
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Jan 16, 2019

Application of computational systems biology to explore environmental toxicity
hazards.

Audouze, Karine Marie Laure; Grandjean, Philippe

Published in:
Environmental Health Perspectives

Link to article, DOI:
10.1289/ehp.1103533

Publication date:
2011

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Audouze, K. M. L., & Grandjean, P. (2011). Application of computational systems biology to explore
environmental toxicity hazards. Environmental Health Perspectives, 119(12), 1754-1759. DOI:
10.1289/ehp.1103533

https://doi.org/10.1289/ehp.1103533
http://orbit.dtu.dk/en/publications/application-of-computational-systems-biology-to-explore-environmental-toxicity-hazards(2d966265-10a0-4f36-bb4d-b58d9cedc308).html


1754	 volume 119 | number 12 | December 2011  •  Environmental Health Perspectives

Research

In its report, Toxicity Testing in the 21st 
Century, the National Research Council called 
for the development of new approaches to 
human health risk assessment that would rely, 
in part, on computer-based models rather than 
animal testing and epidemiology (National 
Research Council 2007). Although these rec-
ommendations were timely and visionary, 
progress has been slow, possibly because of the 
need for elaborate validation of models before 
the adoption of a new approach to predictive 
toxicology. However, toxicological databases 
and computational methods have developed 
further and now seem to be even better suited 
for applications in environmental health 
research. Through international efforts, pub-
licly available databases have been combined 
and fine-tuned to provide linked information 
regarding chemical names, synonyms, chemi-
cal structures, hazards, chemical exposures, 
and potential risks to human health within 
several categories: acute, developmental toxic-
ity, reproductive toxicity, and cancer (Judson 
et al. 2008). As a complement to these data-
bases, ChemProt, a new disease chemical biol-
ogy database (Center for Biological Sequence 
Analysis 2011), provides information on 
chemical links to proteins along with chemi-
cal names, chemical structures, and diseases 

(Taboureau et al. 2011). These data resources 
can be used to develop computational mod-
els for predicting toxicological end points or 
possible biological mechanisms.

Various models already have been 
developed, most of them structure-based. 
Chemicals are grouped according to their simi
lar structural features or fragments that can be 
related to a particular toxicity end point, for 
example, ToxMatch (Pavan and Worth 2008) 
and Derek Nexus (Lhasa Limited 2011), or by 
using quantitative structure–activity relation-
ships approaches, as in Computer Assisted 
Evaluation of Industrial Chemical Substances 
According to Regulations (CAESAR) (Cassano 
et  al. 2010). In parallel, systems chemical 
biology has emerged as a field that integrates 
chemical information with biological databases 
(Oprea et al. 2007). It has therefore become 
possible to generate a generic computational 
systems biology model that aims at reveal-
ing the underlying molecular mechanisms 
of xenobiotics and the biological pathways 
they may disrupt (Audouze et al. 2010). In 
this approach, toxicogenomics data are com-
bined with systems biology information to 
provide a high-confidence human protein–
protein association network. We previously 
used this integrative systems biology method 

to decipher unexpected relationships between 
di(2-ethylhexyl)phthalate and gamma-amino
butyric acid receptors (Audouze et al. 2010). 
Similarly, Gohlke et  al. (2009) developed 
a network of complex diseases to integrate 
molecular pathways associated with both 
genetic and environmental factors. However, 
these computational predictions and others 
like them must be interpreted in light of the 
caveat that the databases used contain avail-
able information only and that metabolism 
and other factors may affect the chemical–
protein interactions. Given the new develop-
ments and our promising initial experience, 
we have attempted to illustrate the current 
potential of advanced computational systems 
biology to assess the potential hazards associ-
ated with a group of environmental chemicals 
with substantial, although incomplete, toxico-
logical and epidemiological information.

The pesticide dichlorodiphenyltrichloro-
ethane (DDT) was marketed as an ideal insec-
ticide with long-term protection; however, the 
environmental persistence of DDT and its 
metabolite dichlorodiphenyldichloroethylene 
(DDE) resulted in bioaccumulation and 
delayed or latent adverse effects. Experimental 
studies have explored mainly the effects of 
DDT dosages, whereas epidemiology research 
primarily has used the serum concentration 
of the DDE metabolite as an exposure bio-
marker. The DDE concentration may reflect, 
to some degree, past exposures to the parent 
DDT compound that had been metabolized 
later, but it may also originate directly from 
DDE residues in food. Thus, concentrations 
present at the time of blood sampling may rep-
resent neither the correct chemical species nor 
the active dose present at the time when a pos-
sible adverse effect was initiated. This conun-
drum is difficult to resolve from epidemiology 
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Background: Computer-based modeling is part of a new approach to predictive toxicology.

Objectives: We investigated the usefulness of an integrated computational systems biology 
approach in a case study involving the isomers and metabolites of the pesticide dichlorodiphenyl-
trichloroethane (DDT) to ascertain their possible links to relevant adverse effects.

Methods: We extracted chemical–protein association networks for each DDT isomer and its 
metabolites using ChemProt, a disease chemical biology database that includes both binding and 
gene expression data, and we explored protein–protein interactions using a human interactome 
network. To identify associated dysfunctions and diseases, we integrated protein–disease annota-
tions into the protein complexes using the Online Mendelian Inheritance in Man database and the 
Comparative Toxicogenomics Database.

Results: We found 175 human proteins linked to p,p´-DDT, and 187 to o,p´-DDT.
Dichlorodiphenyldichloroethylene (p,p´-DDE) was the metabolite with the highest number of links, 
with 52. We grouped proteins for each compound based on their disease annotations. Although the 
two data sources differed in linkage to diseases, integrated results predicted that most diseases were 
linked to the two DDT isomers. Asthma was uniquely linked with p,p´-DDT, and autism with 
o,p´-DDT. Several reproductive and neurobehavioral outcomes and cancer types were linked to all 
three compounds.
Conclusions: Computer-based modeling relies on available information. Although differences in 
linkages to proteins may be due to incomplete data, our results appear meaningful and suggest that 
the parent DDT compounds may be responsible for more disease connections than the metabolites. 
The findings illustrate the potential use of computational approaches to toxicology.
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data alone, and the experimental data do not 
cover all the potential outcomes for the relevant 
isomers and metabolites [Agency for Toxic 
Substances and Disease Registry (ATSDR) 
2002]. We therefore chose to carry out com-
putational chemistry analyses of the DDT 
compounds from a human systems biology 
perspective. Our dual purpose was to obtain 
new information that might link relevant out-
comes to specific DDT compounds and to 
ascertain to what degree the currently available 
data sources would allow such analyses using a 
systems chemical biology approach. Although 
this study was not intended as a formal valida-
tion study, we consider a family of compounds 
for which extensive although somewhat equiv-
ocal epidemiological and experimental evi-
dence exists, with the result that our analysis 
includes suspected causal agents and antici-
pated negative controls.

Methods
Using data from the ToxProfile of the ATSDR 
(2002) with the 2008 appendix and litera-
ture searches of PubMed, we chose to con-
centrate on inflammatory, reproductive and 
endocrine, neurobehavioral, and malignant 
diseases. DDT isomers and metabolites were 
examined by multi-step data integration in the 
systems chemical biology approach (Figure 1). 
In short, in the first step, we extracted exist-
ing knowledge from a disease chemical biol-
ogy database to generate compound-specific 
human protein networks. In the second step, 
protein enrichment, we used a high-confidence 
set of experimental human protein–protein 
interactions to identify protein complexes. In 
the final step, we ranked the diseases predicted 
to be linked to the DDT compounds using an 
integration of protein–disease annotations in 
the protein complexes.

More specifically, first we extracted the 
human protein–chemical associations from 
the newly established disease chemical biology 
database, ChemProt (Taboureau et al. 2011), 
a compilation of multiple chemical–protein 
annotation resources that contains 700,000 
unique chemicals connected with 30,578  
proteins. This database assembles chemical–
protein connections from multiple sources, 
such as ChEMBL (de Matos et  al. 2010), 
BindingDB (Liu et al. 2007), PDSP Ki data-
base (Roth et al. 2004), and PubChem bio
assays (Wheeler et al. 2007). The integrated 
associations comprise both binding and sepa-
rate gene expression data, as the deregulation 
of a gene by a chemical may not be due nec-
essarily to a physical interaction between the 
compound and the protein, e.g., in the form 
of binding, but could entail a response at a 
cellular level. ChemProt can predict uncharac
terized chemical–protein interactions based 
on the similar structure of compound pairs. 
In the present study, only chemical–protein 

relationships with experimental support were 
kept for the analysis, while otherwise unsup-
ported, predicted connections were disregarded.

Second, we explored protein–protein 
interactions through an in-house human inter-
actome network based on experimental data 
from humans and 21 model organisms (Lage 
et al. 2007, 2008). Using a probabilistic con-
fidence scoring scheme, all interactions in the 
human interactome have been validated against 
a gold standard (Rual et al. 2005). We used an 
updated version of the protein–protein inter-
action network consisting of refined experi-
mental proteomics data (Lage et al. 2010). 
The current interactome contains 507,142 
unique protein–protein interactions (PPIs). 
These data are derived from sources such as the 
Biomolecular Interaction Network Database 
(BIND; Bader et al. 2003), Biological General 
Repository for Interaction Datasets (BioGRID; 
Stark et al. 2006), Molecular INTeraction 
(MINT) database (Zanzoni et  al. 2002), 
DIP_FULL dataset (Salwinski et al. 2004), 
Human Protein Reference Database (HPRD; 
Mishra et al. 2006), IntAct (an open source 
molecular interaction database) (Hermjakob 
et  al. 2004), Mammalian Protein–Protein 
Interaction (MMPI) database (Pagel et  al. 
2005), MPact [the Munich Information 
Center for Protein Sequences (MIPS) protein 
interaction resource on yeast] (Guldener et al. 
2006), Reactome (Joshi-Tope et al. 2005), and 
Kyoto Encyclopedia of Genes and Genomes 
(KEGG) databases (Kanehisa et al. 2006). 
Data are transferred between organisms by 
using the InParanoid Eukaryotic Ortholog 
Groups’ database (InParanoid 2009; O’Brien 
et  al. 2005). Among the PPIs included, 
414,543 are listed at least once as interactions 
between two human proteins. The human 
interactome includes 22,997 genes. Among 
the gene products, 14,441 human proteins 
have known interactions with other proteins; 
the others are singletons. In addition to direct 
interactions between known proteins, we also 
included indirect interactions by considering 
proteins involved in common pathways. This 
step used a statistical procedure shown to pro-
vide optimal network significance (Lage et al. 
2010). As a result, the list of relevant proteins 
associated with each compound is extended by 
inclusion of their known first-order protein–
protein interaction partners and other proteins 
participating in the same pathways.

Third, to identify diseases or dysfunctions 
associated with the specific chemicals examined 
(i.e., p,p´-DDT, o,p´-DDT, and p,p´-DDE), 
we integrated protein-specific information 
related to their involvement in disease patho-
genesis with the proteins identified. The Online 
Mendelian Inheritance in Man (OMIM) data-
base [Hamosh et al. 2005; National Center 
for Biotechnology Information (NCBI) 
2011b] and the Comparative Toxicogenomics 

Database (CTD 2011; Davis et al. 2011) were 
selected as the most useful sources of protein–
disease information. The OMIM database is a 
highly reliable compilation of genetic variants 
from medical and genetics publications. The 
CTD database contains both direct (manually 
curated) and inferred gene–disease relation-
ships and may therefore provide less certain 

Figure 1. Overview of the systems chemical biol-
ogy three-step approach. (1) Extraction of existing  
knowledge using a disease chemical biology data-
base (ChemProt) to generate chemical–protein net-
works for p,p´-DDT. (2) Creation of protein complexes 
by protein enrichment using a high-confidence 
set of experimental protein–protein interactions. 
(3) Statistical ranking of diseases (D) known or pre-
dicted to be linked to p,p´-DDT after integration of 
protein–disease annotations to protein complexes 
based on information in the Online Mendelian 
Inheritance in Man (OMIM) database and the 
Comparative Toxicogenomics Database (CTD).
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associations. Whereas direct associations derive 
from experimental models or epidemiological 
studies, inferred relationships are established 
through indirect evidence. Thus, if gene A 
is associated with disease B, and gene A has 
a curated interaction with chemical C, then 
chemical C has a curated relationship with 
disease B (Davis et al. 2011). These inferred 
relationships are more explorative and allow 
hypothesis generation using protein–disease 
connections in the chemical space.

The different strengths of the two data-
bases, OMIM and CTD, are illustrated by 
comparison of the data sets. The OMIM 
(version 2009) contains 3,748 connections 
involving 2,728 unique diseases, while the 
CTD (version 2009) contains 252,056 (hypo-
thetical) protein–disease associations involving 
2,580 unique diseases. We translated diseases 
having a Medical Subject Heading identi-
fication (MeSH ID) number in CTD into 
OMIM ID numbers to the extent possible, 
given that a single MeSH ID number may 
correspond to several OMIM ID numbers. 
Based on OMIM ID numbers, 1,934 diseases 
are shared between the two databases, 2,042 
proteins are common to both, and they cor-
respond to 2,528 shared protein–disease asso-
ciations of 255,804 interactions listed. Because 
of the limited overlap, we used both resources 
to explore the predictions in terms of protein–
disease relationships and biological confidence 
with regard to grouping proteins within a 
binary metric distance (Audouze et al. 2010).

Using R software (R Development Core 
Team 2010), p-values were calculated for each 
group of proteins, assuming a hypergeometric 
distribution. To take into account the large 
numbers of potential protein–disease connec-
tions in the CTD, we performed Bonferroni 
adjustments of all p-values for protein clusters 
based on the CTD. For this source of informa-
tion, we chose a classical family-wise error rate 
of 0.05 as cutoff to adjust p-values. We mapped 
all human proteins identified to EntrezGene 

(NCBI 2011a) identifiers using the Clone/
GeneID converter (Alibes et al. 2007).

Results
Using the ChemProt database, we extracted 
38 relevant human proteins for p,p´-DDT, 
83 for o,p´-DDT, and 18 for p,p´-DDE [for 
details, see Supplemental Material, Table 1 
(http://dx.doi.org/10.1289/ehp.1103533)]. 
We used the resulting three lists of proteins 
independently to create three human pro-
tein networks. For o,p´-DDE, only 11 pro-
teins were identified, and all had already been 
identified earlier as targets for p,p´-DDE. 
Likewise, p,p´-DDD was connected with only 
10 proteins, and o,p´-DDD with only three 
[progesterone receptor, androgen receptor, 
and estrogen receptor 1, the latter two over-
lapping with p,p´-DDD]. No information 
was obtained on the methylsulfonyl metabo-
lites. Our data analysis therefore concentrated 
on the three substances first mentioned.

We generated a human protein network for 
each chemical by determining protein–protein 
interaction partners associated with each 
protein network. Proteins with a GeneEntrez 
ID were retained. We identified 175 proteins 
for the p,p´-DDT analysis, 187 proteins for 
o,p´-DDT, and 52 proteins for p,p´-DDE 
(Table  1). Disease enrichment based on 
OMIM and CTD protein–disease annotations 
led to identification of diseases associated with 
each chemical (Table 2). Some diseases were 
not significantly associated with a chemical 
(e.g., when linked only via one protein). As 
anticipated, the CTD provided many more 
potential disease associations than the OMIM. 
This difference between the OMIM- and 
CTD-based predictions likely reflects the 
extent of uncertain and incomplete evidence 
within the two data sources. The specific and 

overlapping disease annotations for p,p´‑DDT 
and p,p´-DDE within disease clusters for 
the two different data sources are shown in 
Figure 2. Most of the diseases predicted for 
o,p´-DDT overlapped with predictions for 
p,p´‑DDT. Overall, 35 diseases (based on 
OMIM data) and 210 diseases (based on CTD 
data) appeared to be unique for p,p´‑DDT. 
All OMIM-based predictions had higher 
p-values than CTD-based predictions, but 
these differences should be interpreted in light 
of the fewer known proteins in the OMIM 
database associated with the diseases predicted. 
For example, asthma was connected with 
p,p´-DDT via a single protein, tumor necrosis 
factor, in the OMIM database (p = 0.147), 
whereas CTD information predicted 
asthma via connections through 48 proteins 
(p  = 0.002) [for details, see Supplemental 
Material, Table 2 (http://dx.doi.org/10.1289/
ehp.1103533)]. In contrast, only a few diseases 
appeared to be unique for p,p´-DDE: 1 based 
on CTD data (i.e., coronary heart disease), and 
8 based on OMIM data.

To synthesize this information, we focused 
on the four major categories of disease pheno
types previously linked to DDT exposures: 
inflammatory, reproductive and endocrine, 
neurobehavioral, and carcinogenic (Figure 3). 
[See Supplemental Material, Table 2 (http://
dx.doi.org/10.1289/ehp.1103533) for details 
on the p-values (adjusted when based on CTD 
data), sources of protein–disease information 
(CTD or OMIM), and specific genes linked to 
the proteins.] Depending on the source of pro-
tein–disease annotations, the phenotypes may 
be more or less specific, but all annotations 
identified in the databases were kept to avoid 
any subjective judgment in data extraction. 
As expected, the predictions varied somewhat 
between the two databases, OMIM and CTD.

Table 1. Number of proteins associated with 
p,p´-DDT, o,p´-DDT, and p,p´-DDE within the dif-
ferent steps of the systems biology procedure.

Number of proteins

Chemical 
name ChemProt

Interactome 
(PPIs)

Mapped to 
EntrezGene

p,p´-DDT 38 182 (381) 175
o,p´-DDT 83 189 (235) 187
p,p´-DDE 18 56 (92) 52

Table 2. Number of diseases associated with 
p,p´-DDT, o,p´-DDT, and p,p´-DDE using the OMIM 
and the CTD databases.

Chemical name OMIM CTD
p,p´-DDT 50 271
o,p´-DDT 45 77
p,p´-DDE 25 62

Figure 2. Venn diagram showing the number of diseases overlapping between p,p´-DDE and p,p´-DDT, 
using disease annotations extracted from the OMIM and the CTD databases. Data on o,p´-DDT are not 
shown, as most of its disease links overlapped with p,p´-DDT.
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Overall, of 175 proteins linked to 
p,p´‑DDT after exploration of the human 
interactome in the CTD, only 29 were 
retrieved using the OMIM database. Among 
those 29 proteins, one was associated with 
asthma among the total of 13 connected with 
this disease in the OMIM database (which 
contains a total of 2,387 proteins in the cur-
rent version). Of the 131 proteins associated 
with p,p´-DDT in the CTD, 48 had asso-
ciations with asthma (of a total of 1,977 pro-
teins potentially linked to asthma among the 
10,509 proteins included in the CTD). The 
asthma linkage was found only with regard to 
p,p´-DDT; no relationships were found for 
p,p´-DDE, and the single link to o,p´-DDT 
had a nonsignificant p-value.

Several links to reproductive phenotypes 
were retrieved. Female infertility disorders 
representing diminished ability or inability 
of a woman to achieve conception, although 
not further specified in the resources used, 
were connected with the three chemicals. 
In parallel, male reproductive disorders, 
including hypospadias and cryptorchidism, 
were predicted for p,p´-DDT, o,p´-DDT, 
and p,p´‑DDE. Genes linked to these male 
phenotypes included the androgen receptor 
listed for hypospadias. Although more genes 
were identified from the CTD, the statistical 
significance decreased. For cryptorchidism, 
both the androgen receptor and gonadotropin-
releasing hormone  1 were predicted. The 
identities of some of the genes [for details, 
see Supplemental Material, Table 2 (http://
dx.doi.org/10.1289/ehp.1103533)] suggested 
that the DDTs may also have other endocrine-
disrupting effects in humans. Type 2 diabetes 
mellitus appeared to be connected with all 
three substances via 9 proteins for p,p´-DDE 
(nonsignificant p), 40 proteins for p,p´-DDT 
(p < 0.0001), and 25 proteins for o,p´-DDT 
(nonsignificant p).

For neurobehavioral diseases, Soto and 
Weaver syndromes were predicted with low 
p-values via the nuclear receptor binding SET 
domain protein 1 based on OMIM data for 
all three substances. When using the CTD, 
additional disorders were identified, includ-
ing learning disorders (p = 0.01 for 7 proteins 
for p,p´-DDE; p = 0.013 for 12 proteins for 
o,p´-DDT; and p < 0.0001 for 25 proteins 
for p,p´-DDT). Similar results were obtained 
for memory disorders (p = 0.05 for 6 proteins 
for p,p´-DDE; and p < 0.0001 for 23 proteins 
for p,p´-DDT). These results again reflect the 
diversity of information present in the two 
data sources used. Interestingly, o,p´-DDT 
was the only substance studied that predicted 
a linkage with autism, via the hepatocyte 
growth factor receptor.

Various cancers appeared to be connected 
with all three substances. Breast cancer was 
predicted for all three DDTs using CTD data 

and for both parent DDTs using OMIM data 
(where the link for p,p´-DDT is via a single 
protein, the hyaluronan-mediated motility 
receptor, p = 0.208). Using the CTD, the 
link for p,p´-DDT involved 22 proteins 
(p  <  0.001), and for p,p´-DDE, 24 pro-
teins (p = 0.021), again reflecting the larger 
amount of information on these chemicals in 
the CTD. For information on other cancers, 
see Supplemental Material, Table 2 (http://
dx.doi.org/10.1289/ehp.1103533).

Discussion
The discipline of systems chemical biology 
combines experimental findings with compu-
tational models with the aim of understand-
ing the effect of xenobiotics on a biological 
system. This field of research now allows inte-
gration of disparate information sources such 
as high confidence protein–protein asso-
ciation data, protein–disease annotations, 
“omics” information, and other biological 
data from databases to explore hidden and 
unknown connections. Recent advances in 
toxicogenomics also contribute information 
to the impact of small molecules on genes 
and proteins. Because of these developments, 
advanced computational systems chemical 
biology models have been developed to deci-
pher the association between environmental 
chemicals and diseases (Audouze et al. 2010). 
Accordingly, the combined sources of infor-
mation can now be applied in computational 

models to predict associations between 
chemical exposures and human health effects. 
Although such in silico prediction of course 
cannot be considered a proof of causal links, it 
nonetheless provides justification for hypothe
sis generation and contributes to interpreting 
toxicology information from other sources.

The integration of chemical biology and 
systems biology in a systems chemical biology 
approach is unsupervised and is based entirely 
on known chemical and biological informa-
tion about the behavior of xenobiotics, their 
interactions with specific proteins, and the 
consequences in regard to protein–protein 
interactions and possible disease pathogenesis 
in humans. The statistical procedure helps in 
ranking the interactions, but it may not reflect 
dose–effect relationships. Thus, the disease 
annotations identified by this in silico approach 
represent hypothetical causal links that need 
to be explored and verified in a biological set-
ting, whether in vitro or in vivo, with the aim 
of deciphering potential toxicity and modes 
of action of the chemicals. In addition, the 
links identified are based on current informa-
tion, which is incomplete, and the absence of 
a link therefore does not necessarily mean lack 
of plausibility regarding a particular adverse 
effect. This problem is clearly illustrated by 
comparing the predictions generated by using 
the two databases, with the greater number of 
predicted associations found using the CTD, 
which includes less-certain, indirect evidence. 

Figure 3. Disease–chemical associations network. The circles represent diseases, with colors represent-
ing phenotype categories: red, reproductive disorders; blue, neurodevelopmental-related diseases; green, 
cancers; gray, other diseases. Rectangles represent the three chemicals studied. The heavier the weight 
of the connecting lines, the greater the number of proteins linking a chemical to a disease (determined 
using the OMIM and CTD databases and ChemProt as resources).
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Although the smaller number of associations 
suggested by the OMIM database may be 
better documented, this likely represents an 
underestimation because of incomplete infor-
mation. Although substantial overlap was 
detected, neither of these databases can there-
fore be considered definitive, and they may 
not become so in the foreseeable future. Thus, 
all predictions depend on current knowledge, 
much of which is yet uncertain. And again, 
dose–response relationships cannot be inferred 
from the predictions. Although these limita-
tions do not invalidate the results, the caveats 
are important when interpreting the findings. 
In particular, linkage to asthma and autism, for 
example, should not be interpreted as indicat-
ing that DDT may be a specific cause of these 
diseases, which are likely multicausal.

In this study, we chose to use the compu-
tational model for a major pesticide to assess 
the usefulness of the computational approach 
as a tool to bridge gaps in our understanding 
of environmentally related disease processes 
by identifying potential mechanistic links. The 
main results are in close accordance with toxi-
cology findings and results from prospective 
epidemiological studies that relied on serum 
concentrations at relevant time windows.

In regard to asthma, the two data sources 
agree to a substantial extent that the disease 
may be uniquely associated with the parent 
DDT compounds. Only nonallergic disease in 
adult farmers has been linked to DDT usage 
(Hoppin et al. 2009). In children at 6 years of 
age, the presence of asthma—independent of 
atopy—was linked to increased concentrations 
of p,p´-DDE found in umbilical cord serum 
(Sunyer et al. 2006). Our findings suggest that 
the epidemiological linkage to p,p´-DDE may 
be indirect and that future studies should also 
assess exposures to the parent compound.

Antiandrogenic effects of p,p´-DDT 
and p,p´-DDE have been demonstrated 
experimentally (Gray et  al. 2001). One 
epidemiological study showed no association 
between the anogenital distance in boys and 
p,p´-DDT and p,p´-DDE concentrations in 
maternal serum (Longnecker et  al. 2007), 
whereas another study found a significant 
association for the latter (Torres-Sanchez 
et al. 2008). It is not clear from this evidence 
whether o,p´-DDT plays any role in this 
respect. Most studies on cryptorchidism and 
hypospadias had limited statistical power or 
focused only on p,p´-DDE (Brucker-Davis 
et al. 2008). In regard to semen quality, a cross-
sectional study of pesticide sprayers currently 
using DDT showed inverse associations with 
the current serum concentration, especially 
for p,p´-DDT (Aneck-Hahn et  al. 2007), 
whereas another study involving infertile men 
showed that the sum of all p,p´ isomers was 
negatively associated with sperm concentration 
(Messaros et al. 2009). As for antiandrogenic 

effects studies, much additional information 
is available on p,p´‑DDE. Likewise, in regard 
to type 2 diabetes, epidemiological studies 
have generally focused on p,p´-DDE (ATSDR 
2002), but our data suggest that p,p´-DDT 
may be a more likely etiologic agent.

Experimental animal studies document 
that p,p´-DDT is a neurotoxicant, but evi-
dence on other DDT isomers and metabolites 
is less extensive (ATSDR 2002). A prospective 
human study in California suggested that the 
maternal serum concentration of p,p´-DDT 
during pregnancy was a stronger predictor 
of the neurodevelopment of the child up to 
12 months of age than were the p,p´-DDE 
and o,p´-DDT concentrations (Eskenazi et al. 
2006). Similarly, a study in Spain showed that 
neuropsychological performance at 4 years 
of age decreased in children with higher 
p,p´‑DDT concentrations in umbilical cord 
serum (Ribas-Fito et al. 2006). Other stud-
ies relied solely on p,p´-DDE concentrations 
(Darvill et al. 2000; Gladen and Rogan 1991; 
Rogan and Gladen 1991; Sagiv et al. 2008) 
and may therefore have missed effects associ-
ated with the parent compound.

There is sufficient evidence for carcino
genicity of DDT in animals (ATSDR 2002). 
The main cancer form studied in regard 
to human DDT exposure is breast cancer. 
Perhaps the strongest evidence comes from 
the prospective follow-up of women who 
provided a blood sample in connection with 
the Child Health and Development Studies in 
California in 1959–1967, where 129 women 
subsequently developed breast cancer before 
50 years of age. The odds ratios showed a 
significant association with p,p´-DDT, but 
not with o,p´‑DDT or p,p´-DDE (Cohn 
et al. 2007). Support for this notion comes 
from a Danish study that relied on a 17-year 
follow-up from 1976: An increased odds ratio 
for breast cancer was found among women 
with the highest quartile of serum p,p´‑DDT 
concentrations, whereas this tendency was 
not seen for p,p´‑DDE (Hoyer et al. 1998). 
Unfortunately, the majority of studies in this 
field have relied on DDE measurements, often 
in cross-sectional designs. Evidence for liver 
cancer (McGlynn et al. 2006) and testicular 
cancer (Cohn et al. 2010; Purdue et al. 2009) 
also supports the notion that p,p´-DDT may 
be the major carcinogen, as associations with 
p,p´-DDE could be due to breakdown of the 
parent compound. For example, in a case–
control study of non-Hodgkin lymphoma 
using concurrent serum samples, a significant 
association was seen with p,p´-DDE, but the 
high frequency of nondetectable p,p´‑DDT 
concentrations did not allow a proper 
comparison (Spinelli et al. 2007).

In light of the toxicological and epide-
miological evidence on adverse health effects 
of DDT compounds, this study shows that 

the in silico approach is highly relevant and 
meaningful. That said, a major problem in the 
epidemiological literature is that it mainly links 
serum concentrations of p,p´-DDE to suspected 
adverse effects. As some of these effects may be 
due rather to p,p´-DDT, the studies therefore 
rely on a proxy variable for past DDT exposure. 
However, one cannot assume that all p,p´-DDE 
originates from the subject’s own breakdown 
of the parent compound, and the serum-DDE 
concentration is therefore imprecise and may 
be biased. The degree of imprecision will likely 
vary with the age and time of exposure. Such 
exposure misclassification generally leads to an 
underestimation of the true effect of the sub-
stances studied. If the effects are ascribed to the 
unmeasured parent compound, toxicokinetic 
calculations may perhaps be applied to gener-
ate a more appropriate exposure measure that 
reflects the exposure to the active substance. 
The opposite error may play a role in toxicologi
cal studies, where effects have been attributed 
to the parent compound, although potentially 
mediated through a metabolite. However, our 
results suggest that this possibility is of little 
significance in regard to DDT.

Overall, our findings demonstrate that the 
systems chemical biology approach is feasible 
and may have a pivotal role in considering  
potential causal associations derived from 
toxicology and epidemiology studies. 
Although our approach is based on the current 
knowledge base and may therefore have 
overlooked some linkages, the results show 
that the DDT compounds examined, while 
chemically related, have tertiary structures, gene 
expression profiling, and binding properties 
that deviate sufficiently from one another to 
predict outcomes that differ substantially. 
The differences in predicted outcomes are not 
likely to be due to differences in the amount of 
information available. Thus, the major parent 
compound, p,p´‑DDT, would seem to be much 
more potent in regard to adverse effects than its 
isomers and metabolites. In addition, we have 
identified several new potential target diseases 
not hitherto examined as relevant outcomes [see 
Supplemental Material, Table 2 (http://dx.doi.
org/10.1289/ehp.1103533)]. These potential 
targets deserve attention in future experimental 
and epidemiological studies to provide a more 
complete basis for risk assessment.

The usefulness and validity of the 
computational approach is likely to improve 
as more information becomes available, 
including more chemical–protein data as well 
as data from “omics”and gene–environment 
interaction studies. Furthermore, the results 
of the disease–chemical association analysis 
will improve in the future as newer, more 
complete, and curated data become available 
to expand and fine-tune our understanding 
of protein–disease associations. In addition, 
studies like this one will contribute to the 
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necessary validation of in silico approaches and 
findings, and cumulated experience will help 
in interpreting such analyses in light of possible 
unknown interactions and absent dose–effect 
relationships. Thus, the results obtained with 
the DDT compounds serve as an illustration 
of the potential use of computational 
predictions in toxicology, epidemiology, and 
environmental health research. The visions 
expressed by the National Research Council 
committee on transforming toxicology 
therefore seem reasonable and realistic.
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