”) = Energy (kJ/mol)/2F**
- **Price \(\propto \frac{1}{i} \) [A/cm²]**
- **\(\Delta H/\Delta G > 1 \) , \(\eta = 100\% \) at E = E\text{tn} (no heat loss)**

\[E_{\text{tn}} = \frac{\Delta H}{2F} \]

\[E_{\text{cell}} = E_{\text{tn}} \]

Notes:
- Thermodynamics
- Energy Conversion
- Technical University of Denmark
Thermodynamics

\[
\text{CO}_2 \rightarrow \text{CO} + \frac{1}{2}\text{O}_2
\]

Total energy demand (\(\Delta H_f\))

Energy demand (KJ/mol)

Energy demand (Volt)

Temperature (°C)

DTU Energy Conversion, Technical University of Denmark
Thermodynamics: CO₂ and H₂O

Electrical energy demand (ΔG_f)

- $\text{CO}_2 \rightarrow \text{CO} + \frac{1}{2}\text{O}_2$
- $\text{H}_2\text{O} \rightarrow \text{H}_2 + \frac{1}{2}\text{O}_2$

750°C – 900°C

$\Delta G_{\text{H}_2\text{O} \rightarrow \text{H}_2 + \frac{1}{2}\text{O}_2} = \Delta G_{\text{CO}_2 \rightarrow \text{CO} + \frac{1}{2}\text{O}_2}$
Why synthetic hydrocarbons? The energy density argument

Comparison of Energy Storage Types. Only the batteries are including containers.

<table>
<thead>
<tr>
<th>Storage type</th>
<th>MJ/L</th>
<th>MJ/kg</th>
<th>Boiling point, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasoline</td>
<td>33</td>
<td>46</td>
<td>40 – 200</td>
</tr>
<tr>
<td>Dimethyl ether - DME</td>
<td>22</td>
<td>30</td>
<td>-25</td>
</tr>
<tr>
<td>Liquid methane</td>
<td>24</td>
<td>56</td>
<td>-162</td>
</tr>
<tr>
<td>Liquid hydrogen</td>
<td>10</td>
<td>141</td>
<td>-253</td>
</tr>
<tr>
<td>Compressed air – 20 MPa</td>
<td>0.1</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>Water at 100 m elevation</td>
<td>10^{-3}</td>
<td>10^{-3}</td>
<td></td>
</tr>
<tr>
<td>Lead acid batteries</td>
<td>0.4</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>Li-ion batteries</td>
<td>1</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>
Different architectures of electrolyzers with: (a) immersion electrodes, (b) porous electrodes in the “zero-gap” configuration, (c) electrodes comprising Gas Diffusion Layers (GDL) separating the gas compartments and the recirculating electrolyte compartment. From: S. Marini et al., Electrochimica Acta, 82 (2012) 384
Process flow diagram of a modern electrolyzer

1 Electrolytic cells
2 Electrolyzer pressure vessel
3 Hydrogen-electrolyte separator
4 Oxygen-electrolyte separator
5 Hydrogen cooler
6 Oxygen cooler
7 / 8 Condensate separators
9 Electrolyte circulating pump
10 Electrolyte filter
11 Electric heater
12 Electrolyte heater/cooler
13 Water cooler
14 Rectifier unit
15 Electrolyte feed pump

In principle reversible, but not in practice
Hydrogenics Alkaline system

From Hydrogenics’ homepage:

HySTAT® 10 – 10

10 Nm³H₂ h⁻¹, 5.4 kWh/Nm³ H₂
Oxygen evolution vs pH on MnO$_x$

$U_{on,j}$ is the onset potential of the OER in mixtures of aqueous NaOH and H$_2$SO$_4$ at 30 °C. $U_{on,A510}$ is the onset of the optical spectral line of Mn$^{3+}$ on electrode surface taken as a (probably false) indication of Mn$^{3+}$ being efficient electrocatalyst.