Correlation of mRNA Profiles, miRNA Profiles, and Functional Immune Response in Rainbow Trout (Oncorhynkus Mykiss) Infected With Viral Hemorrhagic Septicemia Virus (VHSV) and in Fish Vaccinated With a DNA Vaccine Against VHSV

Bela-Ong, Dennis; Schyth, Brian Dall; Jørgensen, Hanne; Hansen, Mette H.; Henryon, Mark; Berg, Peer; Lorenzen, Niels

Published in:
Book of abstracts

Publication date:
2011

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Micro ribonucleic acids (miRNAs) are a diverse class of small (18-22 nucleotides) endogenous RNAs that potently mediate post-transcriptional silencing of a wide range of genes and are emerging as critical regulators of cellular processes. They are transcribed and processed from larger precursors and are incorporated into the RNA-Induced Silencing Complex (RISC), which target specific mRNA sequences, causing either mRNA degradation or translation repression. This results in altered mRNA and protein profiles characteristic of a particular cellular phenotype or physiological state. By targeting immune relevant mRNAs, miRNAs could be involved in controlling the expression of fish immune response genes.

This project aims to analyze mRNA and miRNA expression in organs of vaccinated and non-vaccinated rainbow trout (Oncorhynchus mykiss) families showing differential mortality in previous infection trials with the highly pathogenic fish rhabdovirus Viral hemorrhagic septicemia virus (VHSV). This talk will discuss our overall strategy and present preliminary data on the expression of miRNAs and the type I interferon-inducible Mx gene in the liver and the skeletal muscle tissue of fish injected with a DNA vaccine encoding the VHSV glycoprotein gene.

We will link mRNA and miRNA profiles with phenotypic, genotypic, and immunological data, which will provide an integrated view of the mechanisms of resistance and the strong protective immune responses provided by vaccination. This information is important in designing effective strategies to mitigate the danger of potential VHS disease outbreaks.

Email: Dennis Bela-ong (debo@vet.dtu.dk); Brian Dall Scyth (bdsc@vet.dtu.dk); Niels Lorenzen (nilo@vet.dtu.dk); Hanne Jørgensen (hanne.h.jorgensen@agrsci.dk); Mette H. Hansen (MetteH.Hansen@agrsci.dk); Mark Henryon (mark.henryon@agrsci.dk); Peer Berg (peer.berg@agrsci.dk)