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1Department of Physics, Technical University of Denmark, Fysikvej, DK-2800 Kgs. Lyngby, Denmark
2Quantum Frequency Standards Division, National Time Service Center (NTSC), Chinese Academy of Sciences,

710600 Lintong, Shaanxi, China
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We discuss and make an experimental test of a probabilistic Hadamard gate for coherent state qubits. The
scheme is based on linear optical components, nonclassical resources, and the joint projective action of a
photon counter and a homodyne detector. We experimentally characterize the gate for the coherent states of the
computational basis by full tomographic reconstruction of the transformed output states. Based on the parameters
of the experiment, we simulate the fidelity for all coherent state qubits on the Bloch sphere.
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Measurement-based, linear optical quantum processors
rely on offline prepared resources, linear optical transforma-
tions, and measurement-induced operations [1]. Among all
measurement-based protocols, the most famous ones are the
cluster state quantum processor where universal operations
are executed by measuring a large entangled cluster state
[2], and the linear quantum computer approach proposed by
Knill, Laflamme, and Milburn [3]. The latter method is based
on single-photon resources that interfere in a linear optical
network and subsequently are measured to enforce the desired
operation. Despite its seeming simplicity, the implementation
of a fault tolerant operating algorithm is complex as it requires
a very large overhead.

An alternative approach to measurement-based linear
quantum computing has been put forward by Ralph et al.
[4]. Rather than using discrete degrees of freedom (e.g.,
the polarization) of a single photon as the computational
basis, it was suggested to use two mesoscopic coherent
states |α〉 and |−α〉, where α is the amplitude. Although
these states are only approximately orthogonal (〈α|− α〉 �= 0),
resource-efficient and fault-tolerant quantum gates can be
implemented: For a large coherent amplitude, that is, α > 2,
deterministic gates can in principle be realized, although the
experimental implementation is very challenging [5]. On the
other hand, by employing a simpler physical implementation,
nondeterministic gates can be realized for any value of α, and
for α > 1.2, the scheme was theoretically shown to be fault
tolerant and resource efficient [6].

An even simpler implementation of a universal set of
nondeterministic quantum gates was recently suggested by
Marek and Fiurášek [7]. They proposed the physical realization
of a single-mode and a two-mode phase gate as well as the
Hadamard gate. In this Rapid Communication we present a
proof of principle experiment of the probabilistic Hadamard
gate for coherent state qubits. The implemented protocol is
based on a squeezed state resource, linear operations as well
as two projective measurements of discrete and continuous
variable types. By injecting the computational basis states
(|α〉 and |− α〉) into the gate we partially characterize
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its function by reconstructing the Wigner functions of the
transformed output states and calculate the fidelity with an
ideally transformed state. Based on these results we perform a
simulation of the gate performance for arbitrary coherent state
qubits.

A Hadamard gate transforms the computational basis states
|± α〉 into the diagonal basis states (|α〉 ± |−α〉)/√N±,
which we refer to as the even and odd coherent state qubits
(CSQs) [8–15]. Such a transformation can be performed
probabilistically using the circuit shown in Fig. 1(a). The gate
is based on a supply of coherent state superposition resources
which are assumed to have the same amplitude as the coherent
states of the computational basis. The gate works by displacing
the arbitrary CSQ input state |ψin〉 = (u|α〉 + v|−α〉)/√N ,
followed by a nondistinguishable subtraction of a single
photon, from either the displaced input or the resource state.
Physically, this can be done by reflecting a small part of either
state using highly asymmetric beam splitters (ABS1,ABS2),
interfering the resulting beams on a beam splitter (BS) with
transmittivity t and reflectivity r , and detecting one photon
at the output with a single-photon detector. Theoretically
this is described by the operator râ + t b̂, where â and b̂

are annihilation operators corresponding to the subtraction
of a photon from the displaced input and the coherent
state superposition resource, respectively. As a final step the
two-mode state is projected onto the single-mode quadrature
eigenstate |x〉, where x is the amplitude quadrature, by using
a homodyne detector (HD). The resulting output state is

u
|α〉 + |− α〉√

N+
+ Y1(u + vZ)

|α〉 − |− α〉√
N−

, (1)

where

Y1 = t

2r

√
N−
N+

, Z = 〈x|0〉
〈x|2α〉 . (2)

By using a beam splitter (BS) with t � r and setting the
x quadrature such that Z � 1 and ZY1 = 1, the Hadamard
transform is implemented. The gate is probabilistic, and
implemented by a hybrid detection system, using both discrete
and continuous variable projections [16,17]. Its success is
conditioned on the joint measurement of a photon and a
quadrature measurement outcome with the value x.
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FIG. 1. (Color online) (a) Schematic of the Hadamard gate. The
input coherent state qubit (CSQ) is displaced (D̂) and mixed with
a resource state at a beam splitter (BS). The output of the gate
is conditioned by a single-photon detection (〈1|) and a homodyne
measurement (〈x|). (b) Gate fidelity as a function of the CSQ
amplitude for an ideal coherent state superposition resource (solid
green/light gray) and the squeezed state resource (dashed red/gray).
The degree of squeezing that optimizes the fidelity is represented by
the dotted blue/dark gray curve.

As an even coherent state superposition with small am-
plitude is reminiscent of a squeezed vacuum state, and this
latter state is experimentally easier to prepare, we will in the
following consider the replacement of the ideal resource with a
squeezed vacuum state. With this substitution, the transformed
state will have the following form:

uŜ(s)|0〉 + Y2(u + vZ)Ŝ(s)â†|0〉, (3)

where s is the squeezing parameter which is related to the
squeezing variance by V = e−2s , and the parameter Y2 is now
given by

Y2 = −t sinh(s)/(2rα). (4)

Again, the requirement for optimal implementation of the
Hadamard transform is Z � 1 and ZY2 = 1. Using this result
we calculate the expected gate fidelity for various amplitudes
α as shown by the dashed red/gray curve in Fig. 1(b). For
the squeezed vacuum resource, we optimize the squeezing
degree (shown by the dotted blue/dark gray curve) to obtain
the highest fidelity which reaches unity for α = 0. At higher
amplitudes, the resource deviates from the ideal coherent state
superposition and thus the fidelity decreases. For comparison,
we also plot the expected gate fidelity for the case of an ideal
resource (the solid green/light gray line). In the experiment
described below we use α = 0.8, which gives a reasonable
trade-off between fidelity (F = 0.97), required squeezing
(V = 2.6 dB), and success probability.

The experimental setup is presented in Fig. 2. Nearly
Fourier-limited picosecond pulses (4.6 ps) generated by a
cavity-dumped Ti:sapphire laser with a repetition rate of
815 kHz and a central wavelength of 830 nm are frequency
doubled [second-harmonic generation (SHG)] by single pass-
ing a 3-mm-long periodically poled KTiOPO4 nonlinear
crystal (PPKTP1). Up-converted pulses at 415 nm pumps
a second crystal (PPKTP2) which is phase matched for
degenerate collinear optical parametric amplification (OPA),
thus yielding up to 3 dB of vacuum squeezing, in the vertical
polarization. This state is used as a resource for the Hadamard
gate. An adjustable fraction of a horizontally polarized mode
at 830 nm passes the OPA crystal unchanged and serves as
the input coherent state to the gate. Approximately 7.5% and

FIG. 2. (Color online) Experimental setup for the coherent state
qubit Hadamard gate.

1.5% of the coaxially propagating resource and input modes,
respectively, are reflected off an asymmetric beam splitter
(ABS) and transmitted through a half-wave plate (HWP) and
a polarizing beam splitter (PBS1), which in combination acts
as a variable beam splitter (BS), thus mixing the input mode
and the resource mode. The transmittance |t |2 of the BS is
set to 25%. The output is spatially and spectrally filtered by
a single-mode optical fiber (SMF) and a narrow interference
filter (IF) with a bandwidth of 0.05 nm and detected by a
single-photon counting module based on a silicon avalanche
photodiode (APD) with a dark count rate of 20 ± 4 per second.
The total efficiency of the APD arm reaches 25 ± 4%.

The transmitted fraction of the modes after the asymmetric
beam splitter is superimposed with a bright local oscillator
(LO) at a polarizing beam splitter (PBS2). The amplitude
quadrature is measured on the reflected mode by homodyne
detection with a fixed relative phase set to zero. The recording
of the measurement results was done by correlating the
APD detection events with a synchronization signal from
the laser cavity dumper through a coincidence circuit to
decrease the probability of dark events. Every time a photon
was detected by the APD within the accepted time slot, the
homodyne signal was sampled by an oscilloscope running in a
memory segmentation regime and fed to a computer where the
corresponding quadrature value was processed. The state at the
output of the gate is measured with another homodyne detector
with the relative phase of the LO scanned over a period and
then reconstructed using maximum-likelihood-based quantum
state tomography [18]. In the reconstruction we corrected
for the total detection efficiency of the homodyne detector,
which was estimated to be 77 ± 2%, including efficiency
of the photodiodes (93 ± 1%), visibility (95 ± 1%), and
transmission efficiency (93 ± 1%).

Making a full experimental investigation of the gate
performance would require access to states in the diagonal
basis. In our experiment we did not have access to these
diagonal states, which prevents us from performing a full
characterization of the gate performance. The gate was solely
tested for the computational basis states |± α〉, which after the
displacement operation D̂(α) corresponds to the injection of
|0〉 and |2α〉, where α = 0.8 ± 0.2 in our case. The uncertainty
is due to the imperfect calibration of total losses of the whole
setup. As described, the gate is heralded by conditioning on two
different measurement outcomes—the APD detection event
and a certain outcome of the first homodyne detector. It can
be seen that the conditional homodyning only plays a role
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when we inject a CSQ into the gate, i.e., when u,v �= 0.
With coherent states as the input, the solution is to choose
a narrow heralding window that would balance the success
probabilities of the gate for those basis states. For the input
state |−α〉 the APD detection probability was of the order of
10−3 while for the |α〉 input state, the probability was of the
order of 10−2. From this we can see that we need to choose a
heralding window that will balance out the factor of 10. Based
on the experimental data we found its optimal position x = 0.4
and the width of 0.02 that would give us an overall success
probability of the order of 10−5.

The reconstructed output states for both input states |−α〉
and |α〉 can be seen in Fig. 3. For the |−α〉 input, the gate
yields a state which closely resembles a small odd cat state,
which is what we expect from the gate operation. We found
the fidelity between the prepared state and the ideal CSQ,
(|α〉 − |−α〉)/√N−, is maximized for α = 0.75 and reaches
a value of F−α = 0.65 ± 0.04. The nonclassicality of the
superposition state produced by the Hadamard gate can be
seen from the negativity of the corresponding Wigner function,
which is W (0,0) = −0.11 ± 0.02, which is comparable to
previous experiments where photon subtraction has been used
to prepare non-Gaussian states [9–15]. The nonclassical effects
were also observable without correction, with a fidelity of
F−α = 0.55 ± 0.04 and a value at the origin of W (0,0) =
−0.05 ± 0.02. For the |α〉 input, the output state closely
resembles a squeezed state, approximating a small even CSQ,
(|α〉 + |−α〉)/√N+. The fidelity between the prepared state
and the ideal CSQ for α = 0.75 was found to be Fα =
0.94 ± 0.02.

FIG. 3. (Color online) Reconstructed density matrices (insets)
and calculated Wigner functions of the output states for (a) |−α〉
input and (b) |α〉 input.

The experimental results shown in Fig. 3 only provide a
partial test of the Hadamard gate. In order to gain insight into
its action on an arbitrary CSQ input, we conducted a numerical
simulation of the gate, taking into account all important
experimental imperfections, including realistic splitting ratios
of ABS1, ABS2, and BS, losses in APD and HD channels, and
the impurity of our resource squeezed state.

Our simulation starts with an arbitrary qubit in the coherent
state basis |ψin〉 for which the global input state reads

ρ̂in = |ψin〉1〈ψin| ⊗ |0〉2〈0| ⊗ |0〉3〈0| ⊗ ρ̂A
4 , (5)

where the subscripts are used to label the four participating
modes and ρ̂A represents the density matrix of a squeezed
thermal state used as the ancillary resource. The action of the
gate can now be represented by a unitary evolution of the linear
optical elements Û , followed by positive operator-valued
measure (POVM) elements of successful heralding events �̂,
with the output state given by

ρout = 1

PS
Tr123(Û ρ̂inÛ

†�̂), (6)

where PS = Tr(ÛρinÛ
†�̂) is the success rate. Û =

Û23(tBS)Û12(tABS1)Û34(tABS2) is composed of unitary beam-
splitter operations coupling the respective modes, and �̂ =
�̂HD

1 ⊗ �̂APD
3 describes the inefficient homodyne and APD

measurements. To parametrize a Bloch sphere of input CSQ
states, we denote u = cos θ and v = sin θ exp(iφ), where θ ∈
[0,π/2] and φ ∈ [0,2π ]. The north and south poles correspond
to the pseudo-orthogonal states |α〉 and |−α〉, respectively.

FIG. 4. (Color online) The overall quality of the gate is visualized
by mapping the Bloch sphere of input CSQ onto the fidelity F of the
output states (a) and their corresponding success probabilities PS (b).
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A mapping of this Bloch sphere onto the corresponding
fidelities and success probabilities at the output is shown
in Fig. 4. The fidelity spans the interval of F ∈ [0.67,0.96]
with an average value of F̄ = 0.78. Particularly, for coherent
states |α〉 and |−α〉 at the input, the fidelities of 0.88 and
0.67 are predicted, respectively, which agrees well with the
actually measured values. The success probabilities associated
with |α〉 and |−α〉 are almost equal, which confirms the
correct value of the amplitude quadrature used at the HD
for conditioning. The average success probability is P̄S =
7.2 × 10−6.

Alternatively, we quantify the performance of the gate by
employing the process fidelity. This quantity is based on
the elegant notion that any operation can be implemented
through teleportation: The desired operation is conducted
onto an entangled state which is subsequently used to tele-
port the state on which the operation should be imparted
[19]. The quality of such an operation is given by the
quality of the actually transformed entangled state, which
can be quantified by the fidelity with respect to the ideally
transformed entangled state. We have performed a numeri-
cal simulation of the transformation of the entangled state
|α,α〉 + |−α, −α〉 and compared it to the ideally transformed
state |α〉(|α〉 + |−α〉)/√N+ + |−α〉(|α〉 − |−α〉)/√N−. The
process fidelity resulting from this simulation reaches
F = 0.70.

In conclusion, we have demonstrated a single-mode
Hadamard gate for coherent state qubits on the computational
basis, by using a hybrid projector consisting of a conditional
homodyne detector and a photon counter. Its performance
has been characterized by a set of basis states and from
this we derived a model which could be used to simulate
its performance for an arbitrary qubit. This implementation
constitutes an important step toward the demonstration of
quantum computing with macroscopic qubit states. To imple-
ment universal quantum computing, the Hadamard gate must
be supplemented with a single-mode phase gate (a special
case—the sign-flip gate—was recently implemented [20])
and a two-mode controlled phase gate. In addition to the
implementation of these gates, another outlook is to refine
the experimental techniques or propose alternate schemes that
may increase the gate fidelity, and thus eventually may allow
for fault-tolerant operation.
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(1999); L. Slodička, M. Jezek, and J. Fiurasek, Phys. Rev. A 79,
050304(R) (2009).

[20] R. Blandino et al., e-print arXiv:1105.5510.

050301-4

http://dx.doi.org/10.1103/RevModPhys.79.135
http://dx.doi.org/10.1103/PhysRevA.68.022312
http://dx.doi.org/10.1103/PhysRevA.68.022312
http://dx.doi.org/10.1038/35051009
http://dx.doi.org/10.1038/35051009
http://dx.doi.org/10.1103/PhysRevA.68.042319
http://dx.doi.org/10.1103/PhysRevLett.100.030503
http://dx.doi.org/10.1103/PhysRevLett.100.030503
http://dx.doi.org/10.1103/PhysRevA.82.014304
http://dx.doi.org/10.1103/PhysRevA.82.014304
http://dx.doi.org/10.1103/PhysRevLett.105.053602
http://dx.doi.org/10.1103/PhysRevLett.105.053602
http://dx.doi.org/10.1103/PhysRevLett.92.153601
http://dx.doi.org/10.1103/PhysRevLett.92.153601
http://dx.doi.org/10.1103/PhysRevLett.97.083604
http://dx.doi.org/10.1126/science.1122858
http://dx.doi.org/10.1364/OE.15.003568
http://dx.doi.org/10.1038/nphoton.2010.158
http://dx.doi.org/10.1103/PhysRevA.82.031802
http://dx.doi.org/10.1103/PhysRevLett.92.047903
http://dx.doi.org/10.1103/PhysRevLett.92.047903
http://dx.doi.org/10.1038/nature06054
http://dx.doi.org/10.1103/PhysRevA.55.R1561
http://dx.doi.org/10.1103/PhysRevA.68.012305
http://dx.doi.org/10.1088/1464-4266/6/6/014
http://dx.doi.org/10.1088/1464-4266/6/6/014
http://dx.doi.org/10.1038/46503
http://dx.doi.org/10.1038/46503
http://dx.doi.org/10.1103/PhysRevA.79.050304
http://dx.doi.org/10.1103/PhysRevA.79.050304
http://arXiv.org/abs/arXiv:1105.5510

