Downloaded from orbit.dtu.dk on: Nov 19, 2018

Technical University of Denmark DTU

Sensitivity of resistive and Hall measurements to local inhomogeneities

Koon, Daniel W.; Wang, Fei; Petersen, Dirch Hjorth; Hansen, Ole

Published in:
Journal of Applied Physics

Link to article, DOI:
10.1063/1.4826490

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Koon, D. W., Wang, F., Petersen, D. H., & Hansen, O. (2013). Sensitivity of resistive and Hall measurements to
local inhomogeneities. Journal of Applied Physics, 114(16), 163710. DOI: 10.1063/1.4826490

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

x Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
xYou may not further distribute the material or use it for any profit-making activity or commercial gain
xYou may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.


https://doi.org/10.1063/1.4826490
http://orbit.dtu.dk/en/publications/sensitivity-of-resistive-and-hall-measurements-to-local-inhomogeneities(ec7741c7-f049-462c-a67c-63a8e48f69b5).html

AI P Journal of

Applied Physics
Sensitivity of resistive and Hall measurements to local inhomogeneities
Daniel W. Koon, Fei Wang, Dirch Hjorth Petersen, and Ole Hansen

Citation: Journal of Applied Physics 114, 163710 (2013); doi: 10.1063/1.4826490

View online: http://dx.doi.org/10.1063/1.4826490

View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/114/16?ver=pdfcov
Published by the AIP Publishing



http://scitation.aip.org/content/aip/journal/jap?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1744363738/x01/AIP-PT/JAP_CoverPg_101613/aipToCAlerts_Large.png/5532386d4f314a53757a6b4144615953?x
http://scitation.aip.org/search?value1=Daniel+W.+Koon&option1=author
http://scitation.aip.org/search?value1=Fei+Wang&option1=author
http://scitation.aip.org/search?value1=Dirch+Hjorth+Petersen&option1=author
http://scitation.aip.org/search?value1=Ole+Hansen&option1=author
http://scitation.aip.org/content/aip/journal/jap?ver=pdfcov
http://dx.doi.org/10.1063/1.4826490
http://scitation.aip.org/content/aip/journal/jap/114/16?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov

CrossMark
JOURNAL OF APPLIED PHYSIC314, 163710 (2013) @ e

Sensitivity of resistive and Hall measurements to local inhomogeneities

Daniel W. Koon,»® Fei Wang,? Dirch Hjorth Petersen,? and Ole Hansen®*

'Physics Department, St. Lawrence University, Canton, New York 13617, USA

2Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech,

Building 345 East, DK-2800 Kgs. Lyngby, Denmark

3Department of Electronic and Electrical Engineering, South University of Science and Technology of China,
Shenzhen, People’s of Republic. China 518055

“Danish National Research Foundation’s Center for Individual Nanoparticle Functionality (CINF),

Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

(Received 16 July 2013; accepted 27 September 2013; published online 29 October 2013)

We derive exact, analytic expressions for the sensitivity of resistive and Hall measurements to local
inhomogeneities in a specimen’s material properties in the combined linear limit of a weak
perturbation over an in nitesimal area in a small magnetic eld. We apply these expressions both to
four-point probe measurements on an in nite plane and to symmetric, circular van der Pauw discs,
obtaining functions consistent with published results. These new expressions speed up calculation of
the sensitivity for a specimen of arbitrary shape to little more than the solution of two Laplace
equation boundary-value problems of the ordeNéfcalculations, rather thaN? problems of total
orderN®, and in a few cases produces an analytic expression for the sensitivity. These functions
provide an intuitive, visual explanation of how, for example, measurements can predict the wrong
carrier type in n-type ZnO¢ 2013 AIP Publishing LLC[http://dx.doi.org/10.1063/1.48264P0

I. INTRODUCTION measurement technique, the four-point-probe [4PP]
approach* which allows researchers to move an array of
four point electrodes throughout the interior of a Im, mak-
ing it ideal for testing the uniformity of semiconductor
wafers during micro- or nanofabricatidfi.

The study of the effects of macroscopic inhomogeneity on

The charge transport measurements, resistityand
Hall coef cient, Ry, are subatomic microscopes, revealing
how a material treats its electrons and holes. For a Im or
thin specimen of thickness, in a eld of magnetic ux den-

sity, B, measuring one or two four-wire resistances, is charge transport properties dates back over sixty years to the

suf cient for looking through this microscope. These resis- o )
. . . study of Hall measurement sensitivity to inhomogeneous mag-
tances are next converted into the two-dimensional charge

» . netic elds*’ but more recently one group of researchers
transport quantities, sheet resistané®,% q=d, and Hall Y group

. . [SLU group], studying this problem for vdP geometries,
1 =
sheet resistanc&s ¥ RB=d, before being converted de ned, numerically calculad, and then directly measured

- | what they have called resistivad Hall weighting functionsf
R R G . and g,*®%2 for a variety of specimen shapes, quantifying the
R Rus! Ry deonversionto2D sensitivity of charge transport measurement to local inhomoge-
3D charge transport quantities neities inRs andRys. This group’s work showed in a rigorous
fashion much of what had already been largely assumed by
into the charge transport quantities, using well-known for-researchers: the advantages of using square specimens rather
mulas appropriate to the speci ¢ measurement technigie. than circular one®® of using cloverleafsand crosses rather
However, those formulas break down when the local valueshan circular and square dis&and of p|acing electrodes at
of the charge transport quantities vary within the samplethe corners of a square specimen rather than along its &8ges.
Recent studies of semiconducting ZnO, for example, have\nother group of researchers [DTU group], studying sheet re-
conrmed that a highly radially inhomogeneous squaresistance and Hall (micro-Hall) effect measurements with linear
specimen can yield the wrong sign for the Hall signal, which4pp arrays, developed a complementary notétiéhand has
might explain some confusion in the literature as to whethefumerically calculated sensitties of measured con guration
the principal charge carriers are electrons or héfés. resistancesR.m, to local variations of not onlfRs andRys but
Researchers had used the van der Pauw [vdP] méftimat  also of the specimen’s microsdopmaterials properties, such
had failed to place electrodes at the edges of the Ims, asis sheet carrier densityg, and mobility,| .
required by the vdP technique. The general analytical |n this paper, we derive the relation between the SLU
description of four terminal measurements with electrodesasnd DTU notations and we develop an analytic expression
placed in the interior of a Im with insulating boundaries for these weighting functions (or sensitivities), solving sev-
has more recently been developed to describe this Tase. eral geometries analytically. Along the way we compare
One would expect similar issues with another four-wirethese calculated functions to numerical analysis of pathologi-
cal Hall measurements in semiconducting ZnO, con rming
PAuthor to whom correspondence should be addressed. Electronic maiFhe usefulness of these functions in predicting the effects of
dkoon@stlawu.edu macroscopic transport inhomogeneities.
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R, [R¢] [] R, [Rel U FIG. 1. Principal resistance con gura-

Ry | [Ral / tions, R, for vdP (%1, 2, 5) and
p square 4PP geometries/4iA, B, C)

/ (above) and for the linear 4PP geome-

try (below). The distance between ad-

jacent electrodes, the pitchp, is

@ R marked forR; above andRa below.
Cc
!] RA[H H] RB
-—pP—>
Il. FOUR-WIRE CHARGE TRANSPORT measurements, resistané®, is measured and converted to
MEASUREMENT sheet resistanc®&gsm, through the linear relation
Ignoring current reversal, there are six con gurations, Rsm¥: &R single configuration

which we will label by their resistance®,, for attaching a

current source to a_spe_cimen having four electrodes. Half oo geometry correction factar is determined from knowl-
these a_r? shown in Figurg, both for the vdP geometry gqge of the specimen geometry and electrode positions.
(above,i¥sl, 2, 5) and for the linear 4PP array (below, gyamples ofy are shown in Tablé for the limiting cases of

i%aA, B, C), while for each of these con gurations there is gqyigistant 4PP measurements on an in nite plane and sym-
another,R;, which we shall call itweciprocal con guration,  atric R: ¥+ R,) vdP measurements.

for which the Reciprocity Theoremstates thatR; 4R, Hall measurement is more direct (this does not include
formed by simply exchanging current and voltage electrodesyicro-Hall which rely on geometrical correction). In the
A pair of reciprocal con gu_ratlons are shown in Fig.for presence of a magnetic eld, the van der Pauw geometry
both a square vdP and a linear 4PP arrangement. Althouglea|ly allows for the direct calculation of the Hall sheet re-

equal for zero magnetic eld, the application of a magnetic gistance either by reversing the eld or by measuring Rsh
eld near a vdP or micro-Hall specimen can caugeandR; and its reciprocal con guration

to differ by an amount proportional tBys, the Hall sheet 3
resistance. % 1,
Sheet resistance measurements are performed via single 2 RsBP  Rs0 BP reversing field
or dual con guration measurements. In single con guration Rus ¥a ) )
31 singlefield:
: ;&EBD RsBPb

In this paper we will ignore the zero- eld offset iRs and
assume only th& dependent portion dRs when we write
RS,B

For sheet resistance characterization it is advantageous
to perform dual-con guration measurements over single-
measurement and solving the transcendental equatighs®

TABLE I. Values for the normalization constard, ¥4 Rs=R;, for the three
interdependent zero-magnetic- eld con gurations for both 4PP on an in nite

plane and symmetric vdP techniques, as de ned in Eign the absence of
v a magnetic eld,Ra %4 Rs p Rc andR; “aR; b Rs.
Rg Ry
Equidistant four-point Symmetric van der
probe (4PP) in infinite plane Pauw (vdP)
an Ya P 1, 4:532 ay v P v,4:532
In2 In2

FIG. 2. Two resistance con gurations and their reciprocal con gurations. a 1/42_p 1,5:719 a 1/4£ 1, 4:532
Top: the vdP con guratiorRs and its reciprocaRs. Bottom: the linear 4PP n3 In2

con guration Rg (left) and its reciprocaRg (right). The remaining recipro- ac ¥a 2p 1,21:84 as Yaundefined
cal con gurations,R;, are also obtained by swapping current electrodes for In&¥4=3p

voltage electrodes.
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e PRy @ PRRs 1/, 1 linear 4PP; infinite plane limit (DRg.=Rs 1, DA=A 1), and the nite difference
form is more appropriate to stronger or larger-area inhomo-
e PR=Rspy g PRRs 1,1 vdP geneities. The generalized dimensionless sensititifyhas
the form
since these can eliminate the need for detailed knowledge of p?DT=T
the specimen geometry in calculating in Table |. g ¥ DA

However, while the strict application of the vdP method

requires one to measure two separate resistances and Som%hich pis the electrode pitch (Fidl) and the perturbation
the above equation to extraBs, one may simply measure of a local propertyt (e.g.,Rs. or Rugt) alters some macro-

one foudr-pomt resistance for i mat(:]rlal o;unlform comp05|-scopiC propertyT. In this formalism, the DTU group de nes
tion and assume a constamtthroughout the measurement, . <iciive sensitivities as

provided there are no variations in material properties, sav-
ing time and calculation. One disadvantage of taking this @R DR
shortcut is that some regions of the specimenragatively ™ ple = YVapPa  lim
sensitive to local variations in charge transport for a single " @Rt DRe=Rs 1 DADRs1
con guration, implying that the measured valugsm or
Rism mMay fall outside its range of local values within the
specimen, as seen f&;s, in the ZnO datd:® This problem
vanishes for true vdP dual measureméfitsor the remain-
der of this document we will focus mostly on single-

14PP:

From this we see that the SLU and DTU formalisms are
equivalent, except for the choice of effective normalization
area,A, with A%, X for vdP andA ¥ p? for the 4PP tech-
nique, or

con guration measurements since this method is very £ ) (
) L i @BR-m . DR-m vdP
commonly used in research, due to simplicity. . YaAa M 1, Aa lim , ;
For nonzero magnetic ux densitp 8 0, geometrical is": @\@RsL DRst=Rs 1 DADRg 4PP
magnetoresistance adds an additional correction factor when (1)

electrodes are not all placed on specimen bound&fi€sr

symmetric vdP specimens afg/s0, Rs %2Rs %20, and so  The sensitivity to the local Hall sheet resistance can be writ-
as is unde ned, meaning that one cannot use con gurationten as

i Y45 of a perfectly symmetric vdP specimen for measuring ) (
the sheet resistance. i D vdP
1, A% v, A lim _DRugm .
Si:;“ @\@Rus1L DRusL=Rus 1 DADRus 4PP
Ill. THE TERMINOLOGY OF SENSITIVITY (2)
The SLU group de nes resistive and Hall weighting
functions,f; andgi—generalized for any con guration®— V- THE ZERO-FIELD, INFINITESIMAL-AREA,
dimensionless quantities satisfying WEAKLIMIT
1 o) The sheet current densityg % J d, is related to the
Rsm Y2 aR; %Y R fidX8 electric eld by Js % G E, where the elements of the con-
5 X ductance tensor are given by ¥ Ga G and the
1 N Gn Gy
Rusm /4§ RusLgidX", direct and Hall conductance§y and Gy, are related in turn
X both toRs andRys, and the basic materials properties by
and Rs co$Hy Ngel
Gy Ya Ya Ya ;
) ) ] REp Ris  Rs ~ 1p 2B
01 01 071 . in2H N 2B
fldX Ya fde Ya g5dX Va X; Gh Va ZRHS2 1/4S|n H v, 'y Selz - v, HBGd;
X X X Rsb Ras 2Rs 1p 12B

whereRg| [RusL] is the local value of the [Hall] sheet resist- whereNs is the sheet carrier densitly,is the carrier mobility
ance, and the integration proceeds over the area of the spe¢andl , is the Hall mobility), andB is the magnetic ux den-
men, X. The rst of these expressions can be written as asity. By convention, we tak® ¥ Be, normal to the sample
second derivative, as the DTU group has nétéd surface. The Hall angle is dened by tahy ¥4 Rys=Rs
Y, Gh=G4, and the Hall scattering factory, is of order 1 and

f Y4 Xa @Rim veXa,  lim Rim sedP: varies weakly withl, B, and the volume carrier density,
@\@Rs. DRg =Rs 1DADRs n ¥4 Ng=d. We will use the approximatioh,, | for the re-
mainder of this paper.
wherea ¥4 Rs=R; (Tablel), DA is the area of a perturbation For a thin laminar sheet in the xy-plane with a magnetic

in the local sheet resistance of sif¥Rs . The derivative  eld along the positive z-axis, the continuity equation
form of the equation is appropriate for the weak, small-area Js % 0 (except at current injection points) implies
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in the Hall angle. Equation3) suggests that we should

I
2y 1 1
ro Gy da b odx o r b instead call f; the “conductance weighting function” arg

r Gy r Gy the “Hall conductance weighting function,” sin€& and Gy,
b5 EbPe - E h ities th d by th .
Gy Gy are the quantities that are averaged by the measurement pro
r G cess, NoRs andRys.

r/; @) In the linear limit of weak perturbations iy and Gy,

over an innitesimal area, the local electric eld is
unchanged by the perturbation and we can express it in terms
of the Green'’s function

Ya I—ldfi rpb doar r p
Gy

for a current source and sink e andr , respectively. A
local perturbationGy! Gygp DGy and Gn! Gup DGy

inside a region of areBAaround a pointg simpli es, in the |
9 pointo simp E&b Y YWrGE:;rpP 1 G&:r b:

DA! O limit, to Gy

Gyg! Ggp DADGydd roR Meanwhile, we can use Green’s formula

Gn! Gnhp DADGLdE roR 0

| &b Yy G&;rr?/ &%x°

where the effective normalization areafis/s X [A ¥4 p?] for X
the vdP [4PP] specimen and, as noted in Ré&and 19, a 0
delta-like local perturbation ifGq [Gn] produces an effect b adbrGa;rd Ga;rPr% a%dx®
identical to placing a point dipole at that locatiamn, propor- x
tional to and parallel [perpendicular] to the local electric
eld, Eaob wherer °Gé;rob %d& rgbandx is the specimen bound-

In earlier works®23 the SLU group has referred to the ary, to calculate from Eq. (3). For a specimen of in nite

sensitivity functions calculated from Eq(3) as the area, orinthé3 % 0 case, we can ignore the second integral.
“resistivity weighting function” and the “Hall weighting For now we consider theB 0 case. Plugging Eq3) into
function,” stating that the latter was due to inhomogeneitiesGreen'’s formula produces

| IDADGda 0 a . 0
/&b Ya ady@a;rpp Ga;r b p & Ga;rria’ rop wiGalrpp r Galr pdx
5 X
b IDAC‘;EG'” e Ga;rPrua® rop %rGaltrpp r Galr pdx°
X
IDADGy

| . .

Y, G—lﬁa;rbp Ga:;r b e Ga; rPjoy, YrGE;rpp 1 G&;r Py,
d d

IDADG;,

Gj

e 1 Ga;rPjy,, Y Ga;rpbp r G&r Pjy,.:

If we measure the voltage across the voltage prokesndr , which are also the current probes for the reciprocal con gura-
tion, Rj, we nd that the perturbed resistand®,p DR, due to a point perturbation a§ is

/&b /& b
|

DADGy
Gj

DADG . .
b o hl/er&;ﬁpb r Gar Py, Yer Ga;rpb r Ga;r Py, €

d

I:\)i;m b DRi;m Ya

DR ¥4

VaGa ;P 1 G Py, YaGaryP r G&r Pjy,.

where we have used the relationGa%rb ¥ r Gér:r%p where we de ne
etc. So, in the small-perturbatioB, ¥4 0 limit, the resistive

weighting function is simply Fiab Y%rGa;rpb r Gar b %Ga;mb r Ga;r b:
fiarp) R Now, as long as the expected valueRpfis not equal to zero,
T_ 1, aARTB (4a) thatis, as long ag; is de ned, we can normalize this expres-

m aAA
%L SL sion in the following form:
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) '
f.étnt3 vond L ypaads I8y s BB " v.aA8 Fip | BGP
S Fidx° Jsi JgidX° Ei EidXx° Sn v2aA8 Fip 21 BGP (6)

(4b) S VaaAl BSGi b 2| BFiR

in the limit of Dt=t 1,1 B 1. We must be cautious in
applying Eq.(6) because the quantitiés andG; themselves
have nonzerd- eld dependence. The problem of nonzero

in the limit G,.=Gy 1, whereJs andE; represent the sheet
current density and electric eld at a pointfor the recipro-
cal con gurationR; and where we have used the normaliza-

tion to eliminateg;. Similarly, the Hall weighting function is mag\;]ver;[iiliz \?vlgsh\;v\i/"ebdee‘r:i?/gzidEeqrgg ign?(g;r}g ?ggéleé cofa
giap) @R, A @R, conducting plane of in nite area, the equations appear to be
Yy — N1, AG&R (5a) of general validity for all simply connected specimens, as

Ya A
Sil @RisL @ Rs @Gn=G4RaA

SL

calculating the functions on the right-hand side and compar-
ing them to previously calculated (and experimentally meas-
where we de ne ured*?%) weighting functions for a both circular and square
Gab Y% YBT b 1 Gair b vdP'®2% and both linear and square 4884%° geometries
con rms. We have included two of these cases, a square vdP
Yor Gor;rpb r G&yr P e arrangement and both a linear and square 4PP array on an in-
nite conducting plane, in Figs3 throughb.
This expression is also easy to normalize provided that the |p Fig. 3 we have calculated the weighting function
con guration R, is a Hall con guration for a van der Pauw f, 1, élm Y, f5 for a single-con guration measurement, the
geometry, that is, that its B-eld-dependent component«dual” weighting functiond&; p f,P=2, and the Hall weight-

equals the Hall sheet resistan&s ing function,gs ¥ gs by numerically solving for the electric
&b> potential on a 101 101 grid using a nite difference
9 1,3 AG 1/4;,A533i Jsib & approach on a Microsoft Excel spreadsheet incorporating Eq.

(4) for a square vdP specimen with electrodes at the corners.
The values at the center of each gure are 3.2114, 3.2114,
AE. Ebe and 1.4365, vs. the values of 3.1573, 3.1573, and 1.3932,
U L respectively, calculated in Appendi&, with discrepancies
&, EibedX° arising from truncation of the in nite series expression for
the electric potential. Color contours for all weighting func-

&pecial case of van der Pauw Hall configuration  tions are spaced 0.2 apart along the z-axis.
(5b)

SgHSL Gidxo a]si Jsip eZdXO

A. Specific exact expressions

The normalizations of Eqg4b) and (5b) simplify the task of While the electric potential of the square vdP problem
solving for these weighting functions for arbitrary or nonsym-in Fig. 3 cannot be expressed in simple, closed form, there
metric geometries. All that is required to calculate the sensitiv-
ity functions is to solve two Laplace equation boundary value (a) ‘
problems: once for the con guration of interest and once for / <:>
its reciprocal con guration. If these two problems are solved
numerically on say ailN N grid with a numerical technique
that converges with ordeM, this is much faster than solving a
similar Laplacian for every point on the grid for which we
wish to know the sensitivity—a boundary value problem in
which we tweak the conductivity at that point—with a time of
orderN® vs N°. It also removes the question of how strong a
perturbation is needed in the calculation to avoid noise prob-
lems on the one hand and nonlinear effects on the other.

However, we can calculate the sensitivities not only to
local sheet resistance and sheet Hall resistance, but to local
variations in fundamental materials properties, such as the
sheet carrier concentration and the mobility. To compare the
various materials sensitivities in this weak-perturbation,
small- eld limit, we rst observe that

FIG. 3. Weighting functions calculated from Ed4,) and (5) for a square

g a:)R @E‘d t @E‘h vdP specimen with innitesimal electrodes at its corners (inset).
§'m Ya lim m % h ; (a) Resistivity single con gurationf; %%T; (b) resistivity dual con gura-
Dt=t! 0 a:)A—ADD’[‘tD @ G tion: & p f,P=2; (c) Hall effect:gs. Insets show the corresponding electrode

] ) arrangement, with colored pads denoting current probes and white pads
from which we obtain denoting voltage probes.
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FIG. 5. Sensitivities calculated from E(P), or by solving Eqs(4) and(5)
exactly for a perfectly symmetric square 4PP array with pitéh 1 on an in-

nite disc. (a) Resistivity: single con guratlorﬁz““ as de ned in Fig.1; (b)
resistivity: dual con guratlonﬂ““ b iz’“trZ assuming perfect symmetry,

R; ¥4 Ry. Insets show the correspondlng electrode arrangement, with colored
FIG. 4. Sensitivities calculated exactly from E@), or by solving Eq.(4) pads denoting current probes and white pads denoting voltage probes.

for a linear 4PP array on an in nite plane. (a) Resistivity single con gura-

tion, S§" (b) resistivity single con guranonﬁB (c) resistivity single con-

guratlon % Insets show the correspondmg electrode arrangement on the 1 2a* &? a2IIg 2a%r2sin2h
in nite plane, with colored pads denoting current probes and white pads f1 /“ﬁ 18 2afr4cosh b a8
denoting voltage probes. Singularities at the electrodes have been truncated
in the graph. e, 234 &2 a8
/g

_ _ dal N2 8 2africoshp a8 7)
are geometries for which Egé4) and (5) can be expressed 45t o4
in closed algebraic form. This is possible for at least two 05 Ya— — ?4 r =
common vdP geometries—the semi-in nite conducting p ré 2afrtcoshp a
plane and the circular disc—as well as for all 4PP geometries vdP circular disc

in the limit of an in nite or semi-in nite conducting plane.
For a vdP circular disc of radius for which con gura-  Cartestian-coordinate versions of this and the following two

tion R is de ned by current probes located@&t hP %2 & pP  equations are given in AppendB. For the general case of
andda; p=2pand voltage probes &, Opandd; p=2P four electrodes in an in nite plane

18 xabf  ra® X XaPf  rij? Y xoPf  r3? 8X Xsbf
b¥%§ yiPf  ra® 8y yaPf 1y’ Ve oPp  raf® 8y ysbp 1y

2pir  rafir rofir rgjfir raifInfYas  rijira ro = rdira rajg

%T Ya p4

which reduces to the following for a linear 4PP array of pipotentered along the x-axis:

5 9
4 222 S
r 2pr cosmplep

%ml/ 3p* .
2pin4 D& ; p; hp '
4 1t §p2r200§hb }pzrz sirfhp 3p4
%:m Y, p 2 2 16 .
t " 'pln3 D& ; p; hp ’
4 rt §p2r2 cogh 1—1p2r2 sifhp 3p4
Szcs:] y, P 1 2 =5 2 - 16" . (8)
4 P
2pIn 3
on . 12p* p2r2sirfh_

4p&i4|n4 3In3p Dé&;p;hP’

9 81 1 1
s hb 1, 4 22,2 4 4 L 2.2 4
where D& ;p;hb % r 2pr coshp 16p r 2pr coshp 16p

linear 4PP array on infinite conducting plane

with ax ¥4 p=In2, ag ¥4 2p=In 3, andac ¥ 2p=In3 (Tablel) for the functions of Eq(8), in excellent agreement with the results
of Egs.(4) and(5) calculated from the nite- difference method (Fig) and those previously published elsewh&&"2>
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In Fig. 4 we calculated sensitivities of 4PP resistive (a) (b)
measurements for the in nite conducting plane for linear
APP arrays (Fig4). The values calculated from E{8)
match the published numerical results at the center in 4P g
array in (a) through (c), with 0.6123, 1.0302, an@®.9835, 5
respectively, agreeing to at least 4 decimal places in eacl .
case. Color contours for all weighting functions are spacec
0.2 apart along the z-axis for (a) through (c).

For th% square 4PP argy with electrodes placed a
a;hb v = 2; 6 p=4banddp= 2; 6 3p=4hk

4 2.2 p*
r4  2p’r?coghp T

oo Pt
ma1, P
SzL /i 4 3 1 4 4 M 1 8, FIG. 6. Hall weighting functiongs, for square specimen with square interior
r b Ep r-cos b 1_6p hole (1/3 the lateral size of the specimen) in the middle, as in PBeind6,
4 with electrodes at the corners (a) and 9/10 of the way in from the corners to-
4 r4 2p2r2 siréh b p_ ward the interior hole (b). The function is positive throughout the specimen
SZ;:;m Y, p_ 4 in (a), and its average value is negative in (b) so that Hall measurements on
L 4 8 1 44 1 8’ a uniform, n-type ZnO Im will yield opposite polarity in the two cases.
rép > p'ricoshp 1_6p Color contours for (a) are spaced 0.2 apart along the z-axis. The function in

, 2 (b) is unnormalized. Insets show the corresponding electrode arrangement,
2 P

with colored pads denoting current probes and white pads denoting voltage

4 2 probes.

@ET%ual 1/4%
=0 . If the contacts are located at the corners of the specimen, the
square4PP array on infinite conducting plane  \yeighting function is positive throughout, and the measured
9) Hall signal will have the right polarity (Figs(a)). However, if
the contacts are not at the corners, singularities develop and,
the rstand last of which we plot in Figb. as the electrodes approaglj the inner hole, the magnitude of
The value at the center of both Figs(a) and5(b)is 1,  the negative contribution to, gsdX is greater than the posi-
regardless ofy, and the function integrates over areapfo  tive contribution. In that case, even a uniform specimen
Singularities at the electrodes have been truncated in grapfeturns the wrong polarity of Hall signal (Fi§(b)).
(a). Color contours for all weighting functions are spaced 0.2  We have also calculated the Hall weighting functigs,
apart along the z-axis. The value of both functions at the cenin Fig. 7 for a square specimen with electrodes located far

1 1
8 I — 8
rép 2pr coshp 16p

ter of the array is 1, regardless of pitch. inside the boundaries of the specimen both for the homoge-
_ neous case and for the case in which the carrier density
B. Experimental consequences increases quadratically with distance from the center. This

Ideally, these weighting functions for charge transportifhomogeneity inNs does two things: rst, it changes the

measurements should be nonnegative functions, unlike thg@Pe 0fgs Vs, _L_thf magnitude of the negative contri-
single-con guration resistive weighting function for Figs. Pution o ,gsdX is 99% of the magnitude of the positive

4(a)-4(c) and5(a) because, in theory, a function for which contribution for the inhomogeneous case shown in IF(Q.).

fi < 0 org; < 0 in some regions of the specimen could leadVS: 70% for the homogeneous case (Fig)—and second it

to charge transport measurements that lie outside the range

of values occurring within the specimen itself. This effect

has apparently already been observed for n-type ZnO Ims

in which the Hall signal can have the wrong sign, leading to

a misassignment of charge transport polafity Ohgaki

et al. prove that this can occur when there is an internal hole

in the specimen, if the electrodes are placed close to that

hole rather than at the outer edges of the specimen by

numerically solving the perturbed boundary value probfem.

Bierwagenet al. show numerically that both radial inhomo- FIG. 7. The Hall weighting functiongs, is shown for a square specimen of

geneities and edge inhomogeneities can also produce th#gleswith a distance (s between adjacent electrodes. (a) For specimen of

effect if the carrier density is increasing toward the edges ofiomogeneous carrier density and (b) for specimen in which the density
. . . increases radially to 100 times itg central value at the corners. The magni-

the speumeﬁ.AII of these path0|09lca| cases require that tude of the negative contribution tqgsdX is 99% of the positive contribu-

the electrodes be located well inside the boundaries of theon for the inhomogeneous case shown in (b) vs 70% for the homogeneous

specimen, a fundamental violation of the basic rules for thesase (a). Radial inhomogeneities in carrier density are shown in &Ree.
vdP techniqué*z produce the wrong polarity of Hall signal in this geometry and thus to lead
. ) L . to misinterpretation of carrier type. Both functions are unnormalized. Insets
Fig. 6 shows the Hall weighting function for a square gpoy the corresponding electrode arrangement, with colored pads denoting

specimen with a square internal hole, as suggested by Ohgalkirrent probes and white pads denoting voltage probes.
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b
cagses the magnitude of the integral GhgsdX 1p 2 15 dt
Y, nd ?gsdX (in the B ¥4 0 limit) to be larger for regions of uvapi T3 \% %E P (A1)
negativegs than for regions of positivgs, thus producing a z 0 e P

negative Hall signal.

where
V. CONCLUSIONS P 5
o I . . dt 2dt p C&b=4b
Sensitivity [weighting] finctions provide a powerful, k¥s p o 2p1/4 P Y2 T
visual, and intuitive tool for interpreting the role of macro- t t ¢ 1
scopic inhomogeneities on théharge transport measure- 2:62205755

ment process, allowing one both to quantify the uncertainty
in charge transport quantisedue to inhomogeneities and to If we place electrodes symmetrically about the edge of
predict when there is a danger that the sort of catastrophiﬁqe unit circle atz¥% 1, i, p1, and i, then these are
failure already documented for some published ZnO Hall lotted ontou%0. 1 ’1 ’and,pl on ,the upper half-
measurements might occur. We have found a direct expreéj—Iane andv ¥ 0 b,i b 1’b i’ andp 1, respectively, on the
sion which makes the process of graphing these sensitivitfznit square e ' ' '
functions easier fgr researcisein t.he Iabora}tory_, turning a Quantiti.es that are conformally invariant under map-
gigitt)lrzrr; ZLZE;?;“:n fgé:rr?letryNir?tgdaagfgglﬂ ma;;ogrgéi]y ping from. the circglar disc to the square include not only
orderN? for a handful of problems that can be solved ana-the. el'ectnc potential for a boundary-yalue problgm on the
unit circle, but also the effect of a point perturbation in the

lytically—allowing the researcher either to greatly reduce e N : .
. : . . conductance within an in nitesimal region of the material,
the calculation time or to increase the resolution of the

function, or both. Further, we have shown that such sensi‘:de so both

tivity analysis provides a powerful, visual, and intuitive DA DA

tool for understanding for example how Hall signals can Tfi and Y

have the wrong sign and for avoiding such pathological

cases. are conformally invariant. The weighting functions on the

square can thus be written as
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(DNRF 54). weighting functions for the square from the analytic expres-
sions on the circle, it is dif cult in practice to map an arbi-

APPENDIX A: THE VAN DER PAUW SQUARE AND trary point in the interior of the circle onto the square. There

RELATED GEOMETRIES are a few points, however, that vean easily map. The cen-

A unit circle, z, on the complex plane can be mappedter of the circle, for example, maps to the center of the unit

onto the upper half-planay, and then onto a unit square, ~ Sduare, and so,
in the complex plane by the following sequence of conformal

maps, as illustrated in Fi@. 2

k
fiovP Yo— %2 3:157250980
pln2

2k?
gsOvb 1/? %, 1:393203930 d&center of squarte

both of these values agreeing very well with previously cal-
culated valued®® We can also map the diagonals (both
y ¥4 0 andx ¥4 0) of the circular disc for the Hall weighting
function

_ o _ _ by, 4pdl x*p  fory%0
FIG. 8. Conformal mapping of a unit circle onto a unit square in &d.). Os 4=p61 y“b forx ¥4 0

The transformatiorz! v can be written in the form of an elliptical integral.
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8 9
2|(2 . k2
gsovP 1/4p—2 ¥41:393203930 for both ddiagonals of squake 5 | sgrsin2 b Y46 3:15725098§
2
f,ap vy PN ;
again in excellent agreement with calculated values. Finally, § 2 1, 3:157250980 3
we consider the edgeg ¥:€’) and the horizontal mirror plnf '
axis by ¥  x) of g1e circle 9 edges
% | 1 forzvsel 3 ?cpmirror axisg;
f,&P Y4 n2 ;mﬂ : of square
e T fory % x3 ) ) )
dlp 4x*Hn2 ' also in excellent agreement with previous calculated values.

APPENDIX B: EXACT FORMS, CARTESIAN COORDINATES

Equations(7)+9) for the sensitivities of a circular vdP disc and for both linear and square 4PPs can be transformed into
Cartesian coordinates. We include them below since those coordinates may sometimes prove more useful than polar

(1, 2a* 82p y2 a2B  4daxy _
47— ]
Y218 aBp y2vesh aBp 2R pdy aB W poyp a
1 2at 3Cpy? alB
Z&,p b Ve :
2 0P P e aBp y2yadp aBp V2R pdy aBwpoyp ab
4 4 2 2
Os 1/44i o 8xp v Eq: 7(a)ccircular vdP disk
P 158 aBpy2vsdp aBp Y2 ®Rpdy as#pdyp ab

v
S%\ Ya L
st 2pln4

9, 5

8Cb VB b —p* 2p25é b
o b y*Bp 1@p" P y " )
2 2 2 2

3 1 1 3
— 2 - 2 - 2 — 2
XIDZp Py XI02p by X b Py X 5P by

9, 5 1
2h 2B R 2 222t 2
#"& byt?bmgt" ZpXszyz#" .

2p* .,
1
33; /ApInS

2 2

1 2 2
_ 2 - 2
XIozp by xp P by

1 3
- 2 = 2
X 5P by X 5P by

5 11
~p?x? 5 p2y?
H#

9
2 2 4
o byt?bwr;t"z

3 2 1 2 1 2 3 2
— 2 - 2 - 2 - 2
szp by szp B X 5P by X 5P by

12p6y2:p:g4,ln4 3In3p g

p* .
4
2p|n§

#

Sii Ya

L

as;ﬂszduall/A," " . > —# Eq8(a) dinear4PPoninfinite plarie
ng p 2 Xp} p 2 X } p 2 X § p 2
2p y 2p y 2p y 2p y
4
3Ch V2B 2002 P
@%pj by p Io4 ;
* 4 p 2 p 2 XEZp pBZ XpBZb p 2 ngzp pBZ
x 3 Py 3 2 yP3 2 Yy 3 2 yP 3
4
32b V2B 2022 P
<« %pj by |oy|04
* 4 p 2 p 2 XEZD bBZ ngzb p 2 ngzp pEZ
x 3 by 3 2 yP3 2 Yy 3 2 yP3
p? 2
2h 2 P
o X“py >
@%L%ual%*
4 BZp EZ XEZD bEZ XDBZD EZ XpEZD pEZ
X 3 Yy 3 2 yP3 2 Yy 3 2 yP3

Eq: 9daRsquare 4PP on infinite plabe



163710-10 Koon et al. J. Appl. Phys. 114, 163710 (2013)

L. J. van der Pauw, Philips Res. Ré3, 1 (1958). 7S, Liu, H. Guillou, A. D. Kent, G. W. Stupian, and M. Stupiah, Appl.
2L. J. van der Pauw, Philips Tech. R&0, 220 (1958). Phys.83, 6161 (1998).

3L. B. Valdes,Proc. IRE42, 420 (1954). 18D, W. Koon and C. J. KnickerbockeRev. Sci. Instrum63, 207 (1992).

“F. M. Smits,Bell Syst. Tech. J37, 711 (1958). 1°D. W. Koon and C. J. KnickerbockeRev. Sci. Instrum64, 510 (1993).
5D. H. Petersen, O. Hansen, R. Lin, and P. F. Nielsemyppl. Phys104, 20D, W. Koon and C. J. KnickerbockeRev. Sci. Instrum67, 4282 (1996).
013710 (2008). 2D, W. Koon and W. K. CharRRev. Sci. Instrum69, 4218 (1998).

D. H. Petersen, O. Hansen, P. Baggild, R. Lin, P. F. Nielsen, D. Lin, C.22J. K. Scherschligt and D. W. KooRev. Sci. Instrum71, 587 (2000).
Adelmann, A. Alian, C. Merckling, J. Penaud, G. Brammertz, J. Goossens>°D. W. Koon,Rev. Sci. Instrum77, 094703 (2006).

W. Vandervorst, and T. Claryssé,Vac. Sci. Technol. B8, C1C41 (2010). 29D. H. Petersen, R. Lin, T. M. Hansen, E. Rosseel, W. Vandervorst, C.
“T. Ohgaki, N. Ohashi, S. Sugimura, H. Ryoken, I. Sakaguchi, Y. Adachi, Markvardsen, D. Kjeer, and P. F. Nielseh Vac. Sci. Technol. 26, 362

and H. Haneda]. Mater. Res23, 2293 (2008). (2008).

80. Bierwagen, T. Ive, C. G. Van de Walle, and J. S. Spéggpl. Phys. 25, Wang, D. H. Petersen, T. M. Hansen, T. R. Henriksen, and P. Baggild,
Lett. 93, 242108 (2008). J. Vac. Sci. Technol. B8, C1C34 (2010).

F. @sterbergt al., J. Appl. Phys11Q 033707 (2011). 26F. Wang, D. H. Petersen, F. W. Osterberg, and O. Hariz@mweedings of

103, R. Ehrstein, M. C. Croarkin, and H. K. Liu, NIST Spec. P@§0-131 the 17th IEEE International Conference on Advanced Thermal Processing
126 (2006). of Semiconductors, RTP 20Q0€EE, New York, 2009), p. 151.

4. Koppe and J. M. BryarCan. J. Phys29, 274 (1951). 27R. Rymanszewski]. Phys. B2, 170 (1969).

12 Brunner,Solid-State Electroril, 172 (1960). 283, Thorsteinsson, F. Wang, D. H. Petersen, T. M. Hansen, D. Kjeer, R. Lin,

13p. Menzel, Arch. Technisch. Messen Messtechnische Praxis (MuBich) J.-Y. Kim, P. F. Nielsen, and O. HanseRev. Sci. Instrum80, 053902
2064 (1961). (2009).

4. Hlasnik and J. Kokove&olid-State Electrord, 585 (1966). 2°D. W. Koon, F. Wang, D. H. Petersen, and O. Hansen, “Sensitivity of

1°R. W. Rendell and S. M. GirvirPhys. Rev. B3, 6610 (1981). resistive and Hall measurements to local inhomogeneities. II: Finite- eld,

165, J. Bending and A. Oral, Appl. Phys81, 3721 (1997). intensity, and area corrections” (in preparation).



