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We show that transport in low-dimensional carbon structures with finite concentrations of scatterers can be
modeled by utilizing scaling theory and effective cross sections. Our results are based on large-scale numerical
simulations of carbon nanotubes and graphene nanoribbons, using a tight-binding model with parameters obtained
from first-principles electronic structure calculations. As shown by a comprehensive statistical analysis, the
scattering cross sections can be used to estimate the conductance of a quasi-one-dimensional system both in the
Ohmic and localized regimes. They can be computed with good accuracy from the transmission functions of
single defects, greatly reducing the computational cost and paving the way toward using first-principles methods
to evaluate the conductance of mesoscopic systems, consisting of millions of atoms.
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Graphene, an effectively two-dimensional material con-
sisting of a single sheet of carbon atoms, is regarded to be
a potential candidate for a wide range of future electronic
devices.1 To characterize phenomena affecting charge carrier
transport in graphene-based systems, effective computational
methods are required. Particularly important is the study of
effects that induce a transport gap, turning graphene into a
semiconductor.

The mechanisms behind experimentally measured transport
gaps in graphene nanoribbons (GNRs) are currently actively
debated. On one hand, it has been suggested that Coulomb
blockade may significantly limit the conductance close to
the Dirac point,2–5 through barriers formed by either edge
roughness3 or charged impurities,5 although their role in
limiting mobility has been questioned.6 On the other hand,
as the phase coherence length is very long in graphene,7 also
Anderson localization (AL) may induce a transport gap.8–14

This is supported by recent experimental results, which
show a resistance growing exponentially with length in some
GNRs.15

The low-energy band structure of graphene has two
nonequivalent valleys, with intravalley scattering resulting in
antilocalization instead of localization.16,17 Thus short-range
disorder, causing intervalley scattering, needs to be present
for AL to occur.17–19 In GNRs, scattering by imperfect edges
may be one of the reasons behind this.8–11 Additionally,
Raman spectroscopy measurements of bulk graphene have
revealed the presence of resonant scattering,20 which is another
potential source of AL. The scattering may be due to hydrogen
atoms21 or hydrocarbons.22

In this Rapid Communication, we present numerical simu-
lations of both Ohmic and localized systems, showing that
pointlike scatterers can effectively be described through a
formalism based on defining scattering cross sections σ (E)
for the defects. The elastic mean free path lel(E) is related
to the scattering cross sections σi(E) of the different defect
types and the corresponding defect densities ni via lel(E) =
1/

∑
i niσi(E) [note that in two dimensions, σi(E) is given

in units of length]. The scattering cross-section approach
provides a powerful means to estimate the conductance of
a realistically sized GNR or carbon nanotube (CNT) with a

finite number of pointlike defects. We limit our discussion to
short-range scatterers.

For a specific defect type, the scattering cross section may
directly be obtained from the transmission function T (E) of a
conductor with one or several defects of the same type.23,24 The
conductance G(E) is given by the Landauer formula G(E) =
(2e2/h)T (E). In the Ohmic regime, the expression for σ (E)
in a system with N defects is

σ (E) = W
T0(E) − 〈T (E)〉

N〈T (E)〉 , L � ξ (E), (1)

where W is the width of the system (or the circumference of a
CNT), T0(E) is the transmission function of the corresponding
pristine conductor, and 〈T (E)〉 is the ensemble average over
different defect positions and orientations. Equation (1) is valid
when the length L of the conductor is much shorter than the
localization length ξ (E).

In the localized regime, the distribution of transmission
values is not Gaussian, but rather log-normal. Thus, the typical
transmission Ttyp(E) ≡ exp〈ln T (E)〉 is a meaningful scaling
variable. In a single-mode conductor, it scales as Ttyp(E) =
exp[−L/ξ (E)].25 Extending the scaling law to describe a
multimode conductor, such as a GNR or CNT, and treating
the modes as conductors connected in parallel, we arrive at the
expression

Ttyp(E) = T0(E) exp[−L/ξ (E)]. (2)

In systems belonging to the orthogonal Wigner-Dyson sym-
metry class (e.g., graphene with short-range disorder in the
absence of a magnetic field), ξ (E) is related to lel(E) and
σ (E) through26

ξ (E) = [T0(E) + 1]lel(E)

2
= T0(E) + 1

2nσ (E)
. (3)

An expression for the scattering cross section, valid in the
localized regime, is obtained by combining Eqs. (2) and (3):

σ (E) = W [T0(E) + 1]〈ln[T0(E)/T (E)]〉
2N

, L � ξ (E).

(4)
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FIG. 1. (Color online) Scattering cross section σ (E) of a mono-
vacancy in a (40,0)-CNT, computed from the transmission function
of a single defect [shown in the inset together with the transmission
function of the corresponding defect-free conductor T0(E)] using
Eq. (1). The arrows show the locations of the energy values used in
the statistical analysis of Fig. 2. The energy is given with respect to
the top of the valence band Ev .

When estimating σ (E), one has to take into account that even
a single-defect system may be localized in part of the energy
range. Thus the scattering cross section should be computed
using both Eqs. (1) and (4), and at each energy point the smaller
value should be selected as the better estimate.

We benchmark the formalism by comparing a single-defect
based scattering cross section with transport results for systems
with multiple defects. An unrelaxed monovacancy serves as a
model defect and to exclude edge effects, we have chosen a
(40,0)-CNT, with a circumference of about 10 nm, as a model
system. Unrelaxed monovacancies may also be used to model
adsorbate hydrogen atoms,27 as sp3 hybridization creates a
hole in the π electron network, but also more detailed models
for hydrogen adsorbates have been used.28,29

We compute the transmission function by applying standard
Green’s function based methods to a system formed by a device
region containing the defects and two semi-infinite leads.30

The system is described by an orthogonal tight-binding (TB)
model, with hopping values obtained from Ref. 31. A nearest-
neighbor distance of 1.42 nm is assumed, and the values are
scaled to obtain a nearest-neighbor hopping energy of −2.7 eV,
in order to match our previous ab initio results.32 All hopping
values predicted to be smaller than 0.05 eV are set to zero,
which in a pristine system means that hoppings to farther
than third nearest neighbors are excluded. The scattering cross
section of a monovacancy in a (40,0)-CNT, calculated using
Eq. (1), is plotted in Fig. 1, together with T0(E) and T (E). As
predicted by Fermi’s golden rule, the Van Hove singularities
in the density of states (DOS) give rise to a greatly enhanced
scattering rate near the band edges.

Next, we test how the single-defect scattering cross section
compares against results for larger systems. Figures 2(a) and
2(b) show the estimated scattering cross sections given by
Eqs. (1) and (4) as the length of the system is increased, keeping
a constant defect density of n = 9.6 × 10−3 nm−2. Each
point has been obtained from an ensemble of 5000 different
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FIG. 2. (Color online) (a) and (b): Length dependence of the
estimated scattering cross sections for a monovacancy in (40,0)-
CNTs at the two energies shown in Fig. 1. (c) and (d): Sample
skewnesses of the distributions of T and ln(T ). The defect density
is 9.6 × 10−3 nm−2, and the vertical bars indicate the localization
lengths based on the scattering cross section shown in Fig. 1. (e)
Distribution of T (E1) at L ≈ 300 nm, marked by the arrow in (c).
(f) Distribution of ln[T (E2)] at L ≈ 1000 nm, marked by the arrow
in (d).

realizations of defect locations. The prediction of Eq. (1)
grows exponentially as the length of the ribbon exceeds the
expected localization length, whereas the prediction by Eq. (4)
converges toward the estimate predicted by the transmission
function of a single defect. Figures 2(c) and 2(d) provide more
insight into the behavior of the transmission values by showing
the sample skewnesses33 of T and ln(T ). At E1, the distribution
of the transmission values of very short conductors containing
less than ten defects is skewed, but even in systems with
very few defects the mean value of the distribution is very
close to the prediction based on a single defect. As shown
by Fig. 2(e), once the length of the conductor and thus the
number of defects increase, the distribution of T (E) becomes
Gaussian-like, but as ξ (E) is exceeded, the skewness of the
distribution starts to grow rapidly. On the other hand, the
skewness of the distribution of ln(T ) slowly approaches a
value close to zero as the the localized domain is entered.
However, even at roughly ten times the estimated localization
length, the distribution is still slightly skewed, and as Fig. 2(f)
shows, a relatively large fraction of the transmission values are
of the order of 10−1, although Ttyp is of the order of 10−5. The
variance of the distribution shown in Fig. 2(f) equals 1.9 times
the mean value of − ln(T ), which is close to the value of two
predicted by random matrix theory.26

As a demonstration of the accuracy of our approach,
we compare predicted and calculated localization lengths
for wide ranges of energies and defect densities in Fig. 3.
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FIG. 3. (Color online) Predicted (solid lines) and calculated
(markers) localization lengths ξ (E) for (40,0)-CNTs with monova-
cancies at three defect densities.

The predictions are based on Eq. (3) and the single-defect
scattering cross section shown in Fig. 1, whereas the calculated
values have been obtained from systems ten times as long as
the predicted localization lengths, using Eq. (2). Each value
corresponds to an ensemble of 200 defect realizations. At low
defect density, ξ (E) exhibits clear peaks, in accordance with
Fig. 1, but at higher densities the peaks corresponding to the
DOS of a pristine CNT are smoothed out. However, even at
the highest defect density shown, the scaling approach predicts
the magnitude of ξ (E) correctly. Thus we are able to predict
properties of mesoscopic systems, only using the information
from a single-defect calculation.

Based on Kubo-Greenwood (KG) simulations, it has been
proposed that topological defects, such as Stone-Wales de-
fects and 555777 defects, exhibit fingerprintlike scattering
properties.34 A Stone-Wales defect is a metastable bond
rotation, consisting of two pentagons and two heptagons
embedded in the graphene lattice, whereas a 555777 defect
is a relaxed form of a divacancy, consisting of three pentagons
and three heptagons.35 Such defects are expected to be found
in irradiated graphene, where especially 555777 defects may
occur in relatively high concentrations.36 Figure 4(a) compares
transport results for a 16-atom-wide armchair-edged GNR
(AGNR), containing a single Stone-Wales defect, obtained
both from a modified TB model and the density functional
theory (DFT). The TB hopping parameters are obtained from
the relaxed bond lengths around the defects, acquired from
the SIESTA implementation37,38 of DFT and the DFT transport
results are from the TRANSIESTA code.39,40

In Fig. 4(b), we show bulk scattering cross sections for
three defects, computed by applying k-space sampled periodic
boundary conditions in the transverse direction.41 Although
retaining the same general shape as the one shown in Fig. 1, the
scattering cross section of a monovacancy is now considerably
smoother. At low defect densities of up to roughly 10−2 defects
per atomic site, the scattering cross section for monovacancies
fits both qualitatively and quantitatively the corresponding KG
based mean free paths.42 Also the scattering cross sections
for Stone-Wales and 555777 defects agree fairly well with
recent KG results,34 although those are based on a somewhat
differently parametrized TB model. When comparing against
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FIG. 4. (Color online) (a) Comparison between DFT and TB
based conductances for a 16-AGNR with a single Stone-Wales defect.
(b) Scattering cross sections for Stone-Wales defects, 555777 defects,
and monovacancies.

KG results, one has to remember that due to the phenomenon
of minimum conductivity,17,43 two-dimensional graphene will
not enter the localized regime. At very high densities, the
defects lose their pointlike nature, and the scattering cross-
section formalism breaks down. Additionally, a high density of
defects will contribute to the transmission through an impurity
band.28

We next test the predictive power of the scattering cross-
section approach. If a system contains several different types of
defects, one can estimate the average and typical transmissions
from

〈T (E)〉 = T0(E)

1 + L
∑

i niσi(E)
, L � ξ (E), (5)

and

Ttyp(E) = T0(E)

exp
[

2L
T0(E)+1

∑
i niσi(E)

] , L � ξ (E). (6)

We define the localized domain as the region where Ttyp(E),
given by Eq. (6), is smaller than 〈T (E)〉, given by Eq. (5).
Figure 5 shows calculated mean and typical transmission
functions for a 1.3 μm long and 30 nm wide AGNR with
100 each of monovacancies, Stone-Wales defects, and 555777
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FIG. 5. (Color online) Predicted and calculated conductances of
a realistically sized AGNR with 100 each of Stone-Wales defects,
555777 defects, and monovacancies, as well as the conductance of a
pristine conductor T0(E). In the Ohmic (localized) regimes, Tpred(E)
refers to the estimate given by Eq. (5) [Eq. (6)] and Tcalc(E) to the
mean (typical) transmission.
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defects, together with corresponding predictions obtained
using Eqs. (5) and (6). The transmissions have been calculated
using the TB model, based on an ensemble of 12 defect
realizations, whereas the predictions are based on the bulk
scattering cross sections shown in Fig. 4(b). As the results
indicate, the mean or typical transmission in a realistically
wide GNR or CNT can be estimated by only calculating the
transmission functions for single defects in an edgeless system.
The estimates are slightly lower than the actual mean and
typical transmissions, which correspond to about 15% lower
values for the scattering cross sections than predicted from
systems with single defects. The discrepancy may be caused by
the anisotropy of the Stone-Wales and 555777 defects, as the
single-defect scattering cross section corresponds to scattering
only in the armchair direction.

In summary, we have presented numerical simulations
showing that effective scattering cross sections for defects,
combined with scaling theory, can be used to estimate
the transport properties of graphene-based devices of sizes
ranging from nano- to micrometers. In particular, their
conductances can be predicted both in the Ohmic and
strongly localized regimes. As the scattering cross section
can be computed from small-scale systems, possibilities to
model systems beyond the reach of present-day methods are
opened.

We acknowledge computational resources from CSC–IT
Center for Science Ltd. and the support by the Academy of
Finland via the FiDiPro and CoE programs. Additionally, we
thank Troels Markussen for useful comments.
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