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Abstract 
 
 
 

This thesis focuses on the wireless coupling between hearing aids close to a human head. 
Hearing aids constitute devices with advanced technology and the wireless 
communication enables the introduction of a range of completely new functionalities. 
Such devices are small and the available power is limited, it is therefore important to 
characterize the wireless link-budget and to understand the mechanisms that control 
propagation of waves inside and outside the head. For this purpose, different approaches 
have been used. 
 
There are two objectives for this thesis. The first objective is to characterize the ear-to-ear 
wireless communication channel by understanding the mechanisms that control the 
propagations of the signals and the losses. The second objective is to investigate the 
properties of magneto-dielectric materials and their potential in antenna miniaturization.    
 
There are three approaches to study the ear-to-ear wireless communication link; a 
theoretical approach models the human head as a sphere that has the electrical properties 
of the head, a numerical approach implements a more realistic geometry of the head, and 
an experimental approach measures directly the coupling between the antennas near a 
real persons or a phantom head imitating the human head’s electrical properties. Each 
approach has advantages and disadvantages; the analytical approach gives accurate 
results and is very fast, though it does not treat complex structures. The numerical 
approach can treat complex structures but is limited by the electrical size of the structures 
and requires large memory and long processing time. The experimental approach yields 
accurate coupling between the antennas but does not provides detailed information about 
the field distribution. Therefore, we combine all these three approaches to gain some 
understanding of the ear-to-ear wireless communication channel.  
 
A circular patch antenna was used to study the properties of the magneto-dielectric 
materials. In the thesis, we focused on three properties; efficiency, quality factor and 
bandwidth of the antenna. An analytical method is used to calculate the properties of a 
low-loss circular patch antenna, while a numerical method was used to analyze a high-
loss circular patch antenna. The low-loss magneto-dielectric materials can potentially be 
used to miniaturize the size of the antennas, offering higher efficiency and wider 
bandwidth than the dielectric materials.  
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Resumé 
 
 
 

Denne afhandling fokuserer på den trådløse kobling mellem høreapparater tæt på et 
menneskeligt hoved. Høreapparater udgør enheder med avanceret teknologi og den 
trådløse kommunikation giver mulighed for indførelse af en række helt nye 
funktionaliteter. Sådanne enheder er små og de tilgængelige virkning er begrænset, er det 
derfor vigtigt at karakterisere det trådløse link-budget, og at forstå de mekanismer, der 
styrer udbredelsen af bølger inden i og uden for hovedet. Til dette formål har forskellige 
tilgange været anvendt. 
 
Der er to formål for denne afhandling. Det første mål er at karakterisere øre til øre 
trådløse kommunikationskanal ved at forstå de mekanismer, der styrer udbredelser af 
signalerne og tab. Det andet mål er at undersøge egenskaberne af magneto-dielektriske 
materialer og deres potentiale i antenne miniaturisering. 
 
Der er tre metoder til at studere øre til øre trådløs kommunikation kanal; en teoretisk 
tilgang modeller det menneskelige hoved som en sfære, der har de elektriske egenskaber 
af hovedet, en numerisk metode implementerer en mere realistisk geometri af hovedet, og 
en eksperimentel tilgang måler direkte kobling mellem antennerne i nærheden af en 
virkelige personer eller et fantom hoved efterligner det menneskelige hoved elektriske 
egenskaber. Hver metode har fordele og ulemper, den analytiske tilgang giver nøjagtige 
resultater og er meget hurtigt, selvom det ikke behandler komplekse strukturer. Den 
numeriske metode kan behandle komplekse strukturer, men er begrænset af den 
elektriske størrelsen af de strukturer og kræver stor hukommelse og lang behandlingstid. 
Den eksperimenterende tilgang giver nøjagtig kobling mellem antennerne, men ikke 
indeholder detaljerede oplysninger om feltet distribution. Derfor kombinerer vi alle disse 
tre tilgange til at opnå en vis forståelse for øre-til-øre trådløs kommunikationskanal. 
 
En cirkulær patch antenne blev brugt til at studere egenskaberne for magneto-dielektriske 
materialer. I afhandlingen fokuserede vi på tre ejendomme, effektivitet, kvalitet faktor og 
båndbredde af antennen. En analytisk metode bruges til beregning af egenskaber ved et 
lavt tab cirkulær patch antenne, mens en numerisk metode blev anvendt til at analysere en 
høj-tab cirkulær patch antenne. Den lave-tab magneto-dielektriske materialer kan 
potentielt anvendes til at miniature-udgave af størrelsen af antenner, der tilbyder højere 
effektivitet og større båndbredde end den dielektriske materialer. 
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1. Introduction 
Hearing-aids already constitute an advanced technology and wireless coupling to 

hearing-aids will open for a range of completely new functionalities. Recent years 
tremendous development of wireless communication, involving ever smaller terminals, 
such as mobile phones, GPS receivers, headsets, etc., has caused a significant research 
interest in antenna miniaturization. The challenge is not just to develop geometrically 
small antennas but electrically small antennas that are less than half a wavelength of the 
RF signal – the traditional minimum length of resonant antennas. This recent research on 
antenna miniaturization has spawned many new results on fundamental properties and 
new design technologies involving high-permittivity ceramics, structural optimization, 
and novel materials. Indeed, while an antenna size of the order of one-tenth of a 
wavelength is realistic at present, it is necessary to further pursue these miniaturization 
techniques since hearing-aids antennas must be even smaller.  

 
This Ph.D. project comprises 3 major areas of investigation for the antennas of wireless 

communication systems with hearing-aids. The first area is theoretical analysis of the ear-
to-ear communication channel for communication directly between hearing-aids. This 
communication channel has received none to very little attention in the scientific 
literature and there are many aspects to be investigated. The second area concerns the 
development of an experimental setup for testing of ear-to-ear communications; again 
this is new ground with no established testing procedure and there are many aspects to be 
investigated. The third area concerns antenna miniaturization using magneto-dielectric 
materials. It is expected that these materials can outperform purely dielectric materials in 
terms of both impedance matching and bandwidth.  

 
Ear-to-ear communication describes the situation where the left and the right hearing-

aids communicate with each other using a wireless channel. Low data rate channels, 315 
bit per second, have been introduced in the industry, which is used to synchronization of 
left and right volume controls and a few other basic functions [1]. The data rate of the 
ear-to-ear communication should be increased into tens of thousands of bits per second to 
transfer audio data between them. This will help in speech understanding by using 
beamforming techniques [1]. Most hearing-aids require less than 1 mW of power in total, 
adding wireless communication would increase the power consumption and reduce the 
battery life of the hearing-aid. Therefore, it is very important to design a very efficient 
wireless communication system. There are several aspects that regular the efficiency, 
such as the electrical length, the orientation, the location and the type of the antennas.  

 
In wireless communication the concept of a link-budget is commonly used to 

characterize the performance of a communication system. The link-budget includes all 
the losses of the system, from the transmitter to the receiver. It is relatively simple to 
calculate the link-budget in free-space, where the path-loss of the free-space is well 
defined, while there is no general rule to characterize the path-loss near and around a 
human head. Most research on on-body communication [2]-[8], deal with path-loss for 
the case of a transmitter and a receiver are positioned at different locations on a human 
body, but do not consider the path-loss for ear-to-ear link.  
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Several treatments of the interaction of electromagnetic waves with the human head 
help us in understanding some of the problems that are related to ear-to-ear 
communication. In [8] and [10], the head is modeled by a multilayered sphere, which is 
subject to an incoming plane-wave. In [9], the distribution of the heating potential inside 
a lossy sphere having the same electrical characteristics as those of brain tissue was 
investigated. The heat was calculated from the magnitude of the electrical field. It was 
found that hot spots appear inside spheres with radii < 8 cm and only in the frequency 
range 300 MHz to 12 GHz. In [10], seven layers have been used to model the tissues of 
the head and the radius of the outer sphere is larger than the used radius in [9]. It is found 
that all objects exhibit a resonant behavior, where the absorbed energy increases 
significantly. For electrically small and medium-sized object, hot spot effects are 
significant over the frequency range for which resonance absorption occurs. The higher 
the frequency the poorer is the energy penetration. In [11], the specific absorption rate 
(SAR) was measured in models of a human head exposed to hand-held radios at 800 
MHz. The SARs were calculated from internal electric field which is measured by 
isotropic implantable electric field probe. The magnitudes and the distributions of the 
SAR, affected by antenna position relative to the head, type of the antenna and location 
of its feed-point More realistic and detailed numerical models for the human head are 
presented in [12]-[14]. In [12], the head was exposed to a plane-wave from the front and 
the side, where the SAR values were calculated using a finite-difference time-domain 
(FDTD) method. Local maxima take form at the centre of the brain in the region of the 
eyes, and as the frequency increases the absorption becomes superficial (concentrated on 
the surface). Antenna implantation and communication link were studied in [13]. A 
multilayered spherical head was used beside a realistic head model. A spherical dyadic 
Green’s function expansion was applied to analyze the electromagnetic characteristics of 
a dipole antennas implanted in the human head. The method is used to calculate the 
pattern of the implanted antenna and the maximum coupled power to an exterior half-
wavelength dipole. As the distance between the implanted and the exterior antennas 
increases from 1 and 5 m, the maximum available power from the exterior decreases 
from -40 dB to -53 dB for 402 MHz. This level is more than 20 dB below the available 
power in free-space. In [14], the effect of ring jewelry was investigated on the energy 
absorbed in a head when illuminated by a 1.8 GHz dipole and a monopole on a 
conducting box. 

 
There are three major approaches to analyze the ear-to-ear communication link; a) an 

analytical approach where the head is modeled as a homogenous sphere, and the 
electrical properties of the sphere are adjusted to emulate the properties of a real head, b) 
an experimental approach where direct measurements on the transmission properties (S21) 
between two antennas are used to characterize the communication link, and c) a 
numerical approach with a head model having a realistic properties. The analytical 
approach gives accurate solutions and much faster than the numerical approach, but uses 
simple antennas. Both the analytical and the numerical solutions provide information 
about the coupling, the distribution of the fields inside and outside the head as well as the 
losses in the head. The experimental approach gives the actual values for the coupling 
between the antennas, while it is difficult to measure the fields inside and outside the 
head without interfering the fields. Since small antennas were used for the measurements, 
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it was necessary to design several antennas to carry out measurements at different 
frequency bands.  

 
The thesis consists of six chapters; chapter 2 treats the theoretical approach for the ear-

to-ear wireless communication. In this chapter the spherical vector wave expansion will 
be introduced and we will derive the fields of dipole antennas. Four different dipole 
antenna models will simulate transmitting and receiving antennas of different types and 
different orientations. The scattering and the total fields will be calculated and then 
validated. The spherical vector wave expansion involves series of an infinite number of 
terms. The numerical implementation of the spherical vector wave expansion truncates 
the series to a finite number of terms. The truncation produces error in the value of the 
field; this error is known as the truncation error. Depending on the truncation number, the 
truncation error can be very small. The truncation number will be discussed under the 
section of the convergence. The objective of the theoretical investigation is to provide a 
qualitative understanding of the propagation mechanisms.  

 
Chapter 3 presents the experimental and the numerical approaches. The measurement 

setups consist of a network analyzer, a phantom head filled with material with similar 
electrical properties as a human head over a wide band, two identical antennas and a 
mechanical setup for aligning the head and the antennas. We designed the antennas and 
the mechanical setup, and they were built in-house. A set of antennas were designed to 
operate at different frequency bands. The structures and the measured performances of 
the antennas are given in this chapter. All the designed antennas are balanced, therefore it 
was necessary to design baluns which also work as transformers that match the antennas 
to the 50 �:  coaxial cables of the network analyzer. Two different baluns have been used; 
one is made of a quarter wavelength coaxial line and the second is made of lumped 
elements. Equivalent circuit of the lumped balun is presented together with a brief 
explanation about its properties and performance. Two parameters, including the distance 
of the antennas from the head and the positions of the antennas with respect to the head, 
will be investigated.  

 
In chapter 4, we present the results of the theoretical model and the measurements. For 

the theoretical study, several parameters, like the operating frequency, the dimension of 
the sphere, the distance of the antennas and the electrical properties, will be investigated. 
Numerical approach simulates the ideal measurement setups, which includes the phantom 
head and the antennas without the presence of the mechanical setup, the room or the 
cables. The numerical model is implemented in HFSS [15], which is a commercial 
simulation program based on finite element method. The numerical approach provides us 
the fields’ distributions inside and outside the phantom head. This phantom head has 
same electrical properties as the real phantom head which is used in the measurements. 
The electrical properties of real phantom head were provided by the factory [16].  

 
In chapter 5, we investigate properties of the magneto-dielectric antenna. The antenna is 

a circular patch on top of a magneto-dielectric substrate. The properties of the antenna 
including the efficiency, the bandwidth, the quality factor and the dimensions of the 
antenna will be calculated analytically.  



 4 

2. Ear-to-ear communication – Theoretical approach 

2.1 Introduction  
In this chapter, the theoretical formulation of the ear-to-ear communication will be 

presented by using spherical vector wave expansions (SWE). First, the spherical vector 
wave functions will be introduced as a solution for the electromagnetic wave equation. 
Then general formulas will be derived to calculate the power that is dissipated in a 
dielectric sphere, which represent a human head, and that is accepted by the antenna. The 
antennas are modeled by dipoles, and therefore we will derive the spherical vector wave 
expansion of a z-oriented electric dipole antenna, whereas the expansions of the 
remaining antennas will be given in appendix B “Source coefficients”. Later, general 
formulas will be derived for the scattering and total coefficients. Rotation and translation 
algorithms will be presented and they will be used to calculate the S-parameters. At last, 
truncation numbers of the SWE will be estimated.  

2.2 Spherical vector wave expansion 
The spherical vector wave expansion expresses the electromagnetic field as an infinite 

series of spherical vector wave functions weighted by spherical coefficients. Spherical 
wave functions were introduced by W. W. Hansen [17], then a detailed formulation and 
derivation was given by Stratton [18]. In relation to the spherical near-field antenna 
measurements, J. E. Hansen [19] gives a more detailed formulation of the spherical 
vector wave expansion and the scattering matrix description of an antenna; his notation is 
used in this thesis.  

 

r̂

�Î

�T̂

r̂

�Î

�T̂

P

 
Fig. 2.1: Rectangular and spherical coordinate systems. The figure is copied from [20]. 

 
A point P at the coordinates (x, y, z) in Fig. 2.1 can also be described by the spherical 

coordinate (r, ��, �I ), which is more appropriate for a spherical object. The expressions of 
the SWE in a source-free region can be derived by solving the wave equation (2.1) [18, 
eq. (7.2)] of the electric field E

�&
 in a spherical coordinate system, which is shown in Fig. 

2.1  
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022 � ���’ EkE
�&�&

 (2.1) 

where �H�P�Z� k  is the wave number, with �0 and µ being the permittivity and the 
permeability of the medium, respectively. To solve this equation, let a scalar function �\  
be a solution to the scalar wave function,  

022 � ���’ �\�\ k  (2.2) 

where �\  is called the generating function. It is possible to construct two vectors 1F
�&

 and 

2F
�&

 from the function �\ , that are solutions to  (2.1), 

rF ˆ1 �u�’� �\
�&

 (2.3a) 

1
1

2 FkF
�&�&

�u�’� ��  (2.3a) 

where 1F
�&

 and 2F
�&

correspond to the M
�&

and N
�&

 vector wave functions in Stratton’s notation 
respectively. By utilizing the method of separation of variables, it is possible to obtain the 
expression of the generating function. The generating function �\  can be written as a 
product of independent terms, 

� � � � � � � � � � � � � � � ��I�\�T�\�\�I�T�\ 321,, rr �   (2.4) 

and solving (2.2) by separation of variables gives 
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according to [19, eq. (2.18)], with n = 1, 2, 3, …, m = -n, -n + 1, … , n – 1, n, m
nP is the 

normalized associated Legendre function of first kind of the degree n and the order |m|, 
which is related to the Legendre function by the relation, 

� � � �� � � �
� � � �� � � ��T�T cos

! 

! 

2
12

cos m
n

m
n P

mn

mnn
P

��

����
�  (2.6) 

Time factor exp(-j�&t) is used in this thesis, where 1��� j , f�S�Z 2�  is the radian 

frequency and t is the time factor. The radial function )(c
nz  is specified by an upper index 

c as one of the functions 

)()1( krjz nn �                                     (spherical Bessel function) (2.7a) 

)()2( krnz nn �                                    (spherical Neumann function) (2.7b) 

)()()()1()3( krjnkrjkrhz nnnn ��� �     (spherical Hankel function of the first kind) (2.7c) 

)()()()2()4( krjnkrjkrhz nnnn ��� �    (spherical Hankel function of the second kind) (2.7d) 

where c = 1 and 2 indicate standing waves, while c = 3 represents an outward propagation 
wave and c = 4 an inward propagation wave. From (2.3) and (2.5), the spherical wave 
functions defined by [19, eq. (2.20) and (2.21)], are also introduced here: 
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The electric and the magnetic fields in a source-free region can be written as [19, eq. 
(2.22) and (2.23)], 

�¦� 
csmn

c
smn

c
smn rFQ

k
rE ),,(),,( )()( �I�T

�K
�I�T
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 (2.11) 
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with s = 1, 2,  �P�H�K /�  being the intrinsic admittance of the medium and )(c
smnQ  being 

the spherical coefficient. The index, c, is chosen depending on the location of the region 
in Fig. 2.2; c = 1 in region 1, while in region 2 there are two options either c = 1 and 2 or 
3 and 4, and c = 3 in region 3. 
  

r0z

x y
region 1

region 3

source

scatterer
region 2

r0z

x y
region 1

region 3

source

scatterer
region 2

 
Fig. 2.2: Source-free regions 1, 2 and 3, where the SWE is valid. 
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2.3 Power computation 
In this section, the derivation of a general formula will be introduced to compute the 
power dissipated within a spherical volume. Bringing a lossy dielectric sphere near a 
dipole antenna causes some power loss within the sphere, while the remaining is lost by 
radiation. The dissipated power within the sphere is the net power that flows into the 
sphere, so it becomes [21, eq. (2.59a)], 

� � � ��³ ���˜�u� 
S

SdHEP
�&�&�&

*
dis 2

1
Re  (2.13a) 

�³�³�³ �˜�c�c���˜���˜�c�c� 
V

r

VV

r dVHHdVEEdVEEP *
0

**
0dis 22

1
2

�&�&�&�&�&�&
�P�P

�Z
�V�H�H

�Z
 (2.13b) 

where (*) denotes the complex conjugate, rrr j�H�H�H �c�c���c�  is the relative permittivity, 

rrr j�P�P�P �c�c���c�  is the relative permeability (the imaginary parts are positive because the 
used time factor is exp(-j�&t)), �V is the conductivity and V is the volume of the sphere 
and S is the surface of the sphere. The first and the third terms in eq. (2.13b) are the 
losses resulting from polarization damping force, and the second term is the loss 
produced by conduction current E

�&
�V  resulting in Joule heating [21, pp. 37].  

The dissipated power in a dielectric sphere, as depicted in Fig. 2.2, can either be found 
from (2.13a) or (2.13b). Here (2.13a) is used to find the lost power, and the closed 
surface integral is taken on the dielectric sphere with radius a. Inside the sphere, the field 
is represented by spherical standing waves of type c = 1, 
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The superscript t indicates the total field inside the dielectric sphere, rkk �H01 �  and 

r�H�K�K 01 � , where 0k  and 0�K  are respectively the free-space wave number and the 
intrinsic admittance. Though the Bessel function is a real function, the fields will be 
complex since both 1k  and 1�K  are complex numbers. By inserting (2.14) and (2.15) into 
(2.13a) and integrating over the surface of the dielectric sphere, the dissipation in the 
sphere becomes, 
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and utilizing the orthogonality property, Eq. (A.4) in appendix A, yields, 
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and it becomes, 
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The radiated power Prad is the power radiates to the far-field. The outgoing field will be 
represented by spherical wave functions of type c = 3, 
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with superscripts i and s indicating the incident (fixed dipole moment, see section 2.4) 
and the scattered fields, respectively. The radiated power Prad can be calculated over a 
sphere that has a radius that tends to infinity, as follows, 
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where the integral part is given in [19, sec. (2.24)]. This yields 
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In presence of the lossy dielectric sphere, the radiated power from the antenna Psource is 
the sum of the dissipated and the far-field radiation powers, 

disradsource PPP ���  (2.21) 

 

2.4 Excitation 
The configuration of interest is depicted in Fig. 2.3. A sphere (region 1) of radius a is 
illuminated by either an electric hertzian dipole antenna (EHD) or a magnetic hertzian 
dipole antenna (MHD). Both the EHD and the MHD are good candidates to model 
electrically small antennas which represent a transmitting antenna (Tx) and a receiving 
antenna (Rx). Two orientations with respect to the sphere have been considered; 
orthogonal and tangential. In the figure, the red arrow represents an orthogonal oriented 
dipole antenna and the green arrow a tangential oriented dipole antenna. The dipoles can 
be either EHD or MHD in both orientations. The hertzian dipole antenna has a simple 
current distribution, which is given by the formula, 
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with p̂  being a unit vector indicating the orientation, de,m is the dipole moment, e 
denotes an electric dipole, m a magnetic dipole and �/ is the Dirac delta function. The 
electric field generated by the hertzian dipole antenna in a free-space can be expressed in 
terms of the SWE as: 
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In order to determine the spherical coefficients of the antenna, the reciprocity theorem in 
[19, pp. 332] was applied. In the case of a z-oriented EHD (EHDz), the coefficients can 
be found by utilizing [3, eq. (A1.78)], 
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the unit vector, ẑ , is expressed in terms of the spherical components at r = r0, �� = �Œ and 
0� �I , so the )(ci

smnQ  becomes, 
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Fig. 2.3: The dipole antennas near the dielectric sphere. 

 



 10 

From the special values in [19, pp. 325-327], it is found that the only non-zero solutions 
are related to the modes with s = 2 and m = 0 while n can have any integer value between 
1 and �f , i.e.  
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where c = 3 for  0rr �!  and c = 1 for 0rr �� . The coefficients will be re-written in terms of 

201Q  which is the coefficient of the EHDz in the origin of the coordinate system [19, eq. 
(2.117)]: 
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where )( 00
)(21

20 rkC c
n  is the translation coefficient that is given in [19, eq. (A3.18)] with 

some modifications where the number that describes the mode type c in (2.27) and (2.28) 
has different meaning from the used one in [19]. For the translation coefficients c = 1 is 
used for r < r0 and c = 3 for r > r0. By utilizing the symmetry property [19, eq. (A3.10)], 
it is possible to derive the translation coefficient in [19, eq. (A3.18)]. The generated 
electric and magnetic fields by the EHDz are, 
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Similar procedures can be used to calculate the fields for the EHDx, the MHDz and 
EHDx. Without showing the derivation steps, the fields of the MHDz are, 
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with 101Q  being the coefficient of the MHDz at the origin of the coordinate system. The 
MHDz and the EHDz are dual sources where their fields are interrelated by 

0/�Kzi
e

zi
m HE

�&�&
�  and zi

e
zi
m EH

�&�&
0�K��� . The fields of the MHDz can be also found by utilizing 

duality principle, since EHDz and MHDz are dual sources. The fields and the coefficients 
of the x-oriented electric and magnetic dipoles are given in appendix B.  
 

2.5 Scattered and total fields 
In order to calculate the Q-coefficient for the SWEs of the scattered and total fields, the 

fields must satisfy the boundary conditions on the surface of the sphere. The boundary 
conditions require that the tangential components of the electric and the magnetic fields 
shall be continuous across the surface. Equations (2.14) and (2.15) describe the electric 
and the magnetic fields inside the dielectric sphere, while the total field outside the 
sphere (but inside the radius of the antenna) is described by the following equations, 
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The boundary conditions 12 ˆˆ ErEr
�&�&

�u� �u  and 12 ˆˆ HrHr
�&�&

�u� �u  construct a system of 
equations which are used to find the Q-coefficients. The spherical modes will be 
decoupled by using the products of tangential components property [19, Eq. (A1.69)]. 
This yields the following equations 
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The scattering and the total spherical coefficients are then found to be  
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where Wronskian’s relation [19, eq. (A1.11)] was used to reduce the nominator of )1(t
smnQ . 

The coefficients of the scattering and the total fields in (2.38) and (2.39) represent general 
solutions for any incident field on a magneto-dielectric sphere ( rrkk �P�H01 � ). For 
example Stratton [18, sec. 9.25] solved the problem of a plane-wave scattered by a 
dielectric sphere, where the plane-wave is x-polarized and propagates in the positive z-
direction. The coefficients of the scattered field are here denoted r

na  and r
nb , which 

correspond to the normalized spherical wave functions of TE (s = 1) and TM (s = 2) 
modes. By using equations (2.38b) and (2.39b), and by substituting the variables, k0, k1 
and a by ak0� �U  and akN 1� �U , it is possible to derive r

na  and r
nb . The derivation is 

given in appendix B.  
 
An EHDz antenna, located on the z-axis at 1 m distance from the origin, illuminates a 
dielectric sphere of a radius a = 7 cm and having a dielectric constant �01 = �0r = 10. The 
centre of the sphere is located at the origin of the coordinate system. The components of 
the electric and the magnetic fields were calculated at observation points on lines that 
extended from the origin and made 0�T  angles with the z-axis.    
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Fig. 2.4: The electric and the magnetic field components for a z-oriented electric dipole near a dielectric 
sphere, that has a radius a = 7 cm and a dielectric constant �0r = 10. The dipole is positioned at (x, y, z) = 
(0, 0, -1) m and operates at 1 GHz. 
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All the lines are situated in the xz-plane. In Fig. 2.4, the blue lines represent the field 
components on the line that has o

0 0� �T , while for the red and the green lines 0�T  = 45o 
and 90o, respectively. These plots are generated by using Matlab, which is a 
programming environment for algorithm development, data analysis, visualization, and 
numerical computation [22]. Both the electric and the magnetic fields must satisfy the 
conditions, 
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where subscript 1 and 2 indicate the fields inside and outside the sphere. The ratios of the 
radial components of the electric fields are not exactly 10, but they are 9.95, 9.97 and 
9.96, as seen in Fig. 2.4a, for the blue, the red and the green lines, respectively. The 
errors are very small and can be reduced further by calculating the fields as close as 
possible to the surface of the sphere. The tangential components, in Fig. 2.4b and 2.4c, of 
the electric and the magnetic fields are continues on the surface of the sphere. The 
boundary conditions are thus satisfied which is validated by the computations. 

2.6 Rotation and translation algorithms 
It is a straightforward to calculate the coefficients of the EHDz, situated on the z-axis, 
by using the reciprocity theory. For other orientations or different positions, the 
calculations of the coefficients become more complicated. Therefore, the rotation and 
the translation coefficients need to elaborate on the sequence. The sequences of the 
rotation and the translation are shown in Fig 2.5. The original coordinate system is (x, y, 
z) and the new coordinate system is (x �c�c, y �c�c, z�c�c). During the rotation and the translation 
sequences auxiliary coordinate systems will be used and they will have the same 
notations of Fig. 2.5.  
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Fig. 2.5: The rotation (left figure) and translation (right figure) of the primed coordinate system relative 
to the unprimed. Fig.2.5a is copied from [19]. 
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The sequence of rotations and translation are as following, first an auxiliary coordinate 
system (x1, y1, z1) lays on the (x, y, z) rotates an angle 0�M around the z-axis, then a new 

auxiliary coordinate system (x2, y2, z2) lays on (x1, y1, z1) rotates an angle 0�T  around the 
y1-axis as it is seen in Fig. 2.5a, then the coordinate system (x ,́ y ,́ z )́ which lays on (x2, 
y2, z2) rotates an angle 0�F  around the z2-axis, and the last step is to translate the 
coordinate system (x �c�c, y �c�c, z�c�c) which lays on the (x ,́ y ,́ z )́ a distance r0 on the z�c-axis as 
it is seen in Fig. 2.5b.  
A spherical vector wave function ),,()( �I�TrF c

smn

�&
 in one coordinate system (x, y, z) can be 

expanded in terms of a combination of spherical wave functions ),,()( �I�T �c�c�crF c
smn

�&
 in other 

coordinate system (x ,́ y ,́ z )́ using the equation in [19, eq. (A2.2)], 
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where 00 �M�I � . The ��0�F  and ��0�I rotations give rise to phase shifts only, the 

��0�T rotation also gives rise to the rotation coefficient )( 0�T�P
n
md . Computation of )( 0�T�P

n
md  

is described by the following equation [19, eq. (A2.3)], 
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where the binomial coefficient is defined as, 
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The limits for the ���] summation are not given in [19], but it is a simple matter to find 
them. From the first binomial coefficient, �]  should satisfy the condition 

mnmn �����t�Ÿ�����t�� �P�]�]�P  and from the second binomial coefficient mn ���d�] . 

The rotation coefficient )( 0�T�P
n
md  may also be calculated using special cases [19, eq. 

(A2.17)-(A2.19)] and the recurrence relation [19, eq. (A2.14)], or by using Fourier series 
[19, eq. (A2.11)]. In this thesis, the rotation coefficients are calculated by using the 
equation (2.42).  
 
The translation is always along the positive z-direction, see Fig. 2.5b. In reference to Fig. 
2.5b, the spherical vector function ),,()( �I�TrF c

smn

�&
 shall be expressed as a combination of 

spherical vector waves defined in the primed coordinate system [19, eq. (A3.1) and 
(A3.2)], 
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where )( 0
)( krC csn

�V�P�Q  is the translation coefficient [19, eq. (A3.3)]. Since the azimuthal index 

µ involved on both sides of (2.43), the ���I dependence of the wave function is preserved 
under z-translation. The calculation of the translation coefficient involves linearization 
coefficients that are known as Gaunt coefficients [23]. The computation method that 
calculates Gaunt coefficients in [19, Eq. (A3.6)] is slow and inefficient. There is another 
method [23] and [24] that utilizes recurrence formulas to calculate Gaunt coefficients. 
The method in [24] reduces the computation time to ~ 1%, compared to the method in 
[19]. The method in [24] was implemented in Matlab, and was validated against the 
special coefficients [19, eq. (A3.20)].  
 
The rotation and the translation algorithms were validated by visual inspection of the 
radiation patterns of a dipole antenna at the origin and the radiation patterns after a 
sequence of rotations and translations. Fig 2.6 shows the real values of the electric field 
(at time t = 0) that is generated by the EHDz in the origin and after the translation and 
rotation of the coordinate system, where r0 = 10 cm and ��0 = 45 degree. The dipole 
operates in the free-space at 1 GHz. The color scale is the magnitude of the real values of 
the electric field in V/m and the arrows indicate the polarizations of fields in the xz-plane, 
where the horizontal axis is the x-axis and the vertical axis is z-axis. By comparing the 
color patterns and the courses of the arrows, it is concluded that the rotation and the 
translation algorithms produce correct results. This is also built on several plots with 
different rotation angles and different distances are generated, where they are not shown 
here. 
 

(a) (b) 
Fig. 2.6: The electric fields distribution for an electric dipole antenna before and after the translation and 
rotation of the coordinate system. 
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2.7 Computation of S 21 and S11  
The transmission coefficient S21, which is the ratio of the received power to the 
transmitted power, represents a path-loss for an ideal case where both the transmitting 
and the receiving antennas are lossless. Here the steps to derive the transmission 
coefficient between two orthogonal EHD antennas near the dielectric sphere, where one 
antenna is transmitting (on the negative z-axis) and the second antenna is receiving are 
shown. The electric field generated by the transmitting antenna is described by (2.35), but 
in the present case the receiving antenna is located at r1 > r0 and therefore the terms of the 
incident field should be of type c = 3,  
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with )( 00
)3(21

20 rkC n , 201Q  and n20�D  defined by (2.28), (2.29) and (2.38a), respectively, and 
N1 is the number of modes. The first step is to rotate the coordinate system through the 
angles ),,( 000 �F�I�T , so the electric field becomes, 
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The origin of the coordinate system is then translated to the position of the receiving 
antenna r1 > r0,  
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The double primed variables are the parameters of the new coordinate system. The 
standing vector wave function )1(

�V�P�QF
�&

 may be written as a sum of incoming and outgoing 

waves, each of amplitude 0.5, 
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Equation (2.46) then becomes, 
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The incident waves have amplitudes a�1µ�Q which, according to (2.48) are, 
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According to [19, eq. (3.8)], the signal received by the receiving antenna ( zEHD �c�c) in the 
origin of the ),,( zyx �c�c�c�c�c�c  coordinate system is, 
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where ezR ,
201 is the receiving coefficient of the zEHD �c�c antenna which has a single mode 

(�1, µ, �Q) = (2, 0, 1) and 201
,

201
, QTv ezez � . vz,e and ezT ,

201  are the excitation amplitude and 
EHDz antenna transmission coefficients. The transmitting and the receiving coefficients 
of the EHDz antenna are T201 = R201 = 1 [19, Eq. (2.148)]. The transmission coefficient 
S21 is then,  
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Some of the incident field will be reflected back toward the transmitting antenna, 
generating a receiving signal in the EHDz. This signal is represented by S11. In order to 
calculate S11, the origin of the (x, y, z) coordinate system will be translated to the EHDz 
location and, according to (2.44), the scattered field at the original coordinate system is 
given as 
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Here there is no need to rotate the coordinate system, but the translation is along the 
negative direction of the z-axis. This results in 
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and by using the similar steps that have been used to calculate S21, the S11 on EHDz 
becomes, 
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where ez,�Y  is the receiving signal by the EHDz . [19, Eq. (A3.13)] is used to get rid of 
the negative argument. The S-parameters for the other antennas are given in appendix B 
without derivation. 
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2.8 Truncation number 
The series in eq. (2.11) and (2.12) are infinite in the N index. For practical purpose, i.e. 

numerical implementation, the series can be truncated, so m will run between -M and M 
and n from 1 to N. The truncation of the series produces truncation error in the 
computations.  

In spherical wave theory the space is interpreted as a spherical waveguide [19] and [25]. 
Hence many concepts such as orthogonal modes, cut-off, propagation and evanescence 
are common features. The orthogonality property of the modes leads to the conclusion 
that each mode carries part of the accepted power. Therefore, the convergence of the 
accepted power shall be used to test the convergence of the series. This method ensures 
that the eliminated modes do not affect the accepted power. The new convergence 
criterion was inspired by [26] and will be used to evaluate the relative amount of the 
truncation power tN

P�[ : 

t

tt

t

N
acc

N
acc

N
accN

P P

PP ��
� 

��1

�[  (2.55) 

where N
accP  is accepted power at N = Nt, and Nt is the truncation number. Nt increases until 

the truncation power tN
P�[  is below �D, which is the maximum relative error that can be 

accepted.  
In this section we studied the truncation number (order) in terms of different parameters, 
including frequency, the distance of the transmitting antenna and the radius of the sphere. 
Fig. 2.7 shows the truncation number as a function of the operating frequencies (400 
MHz – 4 GHz), where the maximum relative error was chosen to be�D= -80 dB. The 
radius of the sphere is a = 8.5 cm, and the transmitting dipole antennas were positioned at 
r0 = 9.3 cm, while the receiving dipole antenna were positioned at 10 cm. The electrical 
properties of the sphere are modeling the properties of a real human head. The color of 
the lines are in the following sequence; blue, red, green and black lines represent the 
truncation numbers of the EHDz, MHDz, EHDx and MHDx calculations. From 400 MHz 
to around 1.7 GHz, the truncation number decreases as the frequency increase, and then 
from 1.7 GHz to 3.1 GHz it remains constant. In general the difference is not large, while 
the truncation number is large with respect to the electric dimension of the structure.  
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Fig. 2.7: The truncation number (order) and the relative errors for the EHdz, MHDz, EHDx and MHDx 
as functions of the operating frequencies. 
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In the following, the truncation number is studied as function of the radius of the sphere 
and the distance of the transmitting antenna, as seen in Fig. 2.8a and 2.8b, respectively. 
For the radius analysis, the position of the transmitting antenna from the surface of the 
sphere was kept constant r0 – a = 7 mm. The radius of the sphere was then kept constant 
a = 8.5 cm while the distance r0 was increased. Since all the antennas have almost similar 
truncation numbers, the convergence was calculated for the EHDz antenna. In Fig. 2.8 
the blue, green and red lines correspond to the frequencies 400 MHz, 1 GHz and 2.45 
GHz, respectively. From Fig. 2.8a it is seen that there is a linear relation between the 
truncation number and the radius of the sphere. For example, at 1 GHz the truncation 
number can be described by the following relation: 

2.62.48 0 ��� akNt  (2.56) 

where k0 is the free-space wave-number. The equation (2.56) shows that the truncation 
number is proportional to the radius of the sphere a, while the wave-number is constant. 
For 1 GHz the truncation number decreases as the distance of the antenna increases, and 
the truncation number can be described as, 

7.1
17

00 ��
� 

rk
Nt  (2.57) 

Here the truncation number is inverse proportional to the distance r0, while the wave-
number k0 is constant. This illustrates that the convergence does not depend only on the 
distance of the antenna, but also on the radius of the sphere. 
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(a) (b) 
Fig. 2.8: The left figure shows the truncation orders as a function of the sphere radius and the right 
figure shows the truncation orders as functions of the dipole antenna distance. For the left figure the 
distance of the dipole antenna is kept constant, while the radius of the sphere is kept constant in the right 
figure. 

 

2.9 Matlab programs 
All the fields and the scattering coefficients are calculated by algorithms that are 

programmed using Matlab. The algorithms are written as scripts in appendix G, where 
each script represents a function that uses variables as input. Script 1 is a function that 
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calculates the spherical function and the scripts from 2 to 6 are the functions that 
calculate the components of the spherical wave functions. Script 7 and 8 calculate the 
rotation and the translation coefficients. Each script from 1 to 8 can be used 
independently from each other.  

Script 9 is a program that uses the functions in scripts 1 to 6 to calculate electric field, 
magnetic field and power density for a EHDz antenna near a dielectric sphere. The fields 
are plotted over a region that can be decided by the user. This program requires short 
processing time, which usually depends on the number of points and the number of 
modes. For example to calculate the fields over a region which consists of 100 x 100 
points and N = 95 modes the program requires 162.4 seconds. The processing takes place 
on a laptop. The translation and the rotation algorithms are used in script 13, where a 
EHDz is translated and rotated as Fig. 2.6b shows.  
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3. Ear-to-ear communication – Experimental approach 

3.1 Introduction 
The objective of the experimental approach is to evaluate the path-loss for different 

frequencies and at different positions of the antennas near the head. The measurements 
covered bands of frequencies around; 920 MHz, 1.5 GHz, 2.45 GHz and 3.23 GHz and 
for each frequency the proximity effect on the path-loss was studied. The proximity effect 
is the effect of the antenna distance from the surface of the head on the path-loss. At 
small distances and in proximity of an object, it is impossible to utilize Friis equation to 
calculate the path-loss. Therefore, the path-loss will be defined in terms of S-parameters, 
which can be measured by a network analyzer. Usually for such measurements, a 
measurement system will constitute two antennas, a network analyzer, head model, 
absorbers, two long coaxial cables and calibration kits.  

A port is defined as the location where the antenna and the coaxial cable are connected. 

A power transmit from port 1 to port 2 is 
2

21SPinc , where Pinc is the incident power on 

port 1. The transmitted power includes all losses of the path between port 1 and 2, 
including the antennas, and to compensate for such losses, the efficiencies of the antennas 
should be included in the path-loss definition. In addition to the antennas losses, part of 
the incident power reflects back so the transmitting antenna will accept a power 

�� ��2

111 SPinc �� . The path-loss PL will be defined as 

rad
S

S
PL �H102

11
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21
10 log102
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log10 �u��

��
�     (3.1) 

where rad�H is the radiation efficiency of the antenna. This definition will give negative 
values. Here, it is assumed that the transmitting and the receiving antennas are identical, 

wherefore the radiation efficiency term is multiplied by 2. The reflection part (
2

111 S�� ) 

becomes insignificant for a well matched antenna, and thus it can be neglected. Using 
highly efficient antennas minimizes the second part in (3.1). Therefore, many researchers  
use the S21 as the value of the path-loss. But by bringing the antenna close to the head 
may affect the efficiency either in positive or negative ways. Hence this adds to the 
uncertainty about the measured path-loss, and therefore a number was added to account 
for that uncertainty. The number depends on the efficiency of the antenna in free-space; 
for example if the efficiency was �Hrad = 90 % in free-space and it changes to 80 % when 
the antenna brought close to the head the difference will be ~ 1 dB, while if �Hrad was 24 % 
and then it becomes 20 % near the head the deference will be ~ 1.6 dB. So to account for 
worst cases, we add ± 3 dB to the path-loss formula, therefore the uncertainity in the 
path-loss is 3 dB. The path-loss for well matched antennas (S11 < -10 dB) becomes: 

dB 3log20log20 102110 �r��� radSPL �H  (3.2) 
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3.2 Setup 
A standard head phantom SAM (Specific Anthropomorphic Mannequin) that was used 

in the measurements, as seen in Fig. 3.1, is filled with material with similar electrical 
properties as human head. The electrical properties of the head phantom are given chapter 
4. The figure also shows the mechanical setup, which is made of low-loss materials 
except for the absorber, see Tab. 3.1.  The antennas were mounted with baluns in order to 
prevent the feed cables from radiating. A HP8753D vector network analyzer performed a 
running average of 16 samples at 201 frequency points in different ranges in order to get 
stable S-parameter measurements. Two 1.5 m RG-58 coaxial cables that were used to 
extend the cables of the vector network analyzer. For some of the measurements, the 
antennas were held in place with ordinary household tape. Evaluating of the measured S21 
indicates that some reflections occurred during the measurements. The reflected parts of 
the measured S21 were identified and they were removed by time-gating as in [27] and 
[28], where a hamming window was used.  
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Fig. 3.1: A standard SAM head phantom was used in the measurements. The dipole antennas were 
mounted with lumped baluns, in order to reduce the radiation from the cables. 

 
Tab. 3.1: Electrical properties of the mechanical setup  

 �Hr tan�/ 
Polyethylene (PE) 2.25 0.001 
Polycarbonate (PC) 2.95 0.01 
Teflon 2.1 0.001  

 

3.2.1 Antennas for the measurements 
In order to characterize the path-loss for ear-to-ear communication, a set of simple 

dipole antennas were designed. The dipole antennas are characterized by omni-
directional pattern and they are linearly polarized. The dipole antenna may not be a good 
candidate for ear-to-ear communication, but we chose it to compare the measured path-
loss with the results of the spherical model. All the antennas are very small in comparison 
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with the head. Some of the antennas may not be electrically small but they are small with 
respect to the head, which shadows the radiation of the antennas. Electrically small 
antennas usually have low input resistance, high input reactance, low efficiencies and low 
directivity [29].  

Fig. 3.2 shows the antennas that were used in the measurements. All the used antennas 
are dipoles except for Ant. 5 which does not has a dipole pattern. Ant. 2 is a simple 
dipole antenna that is made of two small wires of 1 mm in diameter and 4 cm in length, 
where they are mounted directly on a balun.  

Ant. 1 is a simple dipole antenna that operates near 1 GHz, and it is mounted with a 
baluns that is made of lumped components, the balun is used also as a transformer that 
match the impedance of the antenna (5.76 – j343.0) �:  to a feed line with 50 ohms. The 
dipole is printed on RF-4 substrate with thickness of 1.5 mm. The antenna is electrically 
small, whereas the maximum length of the antenna is 0.133�O0, where �O0 is the free-space 
wave length. While Ant. 2 to Ant. 4 have electrical dimensions of �O0/2 lengths, therefore 
they can not be interpreted as small antennas. Ant. 5 is an electrically small antenna that 
is resonant at 1 GHz. 
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Fig. 3.2: Some of the antennas that had been used in the measurements. 

 

3.2.2 Baluns 
One problem with all the designed antennas is that they are balanced while the coaxial 

feeding lines are unbalanced. Therefore it is necessary to use baluns to avoid surface 
currents which may run on the cables. Depending on the magnitudes and the orientations 
of the surface currents, the measurements of the S21 can be higher than the actual values, 
resulting in small path-loss. There are several kinds of baluns which may also work as 
transformers, in [30, sec. 9.8.6] some of the well known baluns are described, like 
Bazooka balun, �O/4-coaxial balun and coaxial balun, all these baluns have impedance 
relation (1:1), some baluns like the �O/2-coaxial balun and the ferrite core transformer 
have impedance relation (4:1) or (1:4). In [31], a quarter-wave transmission line was 
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employed to design a wideband balun that matches 50 �:  unbalanced line to a balanced 
antenna with input impedance of 70 �: . The balun and the steps to construct it are 
depicted in Fig. 3.3. It can be used to match larger impedance than 70 �:  [32].  

 
Lumped element circuits were used to design a broad-band balun in [33] and [34], 

where the designs and the analysis were inspired from [35]. The distributed transmission 
lines can be replaced by low-pass and high-pass ladder networks [35]. By equating the 
ABCD matrix of the transmission line and the ABCD matrix of the lumped element 
networks at the design frequency, it is possible to calculate the values of the lumped 
elements. In [33], the impedance relation is (1:1) and the balun is a second-order lattice, 
while in [34] an extended analysis of the lumped balun was given in [33] and the balun 
has inherent impedance transformation.  

 

Fig. 3.3: The quarter wave coaxial balun is copied from [31], where Zb and Za are the impedances of the 
coaxial cable, Zab is the impedance of the two lines transmission line. 

 
A first order lattice balun with inherent transformation was used, the design and the 

derivations of the components values were inspired by the work in [34] and [35]. The 
ABCD matrix for a �O/4 transmission line is: 
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with Z and Y being the characteristic impedance and admittance of the transmission line 
#1 (see Fig. 3.4a) which has �O/4 length, respectively. A low-pass network models the 
transmission line segment is shown in Fig. 3.4b. where X and B in Fig. 3.4 are the 
reactance and the susceptance,respectively. The ABCD matrix that represents the low-
pass filter can be calculated using the table on front cover of the book [36]: 
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where all the values are defined in Fig. 3.4. Equating (3.3) and (3.4) yields the following 
results: 

XL BC = 1  (3.5a) 
BC = Y (3.5b) 

While the transmission line #2 has a length of 270 degree and it will be modeled by a 
high-pass filter, which is shown in Fig. 3.4c and its ABCD matrix is given in [35]. 
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 Fig. 3.4: Transmission line balun (a), low pass filter (b), high pass filter (c), first order lattice balun (d) 
connects small electric dipole antenna, which is modeled by the network in the box and (e) is the 
equivalent circuit for the circuit in (d). The dashed rectangle in (d) represents an antenna. 

 
Equating the matrices of the transmission line and the high-pass network yields the 
following results: 

BL XC = 1  (3.6a) 
BL = Y (3.6b) 

The capacitances and the inductors in the low-pass filter equal the capacitances and the 
inductors in the high-pass filter, therefore we used variables of identical notation in (3.5) 
and (3.6). The characteristic impedance Z of the �O/4 transmission line is given as: 

02 ZRZ in�    (3.7) 

where Z0 usually is 50 �:  for the coaxial cable. The apparent load for the low/high pass 
filters is 2 times the input resistance of the antenna Rin and therefore input resistance is 
multiplied by 2. While the apparent capacitance for the low/high pass filters is half the 
Cin, which is the equivalent input capacitance of the antenna. The circuit in Fig. 3.4e is 
the equivalent for the circuit in Fig. 3.4d. The values of the components can be calculated 
either by using (3.5) or (3.6), 
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where f0 is the resonance frequency of the antenna. The reactance XL1, which is used to 
cancel out the reactance of the antenna Xin/2, includes XL and the reactance XL2 includes 
XC. So the values of the inductors L1 and L2 can be calculated as following: 

0
1 2

2/
f

XX
L LCin

�S
��

�  (3.10) 

0
2 2

2/

f

XX
L CCin

�S
��

�  (3.11) 

From (3.5b) and (3.5e) it is found that XL = XC = Z. Equations (3.10) and (3.11) become 

0
1 2

2/

f

ZX
L Cin

�S
��

�  (3.12) 

0
2 2

2/
f

ZX
L Cin

�S
��

�  (2.13) 

For a loop antenna the input impedance can be modeled as a resistance in series with an 
inductor, therefore the inductances L1 and L2 will be replaced by capacitors C1 and C2. 
The apparent inductor for the low/high pass filters will be 2 times the input inductor, so 
the values of the capacitors C1 and C2 become: 
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3.2.3 Performances of the antennas and the baluns 
Some of the performances can be easily measured by a network analyzer like the 

resonance frequency and the S-parameters, while other performances like the efficiency 
and the patterns can not be measured directly by the network analyzer. The efficiency 
enters in the path-loss formula, and the pattern is used to ensure no leakage currents that 
run on the feeding cable. Therefore, Ant. 1 and Ant. 4 were measured in DTU-ESA 
facility [38], where the patterns and the efficiency were measured. Ant. 4 was chosen, 
because it used similar balun as Ant. 2 and 3, while it is resonant at higher frequency 
range than the other two antennas, so it is more sensitive to deformations. For the 
remaining antennas, the reflection coefficients were measured by the network analyzer, 
but the efficiencies were estimated by simulating the designs in HFSS. Tab. 3.2 includes 
some of the measured and simulated data in free-space. Only the marked efficiencies with 
the superscript (+) were measured. The resonance frequencies may shift near the head.  

 
Tab. 3.2: The data for the antennas.  

 Ant. 1 Ant. 2 Ant. 3 Ant. 4 Ant. 5 
Freq. [GHz] 0.945 1.5 2.45 3.325 1.008 
l [mm] 41.8 85 41.8 37 41.8 
l / �O0  0.133 0.425 0.368 0.411 0.133 
�Hrad % 24.3+ 93 93 91.2+ 10  
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where l is the maximum length of the antenna. The simulated reflection coefficient of 
Ant. 5, which is the black line in Fig. 3.5a, proves that the antenna work properly, where 
the difference between the measured and the simulated resonance frequencies is less than 
1%. To see the effect of the surface currents (on the coaxial cables) on the reflection 
coefficient, Ant. 3 was simulated with and without a cable. The red line in Fig. 3.5b is the 
reflection coefficient for the case where Ant. 3 was fed without a cable, and the green line 
corresponds to the case where Ant. 3 was fed through a coaxial cable. This shows the 
effect of the surface currents on the reflection coefficient response. Since the current on 
the cable will run on long road, then the resonance shall be lower than the ideal case 
which is represented by the green line. This is a simple explanation, but the antenna 
affects the reflection in complex manner. In some cases, the measurements of the 
reflection coefficient help to find if surface currents exist or not. It is clear from the 
structure of Ant. 5 in Fig. 3.5a that Ant. 5 is not a balanced antenna, and this may explain 
the well behaved reflection coefficient of the antenna. The measured S11 for the 
remaining antennas are given in appendix F. The measurements of the radiation patterns 
of Ant. 1 and Ant. 4, as seen in Fig. 3.6a and 3.6b respectively, show that the antennas 
work properly, where they have dipole patterns. The blue line is the field in the E-plane 
and the red dashed line is the field in the H-plane. The sizes of the antennas are very 
small in comparison with the tower, which is shown in Fig. 3.7, and that explains the 
drop in the values of the radiation patterns. The ripples in the fields appear because the 
origin of the measurement coordinate system is not centered on the antenna, but it shifted 
a little bit either in the positive or in the negative z-direction. The measurement of the 
radiation pattern utilizes the theory that is represented in chapter 2. Therefore when the 
antenna is shifted from the center, its pattern can not be represented by a single mode but 
with multi-modes, in reality few modes are used while high order modes are not used, 
therefore the ripples appear.  
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Fig. 3.5: The measured and the simulated S11 of Ant. 5 (a) and Ant. 3 (b). The blue lines are the 
measurements values, the black and the red lines are the simulated S11 for the antenna fed without a 
cable, while the green line corresponds to the antenna fed by a cable. 
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Fig. 3.6: Far-field patterns of the Ant. 1 (a) and Ant. 4 (b). The blue lines are the fields in the E-plane 
and the red dashed lines are the fields in the H-plane. The E-plane in the xz-plane and the H-plane is in 
the yz-plane. 

 

  
Fig. 3.7: Ant. 1 on the tower model in DTU-ESA facility. 

  

3.3 Precision evaluation 
Accuracy is the quality that characterizes the capacity of a measuring instrument for 

giving results close to the true value of the measured quantity, while the precision is the 
quality that characterizes the capability of a measuring instrument of giving the same 
reading when repetitively measuring the same quantity under the same prescribed 
conditions (environmental, operator, etc.), without regard for coincidence or discrepancy 
between the result and the true value [37, pp. 13-14]. For each measurement, the network 
analyzer was calibrated to ensure the accuracy of measurements. The precision was 
ensured by repeating the measurements at different periods, where the setup had been 
preserved. The precision can be affected by several factors, such as:  

1) The environment that surrounds the measurement setup, 
2) the dynamic range of the network analyzer, 
3) and the mechanical alignments of the antennas with respect to the head. 

The mechanical alignments include the distances of the antennas from the head, the 
distances of the antennas from the ground and the alignment of the antennas with respect 
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to each other. The accuracy of the distance is around 1 mm, and the horizontal alignments 
of the antennas with respect to the ground plane can be an accuracy of 2 degree, where a 
light weight level instrument was used to check the alignments.  

The precision of the experiments was evaluated for two different antennas; Ant. 1 and 
Ant. 4. The measurements of the S-parameters for the antennas are repeated at different 
times and each time the network analyzer was calibrated using a full 2-port calibration 
procedure. A set of precision SOLT (Short-Open-Load-Through) standards were attached 
to the network analyzer ports to perform the calibration. The mimium value (noise floor) 
that the network analyzer can measure is around -70 dB.  

 
Tab. 3.3: The precision of the measurements vs. the distance from the head. 

Uncertainity [dB] Distance [mm] 
Ant. 1 Ant. 4 

0 1.5 2 
2 0.2 1 
4 0.5 2 
8 0.25 1 
10 0.2 1 
20 0.1 0.5 
30 0.5 0.25 
40 0.1 0.25  

 
During the evaluation, the effect of the distance on the path-loss was tested, where each 
measurement was repeated three times at different periods. The distance that separates 
the antenna from the head was limited between 0 and 40 mm. Tab. 3.3 includes the 
uncertainity values for each distance. The uncertainity was calculated by dividing the 
maximum difference between the measured S21 for same distances by 2. The precision 
improves as the distance increases and it is high for the low frequency antenna. Since 
Ant. 4 works at the highest frequency among the other antennas, therefore we expect the 
other antennas to have better precision, where the uncertainity is less than the 2 dB. The 
resonance frequency of Ant. 1 shifts to 920 MHz near the head and the measured S21 are 
shown in Fig. 3.8a, where the antennas are kept at distances of 2 mm and 40 mm from the 
head. Each color represents a measurement at a certain time. 
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Fig. 3.8: Measurements of S21 by Ant. 1 at distances of 2 mm (a) and 40 mm (b). The measurements take 
place at different periods, so each color represents a different time.  
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4 Ear-to-ear communication – results and discussions  

4.1 Introduction 
Electrical properties of the human tissues will be presented and these properties will be 

used to carry out the investigations. In order to understand the mechanisms involved in 
the ear-to-ear wireless communication, the electric and magnetic fields will be plotted 
inside and outside the sphere. The path-loss will also be computed as a function of the 
frequency, the radius of the sphere, and the distances of the antennas from the sphere. 
Influence of the electrical properties on the path-loss will be studied for four different 
antennas. In addition to the theoretical results, the measurements of the path-loss will also 
be presented.  

4.2 Electrical properties of the tissues 
Many experimental and theoretical studies were carried out in the literature to estimate 
the electrical properties of the different tissues of the human body. The question of 
whether radio frequency (RF) radiation might have harmful effects on people, have 
motivated many researchers to study the electrical properties which include both the 
relative permittivity and the conductivity of the tissues.  In [39], the electrical properties 
of the muscles, skin, fat and the bones were measured and it was found that their 
properties can be described in terms of Debye dispersion equations with a single 
relaxation time. The electrical properties were measured using the method in [40], where 
the specimen fills a short length of a waveguide or a coaxial line that is terminated by a 
short circuit. Measurements on a standing wave set up in the guide or line section 
preceding the specimen then enable the complex dielectric constant to be evaluated. In 
[41] a comparison between the behavior of the blood and the water at microwave 
frequencies has been done based on the measurement data. More tissues have been 
studied in [42] for the frequency band 10 MHz – 1 GHz, where the permittivity was 
measured based on the input reflection coefficient of an open-end coaxial line placed 
against the test tissue. Electrical properties of white and grey matter of the brain were 
measured in [43] for the frequency band 10 MHz and 10 GHz, the measurements were 
based on the method of [40].  Other works state the electrical properties for several 
tissues but over wider frequency bands, like in [44] where the frequency range was 
between 10 Hz and 20 GHz and in [45] where the frequency range was between 1 MHz 
and 20 GHz. Most of the mentioned works use the Cole-Cole equation [46] to describe 
the frequency dependence of the electrical properties of the tissues. Coefficients of the 
Cole-Cole equation were given in [45], such that the electrical properties for bone 
(cortex), lens, brain (grey and white matters), and many other tissues can be determined. 
The coefficients where found by data-fitting of the experimental results to the Cole-Cole 
equation. In Fig. 4.1, the values of the permittivity and the conductivity of the white and 
the grey maters are shown over the frequency range between 10 MHz and 10 GHz 
according to the Cole-Cole method and by using the coefficients in [45]. As the 
frequency increases the permittivity decreases and the conductivity increases. The 
electrical properties depend on the temperature and the concentration of water in the 
tissues; this may explain the difference in the values of the electrical properties that are 
given in different works. Those works estimate the electrical properties of some tissues 
not the whole head. Since in the experimental part of this thesis, the measurements were 
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made on a standard SAM phantom head [16], we therefore used the data provided by [16] 
in the theoretical investigation to compare the measurement and theoretical results. Fig. 
4.2 shows the electrical properties of SAM phantom head according to [16]. Unless 
otherwise stated, the electrical properties are defined in Fig. 4.2. Since the conductivity 
and the relative permittiviy were known then the real and the imaginary values of the 
permittiviy can be calculated as: 
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where �& = 2�Œf  and f is the operating frequency. The equation (4.1a) shall be used with 
the time factor exp(j�&t) and the equation (4.1b) with time factor exp(-j�&t). 
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Fig. 4.1: The permittivity (a) and the conductivity (b) of the white (blue line) and the grey (red line) 
matters of a brain. 
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Fig. 4.2: The relative permittivity (a) and the conductivity (b) of the SAM phantom head.  
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4.3 Theoretical investigations 

4.3.1 Field distri bution of EHDz 
Field plots help to visualize the communication channels; therefore the electric and 
magnetic fields, as well as the power flow density, have been computed at 400 MHz, 1 
GHz and 2.45 GHz, whereas the radius of the sphere and the distance of the antenna 
remain constant a = 8.5 cm and r0 = 9.2 cm. Fig. 4.3 shows the fields generated by the 
EHDz, while the fields of the remaining antennas are given in appendix D. The magnetic 
fields in rows 2 and 4 are continuous through the surface of the sphere, and thus satisfy 
the boundary conditions. Electromagnetic waves propagate through and around the 
sphere, as seen in rows 1 and 2 in the figure. The waves move toward focal regions inside 
the sphere, and their magnitudes decay while they propagate. The focal region is a 
concentration region of wave fronts. It is very clear in Fig. 4.3 in row 1 and column C, 
where the focal region is close to the centre of the sphere. 
The decay depends on the attenuation constant of the medium. For example, the 
magnitude of a plane-wave that propagates a distance 2a = 17 cm inside a medium that 
has the same electrical properties (�Hr = 41.0 +j17.8 at 1 GHz) as the sphere will decay by 
-42 dB. Therefore, the attenuation is expected to be high inside the sphere.  

Outside the sphere, the waves that propagate along the surface of the spheres constitute 
surface-bound waves. The polarizations of the surface-bound waves are orthogonal to the 
surface, which helps to make a good coupling with the receiving antenna, which is 
EHDz. The generated surface waves that propagate in the clockwise and 
counterclockwise directions interact constructively or destructively and this results in 
standing waves outside the sphere. The standing waves appear clearly in Fig. 4.3-B3 and 
-C3, which corresponds to 1 GHz and 2.45 GHz, while at 400 MHz there is standing 
wave neither inside nor outside the sphere. At 1 GHz there are two minima which occur 
at �� �# 45 and -45, and a maximum at �� �# 0, while at 2.45 GHz there are more than 2 
minima. 

Power flow density plots emphasize the high attenuation that exists inside the spheres, 
where the colors rapidly changes to the dark blue. In addition to that, the directions of 
arrows inside the spheres point toward the focal regions, whereas outside the sphere they 
point in tangential directions with respect to the surface. The attenuation of the power 
flow density outside the sphere is lower than the attenuation inside it. 

From the discussion, it is clear that power propagation take place around the sphere and 
not through it. The surface-bound waves are the main mechanism for the communication, 
and these waves have orthogonal polarizations with the surface. Because of this 
polarization which agrees with the polarization of the receiving antenna, the coupling will 
be high and that leads to low path-loss as we shall see later.  
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Fig. 4.3: The computed electric fields, magnetic fields and power densities of an orthogonal oriented 
EHD, where the EHD is located below the dielectric sphere, which is bounded by dashed circle. The 
plots in rows 1 and 2 show the amplitudes of the real values of the electric and magnetic fields, |Re{E}| 
and |Re{H}|, while rows 3 and 4 show the magnitudes of the electric and magnetic fields, |E| and |H|, 
and row 5 shows the magnitude of the associated power flow densities |P|. The bold letters here 
represent vector quantities. Column A, B and C in sequence correspond to 400 MHz, 1 GHz and 2.45 
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GHz. The colors are the logarithmic scalar values in dB of the fields normalized to the maximum values, 
whereas the arrows in rows 1 and 2 represent the polarization of the fields, and in row 5 represent the 
directions of the power density in the xz-plane.   

 

4.3.2 Field distribution of  EHDx, MHDz and MHDx 
The fields plots generated by the EHDx antenna are shown in Fig. D.2 and D.3 in 

appendix D, where Fig. D.2 shows the fields in the xz-plane (E-plane) and Fig. D.3 shows 
the fields in the yz-plane (H-plane). The electromagnetic waves propagate through and 
around the sphere. The waves that propagate through the sphere move all the way from 
the transmitting antenna side toward the opposite side. Except for the case where the 
frequency is 2.45 GHz, where the waves moves toward the focal regions inside the 
sphere. These waves have the same polarization as the transmitting antenna in both of the 
planes. Outside the spheres the propagation takes place through surface-bound waves, 
which have orthogonal polarizations to the surface of the spheres in the E-plane and 
parallel polarizations in the H-plane. Some of the surface-bound waves couple to the 
receiving antenna and some do not. Therefore, not all the power that is carried by the 
surface-bound waves will be received by the antenna. The standing waves appear both 
inside and outside the spheres, where the locations of the nulls depend on the frequency 
and the size of the sphere. Power flow density plots show that most of the power is 
concentrated close to the transmitting antennas while very small amount is transmitted to 
the other sides. The attenuation of the fields is high both inside and outside the sphere.    

 
For the MHDz, the electromagnetic waves propagate through and around the spheres. 

The waves that propagate through the sphere move all the way from the transmitting 
antenna side toward the opposite side. For the magnetic dipoles, we use the polarization 
term to refer for the polarization of the magnetic field and not the electric field. The 
surface-bound waves have complex polarizations, where the polarizations look like they 
move in vortex over the surface of the sphere. Therefore, the coupling between the 
receiving antenna and the surface-bound waves will be low. The attenuation of the power 
density is high and small part of the power gets transmitted toward the receiving side.  
 
The MHDx generates electromagnetic waves that propagate through and around the 
sphere. The waves that propagate through the sphere move toward the focal regions 
inside the sphere. Outside the sphere, the surface-bound waves propagate along the 
surface of the spheres and they have tangential polarizations in the E- and the H-planes, 
as seen in Fig. D.4 and D.5. Therefore the coupling between the receiving antenna and 
the surface-bound waves will be high. In consequence of the surface-bound waves and 
the standing waves appear for all the three frequencies. The attenuation of the power flow 
density is higher inside the sphere than outside it.  
 
In summary, both the EHDz and the MHDx generate surface-bound waves that have the 
same polarization as the receiving antenna. The waves that propagated through the sphere 
do not contribute to the communication, since they propagated toward the focal regions 
inside the sphere. Thus, the communication for those antennas is carried out by the 
surface-bound waves. The EHDx and the MHDz generated surface-bound waves that had 
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mixed polarizations, which depended on the location and the propagation directions near 
the sphere. The waves that propagated through the sphere contributed to the 
communication, but most of the power was concentrated around the transmitting area 
while small amount propagated to the receiving area.   

 

4.3.3 Effects of antennas locations and frequency on S21 
In the previous section, the field plots showed the distributions of the fields near the 

sphere. There is a relation between the field components and the S21. It is reported in [19, 
pp. 77] that a received signal by a Hertzian dipole is proportional to the field component 
that is parallel to the dipole orientation. There is proportionality between the field 
components and the S21 values, as seen in Fig. 4.4. Therefore, the field distribution plots 
can be used to estimate the location where the maximum coupling can be achieved, such 
that the S21 becomes high. The results in Fig. 4.4 show that the S21 depends not just on the 
frequency, but also on the type and the orientation of the receiving antenna. 
 

0 20 40 60 80
-20

-15

-10

-5

0

�T
0
 (deg.)

S
21

 [d
B

]

0 20 40 60 80

-15

-10

-5

0

�T
0
 (deg.)

S
21

 [d
B

]

(a) (b) 

0 20 40 60 80

-20

-15

-10

-5

0

�T
0
 (deg.)

S
21

 [d
B

]

 
(c) 

Fig. 4.4: The normalized S21 as a function of the position angle ��0 at 400 MHz (a), 1 GHz (b) and 2.45 
GHz (c).  The color of the lines in the following sequence; blue, green, red and black correspond to the 
normalized |Er| of the EHDz, the normalized |E��| of the EHDx, the normalized |Hr| of the MHDz and the 
normalized |H��| of the MHDx. The crosses correspond to the S21. 
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First the effect of the frequency on the S21 values will be studied. The S21 is the value of 
the path-loss in the theoretical investigation. The antennas will remain at constant 
locations whereas the frequency varies between 400 MHz to 4 GHz. This investigation 
tests the effect of the frequency on the S21 for the four antennas, as seen in Fig. 4.5a. The 
use of the EHDz provides the highest coupling where the S21 is around -2 dB at 400 MHz 
then it decreases as the frequency increases to -10 dB at 1 GHz, and -24 dB at 2.45 GHz. 
The MHDx provides the next best coupling, where the S21 is around -20 dB at 400 MHz; 
it decays as the frequency increases to -27 dB at 1 GHz and -30 dB at 2.45 GHz. The 
EHDx and MHDz provide low S21 values in comparison to the EHDz and MHDx. In 
addition, their S21 oscillates while they decay as the frequency increase. The S21 for the 
EHDx is around -43 dB at 400 MHz, -50 dB at 1 GHz and -57 dB at 2.45 GHz, while for 
the MHDz the S21 is around -30 dB at 400 MHz, -65 dB at 1 GHz and -74 dB at 2.45 
GHz. There is a relation between the S21 and the dissipated power, where the dissipated 
power is very high for the EHDx and MHDz, as seen in Fig. 4.5b, whereas it is low for 
the EHDz and MHDx. The dissipated power at 1 GHz is around 36 % for the EHDz and 
96 % for the EHDx.  
 
Notice that the EHDz and the MHDx are the antennas that provide the best coupling to 
the surface-bound waves, whereas the coupling of the MHDz and the EHDx to the 
surface-bound waves is not as good.  
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Fig. 4.5: S21 (a) and the normalized dissipated power (b) vs. the frequency at �� = 0, where the color of 
the lines in sequence are blue, green, red and black represent the S21 for the EHDz, EHDx, MHDz,and 
MHDx. 

 

4.3.4 Effect of the sphere radius on S 21 
The size of heads varies among people, and that will have an impact on the S21. 

Therefore in this section, the radius of the sphere takes values between 6 cm to 10 cm, 
while the frequency and the distance of the antenna remains constants. Fig. 4.6a shows 
S21 as a function of the radius at 1 GHz. For all four antennas, the S21 values decrease as 
the radius increases.  
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Fig. 4.6: S21 (a) and the normalized dissipated power (b) vs. the radius of the dielectric sphere, where the 
color of the lines in sequence are blue, red, green and black represent the S21 for the EHDz, MHDz, 
EHDx and MHDx antennas. 

 
The response of the S21 depends on the antenna, where the change can be at least 7 dB for 
the EHDz and the MHDx, whereas for the EHDx and the MHDz, the change can be even 
20 dB. Therefore the S21 for EHDz and MHDx are less sensitive to change in the radius 
than the EHDx and MHDz. The significant changes in the S21 can not be explained by the 
dissipated power, which is seen in Fig. 4.6b, where the increases of the dissipated powers 
are very small especially for the EHDx and the MHDz. Therefore, the increase or 
decrease of the S21 is related more to the coupling with surface-bound waves and to 
maxima location of the standing waves.  
 
From this section and the pervious section, it was found that the S21 values were less 
sensitive for the case where the two antennas communicated around the sphere, whereas 
it has high sensitivity for the cases where the antennas communicated through and around 
the sphere.  

 

4.3.5 Sensitivity of S 21 to �0r and �1 
The electrical properties of the tissue may vary from person to person depending on age, 
gender or even race. In this section, the electrical properties were allowed to vary ±10 % 
around the electrical properties given in Fig. 4.2. The radius of the sphere and the 
distance of the antennas were kept constant. The S21 that corresponds to the electrical 
properties in Fig. 4.2 are referred to as the reference values. In Fig. 4.7, the ratio of the 
S21 values to the reference values at 1 GHz is shown, where the color is the scalar value 
of the ratio in dB.  
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(a) (c) 

  
(c) (d) 

Fig. 4.7: The ratios of the S21 at 1 GHz for the EHDz  (a), MHDz (b), EHDx (c) and MHDx (d). 

 
The S21 of the EHDz antennas is almost insensitive to the changes in the electrical 
properties and the maximum change was observed at 2.45 GHz, where the change was 
1.2 %, as seen in Tab. 4.1. The S21 for the MHDx was changed around 7.8 % at 400 MHz. 
Yet the changes were smaller than 10 %, which is the maximum change in the electrical 
properties. Large changes were observed for the EHDx and the MHDz, where the 
changes can be up to 498.6 % and 81.9 %, respectively. Therefore, such antennas have 
high sensitivity to the electrical properties of the head. For these antennas, the 
communication was through and around the head, except for the cases where the 
frequencies were 2.45 GHz. At this particular frequency the antennas exclusively 
communicate around the head. So when the communication takes place around the head, 
it becomes less sensitive to the small changes in the electrical properties. The results for 
the S21 at 400 MHz and 2.45 GHz are shown in appendix D.  

Tab. 4.1: Differences in the S21.  

|S21| %  
400 MHz 1 GHz 2.45 GHz 

EHDz 0.7 0.4 1.2 
EHDx 70.8 498.6 8.4 
MHDz 81.9 71.7 5.5 
MHDx 7.8 4.8 1.3  
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4.4 Comparison of theory and measurement results 
The path-loss is evaluated in a series of measurements. The antennas on both sides of 

the head are simultaneously moved away from the head in equally sized steps. The 
dipoles were kept tangential to the surface of the head at all times. S-parameters are 
obtained at each step, and the distance d between the antennas and the head is logged, as 
seen in Fig. 4.8. The path-loss measurements and the corresponding computed results are 
shown in Fig. 4.9, for the measurement and the computation series at the distance d. In 
regards to the computational model, the radius of the sphere is set to be 9.3 cm, where 
this value is the radius of a circle that has a half perimeter equal to lback, which is defined 
in Fig. 4.8.  

 

lbacklback

 

dd

(a) (b) 
Fig. 4.8: Top view of SAM head phantom. 

  
The measured and the computed path-loss are determined for the frequencies 920 MHz, 

1.5 GHz, 2.45 GHz and 3.227 GHz, as functions of the distance d. The blue lines in Fig. 
4.9, are the computed values of the path-loss and the red lines are the measured values. 
At 920 MHz, the path-loss for short distances (d < 10 cm) is between -35 dB and -40 dB. 
The path-loss is between -45 dB to -50 dB at 1.5 GHz, -55 dB and -65 dB at 2.45 GHz, 
and -52 dB and -65 dB at 3.225. By taking the uncertainty of the measurements into 
account, the results of the measurements and the computations are relatively close to each 
other. Since the measurements took place inside a non-anechoic environment, there will 
be constructive and destructive interferences with reflected signals. Even after the use of 
time-gating method that removes the reflected signals from the walls, there are some 
objects located at short distances with respect to the head including the table that supports 
the head, the bars that hold the antennas, the cables and the ground plane, which have 
short time delays. These signals affect the measured S21 constructively or destructively. In 
addition to the reflections, the head is asymmetric relative to the antennas. From such 
measurements, it is difficult to decide the nature of the communication channel; whether 
it is inside or outside the head.  
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Fig. 4.9: Measured (red lines) and simulated (blue lines) path-loss at frequencies 920 MHz (a), 1.5 GHz 
(b), 2.45 GH (c) and 3.225 GHz (d) versus distances of the antennas. 

 

4.5 Measurement campaign 
Several measurements were obtained by different antennas. During those 

measurements, the antennas and the techniques were approved to obtain accurate results. 
In the beginning, some of the measurements were obtained without using baluns. It was 
expected that the leakage currents to radiate, but we expect their influence will be small 
in comparison with the radiation of the antenna. This was true in free-space case, where 
the cables were aligned in such way that minimizes the coupling of the leakage currents.  
In the section 3.2.1, the final antennas were shown, whereas the remaining antennas are 
not shown. But some the measurements that obtained by those antennas will be given in 
appendix F without discussions. In the beginning, some of the measurements were 
obtained without using baluns. Fig. 4.10 shows some of the measurements where Ant. 3 
were used without baluns. The surface currents on the cable provide lower path-loss 
values in comparison with the path-loss at the resonant frequencies, which are around 
2.45 GHz. To minimize the effect of the surface currents, the cables were oriented along 
the z-axis, as depicted in Fig. 4.10b, since it was expected the cables to perform as dipole 
antennas. Therefore in the free-space the path-loss of the surface currents is higher than 
the path-loss of the antenna. It is difficult to ensure that the measured path-loss at 2.45 
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GHz is the concrete value. Therefore, the antennas were mounted with the baluns to 
prevent the surface currents.  
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Fig. 4.10: figure (a) shows the S11 and S21 of the Ant. 3 without baluns, where the blue and the green 
lines are the S11 of the antenna near SAM head phantom and in free-space respectively, while the red line 
is the S21 near SAM and the cyan line is S21 in free-space. Figure (b) shows the top view of the head. 

 
The effect of the antennas angular position was also investigated. In the following 

measurements, the transmitting antenna has a fixed position while the receiving antenna 
moves in small steps on the head. Fig. 4.11 shows the measured path-loss as a function of 
the distances, which is measured from the transmitting antenna to the receiving antenna, 
as seen in Fig. 4.11d. The measurement were carried by the antennas; Ant. 1, Ant. 2 and 
Ant. 3. During the measurements the antennas were tangential to the head and had 
horizontal orientations with respect to the ground. The path-loss decreases as the distance 
increases at 920 MHz, as seen in Fig. 4.11a. The increase of the path-loss from the 
second measurement point can be described by a function of a distance from a reference 
point: 

25

cm 1/
ln24dB55.32)( back

back1

l
lPL �����  (4.2) 

where the unit of lback is cm. At 1.5 GHz, the path-loss increases as the as the distance 
increases, but the increase accompanies with oscillation because of the standing waves. 
The increase can be also described by a function of the distance: 

25

cm 1/
ln9.22dB49)( back

back2

l
lPL �����  (4.3) 

The path-loss at 2.45 GHz increases as the distance increases, this increase accompanies 
with oscillations, which are the standing waves, and the increase will be described by the 
function: 

25

cm 1/
ln8.17dB60)( back

back3

l
lPL �����  (4.4) 

The decrease of the path-loss at 920 MHz happens because the short distance between 
the antennas and so the increase will be small while the effect of the standing wave is 
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large, where the maximum is at the opposite side of the head with respect to the 
transmitting antenna.   
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(c) (d) 
Fig. 4.11: Measured path-loss at frequencies 920 MHz (a), 1.5 GHz (b) and 2.45 GH (c) versus the 
distance lback in wave-length. Figure (c) shows the top view of the head and the measured distance on 
back of the head.  

 

4.5 Simulated results by HFSS 
The measurements can provide the path-loss values, but in order to understand the 

involved mechanisms in the communication between the antennas, the field distribution 
must be computed inside and outside the head. The theoretical model gave some answers 
about the communication channels, but it remains an ideal model. Therefore, the 
measurement setup, including the antenna and the head phantom, was simulated in HFSS. 
In the numerical simulations, the details like the ground plane, the cable or the 
mechanical setup, were not included. The electrical properties of the numerical phantom 
head were specified by the electrical properties in Fig. 4.2. Measurement setup with two 
different antennas was simulated numerically by HFSS. One simulated the case where 
two Ant. 5 were located near the head, as seen in Fig. 4.12. The second simulated the 
case where two Ant. 1 were located near the head.  
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(a) (b) 

Fig. 4.12: (a) A numerical phantom head used for the HFSS simulation and (b) Ant. 5. 

 
The numerical simulation of the Ant. 5 shows the effect of the reflections from the 

surrounding environment and the dynamic range of the network analyzer on the 
measurements of S21. The measured and the simulated values of S21 agree over a 
narrowband of frequencies, as seen in Fig. 4.13b, and then the measured S21 began to 
flatten. This occurs because the network analyzer can not measure values of S21 below ~ -
75 dB.  
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 Fig. 4.13: Measured and simulated S-parameters by Ant. 5. 

 
The fields that were generated by Ant. 5 are shown in Fig. 4.14, where Fig. 4.14a shows 

the magnitudes of the electric field and Fig. 4.14b shows the magnitudes of the real 
values of the electric field. The transmitting antenna is located on the right side of the 
head and a receiving antenna on the left side.  
 



 44 

  
(a) (b) 

  
(c) (d) 

Fig. 4.14: Simulated magnitude of the complex (a) and (c), and the real (b) and (d), electric fields 
radiated by Ant. 5. The color scale ranges from 0 V/m (black) to 4 V/m (white) of the electric field. The 
plots (a) and (b) show top view, while (c) and (d) show the front view. 

 
There are two channels for the ear-to-ear communication, one is inside and one is 

outside the head. Outside the head, the surface waves that propagate in clockwise and in 
counterclockwise directions result in constructive and destructive interference. This 
creates standing waves which appear clearly in Fig. 4.14a, where there are two minima 
regions and a maximum on the left side of the head. The real values of the field in Fig. 
4.14b show the field waves propagate through and over the surface of the head. The 
waves that propagate through the head are less significant than the waves that propagate 
around the head, where the magnitude of the field experience higher attenuation inside 
the head than outside it. The attenuation appears because of the high conductivity of the 
head tissue and because the electrical path-length is larger inside the head than outside it.  

The field distributions of Ant. 1, which are plotted in appendix F, show similar 
behaviors, where there exist two paths for the communication: one through the head and 
the second around the head. The high attenuation inside the head prevents these waves 
from attending the communication. The communication around the head takes place 
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through the surface-bound waves, where minima appears at lback �# 3�O0/4 and lback �# �O0, 
and one maximum at lback = lfront. 

As we notice here, the same behaviors have been observed as those in the theoretical 
investigations. This validates the qualitative results of the theoretical model.  
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5 Magneto-dielectric antenna 

5.1 Introduction 
Antenna miniaturization is essential for wireless communication in hearing aid systems 

since the mechanical as well as electrical size of the antenna must be small. There are 
several techniques for antenna miniaturization and recently there has emerged a 
significant interest in magneto-dielectric antennas. The magneto-dielectric materials 
facilitate miniaturization through a combination of magnetization and polarization, 
expressed in terms of the permeability and permittivity, yielding a smaller wavelength 
inside the material and thus allowing for mechanically smaller antenna structure 
compared to antennas without such materials. In contrast to purely dielectrically loaded 
antennas, the magneto-dielectric antennas can maintain an intrinsic impedance close to 
that of free space and may thus provide a better matching of the antenna at its input and 
output terminals as well as allowing larger bandwidth [47], [48] and [49]. 

It is difficult to find a material that has low loss of moderate permittivity and 
permeability values. Ferrite materials are highly lossy in the VHF range and up [48]. 
There are attempts to fabricate artificial magneto-dielectric materials [48]-[54]. In articles 
[48]-[50] the magneto-dielectric material was made by combining dielectric materials and 
ferrite materials. Others use the split-ring resonator, as in [51]-[54], to obtain the 
magneto-dielectric materials and that result in bulky substrates. The technique that was 
used in [48] to construct the magneto-dielectric material allows estimating the effective 
permittivity and permeability of the substrate, while there is not provide a pre-estimation 
of the effective constitutive parameters of the substrate in [49]. In [52] and [53] 
equivalent circuit models were provided to estimate the effective constitutive parameters. 
In [55] a technique was given to estimate the constitutive parameters, the technique is 
based on the S-parameters. This technique was also used in [52] and [53], where the unit 
cell was simulated using CST [56] and the results were compared to the analytical model. 
In [57] an experimental method was presented to estimate the effective constitutive 
parameters. The S-parameters were measured for two monopoles close to a unit cell 
which consists of a split ring resonator. From the S-parameters the constitutive 
parameters were estimated using the method in [55].  

 

5.2 Material properties 

5.2.1 Dielectric polarization and permittivity 
Two opposite charges that have absolute values Q and are separated by a distance d 

form a dipole with a moment dQp
�&�&

� . The dipole moment is directed from the negative 
to the positive charge. Average of the electric dipoles moment (p

�&
) per volume (V) is the 

electric polarization vector (P
�&

) [20, Eq. (2.3)]; 
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The units of the P are coulomb per meter (C/m). In a dielectric material, the electric flux 
density D

�&
 is: 

PED
�&�&�&

��� 0�H  (5.2) 

where E
�&

 is the applied electric field. In a simple material there is proportionality 
between the polarization and the applied electric field, therefore (5.2) will be rewritten as 
following: 

EED re

�&�&�&
�H�H�F�H 00 )1( � ���  (5.3) 

where e�F  is electric susceptibility. There are three mechanisms that produce electric 
polarization for dielectric; dipole polarization, ionic polarization and electronic 
polarization. The materials, that have dipole (orientational) polarization, posse permanent 
dipole moments but in randomly orientation, thus the net result of the polarization is zero. 
However when an electric field applies, the dipoles tend to align with the applied field. 
Water has such polarization. The ionic (molecular) polarization appears in materials that 
consist of positive and negative ions such as sodium chloride (NaCl). Appling an electric 
field causes the charges to displace and that creates dipole moments. The electric 
polarization is evident in most materials, where the electrons in the atom / molecule can 
be modeled as negative charged cloud that surrounds a positive charge. When an electric 
field is applied, the cloud displaces from the center and that results in dipole moment [20, 
pp.46]. Fig. 5.1 shows the response of the electron cloud response to a time varying 
electric field.  
 

 
Fig. 5.1: Time varying electric field applied to an atom, inducing a time-varying dipole moment p that 
contributes to the overall polarization density P. The figure is copied from [58, Fig. 5.5-5]. 

 

5.2.2 Magnetization and permeability 
Electric current flow always produces magnetic fields. Therefore atoms have magnetic 

dipole moments due to the motion of their electrons and due to the spin of the electrons. 
The average of the magnetic moments SIm

�&�&
� , where I is a current runs in a loop that has 

area S, per volume (V) is the magnetization (M
�&

) [20, Eq. (2.17)]; 
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The unit of the magnetization in the m.k.s. units is ampere per meter (A/m) and in the 
c.g.s. units is emu per centimeters cubed (emu/cm3) [59, pp. 10]. The magnetic flux 
density in a material is defined as; 

�� ��MHB
�&�&�&

��� 0�P  (5.5) 

where µ0 is the free-space permeability H
�&

 is the applied magnetic field. For simple 
materials (ferromagnetic materials excluded, M

�&
 is linearly related toH

�&
and hence to 

H
�&

[21], 

� � � �HHB rm

�&�&�&
�P�P�F�P 00 1 � ���  (5.6) 

where m�F  is the magnetic susceptibility. Materials fall into five groups; diamagnetic, 
paramagnetic, ferromagnetic, antiferromagnetic and ferrimagnetic, according to the 
behavior of their magnetic moments in an external magnetic field [20, pp. 57]. 
Diamagnetism arises from the orbital movement of the electrons. The orbital magnetic 
moments are opposite the direction of the applied magnetic field, thereby decreasing the 
field, and lead to negative magnetic susceptibility that result in values of relative 
permeability that are slightly less than unity. This effect occurs in all materials. 
Paramagnetism arises from the partial alignment of the electron spins in metals in the 
direction of the applied field. In paramagnetic materials the magnetic dipoles do not 
interact strongly with each other. The increase in the total magnetic field is therefore very 
small. Thus the magnetic susceptibility is slightly greater than unit. Ferromagnetism 
arises because of strong interaction between neighboring magnetic dipoles, a high degree 
of alignment occurs even in weak external magnetic dipoles, which causes a very large 
increase in the total field. Antiferromagnetism occurs when an ordered array of magnetic 
moments forms in which alternate moments have opposite polarizations. The result net 
magnetic moment is zero for the antiferromagnetic materials. The ferrimagnetism is a 
special case of the antiferrromagnetism whereas the alternate moments unequal in the 
absence of an applied magnetic field.  

Ferromagnetic materials possess very high permeability and high conductivities; 
therefore there is minimum interaction between these materials and the electromagnetic 
waves [20]. Ferrites are made by sintering a mixture of metallic oxides and have a 
general chemical composition 32OFeO�˜A , where A is a divalent metal such as 
manganese, magnesium, iron, zinc, nickel, cadmium, etc. or a mixture of these [21, pp. 
450] and [60, pp. 4]. Ferrites are ceramic-like materials with high specific resistivitis as 
much as 1014 greater than the metals and with dielectric constants around 10 to 15 or 
greater [21, pp. 450]. The high resistivity allows electromagnetic waves to penetrate them 
and therefore the ferrites are suitable for microwave applications (isolator, circulator, 
variable phase shifter, variable attenuators and switches) [21] and [60].  
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5.2 Theoretical approach 

5.2.1 Antenna configuration 
Antennas can have several configurations; linear wire antennas, loop antennas, helical 

antennas, microstrip antennas, etc. The microstrip antennas have low profile and they 
usually have light weights, simple and inexpensive to manufacture and many other 
benefits. For all these benefits, the patch antenna was chosen to study the effect of a 
magneto-dielectric substrate. The structure of the patch antenna that is depicted in Fig. 
5.2 constitutes of a circular patch on top of a magneto-dielectric substrate of height h and 
an infinite ground plane. A coaxial cable feed the antenna through the ground plane at 
distance r0 from the z-axis of the patch. The patch and the ground plane are made of 
conductors that have a finite conductivity �1. The magneto-dielectric substrate has both 
permittivity �0r and permeability µr.   
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Fig. 5.2: The configuration of the circular patch antenna and its equivalent circuit. 

 
Performance of an antenna can be described by many parameters, such as a bandwidth, 

radiation efficiency, size of the antenna, directivity, and etc. The study was limited on 
four parameters; which are the radiation efficiency, quality factor, bandwidth and the size 
of the antenna.  

 
There are several techniques to analyze the patch antenna, including the cavity model 

[61]-[63] and the transmission line model [64]-[66]. The cavity model in [61] was 
expanded in this thesis to include the magneto-dielectric substrate. The patch antenna is 
modeled as a cylindrical cavity that is bounded with perfect electric conductors (PEC) on 
the top and on the bottom, and it is bounded by a perfect magnetic conductor (PMC) on 
the side wall, while the magneto-dielectric material fills the cylinder. The height of the 
substrate is very small in comparison with the radius a and the wave length�O inside the 
substrate. So the electric field is homogenous inside the substrate and it has a z-
component, 

�InkrCJE nz cos)(�  (5.7) 

where C is a constant, Jn is the Bessel function of order n, and 0kk rr �P�H�  with k0 is the 

free-space wave number. The magnetic field H
�&

 can be calculated by using Maxwell’s 
equation, and it becomes, 
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where )(/)()( krdkrdJkrJ nn � �c . In order for the �IH  to vanish at the PMC wall the 

0)( � �ckaJn . The roots nm�F  that satisfy this condition are given in [25, pp. 205]. So the 

antenna will be resonant at the frequency fnm that is obtained by equating nmrr ak0�P�H  to 

nm�F , where anm is the radius that satisfies the boundary condition;  
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where c is the velocity of light in free-space. The electric field Ez on the PMC induces a 
surface magnetic current zz

s EEzrM 2ˆˆˆ2 �I� �u��� 
�&

 and this current is responsible for the 
radiation fields.  

5.2.2 Efficiency calculation 
The radiation efficiency �0rad of the antenna is the ratio of the radiated power Prad to the 

accepted power Pacc. The accepted power includes the radiated power, the lost power in 
the conducting disk and ground PC and the lost power in the magneto-dielectric substrate 
Pmd. So the efficiency is written as: 

mdCrad

rad
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rad

PPP
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P
P

rad ����
� � �H   (5.11) 

To calculate the far fields of the antenna, first the electric vector potentialF
�&

can be 
calculated by using [39, eq. (3-28)] and then by applying  [39, eq. (3-26)] and [39, (3-29)] 
the magnetic and the electric far fields can be found. Derneryd in [61] treats a microstrip 
disk antenna with dielectric substrate. He calculated the far fields, the conductance Grad 
that will dissipate the same power as that radiated by the disk, the dielectric losses and 
the ohmic losses in the conductors as well the input impedance of the antenna. Similar 
approach will be used to find general expressions for the ohmic loss and for the magneto-
dielectric loss for the magneto-dielectric microstrip disk antenna, while the radiated 
power will be calculated directly from Grad since this value does not depend explicitly on 
constitutive parameters of the substrate. In reference to Fig. 5.2 the radiated power is 
calculated as: 
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This is the radiated power for mode nm. The radiated power depends on the radius of 
the disk. So for a constant radius a the radiated power remains constant despite of values 
of the µr and �0r as long as the product of them is constant.  

The electric current density on the ground plane and on the disk, which have finite 
conductivities, are responsible for the ohmic losses. We assumed the electric and the 
magnetic loss tangents are small ( rr �P�P �c�����c�c  and rr �H�H �c�����c�c ), which minimizes the 
complexity of the calculations.  This loss can be calculated as following: 
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where sJ
�&

is the electric surface current density on the ground plane and on the disk, Rs is 
the skin effect resistance and n,0�G is the Kronecker delta and equals 1 for n = 0. Both the 

definition of Rs and the derivation of the ohmic power PC are given in appendix III. 
Notice that the ohmic power is inverse proportional to the 2

n�P�c. So for constant radius the 
ohmic loss decreases as the value of µr increases.  

The losses in the substrate can be divided to two losses, a magnetic loss and an electric 
loss. The sum of the magnetic and the electric losses in the substrate will be called as a 
magneto-dielectric loss. The magneto-dielectric loss power Pmd will be calculated directly 
from eq. (5.7) and (5.8) by utilizing [25, pp.24] which yields; 

�³�³
�c�c

��
�c�c

� 
V

r

V

z
r dVHdVEP

2
020

md 22

�&�P�P�Z�H�H�Z
  

� � � �2

md
22,0

0

2

md 2
1

2

)1(
tan

tan

2
1

nmnm
r

n
m

e
nm VGn

h
VP � ��

�c

��
�»
�¼

�º
�«
�¬

�ª
���# �F

�P

�G�S
�G

�Z�P
�G

 (5.15) 

where �H�H�G �c�c�c� /tan e  and �P�P�G �c�c�c� /tan m are the electric and the magnetic loss 
tangents of the substrate, respectively. The derivation of the magneto-dielectric power is 
given in appendix III. The loss in the substrate is inverse proportional tor�P�c. The loss in 
the magneto-dielectric substrate is dominated by the magnetic loss, since the electric loss 
tangent is divided by 0�Z�H. For example, at a frequency of 100 MHz the 0�Z�H is about ~ 
800, so the first term in Eq. (5.15) becomes insignificantly small and thus it can be 
neglected from the equation. After we found all the necessary conductances, the radiation 
efficiency can be calculated in terms of the conductances. Because the voltage term is 
one for all the powers, therefore it will be canceled out and thus; 
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5.2.3 Quality factor and bandwidth calculations 
The quality factor is defined as the ratio of the stored energy to the energy loss per 

cycle: 
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where �& is 2�Œ times the operating frequency f, We and Wm are the stored electric and 
magnetic energies. At resonance the magnetic energy equals the electric energy, so the 
quality factor will be calculated in term of the electric energy: 
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The quality factor Q of an antenna is an important parameter specifying the antenna 
performance, in particular, a high value of Q means that large amounts of the reactive 
energy is stored in the near zone field, and this in turn implies large currents, high ohmic 
losses, narrow  bandwidth, and large frequency sensitivity [67]. So it is preferred to 
reduce the Q value, but this value is physically limited and the lower bounds of Q for the 
first two modes are known as Chu lower bound which is given in [20]: 
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The Chu lower bound will be used to normalize the quality factor of the magneto-
dielectric antenna. Another important parameter that specifies the antenna performance is 
the bandwidth BW of an antenna. The bandwidth relates to the quality factor Q of the 
antenna and from [39, eq. (14-88a)] it can be expressed as: 

2
1

2

�*��

�*
� �*

Q
BW  (5.20) 

where�* is the maximum allowable input reflection coefficient. Most of the reactive 
energy of the patch antenna is stored inside the substrate while a small amount of the 
energy may stored outside the patch, this assumption is based on the condition that h << 
a. The total stored energy equals twice the stored electric energy at the resonance 
frequency. The stored electric energy can be calculated by utilizing [21, eq. (2.51a)]: 
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where � ^ � `r�H�H�H 0Re� �c  and V is the volume under the disk. By substituting eq. (5.7) in 
(5.21) the energy becomes as following: 
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5.3 Numerical results 
For this section in general, the substrate is taken to be lossless and the conductor is 

made of the copper. To understand the effect of the magneto-dielectric substrate on the 
performance of the patch, parameter studies will be carried where the frequency remains 
constant while the radius, µr and �0r change.  

5.3.1 Validation of the analytical formulas 
The cavity can be modeled as a parallel resonator which is shown in Fig. 5.2. The input 

impedance of the antenna is given as: 
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The capacitance Cres and the inductance Lres can be calculated from the resonance 
frequency f0 = fnm and the quality factor of the antenna Q: 
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By inserting Lres and Cres in eq. (5.23) we are able to find the real and the imaginary 
values of the input impedance Zin.  

 
The analytical solution was validated against numerical simulations by using HFSS. 

Three circular patch antennas that are resonant at 1 GHz and have radiuses a = 39.31 mm, 
are supported by three different substrates; one constitutes of a dielectric material, the 
second constitutes of magnetic materials and the third constitutes of magneto-dielectric 
materials. They have equal heights h = 1.5 mm, while the electrical properties were given 
in Tab 5.1. The structure of the circular patch antenna is depicted in Fig. 5.3.  

 

 
Fig. 5.3: The structure of the patch antenna in HFSS. 
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The antenna fed by a lumped source between the patch and the ground plane at a.  
Equation (5.10) was used to estimate the radius of the antennas which operate at the 
fundamental mode TM11. The equation provides a good estimation about the radius, but 
in the simulation the resonance frequency is shifted a little bit to the right.  Patch 
antennas usually have narrow bandwidth, so in the simulation the frequency swept 
between ±25 MHz around the resonant frequency.  

Fig. 5.4, 5.5 and 5.6 show the real and the imaginary parts of the input impedance of the 
patch antennas. The blue lines represent the results of the analytical solutions while the 
red dashed lines represent the results of the simulations. The left graphs show the cases 
where the radiuses of both the analytical and simulated solutions are equals (a = 39.31 
mm). In the right graphs, the radiuses of the analytical solutions were changed to shift the 
resonant frequencies toward the simulation results. There are good agreements between 
the simulations and the analytical solutions, where the differences between the 
impedances are small.  

The calculation of the resonant frequency by eq. (5.9) does not take into account 
fringing effect. The fringing increases the dimension of the patch, so the resonant 
frequency shifts to the left. For dielectric substrates the actual radius a will be replaced by 
and an effective radius ae which is given in [27, eq. (14-67)]; 
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The shift of the resonant frequency for the dielectric substrate is not as large as the 

other cases, where the resonant shifts 2 % for the dielectric substrate, 2.5 % for the 
magneto-dielectric substrate and 5 % for the magnetic substrate. To shift the resonant 
frequencies toward the simulated results, the radius of the patch were changed to 38.5 
mm, 37.5 mm and 38.2 mm for the antenna with dielectric, magnetic and magneto-
dielectric substrates, respectively. Tab. 5.1 shows the values of the radiation efficiencies 
�0rad and the bandwidths BW of the analytical and the simulated results. There are some 
differences between the analytical and the simulated results, but in general they seem to 
have close values. In order to design a circular patch antenna the analytical solution 
provides knowledge including the radius, the efficiency, the optimal location to match a 
feeding line and etc.  

In addition to that, each simulation in HFSS requires at least 5 min which is the time to 
make the calculations, pre-preparations are required to make the simulation and that add 
extra time, while the analytical solution can perform hundreds of calculation in few 
seconds. Therefore, the parameter investigations were carried by the analytical model.    

 
Tab. 5.1: Efficiency and bandwidth of magneto-dielectric antennas with different electrical properties 

analytical simulation 
µr �0r �0rad %  BW-10dB % �0rad % BW-10dB % 
1 5 71.8 0.6 61.1 0.5 
5 1 98.5 1.5 94.5 1.4 

2.2361 2.2361 92.9 0.8 86.6 0.8  
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Fig. 5.4: The impedance of the patch antenna with a dielectric substrate (µr = 1, �0r = 5), where the blue 
lines represent the analytical results, while the red dashed lines represent the results of the simulation 
program HFSS. 

 

Fig. 5.5: The impedance of the patch antenna with a magnetic substrate (µr = 5, �0r = 1). 

 

Fig. 5.6: The impedance of the patch antenna with a magneto-dielectric substrate (µr = �0r = 2.2361). 

 

5.3.2 Effect of µr and �0r on the efficiency  
The efficiency is an important parameter that affects the link-budged of 

communication. Small antennas usually have poor efficiencies, small bandwidth, omni-
directional pattern and very small input impedances. But the efficiency becomes a very 
important issue for a communication system that has limited power supply, such as 
hearing-aid devices, in/on body sensors or other small devices. Fig. 5.7 shows the 
efficiency in percent of the fundamental and the second modes (TM11 and TM21), where 
the horizontal axis is values of µr, the vertical axis is the values of �0r and the color is the 
scalar value of the efficiency. The dashed line represents the cases where the radius a was 
kept constant, while both µr and �0r change according to eq. (5.10).  
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Fig. 5.7: Radiation efficiency of the TM11 (left) and TM21 (right). 

 
By viewing the cases where a is constant we notice the following; a) the efficiency 

increases as µr increases for the TM11 and TM21, b) for a constant �0r the efficiency 
increases as µr increases until it saturates at certain values of µr for the second mode 
TM21 and c) we expect TM11 to have saturation but for higher values of �0r than that for 
TM21. The increment of the efficiency happen, because of the reduction in the electric 
currents on the patch and on the ground-plane, since the substrate was assumed to be 
lossless (Pmd = 0) and the radiated power Prad is constant, because it depends only on the 
radius a. So according to eq. (5.16) the denominator becomes small as µr increases, 
which leads to the conclusion that PC becomes small as µr increases. This result had been 
found for a rectangular patch antenna numerically in [68].   

5.3.3 Effect of µr and �0r on the quality factor 
The quality factors were also calculated for lossless substrates, where Fig. 5.8 shows 

the ratio of the quality factor Q to the Chu lower bounds QChu,11 and QChu,21 which are 
given by eq. (5.13a) and (5.13b), respectively. The Chu lower bounds depend only on the 
radius of the sphere that surrounds the antenna, so for the cases where the radiuses were 
kept constant the Chu lower bounds remain constants.  

 

Fig. 5.8: Ratio of the quality factor to the Chu lower bound of the TM11 (left) and TM21 (right). 
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That ratios of the TM11 and TM21 are almost similar, as we follow the dashed line the 
ratio decreases as µr or �0r increases but the reduction of the ratio is faster for the increase 
of µr than for the increase of �0r. Since the Chu lower bounds are constants on the dashed 
lines, that means the reduction of the quality factor Q are faster than the reduction of the 
Chu lower bounds. The increment of �0r results in high ohmic loss PC which leads to a 
small Q, while the increment of µr results in small ohmic loss PC which leads to a high Q. 
Since the Q decreases, so the increment of µr minimizes the total stored energy in the 
system. The minimum quality factor is almost 7 times the Chu lower bound, which is not 
a small value because the patch occupies a small fraction of the sphere that surrounds the 
antenna. 

5.3.4 Effect of µr and �0r on the bandwidth  
Here we shall study the effect of the electrical properties of the magneto-dielectric 

substrates on the bandwidths of the antenna. The bandwidth increases as the µr increases 
for both of the modes, and decreases as the �Hr increases.  

 

Fig. 5.9: Bandwidth of the TM11 (left) and TM21 (right). 

 
We notice that the highest bandwidth is almost 1.5 % for the TM11 and smaller than 0.6 

% for the TM21. The pattern of the of the bandwidth for TM11 is different from the pattern 
of the  TM21, where for a constant �0r the bandwidth increases as µr increases until BW 
saturates at certain µr for TM11, while the bandwidth decreases as µr increases for TM21. 
For the cases on the dashed lines, the bandwidth increases as µr increases for both TM11 
and TM21.  

 

5.3.5 Lossy substrate 
The magneto-dielectric substrate can have a high loss tangent [50] and [66]. It is 

possible to find dielectric substrates with high �Hr and small electrical loss tangents tan�/e 
around 0.001. We will compare the performances of a patch antenna with a lossy 
magneto-dielectric substrate to the performances of an antenna with a low loss dielectric 
substrate. The calculations are carried out with HFSS. The refractive index n of the 
magneto-dielectric and the dielectric substrate is kept equal, while the loss tangent is 
taken to reflect realistic values. Both antennas have the same dimensions and they are fed 
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through a lossless lumped component matching circuitry. A radiation boundary was used 
to calculate the efficiency of the antennas and the bandwidths were read from the S11 
graphs.  

 
Fig. 5.10 shows both the efficiency and the bandwidth results of the numerical 

solutions. The height of the antennas is kept constant h = 1.5 mm, and the radii are 
determined for an operation frequency of 1 GHz. Equation (5.7) can be used to estimate 
the radius of the antenna and during the simulation small adjustment on the radius is 
necessary to shift the resonant frequency toward 1 GHz. The ground plane and the patch 
are taken to be made of copper which reveals the advantage of using magneto-dielectric 
substrate. The black line is for a patch antenna with dielectric substrate. This antenna will 
be used as a reference for the comparison. The simulated antennas have dielectric 
substrate (�Hr=2, µr=1), magneto-dielectric substrates (�Hr=2, µr=2) and (�Hr=2, µr=4). The 
areas of these antennas compare with the reference antenna are 1:1, 1:2 and 1:4. The 
antennas with the magneto-dielectric substrates will be divided into two groups; a group 
with constant electrical loss tangent tan�/e = 0.001 while the magnetic loss tangent tan�/m 
varies, and a group with tan�/e = tan�/m. The antennas of the first group (the blue and the 
green lines) have higher efficiencies than the reference antenna (black line), while they 
have almost the same bandwidth. The antennas of the second group (the red and the cyan 
lines) have less or comparable efficiencies to the reference antenna and the bandwidth of 
these antennas are wider than the bandwidth of the reference antennas, especially for the 
high loss cases. This can be understood from equations (5.8) and (5.10), where the 
increase in Pmd reduces the total quality factor and this leads to an increase in the 
bandwidth. The antennas of the first group are almost 10 % more efficient than the 
antennas of the second group. At low tan�/e the bandwidths of the two groups are almost 
comparable, while the bandwidth of the second group is almost 20 % wider than the 
bandwidth of the first group at high tan�/e. For the same dielectric losses the efficiency of 
the antennas increases as the permeability µr increases, while the bandwidths are almost 
unchanged. This agrees with the analytical results of the fundamental mode (1,1).  
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Fig. 5.10: The efficiency and the bandwidth for lossy magneto-dielectric antennas. All the antennas are 
supported by substrates that have �Hr = 2, while different µr and tan�/e have been taken. The index i = m 
for the magnetic loss tangent and i = e for the electric loss tangent. The blue and the green lines are 
related to substrates having constant tan�/e = 0.001, and µr = 2 and 4, respectively, while both the red and 
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the cyan lines are related to tan�/m = tan�/e = [0.001, 0.005, 0.01, 0.05, 0.1], and µr = 2 and 4, respectively. 
The black line is related to dielectric substrates, which have �Hr = 2, µr = 1 and tan�/m  = 0. 

 
Since it is possible to find dielectric substrates with low tan�/e, two other antennas have 

been also simulated, where the substrates have (�Hr=4, µr=1), (�Hr=8, µr=1) and tan�/e = 
0.001. The efficiencies of these antennas are 56.5 % and 43.8 %, and the bandwidths are 
0.7 % and 0.4 %. The sizes of these antennas are comparable to the sizes of the magneto-
dielectric antennas with (�Hr=2, µr=2) and (�Hr=2, µr=4). Fig. 5.10 shows the differences 
between the efficiencies and the bandwidths of the antennas with the magneto-dielectric 
substrates and the antennas with the dielectric substrates of the same sizes. We see the 
same behavior here where the magneto-dielectric substrate with high µr and low losses 
provide good efficiency. As long the losses increase, which is the case for many ferrite 
composites, the efficiency degrades.  
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Fig. 5.11: The differences of the efficiencies and the bandwidth of the magneto-dielectric antennas in 
fig. 5 and antennas with dielectric substrates that have same sizes as the magneto-dielectric antennas. 
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6 Summary and conclusions 

6.1 Ear-to-ear communication   
The theoretical work focused on establishing a simple model for the communication 

between two antennas near a head. The model investigates the general nature of the 
communication in a qualitative way, whereas detailed and quantitative investigations 
require a more complicated model. Thus the head was modeled as a homogenous sphere 
and the antennas were modeled as electric/magnetic hertzian dipole antennas. The 
electromagnetic fields were expanded in terms of spherical vector wave functions. The 
dissipated and the radiated power were calculated, and the path-loss was defined in terms 
of the scattering coefficients for four cases; a z-oriented electric hertzian dipole antenna 
(EHDz), a z-oriented magnetic dipole antenna (MHDz), an x-oriented electric hertzian 
dipole antenna (EHDx) and an x-oriented magnetic hertzian dipole antenna (MHDx). The 
convergence of the solutions was tested and it was found that source and observation 
close to scatterer problem requires a large number of modes. The spherical model was 
used to generate 2D plots of the fields inside and outside the sphere. The plots provided 
information about the communication channels, such as the locations of the channels, the 
type of propagation and the polarization of the waves close to the sphere. The plots 
showed two channels; one is through the head and one is around it. The inside waves 
were subjected to high attenuation that makes the contribution of these waves in the 
communication insignificant. The outside communication channel used surface-bound 
waves to transmit signals between the antennas. It was found, at least for the studied 
frequencies, that the EHDz generated surface waves have orthogonal polarizations, while 
the EHDx and MHDz generated surface magnetic waves of mixed polarizations and the 
MHDx generated surface magnetic waves of tangential polarizations. The term “magnetic 
polarization” was used, because the transmitting and the receiving antennas were 
magnetic dipoles. The values of the path-loss for EHDz and MHDx were low (-10 dB for 
EHDx and -27 dB at 1 GHz), and high for the MHDz and EHDx (-65 dB for MHDz and -
50 dB for EHDx at 1GHz). This is due to the coupling of the receiving antennas with the 
surface waves. The first two antennas had orientations that were parallel with the 
polarizations of the surface waves, while the latter two antennas had orientations that are 
almost orthogonal with the polarizations of the surface waves. So we came to the 
following conclusions: 

 
1. Ear-to-ear wireless communications take place outside the head. 
2. The communications take place through surface waves that run on the surface 

of the head. 
3. Path-loss can be minimized by generating surface waves of polarizations that 

are parallel to the orientation of the receiving antenna. 
 
In the second part of the study, experimental investigations were carried to measure the 
path-loss. A measurement setup consisting of a network analyzer, a set of antennas and a 
standard SAM phantom head, were arranged. Most of the designed antennas were 
dipoles, because they had been used to make comparisons with the theoretical results. 
Different baluns were designed to prevent the surface currents on the feed cables from 
corrupting the measurements. Performances of the antennas and the baluns were 



 61

characterized by measurements and simulations. The measurements of the path-loss took 
place near the head at different locations and frequencies and the path-losses of the head 
were found to be -40 dB at 920 MHz, -50 dB at 1.5 GHz, -65 dB at 2.45 GHz and -60 dB 
at 3.225 GHz. These values correspond to the antenna on the head. A comparison of the 
measurements and the theoretical computation shows good agreements between them.  
 
The investigations show that the surface-bound waves are the main mechanism in the ear-
to-ear wireless communication, and the path-loss values depend on the quality of the 
coupling between the polarizations of the surface-bound waves and the receiving antenna. 
Therefore, to minimize the path-loss, it is important to design antennas that generate 
surface-bound waves of polarizations that coincide with the polarization of the antennas. 
It is better to work in the frequency range between 1 GHz and 3 GHz, where the path-loss 
is smaller than -35 dB and the efficiency of the antennas are acceptable in this range.  
 
In this subject, I suggest using of different orientations and other types of antennas, like 
loop antennas or monopoles. For future work, different orientations and different antenna 
types shall be considered, where loop antennas and monopoles can be use to measure the 
path-loss.  

6.2 Magneto-dielectric antenna 
For the magneto-dielectric antenna, an analytical method was used to study the effects of 
magneto-dielectric materials on the performances (the efficiency, the bandwidth and the 
quality factor) of an antenna. A circular patch antenna was chosen for the study. The 
antenna was modeled as a cylindrical cavity filled with the magneto-dielectric material. 
Analytical formulas for the efficiency, the bandwidth and the quality factor were derived, 
and they were validated against numerical simulations by HFSS. The analytical solution 
can handle low-loss substrates, while it can not treat high-losses cases. Parameter studies 
were carried to find the optimal performances of the antenna, where both µr and �Hr vary 
between 1 and 5. An increase of µr gives best performances, where the efficiency 
increase as well does the bandwidth which increases or at least remains constant while 
the size of the antenna reduces. An increase of µr results also in minimizing the stored 
energy, and that leads to minimize the quality factor. The increase of �Hr degrades the 
performances of the antenna, where the efficiency and the bandwidth decrease, as well 
does the quality factor which increases, and that results in increasing the stored energy. 
High loss tangent degrades the performances of the patch antennas.  
 
It is possible to find substrates with high dielectric constant and yet with a small loss 
tangent, but it is difficult to find a magneto-dielectric substrate that has a small loss 
tangent. Both the quality factor and the bandwidth increase as the loss tangent increases, 
but the efficiency becomes small. The magneto-dielectric materials have potentials to 
replace the conventional dielectric materials, but they have problems which can be 
overcome with time. 
 
This subject is not a new one, but it did not investigated as should be. The analytical 
model should be developed to include high-loss cases. Different antennas should be 
considered, like loop or helix antennas. In addition the theoretical investigation, 
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experimental works should use ferrite, but at low frequencies where the loss of the ferrite 
is small, or split ring resonators as magneto-dielectric materials.  
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A Spherical vector wave functions 
 

 
General spherical wave functions 
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Orthogonality of spherical wave functions 
 
Vector product: 
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Product of radial components: 
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Product of tangential components: 
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Scalar product: 
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B Sources coefficients  
 
 

x-oriented electric dipoles 
In the previous sections we used the reciprocity theorem to find the coefficients of the 

z-oriented electric and magnetic dipole. Another method can be used to find the 
coefficients by using the rotation and translation coefficients which are given in [3]. In 
this section and in the next section we will use this method to find the)(ci

smnQ  coefficients of 
the x-oriented electric and magnetic dipoles. 

An x-oriented electric dipole that is located at the origin of the coordinate system has 
the Q coefficients [3, eq. (2.124)]: 
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In [3, app. A3] there is a good explanation of how to apply the translation algorithm, so 
we don’t need to repeat it again. The translation coefficients )(21 c

smnC  can be found by 
applying symmetry property [3, eq. (A3.10)] and special cases [3, eq. (A3.20)] and [3, eq. 
(A3.21)], and the C coefficients become: 
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where the radial function R is defined by eq. (A.3). So the )(ci
smnQ coefficients become: 
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We get the same Q coefficients by applying the reciprocity theorem.  
 
x-oriented magnetic dipoles 

The translation coefficients )(21 c
smnC and the )(ci

smnQ coefficients of the x-oriented magnetic 
dipole are calculated using the rotation and translation method: 
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z-oriented magnetic dipole 
The coefficients of the scattered and the total are calculated to be: 
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x-oriented electric dipole 

The coefficients of the scattered and the total are calculated to be: 
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x-oriented magnetic dipole 

The coefficients of the scattered and the total are calculated to be: 
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Reproducing of Stratton’s results 
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In this section, we will reproduce the results that are derived by Stratton for a plane 
wave scattered by a dielectric sphere. For this purpose, the variables were transformed to 
agree Stratton’s notations, 
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we then replace the parameters in (2.38b) and (3.39b), and the coefficients becomes, 
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For the TE mode (s = 1), the scattering coefficient becomes, 
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and for the TM mode (s = 2), eq. (B.21) becomes, 

)()()()(

)()()()(
)3(
,3

)1(
0

)3()1(
,30

)1()1(
,30

)1(
,3

)1(
0

�U�U�P�H�U�U�H�H

�U�U�H�H�U�U�P�H
�D

nssnrsnnsr

snnsrnssnr
smn

RNRRNR

RNRRNR

����

����

��

��
�  

 
� > � @ � > � @

� > � @� > � @)()(
1

)(
1

)(

)(
1

)()()(
1

)1(
0

)1(
0

00

2

�U�U�U
�U

�P�H�U�U
�U

�U�H�H

�U�U
�U

�U�H�H�U�U�U
�U

�P�H
�D

nnrnnr

nnrnnr

mn

hNjN
N

hNj

jNjjNjN
N

�c��
�c

�c���c

�  

� > � @� > � @

� > � @� > � @)()(
1

)()(

)()()()(
1

)1()1(
2

�U�U�U�P�U�U�U�H

�U�U�U�H�U�U�U�P
�D

nnrnnr

nnrnnr

mn

hNjN
N

NhNjN

jNjNjNjN
N

N

�c��
�c

�c���c

�  

� > � @ � > � @
� > � @� > � @�c

���c

�c���c
��� 

)()()()(

)()()()(
)1()1(

2

�U�U�U�H�U�U�U

�U�U�U�H�U�U�U
�D

nnrnn

nnrnn
mn

hNjhNjN

jNjjNjN
 (B.24) 



 73

We re-write (II-14a) to agree with Stratton notations, 
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Both equations (B.23) and (B.25) agree with the results that had been found by Stratton. 
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C Closed forms of the sources 
 
 
Here we shall derive the fields of the dipole antennas by using the closed form method. 

An infinitesimal dipole antenna is positioned at z = -r0 has a current distribution: 
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The definition of the delta function�� ��rr
�&�&
�c���G  is given in [32, eq. (14-167)], wherep̂ is a 

unit vector for the orientation of the dipole, de,m is the dipole moment, the index e 
represents the electric dipole, m represents the magnetic dipole and �/ is the Dirac delta 
function. The time factor � � � �tj�Zexp  is used to derive the closed form equations.The 

electric vector potentialA
�&

becomes: 
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Then the magnetic and the electric fields of the dipole can be calculated using 
Maxwell’s equations and the formula in [26, eq. (3-29)]: 
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By inserting eq. (C.2) in (C.3) and (C.4), we found the electric and the magnetic fields 
of the electric dipole which is oriented in the z-direction: 
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The electric vector potentialF
�&

is related to the magnetic vector potentialA
�&

by the 
following relation: 
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To calculate the electric and the magnetic fields from the electric vector potential we 
use the following relations: 
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By inserting (C.8) in (C.9) and using (C.5), we found the following relations between 
fields of the magnetic and the electric dipoles: 
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Eq. (C.11) and (C.12) are general relations and they are independent of the directions. 
So we will use the equations also with the x-oriented dipoles. 
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D Fields distributions 
 
 
In this appendix, the plots of the fields distributions are given for the z-oriented 

magnetic dipole antenna (MHDz), x-oriented electric dipole antenna (EHDx) and z-
oriented magnetic dipole antenna (MHDz). The electrical property effects on the S21 will 
be also given. All the plots were generated by the theoretical model. 
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MHDz 
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Fig. D.1: The results for a z-oriented magnetic dipole near a dielectric sphere. Amplitude in dB. The 
horizontal axis is the x-axis and the vertical axis is the z-axis. 
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EHDx (E-plane) 
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Fig. D.2:  Amplitude in dB for the electric and the magnetic fields of the x-oriented electric dipole near 
the dielectric sphere. The horizontal axis is the x-axis and the vertical axis is the z-axis. 
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EHDx (H-plane) 
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Fig. D.3: Amplitude in dB for the electric and the magnetic fields of the x-oriented electric dipole near 
the dielectric sphere. The horizontal axis is the y-axis and the vertical axis is the z-axis. 
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MHDx (H-plane) 
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Fig. D.4: Amplitude in dB for the electric and the magnetic fields of the x-oriented magnetic dipole near 
the dielectric sphere. The horizontal axis is the x-axis and the vertical axis is the z-axis. 
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MHDx (E-plane) 
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Fig. D.5: Amplitude in dB for the electric and the magnetic fields of the x-oriented magnetic dipole near 
the dielectric sphere. The horizontal axis is the y-axis and the vertical axis is the z-axis. 
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Electrical properties effects 
 

  

  
Fig. D.6: The normalized S21 at 400 MHz. 

 

  

  
Fig. D.7: The normalized S21 at 2.45 GHz. 
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E Power calculations of the magneto-dielectric 
antenna 

 
 

Ohmic power PC 
The fields under the microstrip disk are given by eq. (4.1) and (4.2). The electric 

surface current on conductors leads to the ohmic loss, similar to [21, pp. 498-499] the 
ohmic power PC can be found as: 
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where Rs is skin effect resistance and �1 is the conductivity of the ground plane and the 
disk. Since the electric current density is Hz

�&
�uˆ on the ground plane and Hz

�&
�u�� ˆ on the 

disk. After substituting from eq. (4.2) the general expression of the ohmic power for any 
mode becomes: 
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Since we assume the loss tangent is very small ( rr �P�P �c�����c�c  and rr �H�H �c�����c�c ), and to 

minimize the complexity of the calculations we assume the wave number rrkk �H�P �c�c�# 0 . 
Integration by parts the first term gives the following: 
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where B.C. is an short form of boundary condition. Reference to [1, eq. (6.5.4)] the 
differential equation in the integral term is: 
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So the integration becomes: 
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The ohmic power for mode n becomes: 
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Magneto-dielectric power Pmd 

While the power loss in the substrate which is the magneto-dielectric power will be 
calculated as two separate losses, a loss because of the imaginary part of the dielectric 
constant and a loss because of the imaginary part of the permeability. The sum of these 
losses, precisely the loss of the dielectric constant and the loss of the magnetic constant, 
will give the loss of the magneto-dielectric substrate: 
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By substituting eq. (4.1) and (4.2) in (E.6) we get the following: 
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The second term in eq. (E.7) can be treated as eq. (E.1), while the integration of the first 
term is a straightforward integration. So the magneto-dielectric power becomes: 
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F HFSS simulation and measurement results 
 
 
The plots of the fields distributions for the Ant. 1 near SAM phantom head. The fields 

were generated by HFSS. 
 
 

  
(a) (b) 

  
(c) (d) 

Fig. F.1: Simulated magnitude of the complex (a) and (c), and the real (b) and (d), electric fields that 
radiated by Ant. 1. The color scale ranges from 0 V/m (black) to 1 V/m (white) of the electric field. The 
plots (a) and (b) show top view, while (c) and (d) show the front view. 
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(a) (b) 

Fig. F.2: Computed magnitude of the complex (a) and the real (b) electric fields that radiated by a 
tangential electric dipole, where it radiate 0.5 W. The color scale ranges from 0 (black) to 5 V/m (white) 
of the electric field. The antenna is 1 cm away from the surface of the sphere which has a radius a = 9.3 
cm.  
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(e) (g) 

Fig. F.3: The measured reflection coefficient S11 of (a) Ant. 1, (b) Ant. 2, (c) Ant. 3 and (d) Ant. 4, while 
(e) and (g) show the measured and the simulated S11 of Ant. 5 and Ant. 3, respectively. The dashed line 
is the simulated S11 for the antenna fed without a cable, while the doted line corresponds to the antenna 
fed by a cable. 
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Fig. F.4: Simulation (a) of a Z-dipole antenna mounted with wideband coaxial balun, whereas figure (b) 
and (c) shows the measured S11 and S21 in free-space and near SAM phantom head. The simulation was 
carried by CST [56]. The dimensions of the antenna are: l1 = 6 cm, l2 = 4 cm, b = 6.25 cm and �� = 60 
deg.  

 
 
 
 
 
 
 



 90 

960 980 1000 1020
-75

-70

-65

-60

-55

f [MHz]

S
21

 [d
B

]
HFSS

960 980 1000 1020
-75

-70

-65

-60

-55

f [MHz]

S
21

 [d
B

]
HFSS

960 980 1000 1020

-10

-5

0

f [MHz]

S
11

 [d
B

]

p

HFSS

960 980 1000 1020

-10

-5

0

f [MHz]

S
11

 [d
B

]

p

HFSS

(a) (b) 
Fig. F.5: The measured and the simulated S21 (a) and S11 (b) for Ant. 5, where as figure (c) shows the 
path-loss for frequency range from 941 MHz to 1027 MHz.  
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(g) (h) (i) 
Fig. F.6: Measured S21 between 990 and 1016 MHz for Ant. 5. The vertical axes are the sample number 
and the horizontal axes are the S21. Figures (a), (b) and (c) correspond to the distance from the head, 
while (d) to (f) correspond to the orientation of the antenna with respect to the head. The last two figures 
(g) and (h) correspond to the height. All the parameters are defined in figure (i).      
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(c) (d) 
Fig. F.7: Simulated (a) and measured (b)  S11 and S21 of the antenna in (d), where figure (c) shows the 
measured PL as function of the lback. The green lines in figure (b) are the S-parameters near SAM 
phantom head and the red lines are the S-parameters in free-space. 
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G Matlab scripts  
In this section all the used Matlab scripts that are used in this thesis will be given. The 

programs are given as scripts with numbers start from 1 to 16: 
 
- Script 1 is an algorithm that calculates the spherical function that is defined by eq. 

(A.3). 
- Scripts 2 and 3 are algorithms that calculate the theta and the phi components of the 

spherical wave function which are defined by eq. (A.1). 
- Scripts 4, 5 and 6 are algorithms that calculate the radial, the theta and the phi 

components of the spherical wave function which are defined by eq. (A.2). 
- Script 7 is an algorithm that calculates the rotation coefficient which is defined by 

eq. (2.42). 
- Script 8 is an algorithm that calculates the translation coefficient. 
- Scripts 9 to 12 are algorithms that calculate the electric, the magnetic and the power 

density of EHDz, EHDx, MHDz and MHDx near a dielectric sphere. 
- Script 13 is an algorithm that calculates the electric and the magnetic fields for 

EHDz after translation and rotation of the coordinate system. This script uses scripts 
14 to 16. 

- Scripts 14 to 16 are algorithms that calculate the spherical wave function 
components which are defined by eq. (A.1) and (A.2). 
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Script 1 
This script calculates the spherical functions )()( krR c

sn  [19, eq. (A1.6)]. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Input:                   % 
% s     : is the type of mode which can be 1 or 2.            % 
% c     : takes values 1 to 4 to describe the type of the wave.           % 
% n     : is the mode number which is different from zero.           % 
% kr    : is the product of wave-number and the translation distance.          % 
%                   % 
% Output:                  % 
% R     : is the spherical coefficient.                         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
function  R=Rfunc(s,c,n,kr)  
if (s==1)  
    R=sbessel(c,n,kr);  
else  
    R=sbessel(c,n,kr)./kr + dbessel(c,n,kr);  
end  
  
function  zn=sbesself(c,n,kr)  
if (c==1)  
    zn=sqrt(pi./(2.*kr)).*besselj(n+.5,kr);  
end  
if (c==2)  
    zn=sqrt(pi./(2.*kr)).*bessely(n+.5,kr);  
end  
  
  
function  zn=sbessel(c,n,kr)  
if (c==1)  
    zn=sbesself(c,n,kr);  
end  
if (c==2)  
    zn=sbesself(c,n,kr);  
end  
if (c==3)  
    zn=sbesself(1,n,kr)+j*sbesself(2,n,kr);  
end  
if (c==4)  
    zn=sbesself(1,n,kr)-j*sbesself(2,n,kr);  
end  
  
function  db=dbessel(c,n,kr)  
db = (n)./kr.*sbessel(c,n,kr) - sbessel(c,n+1,kr);  
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Script 2 
The first function (F1n_theta) is the main function while the remain functions are sub-
function which are used by the main function. This program calculates �T�I�T ˆ),,()(

1 �˜rF c
mn

�&
, 

[19, eq. (A1.45)]. 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Input:                   % 
% c     : takes values 1 to 4 to describe the type of the wave.           % 
% n     : is the mode number which is different from zero.           % 
% m    : is the mode number which is nm �d .             % 

% kr    : is the product of wave-number and the radial distance.          % 
% theta: is the position angle (radian).              % 
% phi   : is the position angle (radian).              % 
%                   % 
% Output:                  % 
% F1n  :This is the theta component of the wave function where s = 1.         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function  F1n=F1n_theta(c,m,n,kr,theta,phi)  
  
F1n = mFun(m)*1/sqrt(2*pi)*sqrt(1/(n*(n+1)))*NormLegCoef(n,m)* ...  
    
sbessel(c,n,kr).*j.*m.*legendre_(n,m,cos(theta))./sin(theta).*exp(j*m*p
hi);  
  
function  mm=mFun(m) 
if (m==0)  
    mm=1;  
else  
    mm=(-m/abs(m))^(m);  
end  
  
function  zn=sbesself(c,n,kr)  
if (c==1)  
    zn=sqrt(pi./(2.*kr)).*besselj(n+.5,kr);  
end  
if (c==2)  
    zn=sqrt(pi./(2.*kr)).*bessely(n+.5,kr);  
end  
  
  
function  zn=sbessel(c,n,kr)  
if (c==1)  
    zn=sbesself(c,n,kr);  
end  
if (c==2)  
    zn=sbesself(c,n,kr);  
end  
if (c==3)  
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    zn=sbesself(1,n,kr)+j*sbesself(2,n,kr);  
end  
if (c==4)  
    zn=sbesself(1,n,kr)-j*sbesself(2,n,kr);  
end  
  
function  P=legendre_(n,m,x)  
n=abs(n);  
m=abs(m);  
if (n>=abs(m))  
P=(-1)^m*legendre(n,x);  
P=P(m+1,:);  
else  
    P=zeros(size(x));  
end  
  
function  nL=NormLegCoef(n,m)  
m=abs(m);  
nL=sqrt((2*n+1)/2*factorial(n-m)/factorial(n+m));  
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Script 3 
This program calculates �I�I�T ˆ),,()(

1 �˜rF c
mn

�&
, [19, eq. (A1.45)]. 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Input:                   % 
% c     : takes values 1 to 4 to describe the type of the wave.           % 
% n     : is the mode number which is different from zero.           % 
% m    : is the mode number which is nm �d .             % 

% kr    : is the product of wave-number and the radial distance.          % 
% theta: is the position angle (radian).              % 
% phi   : is the position angle (radian).              % 
%                   % 
% Output:                  % 
% F1n  :This is the phi component of the wave function where s = 1.                 % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
function  F1n=F1n_phi(c,m,n,kr,theta,phi)  
  
  
F1n = -mFun(m)*1/sqrt(2*pi)*sqrt(1/(n*(n+1)))*NormLegCoef(n,m)* ...  
    sbessel(c,n,kr).*dlegendre(n,m,cos(theta)).*exp(j*m*phi);  
  
function  mm=mFun(m) 
if (m==0)  
    mm=1;  
else  
    mm=(-m/abs(m))^(m);  
end  
  
function  zn=sbesself(c,n,kr)  
if (c==1)  
    zn=sqrt(pi./(2.*kr)).*besselj(n+.5,kr);  
end  
if (c==2)  
    zn=sqrt(pi./(2.*kr)).*bessely(n+.5,kr);  
end  
  
  
function  zn=sbessel(c,n,kr)  
if (c==1)  
    zn=sbesself(c,n,kr);  
end  
if (c==2)  
    zn=sbesself(c,n,kr);  
end  
if (c==3)  
    zn=sbesself(1,n,kr)+j*sbesself(2,n,kr);  
end  
if (c==4)  
    zn=sbesself(1,n,kr)-j*sbesself(2,n,kr);  
end  
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function  P=legendre_(n,m,x)  
n=abs(n);  
m=abs(m);  
if (n>=abs(m))  
P=(-1)^m*legendre(n,x);  
P=P(m+1,:);  
else  
    P=zeros(size(x));  
end  
  
function  dP=dlegendre(n,m,x)  
n=abs(n);  
m=abs(m);  
if (m==0)  
    dP=-legendre_(n,1,x);  
else  
    dP=1/2*((n-m+1)*(n+m)*legendre_(n,m-1,x)-legendre_(n,m+1,x));  
end  
  
function  nL=NormLegCoef(n,m)  
m=abs(m);  
nL=sqrt((2*n+1)/2*factorial(n-m)/factorial(n+m));  
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Script 4 
This program calculates rrF c

mn ˆ),,()(
2 �˜�I�T

�&
, [19, eq. (A1.46)]. 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Input:                   % 
% c     : takes values 1 to 4 to describe the type of the wave.           % 
% n     : is the mode number which is different from zero.           % 
% m    : is the mode number which is nm �d .             % 

% kr    : is the product of wave-number and the radial distance.          % 
% theta: is the position angle (radian).              % 
% phi   : is the position angle (radian).              % 
%                   % 
% Output:                  % 
% F2n  :This is the radial component of the wave function where s = 2.         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
function  F2n=F2n_r(c,m,n,kr,theta,phi)  
  
F2n = mFun(m)*1/sqrt(2*pi)*sqrt(1/(n*(n+1)))*NormLegCoef(n,m)* ...  
    
n*(n+1)./kr.*sbessel(c,n,kr).*legendre_(n,m,cos(theta)).*exp(j*m*phi);  
  
function  mm=mFun(m) 
if (m==0)  
    mm=1;  
else  
    mm=(-m/abs(m))^(m);  
end  
  
function  zn=sbesself(c,n,kr)  
if (c==1)  
    zn=sqrt(pi./(2.*kr)).*besselj(n+.5,kr);  
end  
if (c==2)  
    zn=sqrt(pi./(2.*kr)).*bessely(n+.5,kr);  
end  
  
  
function  zn=sbessel(c,n,kr)  
if (c==1)  
    zn=sbesself(c,n,kr);  
end  
if (c==2)  
    zn=sbesself(c,n,kr);  
end  
if (c==3)  
    zn=sbesself(1,n,kr)+j*sbesself(2,n,kr);  
end  
if (c==4)  
    zn=sbesself(1,n,kr)-j*sbesself(2,n,kr);  
end  
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function  P=legendre_(n,m,x)  
n=abs(n);  
m=abs(m);  
if (n>=abs(m))  
P=(-1)^m*legendre(n,x);  
P=P(m+1,:);  
else  
    P=zeros(size(x));  
end  
  
function  nL=NormLegCoef(n,m)  
m=abs(m);  
nL=sqrt((2*n+1)/2*factorial(n-m)/factorial(n+m));  
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Script 5 
This program calculates �T�I�T ˆ),,()(

2 �˜rF c
mn

�&
, [19, eq. (A1.46)]. 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Input:                   % 
% c     : takes values 1 to 4 to describe the type of the wave.           % 
% n     : is the mode number which is different from zero.           % 
% m    : is the mode number which is nm �d .             % 

% kr    : is the product of wave-number and the radial distance.          % 
% theta: is the position angle (radian).              % 
% phi   : is the position angle (radian).              % 
%                   % 
% Output:                  % 
% F2n  :This is the theta component of the wave function where s = 2.         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
function  F2n=F2n_theta(c,m,n,kr,theta,phi)  
  
  
F2n = mFun(m)*1/sqrt(2*pi)*sqrt(1/(n*(n+1)))*NormLegCoef(n,m)* ...  
    (sbessel(c,n,kr)./kr + dbessel(c,n,kr)).* ...  
    dlegendre(n,m,cos(theta)).*exp(j*m*phi);  
  
  
function  mm=mFun(m) 
if (m==0)  
    mm=1;  
else  
    mm=(-m/abs(m))^(m);  
end  
  
function  zn=sbesself(c,n,kr)  
if (c==1)  
    zn=sqrt(pi./(2.*kr)).*besselj(n+.5,kr);  
end  
if (c==2)  
    zn=sqrt(pi./(2.*kr)).*bessely(n+.5,kr);  
end  
  
  
function  zn=sbessel(c,n,kr)  
if (c==1)  
    zn=sbesself(c,n,kr);  
end  
if (c==2)  
    zn=sbesself(c,n,kr);  
end  
if (c==3)  
    zn=sbesself(1,n,kr)+j*sbesself(2,n,kr);  
end  
if (c==4)  
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    zn=sbesself(1,n,kr)-j*sbesself(2,n,kr);  
end  
  
function  P=legendre_(n,m,x)  
n=abs(n);  
m=abs(m);  
if (n>=abs(m))  
P=(-1)^m*legendre(n,x);  
P=P(m+1,:);  
else  
    P=zeros(size(x));  
end  
  
function  db=dbessel(c,n,kr)  
db = (n)./kr.*sbessel(c,n,kr) - sbessel(c,n+1,kr);  
  
function  dP=dlegendre(n,m,x)  
n=abs(n);  
m=abs(m);  
if (m==0)  
    dP=-legendre_(n,1,x);  
else  
    dP=1/2*((n-m+1)*(n+m)*legendre_(n,m-1,x)-legendre_(n,m+1,x));  
end  
  
function  nL=NormLegCoef(n,m)  
m=abs(m);  
nL=sqrt((2*n+1)/2*factorial(n-m)/factorial(n+m));  
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Script 6 
This program calculates �I�I�T ˆ),,()(

2 �˜rF c
mn

�&
, [19, eq. (A1.46)]. 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Input:                   % 
% c     : takes values 1 to 4 to describe the type of the wave.           % 
% n     : is the mode number which is different from zero.           % 
% m    : is the mode number which is nm �d .             % 

% kr    : is the product of wave-number and the radial distance.          % 
% theta: is the position angle (radian).              % 
% phi   : is the position angle (radian).              % 
%                   % 
% Output:                  % 
% F2n  :This is the phi component of the wave function where s = 2.                     % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
function  F2n=F2n_phi(c,m,n,kr,theta,phi)  
  
  
F2n = mFun(m)*1/sqrt(2*pi)*sqrt(1/(n*(n+1)))*NormLegCoef(n,m)* ...  
    (sbessel(c,n,kr)./kr + dbessel(c,n,kr)).* ...  
    j.*m.*legendre_(n,1,cos(theta))./sin(theta).*exp(j*m*phi);  
  
function  mm=mFun(m) 
if (m==0)  
    mm=1;  
else  
    mm=(-m/abs(m))^(m);  
end  
  
  
function  zn=sbesself(c,n,kr)  
if (c==1)  
    zn=sqrt(pi./(2.*kr)).*besselj(n+.5,kr);  
end  
if (c==2)  
    zn=sqrt(pi./(2.*kr)).*bessely(n+.5,kr);  
end  
  
  
function  zn=sbessel(c,n,kr)  
if (c==1)  
    zn=sbesself(c,n,kr);  
end  
if (c==2)  
    zn=sbesself(c,n,kr);  
end  
if (c==3)  
    zn=sbesself(1,n,kr)+j*sbesself(2,n,kr);  
end  
if (c==4)  
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    zn=sbesself(1,n,kr)-j*sbesself(2,n,kr);  
end  
  
function  P=legendre_(n,m,x)  
n=abs(n);  
m=abs(m);  
if (n>=abs(m))  
P=(-1)^m*legendre(n,x);  
P=P(m+1,:);  
else  
    P=zeros(size(x));  
end  
  
function  db=dbessel(c,n,kr)  
db = (n)./kr.*sbessel(c,n,kr) - sbessel(c,n+1,kr);  
  
function  nL=NormLegCoef(n,m)  
m=abs(m);  
nL=sqrt((2*n+1)/2*factorial(n-m)/factorial(n+m));  
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Script 7 
This script calculates the rotation coefficients )( 0�T�P

n
md , [19, eq. (A2.3)]. 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Input:                   % 
% n     : is the mode number which is different from zero.           % 
% m    : is the mode number which is nm �d .             % 

% theta: is the rotation angle (radian) ��0.             % 
%                   % 
% Output:                  % 
% d_a2 : is the rotation coefficients, which run fromµ =  –n to n.                     % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
function  d_a2=rotationCoef(n,m,theta)  
% Calculate the rotation coefficients using (A2.3)  
  
mu=-n:n;  
  
for  k=1:2*n+1  
sigma=max(0,-mu(k)-m):min(n-m,n-mu(k));  
     
d_a2(k,1)=sqrt(factorial(n+mu(k)).*factorial(n-
mu(k))./(factorial(n+m).*factorial(n-m))).* ...  
    sum(comp(n+m,n-mu(k)-sigma).*comp(n-m,sigma).*(-1).^(n-mu(k)-
sigma).*(cos(theta/2)).^(2*sigma+mu(k)+m).* ...  
    (sin(theta/2)).^(2*n-2*sigma-mu(k)-m));  
end  
  
function  P=comp(n,k)  
P=factorial(n)./(factorial(k).*factorial(n-k));  
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Script 8 
This script calculates the translation coefficient )()( kAC csn

�V�P�Q , [19, eq. (A.3.3)]. 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Input:                   % 
% c     : takes values 1 to 4 to describe the type of the wave.           % 
% s     : is the type of mode which can be 1 or 2.            % 
% sigma: is the �1 in the translation coefficient.             % 
% n     : is the mode number which is different from zero.           % 
% mu  : is the µ in the translation coefficient.             % 
% nu   : is the �Q  in the translation coefficient.             % 
% kA    : is the product of wave-number and the translation distance.          % 
%                   % 
% Output:                  % 
% C     : is the translation coefficient.                         % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
function  C=translationCoef(c,s,sigma,n,mu,nu,kA)  
[a_q,p]=GauntCoefs(mu,n,-mu,nu);  
C=sqrt((2*n+1)*(2*nu+1)/(n*(n+1)*nu*(nu+1)))* ...  
    sqrt(factorial(nu+mu)*factorial(n-mu)/(factorial(nu-
mu)*factorial(n+mu))).* ...  
    (-1)^mu*1/2*j^(n-nu)*sum(j.^(-
p).*(deltaFun(s,sigma).*(n.*(n+1)+nu*(nu+1)-p.*(p+1))+ ...  
    deltaFun(3-s,sigma)*2*j*mu*kA).*a_q.*sbessel(c,p,kA));  
  
function  d=deltaFun(s,sigma)  
if (s==sigma)  
    d=1;  
else  
    d=0;  
end  
  
function  zn=sbesself(c,n,kr)  
if (c==1)  
    zn=sqrt(pi./(2.*kr)).*besselj(n+.5,kr);  
end  
if (c==2)  
    zn=sqrt(pi./(2.*kr)).*bessely(n+.5,kr);  
end  
  
  
function  zn=sbessel(c,n,kr)  
if (c==1)  
    zn=sbesself(c,n,kr);  
end  
if (c==2)  
    zn=sbesself(c,n,kr);  
end  
if (c==3)  
    zn=sbesself(1,n,kr)-j*sbesself(2,n,kr);  
end  
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if (c==4)  
    zn=sbesself(1,n,kr)+j*sbesself(2,n,kr);  
end  
  
  
function  [a_q,p_]=GauntCoefs(m,n,mu,nu)  
  
q_max=qmax(m,mu,n,nu);  
q=2;  
p=n+nu-2*q;  
p_=[n+nu;n+nu-2];  
n4=n+nu-m-mu;  
  
a_q(1,1)=1;  % a_0  
a_q(2,1)=(2*n+2*nu-3)/2*(1-(2*n+2*nu-1)/(n4*(n4-1))* ...  
    ((m-n)*(m-n+1)/(2*n-1)+(mu-nu)*(mu-nu+1)/(2*nu-1)));  % a_1  
  
while (q<=q_max)  
    while (Afunc(p+4,m,mu,n,nu)~=0 && q<=q_max)  
        
a_q(q+1,1)=(cfunc1(p,m,mu,n,nu)*a_q(q,1)+cfunc2(p,m,mu,n,nu)*a_q(q-
1,1))/cfunc0(p,m,mu,n,nu);  
        p_(q+1,1)=p;  
        q=q+1;  
        p=n+nu-2*q;  
    end  
  
    while (Afunc(p+4,m,mu,n,nu)==0 && Afunc(p+6,m,mu,n,nu)==0 && 
q<=q_max)  
        p1=p-m-mu;  
        p2=p+m+mu;  
        
a_q(q+1,1)=(p+1)*(p2+2)*Alfafunc(p+2,n,nu)*a_q(q,1)/((p+2)*(p1+1)*Alfaf
unc(p+1,n,nu));  
        p_(q+1,1)=p;  
        q=q+1;  
        p=n+nu-2*q;  
    end  
  
    while (Afunc(p+4,m,mu,n,nu)==0 && Afunc(p+6,m,mu,n,nu)~=0 && 
q<=q_max)  
        p1=p-m-mu;  
        p2=p+m+mu;  
        a(2,1)=(2*n+2*nu-1)*(2*n+2*nu-7)/4*((2*n+2*nu-3)/(n4*(n4-
1))*((2*n+2*nu-5)/(2*(n4-2)*(n4-3))* ...  
            ((m-n)*(m-n+1)*(m-n+2)*(m-n+3)/((2*n-1)*(2*n-3))+2*(m-
n)*(m-n+1)*(mu-nu)*(mu-nu+1)/((2*n-1)*(2*nu-1))+ ...  
            (mu-nu)*(mu-nu+1)*(mu-nu+2)*(mu-nu+3)/((2*nu-1)*(2*nu-3)))-
(m-n)*(m-n+1)/(2*n-1)- ...  
            (mu-nu)*(mu-nu+1)/(2*nu-1))+1/2);  
  
        
a_q(q+1,1)=(cfunc12(p,m,mu,n,nu)*a_q(q,1)+cfunc22(p,m,mu,n,nu)*a_q(q-
1,1)+ ...  
            cfunc32(p,m,mu,n,nu)*a_q(q-2,1))/cfunc02(p,m,mu,n,nu);  
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        if (q==2)  
            p_(3,1)=n+nu-2*q;  
        end  
        p_(q+1,1)=p;  
        q=q+1;  
        p=n+nu-2*q;  
    end  
end  
a_q=Astart(m,mu,n,nu)*a_q;  
  
  
function  q=qmax(m,mu,n,nu)  
q1=min(nu,floor((n+nu-abs(m+mu))/2));  
q=min(n,q1);  
function  A=Afunc(p,m,mu,n,nu)  
A=p*(p-1)*(m-mu)-(m+mu)*(n-nu)*(n+nu+1);  
function  c0=cfunc0(p,m,mu,n,nu)  
p1=p-m-mu;  
p2=p+m+mu; 
c0=(p+2)*(p+3)*(p1+1)*(p1+2)*Afunc(p+4,m,mu,n,nu)*Alfafunc(p+1,n,nu);  
function  c1=cfunc1(p,m,mu,n,nu)  
p1=p-m-mu;  
p2=p+m+mu; 
c1=Afunc(p+2,m,mu,n,nu)*Afunc(p+3,m,mu,n,nu)*Afunc(p+4,m,mu,n,nu)+ ...  
    
(p+1)*(p+3)*(p1+2)*(p2+2)*Afunc(p+4,m,mu,n,nu)*Alfafunc(p+2,n,nu)+ ...  
    (p+2)*(p+4)*(p1+3)*(p2+3)*Afunc(p+2,m,mu,n,nu)*Alfafunc(p+3,n,nu);  
function  c2=cfunc2(p,m,mu,n,nu)  
p1=p-m-mu;  
p2=p+m+mu; 
c2=-(p+2)*(p+3)*(p2+3)*(p2+4)*Afunc(p+2,m,mu,n,nu)*Alfafunc(p+4,n,nu);  
function  a=Alfafunc(p,n,nu)  
a=(p^2-(n+nu+1)^2)*(p^2-(n-nu)^2)/(4*p^2-1);  
function  c0=cfunc02(p,m,mu,n,nu)  
p1=p-m-mu;  
p2=p+m+mu; 
c0=(p+2)*(p+3)*(p+5)*(p1+1)*(p1+2)*(p1+4)*Afunc(p+6,m,mu,n,nu)*Alfafunc
(p+1,n,nu);  
function  c1=cfunc12(p,m,mu,n,nu)  
p1=p-m-mu;  
p2=p+m+mu; 
c1=(p+5)*(p1+4)*Afunc(p+6,m,mu,n,nu)*(Afunc(p+2,m,mu,n,nu)*Afunc(p+3,m,
mu,n,nu)+ ...  
    (p+1)*(p+3)*(p1+2)*(p2+2)*Alfafunc(p+2,n,nu));  
function  c2=cfunc22(p,m,mu,n,nu)  
p1=p-m-mu;  
p2=p+m+mu; 
c2=(p+2)*(p2+3)*Afunc(p+2,m,mu,n,nu)*(Afunc(p+5,m,mu,n,nu)*Afunc(p+6,m,
mu,n,nu)+ ...  
    (p+4)*(p+6)*(p1+5)*(p2+5)*Alfafunc(p+5,n,nu));  
function  c3=cfunc32(p,m,mu,n,nu)  
p1=p-m-mu;  
p2=p+m+mu; 
c3=-
(p+2)*(p+4)*(p+5)*(p2+3)*(p2+5)*(p2+6)*Afunc(p+2,m,mu,n,nu)*Alfafunc(p+
6,n,nu);  
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function  a0=Astart(m,mu,n,nu)  
a0=upfactorial(n+1,n)*upfactorial(nu+1,nu)/upfactorial(n+nu+1,n+nu)* ...  
    factorial(n+nu-m-mu)/(factorial(n-m)*factorial(nu-mu));  
function  n=upfactorial(n,v)  
N=cumprod(n+(0:v-1));  
n=N(end);  
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Script 9 
This script calculates electric and the magnetic fields as well as the power density inside 
and outside a dielectric sphere of radius a and the transmitting antenna is z-oriented 
electric dipole antenna EHDz and has r0 distance from the origin. This script is not a 
function, therefore it is necessary to put all the functions (scripts 1 to 8) in the same 
directory as this script. There are several parameters that need to be assigned before 
running the script. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Input:                   % 
% a     : the radius of the sphere.               % 
% r0    : the position distance of the transmitting antenna.           % 
% f0    : the operating frequency.              % 
% N1  : the number of modes.               % 
% N    : number of points that are used to calculate the fields on.          % 
% x     : the limit of the region where the fields are calculated on the x-axis.         % 
% z     : the limit of the region where the fields are calculated on the z-axis.         % 
%                   % 
% Output:                  % 
% Electric field, magnetic field and power density.                        % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
% Validation of the fields of z-oriented electric fields scattered by a  
% dielectric sphere.  
  
%---------------------------------------------------------  
% The parameters of the system  
% clear all  
e0=8.854e-12; % permittivity of the free-space.  [F/m]  
u0=4*pi*1e-7; % permeability of the free-space.  [H/m]  
n0=1/376.7;     % impedance of the free-space.  [Ohom]  
c=2.998e8;    % velocity of light in free-space. [m/s]  
r0=.093;      % location of the dipole. [m]  
a=.085;       % radius of the sphere  
f0=1e9;       % operating frequency. [Hz]  
w=2*pi*f0;    % angular frequency.   [radian/s]  
k0=w/c;       % wave length in free-space. [1/m]  
er=41.0 +j*17.8;        % relative permittivity of the sphere  
ur=1;         % relative permeability of the sphere  
n1=n0*sqrt(er./ur); % the impedance of the sphere [Ohom]  
k1=k0.*sqrt(ur.*er); % the wave number inside the sphere  
N1=80; % number of the modes  
  
N=100; % number of the points  
x=linspace(-.13,.13,N);  
z=linspace(-.13,.13,N);  
[X,Z]=meshgrid(x,z);  
Y=0*ones(N);  
[phi,theta,r]=cart2sph(X,Y,Z);  
theta=pi/2-theta;  
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r=reshape(r,1,N*N);  
theta=reshape(theta,1,N*N);  
phi=reshape(phi,1,N*N);  
  
  
%----------------------------------------------------------------------  
% interpolation of the data of the head  
p1 = 3.2404e-048;  
p2 = -5.057e-038;  
p3 = 2.5808e-028;  
p4 = -3.6429e-019;  
p5 = 4.1155e-010;  
p6 = 0.73379;  
sigmaFun= @(x) p1*x.^5 + p2*x.^4 +p3*x.^3 + p4*x.^2 +p5*x + p6; % sigma  
p1 = 2.6703e-075;  
p2 = -7.7329e-065;  
p3 = 9.3934e-055;  
p4 = -6.2078e-045;  
p5 = 2.4204e-035;  
p6 = -5.6427e-026;  
p7 = 7.5919e-017;  
p8 = -5.4572e-008;  
p9 = 57.247;  
epsilonFun = @(x) p1*x.^8 + p2*x.^7 +p3*x.^6 + p4*x.^5 +p5*x.^4 + 
p6*x.^3 +p7*x.^2 + p8*x + p9; % mu_r  
  
sigma=sigmaFun(f0);  
epsilon=epsilonFun(f0);  
  
er = conj(epsilon-j*sigma./(w*e0));  
n1=n0*sqrt(er./ur); % the impedance of the sphere [Ohom]  
k1=k0.*sqrt(ur.*er); % the wave number inside the sphere  
%---------------------------------------------------------------------- 
 
n=(1:N1)';  
  
Q20i1=k0./sqrt(n0).*(-
1).^n.*sqrt(n.*(n+1).*(2*n+1)/(4*pi)).*Rfunc(1,3,n,k0.*r0)./(k0.*r0);  
Q20i3=k0./sqrt(n0).*(-
1).^n.*sqrt(n.*(n+1).*(2*n+1)/(4*pi)).*Rfunc(1,1,n,k0.*r0)./(k0.*r0);  
  
  
              % Rfunc(s,c,n,kr)  
Q20s1=Q20i1.*(sqrt(n1/n0).*Rfunc(2,1,n,k0.*a).*Rfunc(1,1,n,k1.*a) ...  
    -sqrt(n0/n1).*Rfunc(1,1,n,k0.*a).*Rfunc(2,1,n,k1.*a))./ ...  
    (sqrt(n0/n1).*Rfunc(1,3,n,k0.*a).*Rfunc(2,1,n,k1.*a) ...  
    -sqrt(n1/n0).*Rfunc(2,3,n,k0.*a).*Rfunc(1,1,n,k1.*a));  
Q20t1=Q20i1.*k0./k1.*-j./((k0.*a).^2)./ ...  
    (sqrt(n0/n1).*Rfunc(1,3,n,k0.*a).*Rfunc(2,1,n,k1.*a) ...  
    -sqrt(n1/n0).*Rfunc(2,3,n,k0.*a).*Rfunc(1,1,n,k1.*a));  
  
  
for  n=1:N1  
    % z-orientation  
    F1i1pz(:,n)=transpose(F1n_phi(1,0,n,k0.*r,theta,phi));  
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    F1i3pz(:,n)=transpose(F1n_phi(3,0,n,k0.*r,theta,phi));  
    F2i1rz(:,n)=transpose(F2n_r(1,0,n,k0.*r,theta,phi));  
    F2i3rz(:,n)=transpose(F2n_r(3,0,n,k0.*r,theta,phi));  
    F2i1thz(:,n)=transpose(F2n_theta(1,0,n,k0.*r,theta,phi));  
    F2i3thz(:,n)=transpose(F2n_theta(3,0,n,k0.*r,theta,phi));  
     
    F1t1pz(:,n)=transpose(F1n_phi(1,0,n,k1.*r,theta,phi));  
    F2t1rz(:,n)=transpose(F2n_r(1,0,n,k1.*r,theta,phi));  
    F2t1thz(:,n)=transpose(F2n_theta(1,0,n,k1.*r,theta,phi));  
end  
% z-orientation  
F1s3pz=F1i3pz;  
F2s3rz=F2i3rz;  
F2s3thz=F2i3thz;  
  
F1t1pz(r>a,:)=0;  
F2t1rz(r>a,:)=0;  
F2t1thz(r>a,:)=0;  
F1s3pz(r<=a,:)=0;  
F2s3rz(r<=a,:)=0;  
F2s3thz(r<=a,:)=0;  
  
F1i1pz(r>r0,:)=0;  
F2i1rz(r>r0,:)=0;  
F2i1thz(r>r0,:)=0;  
F1i3pz(r<=r0,:)=0;  
F2i3rz(r<=r0,:)=0;  
F2i3thz(r<=r0,:)=0;  
F1i1pz(r<=a,:)=0;  
F2i1rz(r<=a,:)=0;  
F2i1thz(r<=a,:)=0;  
  
Hipz=-j*k0.*sqrt(n0).*(F1i1pz*Q20i1+F1i3pz*Q20i3);  
Eirz=k0./sqrt(n0).*(F2i1rz*Q20i1+F2i3rz*Q20i3);  
Eithz=k0./sqrt(n0).*(F2i1thz*Q20i1+F2i3thz*Q20i3);  
  
Hspz=-j*k0.*sqrt(n0).*(F1s3pz*Q20s1);  
Esrz=k0./sqrt(n0).*(F2s3rz*Q20s1);  
Esthz=k0./sqrt(n0).*(F2s3thz*Q20s1);  
  
Htpz=-j*k1.*sqrt(n1).*(F1t1pz*Q20t1);  
Etrz=k1./sqrt(n1).*(F2t1rz*Q20t1);  
Etthz=k1./sqrt(n1).*(F2t1thz*Q20t1);  
  
  
% The analytical equation of z-oriented magnetic dipole:  
% These equations are varified and they show similarity between them  
% and the SVWE which are the correct behavior as we expect.  
  
r0=-r0;  
R=sqrt(r.^2+r0^2-2*r.*r0.*cos(theta));  
H_pz=exp(-j*k0.*R)./(4*pi*R).*sin(theta).*r.*(1+j*k0.*R)./(R.^2);  
E_rz=-1./(j*w.*e0).*exp(-j*k0.*R)./(4*pi*R).*(-
2*cos(theta).*(1+j*k0.*R)./(R.^2)+ ...  
    r.*r0.*(sin(theta)).^2.*((j*k0.*R).^2+3*j*k0.*R+3)./(R.^4));  
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E_thz=1./(j*w.*e0).*exp(-j*k0.*R)./(4*pi*R).*sin(theta).* ...  
    (-2*(1+j*k0.*R)./(R.^2)+ ...  
    r.*(r-r0.*cos(theta)).*((j*k0.*R).^2+3*j*k0.*R+3)./(R.^4));  
  
H_pz=conj(H_pz);  
E_rz=conj(E_rz);  
E_thz=conj(E_thz);  
%----------------------------------------------------------------------
----  
  
Hpz=Hipz+Hspz+Htpz;  
Erz=Eirz+Esrz+Etrz;  
Ethz=Eithz+Esthz+Etthz;  
  
  
% Reform the fields from the colum matrix to (NxN) matrix form  
H_pz=reshape(H_pz,N,N);  
E_thz=reshape(E_thz,N,N);  
E_rz=reshape(E_rz,N,N);  
  
Hpz=reshape(Hpz,N,N);  
Ethz=reshape(Ethz,N,N);  
Erz=reshape(Erz,N,N);  
  
  
r=reshape(r,N,N);  
theta=reshape(theta,N,N);  
phi=reshape(phi,N,N);  
  
% Convert from sphrical to cartisian components  
Emagz=sqrt((real(Erz)).^2+(real(Ethz)).^2);  
Exz=Erz.*sin(theta).*cos(phi)+Ethz.*cos(theta).*cos(phi);  
Eyz=Erz.*sin(theta).*sin(phi)+Ethz.*cos(theta).*sin(phi);  
Ezz=Erz.*cos(theta)-Ethz.*sin(theta);  
Hmagz=sqrt((real(Hpz)).^2);  
Hxz=-Hpz.*sin(phi);  
Hyz=Hpz.*cos(phi);  
Hzz=zeros(N);  
Eabs=sqrt((abs(Erz)).^2+(abs(Ethz)).^2);  
Habs=abs(Hpz);  
  
E_magz=sqrt((real(E_rz)).^2+(real(E_thz)).^2);  
E_xz=E_rz.*sin(theta).*cos(phi)+E_thz.*cos(theta).*cos(phi);  
E_yz=E_rz.*sin(theta).*sin(phi)+E_thz.*cos(theta).*sin(phi);  
E_zz=E_rz.*cos(theta)-E_thz.*sin(theta);  
H_magz=sqrt((real(H_pz)).^2);  
H_xz=-H_pz.*sin(phi);  
H_yz=H_pz.*cos(phi);  
H_zz=zeros(N);  
  
 
 
% Poynting vector S (radiating power)  
Sxz=1/2*real(-Ezz.*conj(Hyz));  
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Syz=1/2*real(Ezz.*conj(Hxz));  
Szz=1/2*real(Exz.*conj(Hyz)-Eyz.*conj(Hxz));  
Smagz=sqrt((real(Sxz)).^2+(real(Syz)).^2+(real(Szz)).^2);  
  
  
  
m=3;  
figure(1)  
axes( 'fontsize' ,18)  
pcolor(X,Z,20*log10(abs(Emagz)/max(max(abs(Emagz)))))  
shading interp  
colorbar( 'fontsize' ,18)  
hold on 
h=quiver(X(1:m:N,1:m:N),Z(1:m:N,1:m:N), ...  
    real(Exz(1:m:N,1:m:N))./Emagz(1:m:N,1:m:N), ...  
    real(Ezz(1:m:N,1:m:N))./Emagz(1:m:N,1:m:N));  
set(h, 'color' , 'k' )  
xlabel( 'x [m]' )  
ylabel( 'z [m]' )  
title( '|Re\{E^z\}| [dB]' ) %title('E^z svwe method [V/m]')  
axis([x(1) x(N) z(1) z(N)]);  
hold off  
axis( 'equal' )  
x1=linspace(0,2*pi);hold on; plot(a*sin(x1),a*cos(x1), 'k--
' , 'linewidth' ,2);hold off ;  
  
  
figure(2)  
axes( 'fontsize' ,18)  
pcolor(X,Z,20*log10(abs(Hmagz)/max(max(abs(Hmagz)))))  
shading interp  
colorbar( 'fontsize' ,18)  
% hold on  
% h=quiver(X(1:m:N,1:m:N),Z(1:m:N,1:m:N),...  
%     real(Hxz(1:m:N,1:m:N))./Hmagz(1:m:N,1:m:N),...  
%     real(Hzz(1:m:N,1:m:N))./Hmagz(1:m:N,1:m:N));  
% set(h,'color','k')  
xlabel( 'x [m]' )  
ylabel( 'z [m]' )  
title( '|Re\{H^z\}| [dB]' ) %title('H^z svwe method [A/m]')  
axis([x(1) x(N) z(1) z(N)]);  
% hold off  
axis( 'equal' )  
x1=linspace(0,2*pi);hold on; plot(a*sin(x1),a*cos(x1), 'k--
' , 'linewidth' ,2);hold off ;  
  
  
figure(3)  
axes( 'fontsize' ,18)  
pcolor(X,Z,10*log10(abs(Smagz)/max(max(abs(Smagz)))))  
shading interp  
colorbar( 'fontsize' ,18)  
hold on 
h=quiver(X(1:m:N,1:m:N),Z(1:m:N,1:m:N), ...  
    real(Sxz(1:m:N,1:m:N))./Smagz(1:m:N,1:m:N), ...  
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    real(Szz(1:m:N,1:m:N))./Smagz(1:m:N,1:m:N));  
set(h, 'color' , 'k' )  
xlabel( 'x [m]' )  
ylabel( 'z [m]' )  
title( '|S^z| [dB]' )  
axis([x(1) x(N) z(1) z(N)]);  
hold off  
axis( 'equal' )  
x1=linspace(0,2*pi);hold on; plot(a*sin(x1),a*cos(x1), 'k--
' , 'linewidth' ,2);hold off ;  
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Script 10 
This script calculates electric and the magnetic fields as well as the power density inside 
and outside a dielectric sphere of radius a and the transmitting antenna is x-oriented 
electric dipole antenna EHDx and has r0 distance from the origin. This script is not a 
function, therefore it is necessary to put all the functions (scripts 1 to 8) in the same 
directory as this script. There are several parameters that need to be assigned before 
running the script. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Input:                   % 
% a     : the radius of the sphere.               % 
% r0    : the position distance of the transmitting antenna.           % 
% f0    : the operating frequency.              % 
% N1  : the number of modes.               % 
% N    : number of points that are used to calculate the fields on.          % 
% x     : the limit of the region where the fields are calculated on the x-axis.         % 
% z     : the limit of the region where the fields are calculated on the z-axis.         % 
%                   % 
% Output:                  % 
% Electric field, magnetic field and power density.                        % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
% The parameters of the system  
clear all  
e0=8.854e-12; % permittivity of the free-space.  [F/m]  
u0=4*pi*1e-7; % permeability of the free-space.  [H/m]  
n0=1/376.7;     % impedance of the free-space.  [Ohom]  
c=2.998e8;    % velocity of light in free-space. [m/s]  
r0=.103;      % location of the dipole. [m]  
a=.093;       % radius of the sphere  
f0=.912e9;       % operating frequency. [Hz]  
w=2*pi*f0;    % angular frequency.   [radian/s]  
k0=w/c;       % wave length in free-space. [1/m]  
er=41.0279 +j*17.8281;        % relative permittivity of the sphere  
ur=1;         % relative permeability of the sphere  
n1=n0*sqrt(er./ur); % the impedance of the sphere [Ohom]  
k1=k0.*sqrt(ur.*er); % the wave number inside the sphere  
N1=50; % number of the modes  
  
N=100; % number of the points  
x=linspace(-.13,.13,N);  
z=linspace(-.13,.13,N);  
[X,Z]=meshgrid(x,z);  
Y=0*ones(N);  
[phi,theta,r]=cart2sph(X,Y,Z);  
theta=pi/2-theta;  
  
r=reshape(r,1,N*N);  
theta=reshape(theta,1,N*N);  
phi=reshape(phi,1,N*N);  
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%----------------------------------------------------------------------
----  
% interpolation of the data of the head  
p1 = 3.2404e-048;  
p2 = -5.057e-038;  
p3 = 2.5808e-028;  
p4 = -3.6429e-019;  
p5 = 4.1155e-010;  
p6 = 0.73379;  
sigmaFun= @(x) p1*x.^5 + p2*x.^4 +p3*x.^3 + p4*x.^2 +p5*x + p6; % sigma  
p1 = 2.6703e-075;  
p2 = -7.7329e-065;  
p3 = 9.3934e-055;  
p4 = -6.2078e-045;  
p5 = 2.4204e-035;  
p6 = -5.6427e-026;  
p7 = 7.5919e-017;  
p8 = -5.4572e-008;  
p9 = 57.247;  
epsilonFun = @(x) p1*x.^8 + p2*x.^7 +p3*x.^6 + p4*x.^5 +p5*x.^4 + 
p6*x.^3 +p7*x.^2 + p8*x + p9; % mu_r  
  
sigma=sigmaFun(f0);  
epsilon=epsilonFun(f0);  
  
er = conj(epsilon-j*sigma./(w*e0));  
n1=n0*sqrt(er./ur); % the impedance of the sphere [Ohom]  
k1=k0.*sqrt(ur.*er); % the wave number inside the sphere  
%----------------------------------------------------------------------
----  
  
 
n=(1:N1)'; %Rfunc(s,c,n,kr)  
Q11i1=j*k0./sqrt(n0).*(-
1).^(n+1).*1/4.*sqrt((2*n+1)/pi).*Rfunc(1,3,n,k0.*r0);   %  r <= r0  
Q11i3=j*k0./sqrt(n0).*(-
1).^(n+1).*1/4.*sqrt((2*n+1)/pi).*Rfunc(1,1,n,k0.*r0);   %  r > r0  
Q21i1=k0./sqrt(n0).*(-
1).^(n+1).*1/4.*sqrt((2*n+1)/pi).*Rfunc(2,3,n,k0.*r0);   %  r <= r0  
Q21i3=k0./sqrt(n0).*(-
1).^(n+1).*1/4.*sqrt((2*n+1)/pi).*Rfunc(2,1,n,k0.*r0);   %  r > r0  
  
Q11s3=Q11i1.*(-sqrt(n0/n1).*Rfunc(2,1,n,k0*a).*Rfunc(1,1,n,k1*a)+ ...  
    sqrt(n1/n0).*Rfunc(1,1,n,k0*a).*Rfunc(2,1,n,k1*a))./ ...  
    (sqrt(n0/n1).*Rfunc(1,1,n,k1*a).*Rfunc(2,3,n,k0*a)- ...  
    sqrt(n1/n0).*Rfunc(2,1,n,k1*a).*Rfunc(1,3,n,k0*a));  
Q21s3=Q21i1.*(sqrt(n0/n1).*Rfunc(2,1,n,k1*a).*Rfunc(1,1,n,k0*a)- ...  
    sqrt(n1/n0).*Rfunc(1,1,n,k1*a).*Rfunc(2,1,n,k0*a))./ ...  
    (sqrt(n1/n0).*Rfunc(1,1,n,k1*a).*Rfunc(2,3,n,k0*a)- ...  
    sqrt(n0/n1).*Rfunc(2,1,n,k1*a).*Rfunc(1,3,n,k0*a));  
  
Q11t1=Q11i1.*k0./k1.*(j./((k0*a).^2))./ ...  
    (sqrt(n0/n1).*Rfunc(1,1,n,k1*a).*Rfunc(2,3,n,k0*a)- ...  
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    sqrt(n1/n0).*Rfunc(2,1,n,k1*a).*Rfunc(1,3,n,k0*a));  
Q21t1=Q21i1.*k0./k1.*(j./((k0*a).^2))./ ...  
    (sqrt(n1/n0).*Rfunc(1,1,n,k1*a).*Rfunc(2,3,n,k0*a)- ...  
    sqrt(n0/n1).*Rfunc(2,1,n,k1*a).*Rfunc(1,3,n,k0*a));  
  
  
for  n=1:N1  
    % x-orientation  
     
    F1i1px1(:,n)=transpose(F1n_phi(1,1,n,k0*r,theta,phi)); % m=1 
    F1i3px1(:,n)=transpose(F1n_phi(3,1,n,k0*r,theta,phi)); % m=1 
    F1i1px2(:,n)=transpose(F1n_phi(1,-1,n,k0*r,theta,phi)); % m=-1 
    F1i3px2(:,n)=transpose(F1n_phi(3,-1,n,k0*r,theta,phi)); % m=-1 
     
    F1i1thx1(:,n)=transpose(F1n_theta(1,1,n,k0*r,theta,phi)); % m=1 
    F1i3thx1(:,n)=transpose(F1n_theta(3,1,n,k0*r,theta,phi)); % m=1 
    F1i1thx2(:,n)=transpose(F1n_theta(1,-1,n,k0*r,theta,phi)); % m=-1 
    F1i3thx2(:,n)=transpose(F1n_theta(3,-1,n,k0*r,theta,phi)); % m=1 
     
    F2i1px1(:,n)=transpose(F2n_phi(1,1,n,k0*r,theta,phi)); % m=1 
    F2i3px1(:,n)=transpose(F2n_phi(3,1,n,k0*r,theta,phi)); % m=1 
    F2i1px2(:,n)=transpose(F2n_phi(1,-1,n,k0*r,theta,phi)); % m=-1 
    F2i3px2(:,n)=transpose(F2n_phi(3,-1,n,k0*r,theta,phi)); % m=-1 
     
    F2i1thx1(:,n)=transpose(F2n_theta(1,1,n,k0*r,theta,phi)); % m=1 
    F2i3thx1(:,n)=transpose(F2n_theta(3,1,n,k0*r,theta,phi)); % m=1 
    F2i1thx2(:,n)=transpose(F2n_theta(1,-1,n,k0*r,theta,phi)); % m=-1 
    F2i3thx2(:,n)=transpose(F2n_theta(3,-1,n,k0*r,theta,phi)); % m=-1 
     
    F2i1rx1(:,n)=transpose(F2n_r(1,1,n,k0*r,theta,phi)); % m=1 
    F2i3rx1(:,n)=transpose(F2n_r(3,1,n,k0*r,theta,phi)); % m=1 
    F2i1rx2(:,n)=transpose(F2n_r(1,-1,n,k0*r,theta,phi)); % m=-1 
    F2i3rx2(:,n)=transpose(F2n_r(3,-1,n,k0*r,theta,phi)); % m=-1 
     
     
    %   total fields  
    F1t1px1(:,n)=transpose(F1n_phi(1,1,n,k1*r,theta,phi)); % m=1 
    F1t1px2(:,n)=transpose(F1n_phi(1,-1,n,k1*r,theta,phi)); % m=-1 
         
    F1t1thx1(:,n)=transpose(F1n_theta(1,1,n,k1*r,theta,phi)); % m=1 
    F1t1thx2(:,n)=transpose(F1n_theta(1,-1,n,k1*r,theta,phi)); % m=-1 
         
    F2t1px1(:,n)=transpose(F2n_phi(1,1,n,k1*r,theta,phi)); % m=1 
    F2t1px2(:,n)=transpose(F2n_phi(1,-1,n,k1*r,theta,phi)); % m=-1 
         
    F2t1thx1(:,n)=transpose(F2n_theta(1,1,n,k1*r,theta,phi)); % m=1 
    F2t1thx2(:,n)=transpose(F2n_theta(1,-1,n,k1*r,theta,phi)); % m=-1 
         
    F2t1rx1(:,n)=transpose(F2n_r(1,1,n,k1*r,theta,phi)); % m=1 
    F2t1rx2(:,n)=transpose(F2n_r(1,-1,n,k1*r,theta,phi)); % m=-1     
  end  
% x-orientation  
  
% scattered fields  
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F1s3px1=F1i3px1;  
F1s3thx1=F1i3thx1;  
F1s3px2=F1i3px2;  
F1s3thx2=F1i3thx2;  
  
F2s3px1=F2i3px1;  
F2s3thx1=F2i3thx1;  
F2s3rx1=F2i3rx1;  
F2s3px2=F2i3px2;  
F2s3thx2=F2i3thx2;  
F2s3rx2=F2i3rx2;  
  
F1s3px1(r<=a,:)=0;  
F1s3thx1(r<=a,:)=0;  
F1s3px2(r<=a,:)=0;  
F1s3thx2(r<=a,:)=0;  
  
F2s3px1(r<=a,:)=0;  
F2s3thx1(r<=a,:)=0;  
F2s3rx1(r<=a,:)=0;  
F2s3px2(r<=a,:)=0;  
F2s3thx2(r<=a,:)=0;  
F2s3rx2(r<=a,:)=0;  
  
% incident fields  
F1i1px1(r>r0,:)=0;  
F1i1thx1(r>r0,:)=0;  
F1i1px2(r>r0,:)=0;  
F1i1thx2(r>r0,:)=0;  
  
F1i1px1(r<=a,:)=0;  
F1i1thx1(r<=a,:)=0;  
F1i1px2(r<=a,:)=0;  
F1i1thx2(r<=a,:)=0;  
  
F1i3px1(r<=r0,:)=0;  
F1i3thx1(r<=r0,:)=0;  
F1i3px2(r<=r0,:)=0;  
F1i3thx2(r<=r0,:)=0;  
  
F2i1px1(r>r0,:)=0;  
F2i1thx1(r>r0,:)=0;  
F2i1rx1(r>r0,:)=0;  
F2i1px2(r>r0,:)=0;  
F2i1thx2(r>r0,:)=0;  
F2i1rx2(r>r0,:)=0;  
  
F2i1px1(r<=a,:)=0;  
F2i1thx1(r<=a,:)=0;  
F2i1rx1(r<=a,:)=0;  
F2i1px2(r<=a,:)=0;  
F2i1thx2(r<=a,:)=0;  
F2i1rx2(r<=a,:)=0;  
  
F2i3px1(r<=r0,:)=0;  
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F2i3thx1(r<=r0,:)=0;  
F2i3rx1(r<=r0,:)=0;  
F2i3px2(r<=r0,:)=0;  
F2i3thx2(r<=r0,:)=0;  
F2i3rx2(r<=r0,:)=0;  
  
% total field  
F1t1px1(r>a,:)=0;  
F1t1thx1(r>a,:)=0;  
F1t1px2(r>a,:)=0;  
F1t1thx2(r>a,:)=0;  
  
F2t1px1(r>a,:)=0;  
F2t1thx1(r>a,:)=0;  
F2t1rx1(r>a,:)=0;  
F2t1px2(r>a,:)=0;  
F2t1thx2(r>a,:)=0;  
F2t1rx2(r>a,:)=0;  
  
% incident fields  
Eipx=k0./sqrt(n0).*((F1i1px1+F1i1px2)*Q11i1+(F1i3px1+F1i3px2)*Q11i3 ...  
    +(F2i1px1-F2i1px2)*Q21i1+(F2i3px1-F2i3px2)*Q21i3);  
Eithx=k0./sqrt(n0).*((F1i1thx1+F1i1thx2)*Q11i1+(F1i3thx1+F1i3thx2)*Q11i
3...  
    +(F2i1thx1-F2i1thx2)*Q21i1+(F2i3thx1-F2i3thx2)*Q21i3);  
Eirx=k0./sqrt(n0).*((F2i1rx1-F2i1rx2)*Q21i1+(F2i3rx1-F2i3rx2)*Q21i3);  
Hipx=-
j*k0.*sqrt(n0).*((F2i1px1+F2i1px2)*Q11i1+(F2i3px1+F2i3px2)*Q11i3 ...  
    +(F1i1px1-F1i1px2)*Q21i1+(F1i3px1-F1i3px2)*Q21i3);  
Hithx=-
j*k0.*sqrt(n0).*((F2i1thx1+F2i1thx2)*Q11i1+(F2i3thx1+F2i3thx2)*Q11i3 ...  
    +(F1i1thx1-F1i1thx2)*Q21i1+(F1i3thx1-F1i3thx2)*Q21i3);  
Hirx=-
j*k0.*sqrt(n0).*((F2i1rx1+F2i1rx2)*Q11i1+(F2i3rx1+F2i3rx2)*Q11i3);  
  
% scattered fields  
Espx=k0./sqrt(n0).*((F1s3px1+F1s3px2)*Q11s3 ...  
    +(F2s3px1-F2s3px2)*Q21s3);  
Esthx=k0./sqrt(n0).*((F1s3thx1+F1s3thx2)*Q11s3 ...  
    +(F2s3thx1-F2s3thx2)*Q21s3);  
Esrx=k0./sqrt(n0).*((F2s3rx1-F2s3rx2)*Q21s3);  
Hspx=-j*k0.*sqrt(n0).*((F2s3px1+F2s3px2)*Q11s3 ...  
    +(F1s3px1-F1s3px2)*Q21s3);  
Hsthx=-j*k0.*sqrt(n0).*((F2s3thx1+F2s3thx2)*Q11s3 ...  
    +(F1s3thx1-F1s3thx2)*Q21s3);  
Hsrx=-j*k0.*sqrt(n0).*((F2s3rx1+F2s3rx2)*Q11s3);  
  
% total fields  
Etpx=k1./sqrt(n1).*((F1t1px1+F1t1px2)*Q11t1 ...  
    +(F2t1px1-F2t1px2)*Q21t1);  
Etthx=k1./sqrt(n1).*((F1t1thx1+F1t1thx2)*Q11t1 ...  
    +(F2t1thx1-F2t1thx2)*Q21t1);  
Etrx=k1./sqrt(n1).*((F2t1rx1-F2t1rx2)*Q21t1);  
Htpx=-j*k1.*sqrt(n1).*((F2t1px1+F2t1px2)*Q11t1 ...  
    +(F1t1px1-F1t1px2)*Q21t1);  
Htthx=-j.*k1.*sqrt(n1).*((F2t1thx1+F2t1thx2)*Q11t1 ...  
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    +(F1t1thx1-F1t1thx2)*Q21t1);  
Htrx=-j*k1.*sqrt(n1).*((F2t1rx1+F2t1rx2)*Q11t1);  
  
  
%----------------------------------------------------------------------
----  
% The analytical equation of x-oriented magnetic dipole:  
%  These equations are varified and they show similarity between them 
and 
%  the SVWE which are the correct behavior as we expect.  
%  The equations of the closed-form and the SVWE are varified in the  
%  m-file "ValidationOf_x_Scattering.m"  
  
r0=-r0;  
R=sqrt(r.^2+r0^2-2*r.*r0.*cos(theta));  
H_rx=exp(-
j*k0.*R)./(4*pi*R).*sin(theta).*sin(phi).*r0.*(1+j*k0.*R)./(R.^2);  
H_thx=-exp(-j*k0.*R)./(4*pi*R).*sin(phi).*(r-
r0.*cos(theta)).*(1+j*k0.*R)./(R.^2);  
H_px=-exp(-j*k0.*R)./(4*pi*R).*cos(phi).*(r.*cos(theta)-
r0).*(1+j*k0.*R)./(R.^2);  
E_rx=-j*w.*u0.*exp(-j*k0.*R)./(4*pi*R).*sin(theta).*cos(phi).* ...  
    (1-(1+j*k0.*R)./((k0.*R).^2)+ ...  
    r.*(r-r0.*cos(theta)).*((-j*k0.*R).^2+3*j*k0.*R+3)./(k0.^2.*R.^4));  
E_thx=-j*w.*u0.*exp(-j*k0.*R)./(4*pi*R).*cos(theta).*cos(phi).* ...  
    (1-(1+j*k0.*R)./((k0.*R).^2)+ ...  
    r.*r0.*(sin(theta)).^2.*((-
j*k0.*R).^2+3*j*k0.*R+3)./(k0.^2.*R.^4.*cos(theta)));  
E_px=j*w.*u0.*exp(-j*k0.*R)./(4*pi*R).*sin(phi).*(1-
(1+j*k0.*R)./(k0.^2.*R.^2));  
  
E_rx=transpose(conj(E_rx));  
E_thx=transpose(conj(E_thx));  
E_px=transpose(conj(E_px));  
H_rx=transpose(conj(H_rx));  
H_thx=transpose(conj(H_thx));  
H_px=transpose(conj(H_px));  
E_rx(r<=a,:)=0;  
E_thx(r<=a,:)=0;  
E_px(r<=a,:)=0;  
H_rx(r<=a,:)=0;  
H_thx(r<=a,:)=0;  
H_px(r<=a,:)=0;  
%----------------------------------------------------------------------
----  
  
% Calculating the fields  
Epx=E_px+Espx+Etpx;  
Ethx=E_thx+Esthx+Etthx;  
Erx=E_rx+Esrx+Etrx;  
Hpx=H_px+Hspx+Htpx;  
Hthx=H_thx+Hsthx+Htthx;  
Hrx=H_rx+Hsrx+Htrx;  
  
% Reform the fields from the colum matrix to (NxN) matrix form  
E_px=reshape(E_px,N,N);  
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E_thx=reshape(E_thx,N,N);  
E_rx=reshape(E_rx,N,N);  
H_px=reshape(H_px,N,N);  
H_thx=reshape(H_thx,N,N);  
H_rx=reshape(H_rx,N,N);  
  
Epx=reshape(Epx,N,N);  
Ethx=reshape(Ethx,N,N);  
Erx=reshape(Erx,N,N);  
Hpx=reshape(Hpx,N,N);  
Hthx=reshape(Hthx,N,N);  
Hrx=reshape(Hrx,N,N);  
  
  
r=reshape(r,N,N);  
theta=reshape(theta,N,N);  
phi=reshape(phi,N,N);  
  
% Convert from sphrical to cartisian components  
Hmagx=sqrt((real(Hrx)).^2+(real(Hthx)).^2+(real(Hpx)).^2);  
Hxx=Hrx.*sin(theta).*cos(phi)+Hthx.*cos(theta).*cos(phi)-Hpx.*sin(phi);  
Hyx=Hrx.*sin(theta).*sin(phi)+Hthx.*cos(theta).*sin(phi)+Hpx.*cos(phi);  
Hzx=Hrx.*cos(theta)-Hthx.*sin(theta);  
Emagx=sqrt((real(Erx)).^2+(real(Ethx)).^2+(real(Epx)).^2);  
Exx=Erx.*sin(theta).*cos(phi)+Ethx.*cos(theta).*cos(phi)-Epx.*sin(phi);  
Eyx=Erx.*sin(theta).*sin(phi)+Ethx.*cos(theta).*sin(phi)+Epx.*cos(phi);  
Ezx=Erx.*cos(theta)-Ethx.*sin(theta);  
Eabs=sqrt((abs(Erx)).^2+(abs(Ethx)).^2+(abs(Epx)).^2);  
Habs=sqrt((abs(Hrx)).^2+(abs(Hthx)).^2+(abs(Hpx)).^2);  
  
H_magx=sqrt((real(H_rx)).^2+(real(H_thx)).^2+(real(H_px)).^2);  
H_xx=H_rx.*sin(theta).*cos(phi)+H_thx.*cos(theta).*cos(phi)-
H_px.*sin(phi);  
H_zx=H_rx.*cos(theta)-H_thx.*sin(theta);  
E_magx=sqrt((real(E_rx)).^2+(real(E_thx)).^2+(real(E_px)).^2);  
E_xx=E_rx.*sin(theta).*cos(phi)+E_thx.*cos(theta).*cos(phi)-
E_px.*sin(phi);  
E_zx=E_rx.*cos(theta)-E_thx.*sin(theta);  
  
  
% Poynting vector S (radiating power)  
Sxx=1/2*real(Eyx.*conj(Hzx)-Ezx.*conj(Hyx));  
Syx=1/2*real(Ezx.*conj(Hxx)-Exx.*conj(Hzx));  
Szx=1/2*real(Exx.*conj(Hyx)-Eyx.*conj(Hxx));  
Smagx=sqrt((real(Sxx)).^2+(real(Syx)).^2+(real(Szx)).^2);  
  
 
m=3;  
figure(1)  
axes( 'fontsize' ,18)  
pcolor(X,Z,20*log10(Hmagx/max(max(Hmagx))))  
shading interp  
colorbar( 'fontsize' ,18)  
hold on 
h=quiver(X(1:m:N,1:m:N),Z(1:m:N,1:m:N), ...  
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    real(Hxx(1:m:N,1:m:N))./Hmagx(1:m:N,1:m:N), ...  
    real(Hzx(1:m:N,1:m:N))./Hmagx(1:m:N,1:m:N));  
set(h, 'color' , 'k' )  
xlabel( 'x [m]' )  
ylabel( 'z [m]' )  
title( 'H^x [dB]' )  
axis([x(1) x(N) z(1) z(N)]);  
hold off  
x1=linspace(0,2*pi);hold on; plot(a*sin(x1),a*cos(x1), 'k--
' , 'linewidth' ,2);hold off ;  
axis( 'equal' )  
  
figure(2)  
axes( 'fontsize' ,18)  
pcolor(X,Z,20*log10(Emagx/max(max(Emagx))))  
shading interp  
colorbar( 'fontsize' ,18)  
hold on 
h=quiver(X(1:m:N,1:m:N),Z(1:m:N,1:m:N), ...  
    real(Exx(1:m:N,1:m:N))./Emagx(1:m:N,1:m:N), ...  
    real(Ezx(1:m:N,1:m:N))./Emagx(1:m:N,1:m:N));  
set(h, 'color' , 'k' )  
xlabel( 'x [m]' )  
ylabel( 'z [m]' )  
title( 'E^x [dB]' )  
axis([x(1) x(N) z(1) z(N)]);  
hold off  
x1=linspace(0,2*pi);hold on; plot(a*sin(x1),a*cos(x1), 'k--
' , 'linewidth' ,2);hold off ;  
axis( 'equal' )  
 
figure(3)  
axes( 'fontsize' ,18)  
pcolor(X,Z,10*log10(Smagx/max(max(Smagx))))  
shading interp  
colorbar( 'fontsize' ,18)  
hold on 
h=quiver(X(1:m:N,1:m:N),Z(1:m:N,1:m:N), ...  
    real(Sxx(1:m:N,1:m:N))./Smagx(1:m:N,1:m:N), ...  
    real(Szx(1:m:N,1:m:N))./Smagx(1:m:N,1:m:N));  
set(h, 'color' , 'k' )  
xlabel( 'x [m]' )  
ylabel( 'z [m]' )  
title( 'S^x [W/m^2]' )  
axis([x(1) x(N) z(1) z(N)]);  
hold off  
x1=linspace(0,2*pi);hold on; plot(a*sin(x1),a*cos(x1), 'k--
' , 'linewidth' ,2);hold off ;  
axis( 'equal' )  
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Script 11 
This script calculates electric and the magnetic fields as well as the power density inside 
and outside a dielectric sphere of radius a and the transmitting antenna is z-oriented 
magnetic dipole antenna MHDz and has r0 distance from the origin. This script is not a 
function, therefore it is necessary to put all the functions (scripts 1 to 8) in the same 
directory as this script. There are several parameters that need to be assigned before 
running the script. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Input:                   % 
% a     : the radius of the sphere.               % 
% r0    : the position distance of the transmitting antenna.           % 
% f0    : the operating frequency.              % 
% N1  : the number of modes.               % 
% N    : number of points that are used to calculate the fields on.          % 
% x     : the limit of the region where the fields are calculated on the x-axis.         % 
% z     : the limit of the region where the fields are calculated on the z-axis.         % 
%                   % 
% Output:                  % 
% Electric field, magnetic field and power density.                        % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
% The parameters of the system  
clear all  
e0=8.854e-12; % permittivity of the free-space.  [F/m]  
u0=4*pi*1e-7; % permeability of the free-space.  [H/m]  
n0=1/376.7;     % impedance of the free-space.  [Ohom]  
c=2.998e8;    % velocity of light in free-space. [m/s]  
r0=.092;      % location of the dipole. [m]  
a=.085;       % radius of the sphere  
f0=2.45e9;       % operating frequency. [Hz]  
w=2*pi*f0;    % angular frequency.   [radian/s]  
k0=w/c;       % wave length in free-space. [1/m]  
er=39.1568 +j*13.3150;        % relative permittivity of the sphere  
ur=1;         % relative permeability of the sphere  
n1=n0*sqrt(er./ur); % the impedance of the sphere [Ohom]  
k1=k0.*sqrt(ur.*er); % the wave number inside the sphere  
N1=100; % number of the modes  
  
N=100; % number of the points  
x=linspace(-.12,.12,N);  
z=linspace(-.12,.12,N);  
[X,Z]=meshgrid(x,z);  
Y=0*ones(N);  
[phi,theta,r]=cart2sph(X,Y,Z);  
theta=pi/2-theta;  
  
r=reshape(r,1,N*N);  
theta=reshape(theta,1,N*N);  
phi=reshape(phi,1,N*N);  
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%----------------------------------------------------------------------
----  
n=(1:N1)';  
  
Q10i1=j*k0.*sqrt(n0).*(-
1).^n.*sqrt(n.*(n+1).*(2*n+1)/(4*pi)).*Rfunc(1,3,n,k0.*r0)./(k0.*r0);  
Q10i3=j*k0.*sqrt(n0).*(-
1).^n.*sqrt(n.*(n+1).*(2*n+1)/(4*pi)).*Rfunc(1,1,n,k0.*r0)./(k0.*r0);  
  
  
              % Rfunc(s,c,n,kr)  
Q10s1=-Q10i1.*(sqrt(n1/n0).*Rfunc(1,1,n,k0.*a).*Rfunc(2,1,n,k1.*a) ...  
    -sqrt(n0/n1).*Rfunc(2,1,n,k0.*a).*Rfunc(1,1,n,k1.*a))./ ...  
    (sqrt(n1/n0).*Rfunc(1,3,n,k0.*a).*Rfunc(2,1,n,k1.*a) ...  
    -sqrt(n0/n1).*Rfunc(2,3,n,k0.*a).*Rfunc(1,1,n,k1.*a));  
Q10t1=Q10i1.*k0./k1.*-j./((k0.*a).^2)./ ...  
    (sqrt(n1/n0).*Rfunc(1,3,n,k0.*a).*Rfunc(2,1,n,k1.*a) ...  
    -sqrt(n0/n1).*Rfunc(2,3,n,k0.*a).*Rfunc(1,1,n,k1.*a));  
  
  
for  n=1:N1  
    % z-orientation  
    F1i1pz(:,n)=transpose(F1n_phi(1,0,n,k0.*r,theta,phi));  
    F1i3pz(:,n)=transpose(F1n_phi(3,0,n,k0.*r,theta,phi));  
    F2i1rz(:,n)=transpose(F2n_r(1,0,n,k0.*r,theta,phi));  
    F2i3rz(:,n)=transpose(F2n_r(3,0,n,k0.*r,theta,phi));  
    F2i1thz(:,n)=transpose(F2n_theta(1,0,n,k0.*r,theta,phi));  
    F2i3thz(:,n)=transpose(F2n_theta(3,0,n,k0.*r,theta,phi));  
     
    F1t1pz(:,n)=transpose(F1n_phi(1,0,n,k1.*r,theta,phi));  
    F2t1rz(:,n)=transpose(F2n_r(1,0,n,k1.*r,theta,phi));  
    F2t1thz(:,n)=transpose(F2n_theta(1,0,n,k1.*r,theta,phi));  
end  
% z-orientation  
F1s3pz=F1i3pz;  
F2s3rz=F2i3rz;  
F2s3thz=F2i3thz;  
  
F1t1pz(r>a,:)=0;  
F2t1rz(r>a,:)=0;  
F2t1thz(r>a,:)=0;  
F1s3pz(r<=a,:)=0;  
F2s3rz(r<=a,:)=0;  
F2s3thz(r<=a,:)=0;  
  
F1i1pz(r>r0,:)=0;  
F2i1rz(r>r0,:)=0;  
F2i1thz(r>r0,:)=0;  
F1i3pz(r<=r0,:)=0;  
F2i3rz(r<=r0,:)=0;  
F2i3thz(r<=r0,:)=0;  
F1i1pz(r<=a,:)=0;  
F2i1rz(r<=a,:)=0;  
F2i1thz(r<=a,:)=0;  
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Eipz=k0./sqrt(n0).*(F1i1pz*Q10i1+F1i3pz*Q10i3);  
Hirz=-j*k0.*sqrt(n0).*(F2i1rz*Q10i1+F2i3rz*Q10i3);  
Hithz=-j*k0.*sqrt(n0).*(F2i1thz*Q10i1+F2i3thz*Q10i3);  
  
Espz=k0./sqrt(n0).*(F1s3pz*Q10s1);  
Hsrz=-j*k0.*sqrt(n0).*(F2s3rz*Q10s1);  
Hsthz=-j*k0.*sqrt(n0).*(F2s3thz*Q10s1);  
  
Etpz=k1./sqrt(n1).*(F1t1pz*Q10t1);  
Htrz=-j*k1.*sqrt(n1).*(F2t1rz*Q10t1);  
Htthz=-j*k1.*sqrt(n1).*(F2t1thz*Q10t1);  
  
  
% The analytical equation of z-oriented magnetic dipole:  
%  These equations are varified and they show similarity between them 
and 
%  the SVWE which are the correct behavior as we expect.  
  
r0=-r0;  
R=sqrt(r.^2+r0^2-2*r.*r0.*cos(theta));  
E_pz=-exp(-j*k0.*R)./(4*pi*R).*sin(theta).*r.*(1+j*k0.*R)./(R.^2);  
H_rz=-1./(j*w.*u0).*exp(-j*k0.*R)./(4*pi*R).*(-
2*cos(theta).*(1+j*k0.*R)./(R.^2)+ ...  
    r.*r0.*(sin(theta)).^2.*((j*k0.*R).^2+3*j*k0.*R+3)./(R.^4));  
H_thz=1./(j*w.*u0).*exp(-j*k0.*R)./(4*pi*R).*sin(theta).* ...  
    (-2*(1+j*k0.*R)./(R.^2)+ ...  
    r.*(r-r0.*cos(theta)).*((j*k0.*R).^2+3*j*k0.*R+3)./(R.^4));  
  
E_pz=conj(E_pz);  
H_rz=conj(H_rz);  
H_thz=conj(H_thz);  
  
Epz=Eipz+Espz+Etpz;  
Hrz=Hirz+Hsrz+Htrz;  
Hthz=Hithz+Hsthz+Htthz;  
  
  
% Reform the fields from the colum matrix to (NxN) matrix form  
E_pz=reshape(E_pz,N,N);  
H_thz=reshape(H_thz,N,N);  
H_rz=reshape(H_rz,N,N);  
  
Epz=reshape(Epz,N,N);  
Hthz=reshape(Hthz,N,N);  
Hrz=reshape(Hrz,N,N);  
  
  
r=reshape(r,N,N);  
theta=reshape(theta,N,N);  
phi=reshape(phi,N,N);  
  
% Convert from sphrical to cartisian components  
Hmagz=sqrt((real(Hrz)).^2+(real(Hthz)).^2);  
Hxz=Hrz.*sin(theta).*cos(phi)+Hthz.*cos(theta).*cos(phi);  
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Hyz=Hrz.*sin(theta).*sin(phi)+Hthz.*cos(theta).*sin(phi);  
Hzz=Hrz.*cos(theta)-Hthz.*sin(theta);  
Emagz=sqrt((real(Epz)).^2);  
Exz=-Epz.*sin(phi);  
Eyz=Epz.*cos(phi);  
Ezz=zeros(N);  
Habs=sqrt((abs(Hrz)).^2+(abs(Hthz)).^2);  
Eabs=abs(Epz);  
  
H_magz=sqrt((real(H_rz)).^2+(real(H_thz)).^2);  
H_xz=H_rz.*sin(theta).*cos(phi)+H_thz.*cos(theta).*cos(phi);  
H_yz=H_rz.*sin(theta).*sin(phi)+H_thz.*cos(theta).*sin(phi);  
H_zz=H_rz.*cos(theta)-H_thz.*sin(theta);  
E_magz=sqrt((real(E_pz)).^2);  
E_xz=-E_pz.*sin(phi);  
E_yz=E_pz.*cos(phi);  
E_zz=zeros(N);  
  
% Poynting vector S (radiating power)  
Sxz=1/2*real(Eyz.*conj(Hzz));  
Syz=1/2*real(-Exz.*conj(Hzz));  
Szz=1/2*real(Exz.*conj(Hyz)-Eyz.*conj(Hxz));  
Smagz=sqrt((real(Sxz)).^2+(real(Syz)).^2+(real(Szz)).^2);  
  
 
 
m=3;  
figure(1)  
axes( 'fontsize' ,18)  
pcolor(X,Z,20*log10(abs(Hmagz)/max(max(abs(Hmagz)))))  
shading interp  
colorbar( 'fontsize' ,18);  
hold on 
h=quiver(X(1:m:N,1:m:N),Z(1:m:N,1:m:N), ...  
    real(Hxz(1:m:N,1:m:N))./Hmagz(1:m:N,1:m:N), ...  
    real(Hzz(1:m:N,1:m:N))./Hmagz(1:m:N,1:m:N));  
set(h, 'color' , 'k' )  
xlabel( 'x [m]' )  
ylabel( 'z [m]' )  
title( '|Re\{H^z\}| [dB]' ) %title('H^z svwe method [A/m]')  
axis([x(1) x(N) z(1) z(N)]);  
axis( 'equal' )  
hold off  
x1=linspace(0,2*pi);hold on; plot(a*sin(x1),a*cos(x1), 'k--
' , 'linewidth' ,2);hold off ;  
  
 
figure(2)  
axes( 'fontsize' ,18)  
pcolor(X,Z,20*log10(abs(Emagz)/max(max(abs(Emagz)))))  
shading interp  
colorbar( 'fontsize' ,18);  
% hold on  
% h=quiver(X(1:m:N,1:m:N),Z(1:m:N,1:m:N),...  
%     real(Exz(1:m:N,1:m:N))./Emagz(1:m:N,1:m:N),...  
%     real(Ezz(1:m:N,1:m:N))./Emagz(1:m:N,1:m:N));  
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% set(h,'color','k')  
xlabel( 'x [m]' )  
ylabel( 'z [m]' )  
title( '|Re\{E^z\}| [dB]' ) %title('E^z svwe method [V/m]')  
axis([x(1) x(N) z(1) z(N)]);  
axis( 'equal' )  
% hold off  
x1=linspace(0,2*pi);hold on; plot(a*sin(x1),a*cos(x1), 'k--
' , 'linewidth' ,2);hold off ;  
  
 
figure(3)  
axes( 'fontsize' ,18)  
pcolor(X,Z,10*log10(abs(Smagz)/max(max(abs(Smagz)))))  
shading interp  
colorbar( 'fontsize' ,18);  
hold on 
h=quiver(X(1:m:N,1:m:N),Z(1:m:N,1:m:N), ...  
    real(Sxz(1:m:N,1:m:N))./Smagz(1:m:N,1:m:N), ...  
    real(Szz(1:m:N,1:m:N))./Smagz(1:m:N,1:m:N));  
set(h, 'color' , 'k' )  
xlabel( 'x [m]' )  
ylabel( 'z [m]' )  
title( '|S^z| [dB]' )  
axis([x(1) x(N) z(1) z(N)]);  
hold off  
axis( 'equal' )  
x1=linspace(0,2*pi);hold on; plot(a*sin(x1),a*cos(x1), 'k--
' , 'linewidth' ,2);hold off ;  
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Script 12 
This script calculates electric and the magnetic fields as well as the power density inside 
and outside a dielectric sphere of radius a and the transmitting antenna is x-oriented 
magnetic dipole antenna MHDz and has r0 distance from the origin. This script is not a 
function, therefore it is necessary to put all the functions (scripts 1 to 8) in the same 
directory as this script. There are several parameters that need to be assigned before 
running the script. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Input:                   % 
% a     : the radius of the sphere.               % 
% r0    : the position distance of the transmitting antenna.           % 
% f0    : the operating frequency.              % 
% N1  : the number of modes.               % 
% N    : number of points that are used to calculate the fields on.          % 
% x     : the limit of the region where the fields are calculated on the x-axis.         % 
% z     : the limit of the region where the fields are calculated on the z-axis.         % 
%                   % 
% Output:                  % 
% Electric field, magnetic field and power density.                        % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% The parameters of the system  
clear all  
e0=8.854e-12; % permittivity of the free-space.  [F/m]  
u0=4*pi*1e-7; % permeability of the free-space.  [H/m]  
n0=1/376.7;     % impedance of the free-space.  [Ohom]  
c=2.998e8;    % velocity of light in free-space. [m/s]  
r0=.092;      % location of the dipole. [m]  
a=.085;       % radius of the sphere  
f0=1e9;       % operating frequency. [Hz]  
w=2*pi*f0;    % angular frequency.   [radian/s]  
k0=w/c;       % wave length in free-space. [1/m]  
er=41.0279 +j*17.8281;        % relative permittivity of the sphere  
ur=1;         % relative permeability of the sphere  
n1=n0*sqrt(er./ur); % the impedance of the sphere [Ohom]  
k1=k0.*sqrt(ur.*er); % the wave number inside the sphere  
N1=80; % number of the modes  
  
N=100; % number of the points  
x=linspace(-.12,.12,N);  
z=linspace(-.12,.12,N);  
[X,Z]=meshgrid(x,z);  
Y=0*ones(N);  
[phi,theta,r]=cart2sph(X,Y,Z);  
theta=pi/2-theta;  
  
r=reshape(r,1,N*N);  
theta=reshape(theta,1,N*N);  
phi=reshape(phi,1,N*N);  
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n=(1:N1)'; %Rfunc(s,c,n,kr)  
Q11i1=j*k0.*sqrt(n0).*(-
1).^(n+1).*1/4.*sqrt((2*n+1)/pi).*Rfunc(2,3,n,k0.*r0);   %  r <= r0  
Q11i3=j*k0.*sqrt(n0).*(-
1).^(n+1).*1/4.*sqrt((2*n+1)/pi).*Rfunc(2,1,n,k0.*r0);   %  r > r0  
Q21i1=k0.*sqrt(n0).*(-
1).^(n).*1/4.*sqrt((2*n+1)/pi).*Rfunc(1,3,n,k0.*r0);   %  r <= r0  
Q21i3=k0.*sqrt(n0).*(-
1).^(n).*1/4.*sqrt((2*n+1)/pi).*Rfunc(1,1,n,k0.*r0);   %  r > r0  
  
Q11s3=Q11i1.*(sqrt(n0/n1).*Rfunc(2,1,n,k0*a).*Rfunc(1,1,n,k1*a)- ...  
    sqrt(n1/n0).*Rfunc(1,1,n,k0*a).*Rfunc(2,1,n,k1*a))./ ...  
    (sqrt(n1/n0).*Rfunc(1,3,n,k0*a).*Rfunc(2,1,n,k1*a)- ...  
    sqrt(n0/n1).*Rfunc(2,3,n,k0*a).*Rfunc(1,1,n,k1*a));  
Q21s3=Q21i1.*(sqrt(n0/n1).*Rfunc(1,1,n,k0*a).*Rfunc(2,1,n,k1*a)- ...  
    sqrt(n1/n0).*Rfunc(2,1,n,k0*a).*Rfunc(1,1,n,k1*a))./ ...  
    (sqrt(n1/n0).*Rfunc(2,3,n,k0*a).*Rfunc(1,1,n,k1*a)- ...  
    sqrt(n0/n1).*Rfunc(1,3,n,k0*a).*Rfunc(2,1,n,k1*a));  
  
Q11t1=Q11i1.*k0./k1.*(-j./((k0*a).^2))./ ...  
    (sqrt(n1/n0).*Rfunc(1,3,n,k0*a).*Rfunc(2,1,n,k1*a)- ...  
    sqrt(n0/n1).*Rfunc(2,3,n,k0*a).*Rfunc(1,1,n,k1*a));  
Q21t1=Q21i1.*k0./k1.*(j./((k0*a).^2))./ ...  
    (sqrt(n1/n0).*Rfunc(2,3,n,k0*a).*Rfunc(1,1,n,k1*a)- ...  
    sqrt(n0/n1).*Rfunc(1,3,n,k0*a).*Rfunc(2,1,n,k1*a));  
  
  
for  n=1:N1  
    % x-orientation  
    sL=j*Lfunc(1,1,n,theta)./sin(theta);  
    dL=Lfunc(2,1,n,theta);  
    L=-legendre(n,cos(theta));  
     
    F1i1px1(:,n)=transpose(F1n_phi(1,1,n,k0*r,theta,phi)); % m=1 
    F1i3px1(:,n)=transpose(F1n_phi(3,1,n,k0*r,theta,phi)); % m=1 
    F1i1px2(:,n)=transpose(F1n_phi(1,-1,n,k0*r,theta,phi)); % m=-1 
    F1i3px2(:,n)=transpose(F1n_phi(3,-1,n,k0*r,theta,phi)); % m=-1 
     
    F1i1thx1(:,n)=transpose(F1n_theta(1,1,n,k0*r,theta,phi)); % m=1 
    F1i3thx1(:,n)=transpose(F1n_theta(3,1,n,k0*r,theta,phi)); % m=1 
    F1i1thx2(:,n)=transpose(F1n_theta(1,-1,n,k0*r,theta,phi)); % m=-1 
    F1i3thx2(:,n)=transpose(F1n_theta(3,-1,n,k0*r,theta,phi)); % m=1 
     
    F2i1px1(:,n)=transpose(F2n_phi(1,1,n,k0*r,theta,phi)); % m=1 
    F2i3px1(:,n)=transpose(F2n_phi(3,1,n,k0*r,theta,phi)); % m=1 
    F2i1px2(:,n)=transpose(F2n_phi(1,-1,n,k0*r,theta,phi)); % m=-1 
    F2i3px2(:,n)=transpose(F2n_phi(3,-1,n,k0*r,theta,phi)); % m=-1 
     
    F2i1thx1(:,n)=transpose(F2n_theta(1,1,n,k0*r,theta,phi)); % m=1 
    F2i3thx1(:,n)=transpose(F2n_theta(3,1,n,k0*r,theta,phi)); % m=1 
    F2i1thx2(:,n)=transpose(F2n_theta(1,-1,n,k0*r,theta,phi)); % m=-1 
    F2i3thx2(:,n)=transpose(F2n_theta(3,-1,n,k0*r,theta,phi)); % m=-1 
     
    F2i1rx1(:,n)=transpose(F2n_r(1,1,n,k0*r,theta,phi)); % m=1 
    F2i3rx1(:,n)=transpose(F2n_r(3,1,n,k0*r,theta,phi)); % m=1 
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    F2i1rx2(:,n)=transpose(F2n_r(1,-1,n,k0*r,theta,phi)); % m=-1 
    F2i3rx2(:,n)=transpose(F2n_r(3,-1,n,k0*r,theta,phi)); % m=-1 
     
     
    %   total fields  
    F1t1px1(:,n)=transpose(F1n_phi(1,1,n,k1*r,theta,phi)); % m=1 
    F1t1px2(:,n)=transpose(F1n_phi(1,-1,n,k1*r,theta,phi)); % m=-1 
         
    F1t1thx1(:,n)=transpose(F1n_theta(1,1,n,k1*r,theta,phi)); % m=1 
    F1t1thx2(:,n)=transpose(F1n_theta(1,-1,n,k1*r,theta,phi)); % m=-1 
         
    F2t1px1(:,n)=transpose(F2n_phi(1,1,n,k1*r,theta,phi)); % m=1 
    F2t1px2(:,n)=transpose(F2n_phi(1,-1,n,k1*r,theta,phi)); % m=-1 
         
    F2t1thx1(:,n)=transpose(F2n_theta(1,1,n,k1*r,theta,phi)); % m=1 
    F2t1thx2(:,n)=transpose(F2n_theta(1,-1,n,k1*r,theta,phi)); % m=-1 
         
    F2t1rx1(:,n)=transpose(F2n_r(1,1,n,k1*r,theta,phi)); % m=1 
    F2t1rx2(:,n)=transpose(F2n_r(1,-1,n,k1*r,theta,phi)); % m=-1     
  end  
% x-orientation  
  
% scattered fields  
F1s3px1=F1i3px1;  
F1s3thx1=F1i3thx1;  
F1s3px2=F1i3px2;  
F1s3thx2=F1i3thx2;  
  
F2s3px1=F2i3px1;  
F2s3thx1=F2i3thx1;  
F2s3rx1=F2i3rx1;  
F2s3px2=F2i3px2;  
F2s3thx2=F2i3thx2;  
F2s3rx2=F2i3rx2;  
  
F1s3px1(r<=a,:)=0;  
F1s3thx1(r<=a,:)=0;  
F1s3px2(r<=a,:)=0;  
F1s3thx2(r<=a,:)=0;  
  
F2s3px1(r<=a,:)=0;  
F2s3thx1(r<=a,:)=0;  
F2s3rx1(r<=a,:)=0;  
F2s3px2(r<=a,:)=0;  
F2s3thx2(r<=a,:)=0;  
F2s3rx2(r<=a,:)=0;  
  
% incident fields  
F1i1px1(r>r0,:)=0;  
F1i1thx1(r>r0,:)=0;  
F1i1px2(r>r0,:)=0;  
F1i1thx2(r>r0,:)=0;  
  
F1i1px1(r<=a,:)=0;  
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F1i1thx1(r<=a,:)=0;  
F1i1px2(r<=a,:)=0;  
F1i1thx2(r<=a,:)=0;  
  
F1i3px1(r<=r0,:)=0;  
F1i3thx1(r<=r0,:)=0;  
F1i3px2(r<=r0,:)=0;  
F1i3thx2(r<=r0,:)=0;  
  
F2i1px1(r>r0,:)=0;  
F2i1thx1(r>r0,:)=0;  
F2i1rx1(r>r0,:)=0;  
F2i1px2(r>r0,:)=0;  
F2i1thx2(r>r0,:)=0;  
F2i1rx2(r>r0,:)=0;  
  
F2i1px1(r<=a,:)=0;  
F2i1thx1(r<=a,:)=0;  
F2i1rx1(r<=a,:)=0;  
F2i1px2(r<=a,:)=0;  
F2i1thx2(r<=a,:)=0;  
F2i1rx2(r<=a,:)=0;  
  
F2i3px1(r<=r0,:)=0;  
F2i3thx1(r<=r0,:)=0;  
F2i3rx1(r<=r0,:)=0;  
F2i3px2(r<=r0,:)=0;  
F2i3thx2(r<=r0,:)=0;  
F2i3rx2(r<=r0,:)=0;  
  
% total field  
F1t1px1(r>a,:)=0;  
F1t1thx1(r>a,:)=0;  
F1t1px2(r>a,:)=0;  
F1t1thx2(r>a,:)=0;  
  
F2t1px1(r>a,:)=0;  
F2t1thx1(r>a,:)=0;  
F2t1rx1(r>a,:)=0;  
F2t1px2(r>a,:)=0;  
F2t1thx2(r>a,:)=0;  
F2t1rx2(r>a,:)=0;  
  
% incident fields  
Eipx=k0./sqrt(n0).*((F1i1px1-F1i1px2)*Q11i1+(F1i3px1-F1i3px2)*Q11i3 ...  
    +(F2i1px1+F2i1px2)*Q21i1+(F2i3px1+F2i3px2)*Q21i3);  
Eithx=k0./sqrt(n0).*((F1i1thx1-F1i1thx2)*Q11i1+(F1i3thx1-
F1i3thx2)*Q11i3 ...  
    +(F2i1thx1+F2i1thx2)*Q21i1+(F2i3thx1+F2i3thx2)*Q21i3);  
Eirx=k0./sqrt(n0).*((F2i1rx1+F2i1rx2)*Q21i1+(F2i3rx1+F2i3rx2)*Q21i3);  
Hipx=-j*k0.*sqrt(n0).*((F2i1px1-F2i1px2)*Q11i1+(F2i3px1-
F2i3px2)*Q11i3 ...  
    +(F1i1px1+F1i1px2)*Q21i1+(F1i3px1+F1i3px2)*Q21i3);  
Hithx=-j*k0.*sqrt(n0).*((F2i1thx1-F2i1thx2)*Q11i1+(F2i3thx1-
F2i3thx2)*Q11i3 ...  
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    +(F1i1thx1+F1i1thx2)*Q21i1+(F1i3thx1+F1i3thx2)*Q21i3);  
Hirx=-j*k0.*sqrt(n0).*((F2i1rx1-F2i1rx2)*Q11i1+(F2i3rx1-
F2i3rx2)*Q11i3);  
  
% scattered fields  
Espx=k0./sqrt(n0).*((F1s3px1-F1s3px2)*Q11s3 ...  
    +(F2s3px1+F2s3px2)*Q21s3);  
Esthx=k0./sqrt(n0).*((F1s3thx1-F1s3thx2)*Q11s3 ...  
    +(F2s3thx1+F2s3thx2)*Q21s3);  
Esrx=k0./sqrt(n0).*((F2s3rx1+F2s3rx2)*Q21s3);  
Hspx=-j*k0.*sqrt(n0).*((F2s3px1-F2s3px2)*Q11s3 ...  
    +(F1s3px1+F1s3px2)*Q21s3);  
Hsthx=-j*k0.*sqrt(n0).*((F2s3thx1-F2s3thx2)*Q11s3 ...  
    +(F1s3thx1+F1s3thx2)*Q21s3);  
Hsrx=-j*k0.*sqrt(n0).*((F2s3rx1-F2s3rx2)*Q11s3);  
  
% total fields  
Etpx=k1./sqrt(n1).*((F1t1px1-F1t1px2)*Q11t1 ...  
    +(F2t1px1+F2t1px2)*Q21t1);  
Etthx=k1./sqrt(n1).*((F1t1thx1-F1t1thx2)*Q11t1 ...  
    +(F2t1thx1+F2t1thx2)*Q21t1);  
Etrx=k1./sqrt(n1).*((F2t1rx1+F2t1rx2)*Q21t1);  
Htpx=-j*k1.*sqrt(n1).*((F2t1px1-F2t1px2)*Q11t1 ...  
    +(F1t1px1+F1t1px2)*Q21t1);  
Htthx=-j.*k1.*sqrt(n1).*((F2t1thx1-F2t1thx2)*Q11t1 ...  
    +(F1t1thx1+F1t1thx2)*Q21t1);  
Htrx=-j*k1.*sqrt(n1).*((F2t1rx1-F2t1rx2)*Q11t1);  
  
  
%----------------------------------------------------------------------
----  
% The analytical equation of x-oriented magnetic dipole:  
%  These equations are varified and they show similarity between them 
and 
%  the SVWE which are the correct behavior as we expect.  
%  The equations of the closed-form and the SVWE are varified in the  
%  m-file "ValidationOf_x_Scattering.m"  
  
r0=-r0;  
R=sqrt(r.^2+r0^2-2*r.*r0.*cos(theta));  
E_rx=-exp(-
j*k0.*R)./(4*pi*R).*sin(theta).*sin(phi).*r0.*(1+j*k0.*R)./(R.^2);  
E_thx=exp(-j*k0.*R)./(4*pi*R).*sin(phi).*(r-
r0.*cos(theta)).*(1+j*k0.*R)./(R.^2);  
E_px=exp(-j*k0.*R)./(4*pi*R).*cos(phi).*(r.*cos(theta)-
r0).*(1+j*k0.*R)./(R.^2);  
H_rx=-j*w.*e0.*exp(-j*k0.*R)./(4*pi*R).*sin(theta).*cos(phi).* ...  
    (1-(1+j*k0.*R)./((k0.*R).^2)+ ...  
    r.*(r-r0.*cos(theta)).*((-j*k0.*R).^2+3*j*k0.*R+3)./(k0.^2.*R.^4));  
H_thx=-j*w.*e0.*exp(-j*k0.*R)./(4*pi*R).*cos(theta).*cos(phi).* ...  
    (1-(1+j*k0.*R)./((k0.*R).^2)+ ...  
    r.*r0.*(sin(theta)).^2.*((-
j*k0.*R).^2+3*j*k0.*R+3)./(k0.^2.*R.^4.*cos(theta)));  
H_px=j*w.*e0.*exp(-j*k0.*R)./(4*pi*R).*sin(phi).*(1-
(1+j*k0.*R)./(k0.^2.*R.^2));  
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E_rx=conj(E_rx);  
E_thx=conj(E_thx);  
E_px=conj(E_px);  
H_rx=conj(H_rx);  
H_thx=conj(H_thx);  
H_px=conj(H_px);  
%----------------------------------------------------------------------
----  
  
% Calculating the fields  
Epx=Eipx+Espx+Etpx;  
Ethx=Eithx+Esthx+Etthx;  
Erx=Eirx+Esrx+Etrx;  
Hpx=Hipx+Hspx+Htpx;  
Hthx=Hithx+Hsthx+Htthx;  
Hrx=Hirx+Hsrx+Htrx;  
  
% Reform the fields from the colum matrix to (NxN) matrix form  
E_px=reshape(E_px,N,N);  
E_thx=reshape(E_thx,N,N);  
E_rx=reshape(E_rx,N,N);  
H_px=reshape(H_px,N,N);  
H_thx=reshape(H_thx,N,N);  
H_rx=reshape(H_rx,N,N);  
  
Epx=reshape(Epx,N,N);  
Ethx=reshape(Ethx,N,N);  
Erx=reshape(Erx,N,N);  
Hpx=reshape(Hpx,N,N);  
Hthx=reshape(Hthx,N,N);  
Hrx=reshape(Hrx,N,N);  
  
  
r=reshape(r,N,N);  
theta=reshape(theta,N,N);  
phi=reshape(phi,N,N);  
  
% Convert from sphrical to cartisian components  
Hmagx=sqrt((real(Hrx)).^2+(real(Hthx)).^2+(real(Hpx)).^2);  
Hxx=Hrx.*sin(theta).*cos(phi)+Hthx.*cos(theta).*cos(phi)-Hpx.*sin(phi);  
Hyx=Hrx.*sin(theta).*sin(phi)+Hthx.*cos(theta).*sin(phi)+Hpx.*cos(phi);  
Hzx=Hrx.*cos(theta)-Hthx.*sin(theta);  
Emagx=sqrt((real(Erx)).^2+(real(Ethx)).^2+(real(Epx)).^2);  
Exx=Erx.*sin(theta).*cos(phi)+Ethx.*cos(theta).*cos(phi)-Epx.*sin(phi);  
Eyx=Erx.*sin(theta).*sin(phi)+Ethx.*cos(theta).*sin(phi)+Epx.*cos(phi);  
Ezx=Erx.*cos(theta)-Ethx.*sin(theta);  
Eabs=sqrt((abs(Erx)).^2+(abs(Ethx)).^2+(abs(Epx)).^2);  
Habs=sqrt((abs(Hrx)).^2+(abs(Hthx)).^2+(abs(Hpx)).^2);  
  
H_magx=sqrt((real(H_rx)).^2+(real(H_thx)).^2+(real(H_px)).^2);  
H_xx=H_rx.*sin(theta).*cos(phi)+H_thx.*cos(theta).*cos(phi)-
H_px.*sin(phi);  
H_zx=H_rx.*cos(theta)-H_thx.*sin(theta);  
E_magx=sqrt((real(E_rx)).^2+(real(E_thx)).^2+(real(E_px)).^2);  
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E_xx=E_rx.*sin(theta).*cos(phi)+E_thx.*cos(theta).*cos(phi)-
E_px.*sin(phi);  
E_zx=E_rx.*cos(theta)-E_thx.*sin(theta);  
  
  
% Poynting vector S (radiating power)  
Sxx=1/2*real(Eyx.*conj(Hzx)-Ezx.*conj(Hyx));  
Syx=1/2*real(Ezx.*conj(Hxx)-Exx.*conj(Hzx));  
Szx=1/2*real(Exx.*conj(Hyx)-Eyx.*conj(Hxx));  
Smagx=sqrt((real(Sxx)).^2+(real(Syx)).^2+(real(Szx)).^2);  
  
  
  
m=3;  
figure(1)  
axes( 'fontsize' ,18)  
pcolor(X,Z,20*log10(Hmagx/max(max(Hmagx))))  
shading interp  
colorbar( 'fontsize' ,18)  
hold on 
h=quiver(X(1:m:N,1:m:N),Z(1:m:N,1:m:N), ...  
    real(Hxx(1:m:N,1:m:N))./Hmagx(1:m:N,1:m:N), ...  
    real(Hzx(1:m:N,1:m:N))./Hmagx(1:m:N,1:m:N));  
set(h, 'color' , 'k' )  
xlabel( 'x [m]' )  
ylabel( 'z [m]' )  
title( 'H^x [dB]' )  
axis([x(1) x(N) z(1) z(N)]);  
hold off  
x1=linspace(0,2*pi);hold on; plot(a*sin(x1),a*cos(x1), 'k--
' , 'linewidth' ,2);hold off ;  
axis( 'equal' )  
   
  
figure(2)  
axes( 'fontsize' ,18)  
pcolor(X,Z,20*log10(Emagx/max(max(Emagx))))  
shading interp  
colorbar( 'fontsize' ,18)  
hold on 
h=quiver(X(1:m:N,1:m:N),Z(1:m:N,1:m:N), ...  
    real(Exx(1:m:N,1:m:N))./Emagx(1:m:N,1:m:N), ...  
    real(Ezx(1:m:N,1:m:N))./Emagx(1:m:N,1:m:N));  
set(h, 'color' , 'k' )  
xlabel( 'x [m]' )  
ylabel( 'z [m]' )  
title( 'E^x [dB]' )  
axis([x(1) x(N) z(1) z(N)]);  
hold off  
x1=linspace(0,2*pi);hold on; plot(a*sin(x1),a*cos(x1), 'k--
' , 'linewidth' ,2);hold off ;  
axis( 'equal' )  
  
 
figure(3)  
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axes( 'fontsize' ,18)  
pcolor(X,Z,10*log10(Smagx/max(max(Smagx))))  
shading interp  
colorbar( 'fontsize' ,18)  
hold on 
h=quiver(X(1:m:N,1:m:N),Z(1:m:N,1:m:N), ...  
    real(Sxx(1:m:N,1:m:N))./Smagx(1:m:N,1:m:N), ...  
    real(Szx(1:m:N,1:m:N))./Smagx(1:m:N,1:m:N));  
set(h, 'color' , 'k' )  
xlabel( 'x [m]' )  
ylabel( 'z [m]' )  
title( 'S^x [W/m^2]' )  
axis([x(1) x(N) z(1) z(N)]);  
hold off  
x1=linspace(0,2*pi);hold on; plot(a*sin(x1),a*cos(x1), 'k--
' , 'linewidth' ,2);hold off ;  
axis( 'equal' )  
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Script 13 
This script calculates and plots electric and the magnetic fields for a z-oriented electric 
hertzian dipole EHDz in free space after translation and rotation of the antenna. This 
script uses spherical wave functions that are programmed in scripts 14 to 16. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Input:                   % 
% a     : the radius of the sphere.               % 
% r0    : the position distance of the transmitting antenna.           % 
% f0    : the operating frequency.              % 
% N1  : the number of modes.               % 
% N    : number of points that are used to calculate the fields on.          % 
% x     : the limit of the region where the fields are calculated on the x-axis.         % 
% z     : the limit of the region where the fields are calculated on the z-axis.         % 
% theta: the rotation angle (radian).              % 
%                   % 
% Output:                  % 
% Electric field, magnetic field and power density.                        % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
% The parameters of the system  
clear all  
e0=8.854e-12; % permittivity of the free-space.  [F/m]  
u0=4*pi*1e-7; % permeability of the free-space.  [H/m]  
n0=1/376.7;     % impedance of the free-space.  [Ohom]  
c=2.998e8;    % velocity of light in free-space. [m/s]  
r0=10e-2;      % location of the dipole. [m]  
a=.07;       % radius of the sphere  
f0=1e9;       % operating frequency. [Hz]  
w=2*pi*f0;    % angular frequency.   [radian/s]  
k0=w/c;       % wave length in free-space. [1/m]  
er=1;        % relative permittivity of the sphere  
ur=1;         % relative permeability of the sphere  
n1=n0*sqrt(er./ur); % the impedance of the sphere [Ohom]  
k1=k0.*sqrt(ur.*er); % the wave number inside the sphere  
theta1=45*pi/180; % the rotation angle  
chi1=0*pi/180; % the rotation angle  
phi1=0*pi/180; % the rotation angle  
N1=15; % number of the modes  
J=2*N1*(N1+2); % number of the total modes  
  
N=80; % number of the points  
x=linspace(-.25,.25,N);  
z=linspace(-.25,.25,N);  
[X,Z]=meshgrid(x,z);  
Y=0*ones(N);  
[phi,theta,r]=cart2sph(X,Y,Z);  
theta=pi/2-theta;  
  
r=reshape(r,1,N*N);  
theta=reshape(theta,1,N*N);  
phi=reshape(phi,1,N*N);               
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F1ip=zeros(N*N,J);  
F3ip=zeros(N*N,J);  
F1ith=zeros(N*N,J);  
F3ith=zeros(N*N,J);  
F1ir=zeros(N*N,J);  
F3ir=zeros(N*N,J);  
Q1=zeros(J,1);  
Q1m=zeros(J,1); % for the magnetic fields  
Q3=zeros(J,1);  
Q3m=zeros(J,1); % for the magnetic fields  
Q201=-1/sqrt(6*pi)*k0/sqrt(n0);  
% Calculating the coefficients  
  
for  sigma=1:2  
    s2=3-sigma;  
    s=2;  
    for  n=1:N1  
        d_a2=rotationCoef(n,0,theta1);    % rotationCoef(n,m,theta)  
        d_a2=flipud(d_a2); % to start from -n:n  
        C1=translationCoef(3,2,sigma,1,0,n,k0.*r0); % translation 
coefficient  
        C3=translationCoef(1,2,sigma,1,0,n,k0.*r0); % 
translationCoef(c,s,sigma,n,mu,nu,kA)  
        for  m=1:2*n+1 % because of the rotation  
            m1=m-n-1; %  to insure that  m=-n:n  
            j1=2*(n*(n+1)+m1-1)+sigma; % the index for the electric 
fields  
            j2=2*(n*(n+1)+m1-1)+s2; % the index for the magnetic fields  
            Q1(j1,1)=d_a2(m)*C1; % is used because we just need s=2  
            Q3(j1,1)=d_a2(m)*C3; % is used because we just need s=2  
            Q1m(j2,1)=Q1(j1,1); % for the magnetic fields  
            Q3m(j2,1)=Q3(j1,1); % for the magnetic fields  
        end  
    end  
end  
 
% calculating the modes  
for  n=1:N1  
    for  m=1:2*n+1 % because of the rotation  
        for  s=1:2  
            m1=m-n-1; %  to insure that  m=-n:n  
            j1=2*(n*(n+1)+m1-1)+s; % the index for the electric fields  
            % z-orientation  
            F1ir(:,j1)=transpose(F_r(s,1,m1,n,k0.*r,theta,phi));  
            F3ir(:,j1)=transpose(F_r(s,3,m1,n,k0.*r,theta,phi));  
            F1ith(:,j1)=transpose(F_theta(s,1,m1,n,k0.*r,theta,phi));  
            F3ith(:,j1)=transpose(F_theta(s,3,m1,n,k0.*r,theta,phi));  
            F1ip(:,j1)=transpose(F_phi(s,1,m1,n,k0.*r,theta,phi));  
            F3ip(:,j1)=transpose(F_phi(s,3,m1,n,k0.*r,theta,phi));  
        end  
    end  
end  
  
% z-orientation  
F1ir(r>r0,:)=0;  
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F1ith(r>r0,:)=0;  
F1ip(r>r0,:)=0;  
F3ir(r<=r0,:)=0;  
F3ith(r<=r0,:)=0;  
F3ip(r<=r0,:)=0;  
  
Hpz=-j*k0.*sqrt(n0).*Q201.*(F1ip*Q1m+F3ip*Q3m);  
Erz=k0./sqrt(n0).*Q201.*(F1ir*Q1+F3ir*Q3);  
Ethz=k0./sqrt(n0).*Q201.*(F1ith*Q1+F3ith*Q3);  
  
  
%----------------------------------------------------------------------  
% The analytical equation of z-oriented magnetic dipole:  
%  These equations are varified and they show similarity between them 
and 
%  the SVWE which are the correct behavior as we expect.  
  
r0=-r0;  
R=sqrt(r.^2+r0^2-2*r.*r0.*cos(theta));  
H_pz=exp(-j*k0.*R)./(4*pi*R).*sin(theta).*r.*(1+j*k0.*R)./(R.^2);  
E_rz=-1./(j*w.*e0).*exp(-j*k0.*R)./(4*pi*R).*(-
2*cos(theta).*(1+j*k0.*R)./(R.^2)+ ...  
    r.*r0.*(sin(theta)).^2.*((j*k0.*R).^2+3*j*k0.*R+3)./(R.^4));  
E_thz=1./(j*w.*e0).*exp(-j*k0.*R)./(4*pi*R).*sin(theta).* ...  
    (-2*(1+j*k0.*R)./(R.^2)+ ...  
    r.*(r-r0.*cos(theta)).*((j*k0.*R).^2+3*j*k0.*R+3)./(R.^4));  
  
H_pz=conj(H_pz);  
E_rz=conj(E_rz);  
E_thz=conj(E_thz);  
%----------------------------------------------------------------------
----  
  
  
% Reform the fields from the colum matrix to (NxN) matrix form  
H_pz=reshape(H_pz,N,N);  
E_thz=reshape(E_thz,N,N);  
E_rz=reshape(E_rz,N,N);  
  
Hpz=reshape(Hpz,N,N);  
Ethz=reshape(Ethz,N,N);  
Erz=reshape(Erz,N,N);  
  
  
r=reshape(r,N,N);  
theta=reshape(theta,N,N);  
phi=reshape(phi,N,N);  
  
% Convert from sphrical to cartisian components  
Emagz=sqrt((real(Erz)).^2+(real(Ethz)).^2);  
Exz=Erz.*sin(theta).*cos(phi)+Ethz.*cos(theta).*cos(phi);  
Eyz=Erz.*sin(theta).*sin(phi)+Ethz.*cos(theta).*sin(phi);  
Ezz=Erz.*cos(theta)-Ethz.*sin(theta);  
Hmagz=sqrt((real(Hpz)).^2);  
Hxz=-Hpz.*sin(phi);  
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Hyz=Hpz.*cos(phi);  
Hzz=zeros(N);  
  
  
E_magz=sqrt((real(E_rz)).^2+(real(E_thz)).^2);  
E_xz=E_rz.*sin(theta).*cos(phi)+E_thz.*cos(theta).*cos(phi);  
E_yz=E_rz.*sin(theta).*sin(phi)+E_thz.*cos(theta).*sin(phi);  
E_zz=E_rz.*cos(theta)-E_thz.*sin(theta);  
H_magz=sqrt((real(H_pz)).^2);  
H_xz=-H_pz.*sin(phi);  
H_yz=H_pz.*cos(phi);  
H_zz=zeros(N);  
  
   
m=5;  
figure(1)  
pcolor(X,Z,Emagz)  
shading interp  
colorbar  
hold on 
h=quiver(X(1:m:N,1:m:N),Z(1:m:N,1:m:N), ...  
    real(Exz(1:m:N,1:m:N))./Emagz(1:m:N,1:m:N), ...  
    real(Ezz(1:m:N,1:m:N))./Emagz(1:m:N,1:m:N));  
set(h, 'color' , 'k' )  
xlabel( 'x [m]' )  
ylabel( 'z [m]' )  
title( 'E^z svwe method [V/m]' )  
axis([x(1) x(N) z(1) z(N)]);  
hold off  
  
  
figure(2)  
pcolor(X,Z,E_magz)  
shading interp  
colorbar  
hold on 
h=quiver(X(1:m:N,1:m:N),Z(1:m:N,1:m:N), ...  
    real(E_xz(1:m:N,1:m:N))./E_magz(1:m:N,1:m:N), ...  
    real(E_zz(1:m:N,1:m:N))./E_magz(1:m:N,1:m:N));  
set(h, 'color' , 'k' )  
xlabel( 'x [m]' )  
ylabel( 'z [m]' )  
title( 'E^z closed-form [V/m]' )  
axis([x(1) x(N) z(1) z(N)]);  
hold off  
  
  
figure(3)  
pcolor(X,Z,Hmagz)  
shading interp  
colorbar  
hold on 
h=quiver(X(1:m:N,1:m:N),Z(1:m:N,1:m:N), ...  
    real(Hxz(1:m:N,1:m:N))./Hmagz(1:m:N,1:m:N), ...  
    real(Hzz(1:m:N,1:m:N))./Hmagz(1:m:N,1:m:N));  
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set(h, 'color' , 'k' )  
xlabel( 'x [m]' )  
ylabel( 'z [m]' )  
title( 'H^z svwe method [A/m]' )  
axis([x(1) x(N) z(1) z(N)]);  
hold off  
  
figure(4)  
pcolor(X,Z,H_magz)  
shading interp  
colorbar  
hold on 
h=quiver(X(1:m:N,1:m:N),Z(1:m:N,1:m:N), ...  
    real(H_xz(1:m:N,1:m:N))./H_magz(1:m:N,1:m:N), ...  
    real(H_zz(1:m:N,1:m:N))./H_magz(1:m:N,1:m:N));  
set(h, 'color' , 'k' )  
xlabel( 'x [m]' )  
ylabel( 'z [m]' )  
title( 'H^z [A/m]' )  
axis([x(1) x(N) z(1) z(N)]);  
hold off  
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Script 14 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Input:                   % 
% s     : the type of wave, it takes 1 or 2.              % 
% c     : takes values 1 to 4 to describe the type of the wave.           % 
% n     : the mode number which is different from zero.            % 
% m    : the mode number which is nm �d .             % 

% kr    : the product of wave-number and the radial distance.           % 
% theta: the position angle (radian).              % 
% phi   : the position angle (radian).              % 
%                   % 
% Output:                  % 
% Fn  :This is the radial component of the spherical wave function.          % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
function  Fn=F_r(s,c,m,n,kr,theta,phi)  
  
if (s==2)  
    Fn=F2n_r(c,m,n,kr,theta,phi);  
end  
if (s==1)  
    N1=max(length(kr),length(theta));  
    N2=max(N1,length(phi));  
     
    Fn=zeros(1,N2);  
end  
  
  
function  F2n=F2n_r(c,m,n,kr,theta,phi)  
  
F2n = mFun(m)*1/sqrt(2*pi)*sqrt(1/(n*(n+1)))*NormLegCoef(n,m)* ...  
    
n*(n+1)./kr.*sbessel(c,n,kr).*legendre_(n,m,cos(theta)).*exp(j*m*phi);  
  
function  mm=mFun(m) 
if (m==0)  
    mm=1;  
else  
    mm=(-m/abs(m))^(m);  
end  
  
function  zn=sbessel(c,n,kr)  
if (c==1)  
    zn=sqrt(pi./(2.*kr)).*besselj(n+.5,kr);  
end  
if (c==2)  
    zn=sqrt(pi./(2.*kr)).*bessely(n+.5,kr);  
end  
if (c==3)  
    zn=sqrt(pi./(2.*kr)).*besselh(n+.5,1,kr);  
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end 
if (c==4)  
    zn=sqrt(pi./(2.*kr)).*besselh(n+.5,2,kr);  
end  
  
function  P=legendre_(n,m,x)  
n=abs(n);  
m=abs(m);  
if (n>=abs(m))  
P=(-1)^m*legendre(n,x);  
P=P(m+1,:);  
else  
    P=zeros(size(x));  
end  
  
function  nL=NormLegCoef(n,m)  
m=abs(m);  
nL=sqrt((2*n+1)/2*factorial(n-m)/factorial(n+m));  
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Script 15 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Input:                   % 
% s     : the type of wave, it takes 1 or 2.              % 
% c     : takes values 1 to 4 to describe the type of the wave.           % 
% n     : the mode number which is different from zero.            % 
% m    : the mode number which is nm �d .             % 

% kr    : the product of wave-number and the radial distance.           % 
% theta: the position angle (radian).              % 
% phi   : the position angle (radian).              % 
%                   % 
% Output:                  % 
% Fn  :This is the theta component of the spherical wave function.          % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
function  Fn=F_theta(s,c,m,n,kr,theta,phi)  
  
if (s==1)  
    Fn=F1n_theta(c,m,n,kr,theta,phi);  
end  
if (s==2)  
    Fn=F2n_theta(c,m,n,kr,theta,phi);  
end  
  
function  F1n=F1n_theta(c,m,n,kr,theta,phi)  
  
F1n = mFun(m)*1/sqrt(2*pi)*sqrt(1/(n*(n+1)))*NormLegCoef(n,m)* ...  
    
sbessel(c,n,kr).*j.*m.*legendre_(n,m,cos(theta))./sin(theta).*exp(j*m*p
hi);  
  
function  F2n=F2n_theta(c,m,n,kr,theta,phi)  
  
F2n = mFun(m)*1/sqrt(2*pi)*sqrt(1/(n*(n+1)))*NormLegCoef(n,m)* ...  
    (sbessel(c,n,kr)./kr + dbessel(c,n,kr)).* ...  
    dlegendre(n,m,cos(theta)).*exp(j*m*phi);  
  
function  mm=mFun(m) 
if (m==0)  
    mm=1;  
else  
    mm=(-m/abs(m))^(m);  
end  
  
function  zn=sbessel(c,n,kr)  
if (c==1)  
    zn=sqrt(pi./(2.*kr)).*besselj(n+.5,kr);  
end  
if (c==2)  
    zn=sqrt(pi./(2.*kr)).*bessely(n+.5,kr);  



 145

end 
if (c==3)  
    zn=sqrt(pi./(2.*kr)).*besselh(n+.5,1,kr);  
end  
if (c==4)  
    zn=sqrt(pi./(2.*kr)).*besselh(n+.5,2,kr);  
end  
  
function  P=legendre_(n,m,x)  
n=abs(n);  
m=abs(m);  
if (n>=abs(m))  
P=(-1)^m*legendre(n,x);  
P=P(m+1,:);  
else  
    P=zeros(size(x));  
end  
  
function  db=dbessel(c,n,kr)  
db = (n)./kr.*sbessel(c,n,kr) - sbessel(c,n+1,kr);  
  
function  dP=dlegendre(n,m,x)  
n=abs(n);  
m=abs(m);  
if (m==0)  
    dP=-legendre_(n,1,x);  
else  
    dP=1/2*((n-m+1)*(n+m)*legendre_(n,m-1,x)-legendre_(n,m+1,x));  
end  
  
function  nL=NormLegCoef(n,m)  
m=abs(m);  
nL=sqrt((2*n+1)/2*factorial(n-m)/factorial(n+m));  
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Script 16 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Input:                   % 
% s     : the type of wave, it takes 1 or 2.              % 
% c     : takes values 1 to 4 to describe the type of the wave.           % 
% n     : the mode number which is different from zero.            % 
% m    : the mode number which is nm �d .             % 

% kr    : the product of wave-number and the radial distance.           % 
% theta: the position angle (radian).              % 
% phi   : the position angle (radian).              % 
%                   % 
% Output:                  % 
% Fn  :This is the phi component of the spherical wave function.          % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
function  Fn=F_phi(s,c,m,n,kr,theta,phi)  
  
if (s==1)  
    Fn=F1n_phi(c,m,n,kr,theta,phi);  
end  
if (s==2)  
    Fn=F2n_phi(c,m,n,kr,theta,phi);  
end  
  
  
function  F1n=F1n_phi(c,m,n,kr,theta,phi)  
  
F1n = -mFun(m)*1/sqrt(2*pi)*sqrt(1/(n*(n+1)))*NormLegCoef(n,m)* ...  
    sbessel(c,n,kr).*dlegendre(n,m,cos(theta)).*exp(j*m*phi);  
  
function  F2n=F2n_phi(c,m,n,kr,theta,phi)  
  
F2n = mFun(m)*1/sqrt(2*pi)*sqrt(1/(n*(n+1)))*NormLegCoef(n,m)* ...  
    (sbessel(c,n,kr)./kr + dbessel(c,n,kr)).* ...  
    j.*m.*legendre_(n,1,cos(theta))./sin(theta).*exp(j*m*phi);  
  
function  mm=mFun(m) 
if (m==0)  
    mm=1;  
else  
    mm=(-m/abs(m))^(m);  
end  
  
function  zn=sbessel(c,n,kr)  
if (c==1)  
    zn=sqrt(pi./(2.*kr)).*besselj(n+.5,kr);  
end  
if (c==2)  
    zn=sqrt(pi./(2.*kr)).*bessely(n+.5,kr);  
end  
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if (c==3)  
    zn=sqrt(pi./(2.*kr)).*besselh(n+.5,1,kr);  
end  
if (c==4)  
    zn=sqrt(pi./(2.*kr)).*besselh(n+.5,2,kr);  
end  
  
function  P=legendre_(n,m,x)  
n=abs(n);  
m=abs(m);  
if (n>=abs(m))  
P=(-1)^m*legendre(n,x);  
P=P(m+1,:);  
else  
    P=zeros(size(x));  
end  
  
function  dP=dlegendre(n,m,x)  
n=abs(n);  
m=abs(m);  
if (m==0)  
    dP=-legendre_(n,1,x);  
else  
    dP=1/2*((n-m+1)*(n+m)*legendre_(n,m-1,x)-legendre_(n,m+1,x));  
end  
  
function  db=dbessel(c,n,kr)  
db = (n)./kr.*sbessel(c,n,kr) - sbessel(c,n+1,kr);  
  
function  nL=NormLegCoef(n,m)  
m=abs(m);  
nL=sqrt((2*n+1)/2*factorial(n-m)/factorial(n+m));  
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Abstract Š This article documents an investigation of the effect 
of a magneto-dielectric substrate on the performance of a 
circular patch antenna; in particular, the radiation efficiency, 
the quality factor, and the bandwidth. Both analytical and 
numerical methods have been used to model the patch 
antenna. The numerical method is used for lossy substrates, 
while the analytical method is used for lossless substrates. 

1 Introduction 

Wireless communication becomes pervasive in daily 
life and there are demands to miniaturize devices 
which make small antenna important. A small 
antenna in general has narrow bandwidth, low 
efficiency, and it needs a matching circuit which adds 
extra losses to the antenna [1]. Patch antennas have 
the advantage of low profile and their ability to be 
integrated within the wireless device.  
Antennas with a magneto-dielectric substrate have 
been investigated and the focus was on the bandwidth 
and the size [2]-[4]. A magneto-dielectric substrate 

can offer high refractive index rrn �µ= and 

intrinsic impedance rr �µ�� /0= close to the free-

space impedance 0�  for rr �µ �  [2]-[4].  
The present work is based on analytical and 
numerical models to study the effect of a magneto-
dielectric substrate on the performances of a circular 
patch antenna. The analytical model treats the patch 
antenna as a cavity that is loaded with the magneto-
dielectric substrate. The electric field of the cavity 
will be used to calculate an equivalent surface 
magnetic current which is used to determine the 
radiation fields. The magnetic field of the cavity will 
be used to find the losses in the patch antenna 
conductors that have finite conductivity. The cavity is 
modelled as a parallel resonator. Fig. 1 shows the 
structure of the patch antenna and its equivalent 
circuit. The analytical method can not handle a high-
loss substrate, but it gives good results for a lossless 
substrate. For lossy substrates the commercial 
simulation program HFSS [5] was used to calculate 
the bandwidth and the efficiency. The analytical 
model provides a good understanding of the physics 
that affect the performances and it is much faster than 
the numerical model. The antenna is circular with 

radius a and height h. The patch lays on a substrate 
that has relative permittivity � r and relative 
permeability �—r. The antenna is fed by a coaxial cable 
at a distance r0 from the centre of the patch. The side 
wall of the antenna is modelled as a perfect magnetic 
conductor (PMC) while the top and the ground planes 
are modelled as perfect electric conductors (PEC). 
The loss in the conductors is represented by the 
ohmic loss in a layer with thickness equals to the skin 
depth. Losses that correspond to the radiation, ohmic 
losses, and the losses inside the magneto-dielectric 
substrate are represented by conductances Grad, Gc, 
and Gmd, respectively. Vnm is the voltage of the source 
for cavity mode (n, m). Explicit expressions for the 
equivalent circuit components exist but are not 
included here.  
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Fig.1: The patch antenna on infinite ground plane and 
its equivalent circuit. 

2 Efficiency of the antenna 

The efficiency of the antenna erad is the ratio of the 
radiation conductance Grad to the total conductance 
Grad + Gc + Gmd of the antenna. Fig. 2 shows the 
radiation efficiency of the patch antenna for modes 
(1,1) and (2,1) which are the 1st and 2nd mode. The 
conductors are taken to be copper and the substrate is 
assumed to be lossless. The horizontal axis is the 
relative permeability �—r and the vertical axis is the 
relative permittivity � r of the substrate.  
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