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Optimal Prediction Intervals
of Wind Power Generation

Can Wan Student Member, IEEEZhao Xy Senior Member, IEEEPierre PinsonSenior Member, IEEE
Zhao Yang DongSenior Member, IEEEand Kit Po Wong Fellow, IEEE

Abstract—Accurate and reliable wind power forecasting is es- forecasting becomes highly meaningful to optimize the oper-

sential to power system operation. Given sigiicant uncertainties  ation cost and improve the reliability for power systems with
involved in wind generation, probabilistic interval forecasting ihcreased wind penetration [1].

provides a unique solution to estimate and quantify the potential In the past. most researches focused on point forecasting an-
impacts and risks facing system peration with wind penetration past, P gap

beforehand. This paper proposesa novel hybrid intelligent algo- ~Proaches for wind power [2]. Due to the nonstationarity of wind
rithm approach to directly formulate optimal prediction intervals ~ power series, traditional poirfibrecasting can hardly be accu-
of wind power generation based orextreme learning machine and  rate, and the forecasting errors are unavoidable andrsignt
particle swarm optimization. Prediction intervals with associated {5 some extent. For traditional applications, wind power fore-

conbdence levels are generated tlough direct optimization of . . . . . i
both the coverage probability and sharpness to ensure the quality. casting errors are statisticallyaigzed in [3]. With the integra

The proposed method does not involve the statistical inference tion of high penetration ofwindgwer_gtiqn in deregulated power
or distribution assumption of forecasting errors needed in most Systems, the development of préiestic forecasing tools is
existing methods. Case studies using real wind farm data from needed for making decisions ihet operational domain to ac-
Australia have been conducted. Comparing with benchmarks counting for wind generation wertainties. Recently, different
applied, experimental results demonstrate the high éiciency and o 04 ches have been proposed for probabilistic wind power
reliability of the developed approach. It is therefore convinced . L .

that the proposed method provides a new generalized framework fOrecasts to obtain predictiomtervals (Pls). Meteorological
for probabilistic wind power forecasting with high reliability and ~ €nsembles are used to obtain pegigte distributon and esti-

Rexibility and has a high potential of practical applications in mate the uncertainty of forecasts [4], [5]. The uncertainty of

power systems. wind power forecasting is invagiated based on the nonlinear
Index Terms—Extreme learning machine, forecasts, particle power curve and statistical alysis of wind speed prediction
swarm optimization, prediction intervals, wind power. errors [6]. Quantile regression is used to estimate different fore-

casting quantiles [7], [8]. Baseazh the point prediction results
of AWPPS, WPPT and Sipredlico, Pls are constructed through a
combined nonparametric prolility forecasts and adaptive re-
IND energy is the most important andeefent renew- sampling approach [9]. In [10}adial basis function has been
able energy and is widely utilized for power generatioimplemented to derive quantiferecasts of wind power based
in modern paver systems in the past decades. In particular, wirh point prediction results, weather conditions, etc. The con-
power can supply up to 20% of annual electricity consumptiaditional kernel density (CKD) estimation approach is proposed
in Denmark. However, wind prer also introduces much moreto estimate of the probability distribution of wind power gen-
uncerginties than conventional generation due to the chaotic retation [11]. In general, Pls with associated ledence levels
ture of the weather system. Accurate and reliable wind powsticcessfully quantifyite uncertainties of wind power forecasts,
which essentially beri all participants in power systems to
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minima, overtraining, high computation costs and so forth. Dugperation and planning acttiés in power systems, such as to

to its excellent performance, ELM has been used in many dgrovide reliable information for dispatching, e.g., the hourly

ferent applications including both regression and clxsgtion Nord pool market. Particularlyhe interval forecasting results

tasks [20]-[22]. can also be used to develop new operation and planning tools
Classical NNs based Pls construction methods always & TSO to probabilistically determine the needed reserves in

sume that prediction errors are normally distributed [23]—[26&dvance [14], [15], and to facifite Gencos’ risk management

These methods are not applitako the case of ELM, since thethrough strategic biding [17].

extreme learning process is very different from that for con- The rest of this paper is organized as follows. Section Il in-

ventional NNs. Lower upper bound estimation (LUBE) methotroduces the ELM and Pls formulation. Section 1l deseslPls

is proposed for Pl construction based on traditional NN [27&valuation indices including relbility and sharpness. Objective

applied in load forecasting 8 and wind power forecasting function modeling and the detailed procedures of the proposed

[29]. However, traditional NNs employed in the LBBnethod HIA approach are expressed in Section IV. Comprehee nu-

would cause several inevitable limitations, such as overtrainingerical studies are implemewntand analyzed in Section V. Fi-

high computation burden, and so forth. Furthermore, the cavally, the conclusion is drawn in Section VI.

erage width-based criterion (CWC) awaot accurately measure

the overall skill of constructed Pls. Traditional Pls construc- Il. PREDICTION INTERVAL FORMULATION

tion methods for wind power rely on quantile analysis of point ) )

forecast errors with or withoutrior distribuion assumptions - EXreme Learning Machine

[4]1-[11], where the procedures of Pls formulation demdl per- ELM is a recently developed novel algorithm for training

formance assessment are usually separated. E.g. in [9], Pls &agingle hidden-layer feedfoawd neural network [18]. Dif-

be achieved through a cditional probabilistic modeling be- ferent from traditional gradient-based training algorithms in

tween point forecast outputs ansisaciated errors. In contrast,supervised batch learning, ELM randomly chooses the input

the proposed HIA approach intedes the two procedures holis-weights and hidden biases and needs not be tuned in the training

tically to formulae the Pls directly to pursue the best quality oprocess, dramatically savingdrning time. Given datasets with

resultant Pls, without the need of prior knowledge and distribdV arbitrary distinct sampleg(x;, t;)}*_, where the inputs

tion assumption of poit forecasts errors. As investigated in [30k; € R" and the targets; € R™, if the ELM with K hidden

as early as 1®0s, with a properly constructed cost function, Pheurons and actation functiony:(-) can approximate thév

estimation could be considered as a Bayesian decision-mak#@gnples with zero error, it can be expressed by the following

procedure to acquire an optimal Pl that minimizes the expecteduation:

cost. The objective function of HIA is specially formulated to K

address both the coverage probability and sharpness of Pls Si'fK(xj) — Zﬂﬂ/)(ai x;j+b)=t;j=1,....N (1)

multaneously, and is optimizedrttugh PSO featuring fast con- o1

vergence and gradieritee optimization. Furthermore, the pro-

posed method is able to genaranultiple optimal Pls of dif- Wherea; = [ai1, a;2,..., ain]" represents the weight vector

ferent copdence levels in one single optimization process. connecting theith hidden neuron and the input neurons,
Generally, different decision-makers in power systems hatte = [Ji1; fia, - - - . Bim]T denotes the weight vector connecting

different look-ahead time prefences ranging from minutes tothe éth hidden neuron and the output neurohisdenotes the

days for wind power forecasts according to their own operfireshold of theth hidden neuron, ang(a; - x; + b;) is the

tional requirements. Very short-term wind power prediction @utput of theith hidden neuron with respect to the inpuf.

needed to wind farm control [12], [13], the temporal operatioRduation (1) can be simed as

of wind storage systems associated with temporal market HG =T )

regulations such as Australian timal Electricity Market with

5-min resolution [31], and théransmission system operatofyhereH is the hidden layer output matrix of the modeled ELM,

(TSO) which aims to optimally dispatch reserves for the cogypressed as

tinuous balance of the power system [32], [33]. Hourly ahead

forecast is crucial for power sgem and electricity market Plar-x1 +01) - Plax - x1 + bx)
balance, e.g., Nord pool market [34]. Longer term forecastsH = . (3
up to days ahead are very meaningful for unit commitment Plar-xy +b1) - plax Xy +br) | vk

* : NXK

[16], day-ahead market tradjn[17], etc. The proposed HIA

method has been tested using the practical data of two windThe ith column of H denotes the output vector of
farms in Australia. Without loss of generality, in the case studfe :th hidden neuron with respect to the inputs =
we focus on the hourly forecash@n hourly basis though with [z;1, %2, . ... 2:,]7. In addition, 3 is the matrix of output
extendibility. Comparing with benchmarks, the effectiveness wfeights andI is the matrix of targetsgspectively represented
the proposed method has been proved through comprehensise

evaluations with respect to both the reliability and overall skill 4T /T

of the forecasting results. By accurate quiadition of the un- ! !

certainties of wind generatiorfecasts, the proposed interval p=: and T= | : (4)
forecasting approach has a highbtential to support various B% L icwm ] N
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After the weightsa; and the hidden layer biasds are
randomly assigned, the hidden layer output maHixcan be
uniquely determined, and consequently the estimated parame-
tersa}, by andg; can be obtained such that

R 1

|[H(aj,....a;,b],....00)8" =T|
= mgin IH{a;,...,ag,by,....0:)0 —T| (5)

which is equivalent to minimizing the cost function of the tra-
ditional gradient-based back-propagation learning algorithm

2
N K
Fig. 1. ELM model for Pls generation by the proposed HIA approach.
C= > Bla-x;+b:) —t;] . © ’ y e prop PP
j=1 =1

With unchanged input weights and the hidden layer biasesla# pointed out that the proposed method actually provides
ELM, training an SLFN is simply equivalent tnding a unique an unique framework capable of generating multiple pairs
smallest norm least-squares solution of the linear system in (2§, P bounds with different nominal coverage probabilities
expressed as a = [a1, a9, ..., a,]7 simultaneously through a single opti-

mization approach. The overall structure of the proposed ELM
g =H'T (7) model is shown in Fig. 1, where the ELM takes the inputs and

_ _ _ outputs the corresponding Pl bounds of different kaence
where H' is the Moore-Penrose generalized inverse of theyels.

hidden layer output matri¥, which can be derived through
singular value decomposition (SVD) method. . Pls EVALUATION CRITERIA

For any irbnitely differentiable activation function, when the . . ) o )
number of hidden neurons equals to the number of training sam/" this section, comprehen®\PIs evaluation indices are in--
ples, i.e., K = N, ELM can exactly learn with zero error. Thetrodgced from the perspectives of reliability and sharpness in
ELM overcomes many limitationsf traditional gradient based 9€tail-
NNs training algorithms, such as the local minima, overtraining\, Reliability
high computational burdens, efthe traditional gradient based -
NNs leaning algorithms always involve a number of iterations Reliability is regarded as a major property for validating
that affect the training speed. The ELM training features egrobabilistic forecaing models, due to that low reliability
tremely fast speed because of the simple matrix computatié@uld cause systematic bias involved in following deci-

and can always guarantee thgtimal performance [18]. sion-making problems. According to the Plskdéion, the
future targetg; are expected to be covered by the constructed
B. Formulation of Pls Pls with the nominal probability 00(1 — «)%, termed as PI
Pls quantify the uncertainty ssciated with forecasts. Givenominal COﬂPd(?I’(]S)G (PINC). PI coverage probability (PICP),
a set of process pairs represented by, ", is a key measure for the reliability of the
constructed PlIs [9], [10], d®ed by
Dy = {(xit)} ® Y
ple) _ L (o)
wheret; is the future target to forecast, argdenotes relevant B = N, Z i (11)

input variables that can include historical wind power and wind =1

speeds, numerical weather predictions and so on for wind powgiere N, is the size of test dataset, am,ﬁ“) is the indicator of
forecasting in the study. Pl with nominal detlencel00(1 —  p|CPp, expressed as
a)% of the future target; , represented aéf"“)(xi), can be
expressed as the following equation: (o) 1 € ft(a)(x,i) (12)
o . o olo eI
L9 (i) = L4 (), U (x2)] ©) t
- () - (o) The PICP of derived Pls shouldsymptotically approach
where L; (Xj2 and U, (x;) denote the lower and upperthe PINC as closely as possible. Therefore, average coverage
bounds of PI{* (x;), respectively, such that the future targegrror (ACE), represented by{*’, can be used to assess the Pls
t; is expected to be enclosed By (x;) with coverage proba- quality [9], [10], déened by
bilit
/ i Al = p) _ prINcC, (13)
P (t.,; € 1§°’>(xi)) =100(1 — a)%. (10)
The value of ACE should diminish towards zero as closely as
The proposed method aims to directly generate the lowmgossible, i.e., the smaller the absolute ACE is, the higher relia-
and upper bounds of the expected Pls by ELM. It shouldlity the obtained Pls possess.
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B. Sharpness errors. Because of the unique properties of ELM described in
Under the condition of high tiability, sharper Pls have Section lI-A, training the ELM bsed forecasters is equivalent to

higher quality and would be preferred by decision makers. TRgalytically determining the output weights alone. Comprehen-
sharpness is an indispensable aspect of Pls quality and shciiy§ P!S evaluation criteria are Westablished and described in
be considered in the evaluation process [35]. It can be und&gction Ill. To ensure the quality of produced Pls, ELM output
stood that high reliability can be easily achieved by simpiy€ights are optimized to account for both reliability and ghar
increasing or decreasing the diste between the bounds of p11€ss of the generated Pls simuakausly, which can be consid-
which can result in the degradations of sharpness. Obvioudiyed as a multi-objective optization problem (MOOP) [36].
the resultant Pls can be far frosatisfactory and would be A multi-objective function for training the proposed nmeid
useless in practice since they cannot provide accurate guant$ developed based on well-estsbed Pls evaluation criteria
cations of uncertainties involdein the real-world processes. [ntroduced in the previous section to produce optimal Pls. It
The width of PI ft(a)(Xi) debned in (9), represented byshqulq_be highlighted that_though the mte_zrvglrma:ac_co_unts_for
79£<1)(X1_) can be calculated through reliability and sharpness, it cannot quantitatively distinguish the
: e contributions of the two aspectdowever, the interval score can
9 (x;) = U (x;) — L8 (x,). (14) provide an evaluation from the persfige of sharpness given
a prior analysis of reliability. Under the same nominal leon
In the study, we focus on obtaining Pls with two quantilegence and similar reliability, Pls with the smaller the absolute
at particular cordences. Therefore, the interval score can b&oregt(“) have the higher sharpness and the higher quality.
used to assess the overall skill of wind power Pls to involvene interval score is not a dedicated index for reliability assess-
the sharpness aspect [30]. The interval score of the Bp&i  ment anyhow. As the primary requirement of probabilistic fore-
I{*)(x:), represented bg{* (x;), is dePned through casting, the reliability of Pls should be given a prior analysis in
the assessment process. Therefore to Hpady quantify and

COV
S (i) » - () - () emphasize the reliability aspect, ELM output weightsre opti-
=200, (x;) — 4[L;"'(x;) = ti],  if t; < L;"(xi)  mized with respect to the objectiécombining ACEA! and
= —2m9£a)(xi), if £, € It(a)(xi) overall score?t(a) to optimize both reliability and sharpness of
2098 (x;) — A[t; — U (x,)], ift; > U (x;). Plsatparticular capdence level$00(1—a;)%,i = 1,2,....n
(15) : _ _
mginF: [“/i AIEO“) + A S,Saz) ] 17)
A i—1 normn

The score is calculated for each prediction point and then the
overall score valud,”’ can be derived as the average over the st L (x) > L) (x) and U (x) < U (%),
entire test dataset i - B ’

if o < oy (18)

N

. 1 = (a 7 () Frci)

57 = ST ). (16) L) < U () (19)
i=1

where|-| is the absolute value functioAé‘“"’ is ACE of Pls with

Obviously, the score awards the narrow Pl and penalizes iblf)rresponding PINQOO(1 — a;)%, |§t<°‘”f>|nm,m denotes the

the target is not enclosed. Including all aspects of Pls evalygsymalized absolute interval ch@(m)| which is normalized

tion, the interval score can be used to compare the overall slguer the corresponding maximum chéai) and min-
max

of interval forecasts. Howevemhe score cannot quantitatively, alai))

distinguish the contributions g&liability and sharpness to theImum SCOrelS; ™ lmin, debned by

overall skill. Though, based on aipr analysis of reliability, a S't("”) — St(“'i)

skill score can still be employed to carry out an assessment from S‘t@i) = — __min (20)
the sharpness perspective. Given Pls with the same PINC and rerm ‘St(m) T ‘Sf(”) .

similar reliability, the smaller the absolute sccﬁfé’) indicates _ _ o
the higher sharpness and consequently the higher quality. 21d7: and A; are importance weights of the reliability and
With the described Pls assessment criteria above, we can @¥grall skill (including sharpres), respectively. With the nor-
that both the reliability and sharpness should be taken into cdR@lizéd objectives, the importance weightsand \; are set
sideration to comprehensively assess the quality of construcfsyUnit values in the study. The compatibility of the resultant
Pls. Meanwhile, it should be noteldat reliability is the primary 1S With different cokdence levels can be assured through
feature recting the correctness of the constructed PIs. Gengp__ea%onstr.alnts given in (18) and (19). The minimum value
ally, in the evaluation procesthe reliability of Pls should be 5:  lmin iS et to 0, which means the perfect condition with

prioritized. exact forecasting resglt The maximum valu¢5*t(“"’)|max is
set to2«a, which indicates the most conservative Pls with the
IV. OPTIMAL CONSTRUCTION OFPIs maximum width.
A. Obijective Function B. Particle Swarm Optimization

The proposed HIA method adopts an ELM to predict the Pls Particle swarm optimization is a heuristic and population
and pursues the optimal qualiof produced Pls without sta- based optimization method and has proved to be bnieit,
tistical inferences and distnihion assumptions for forecastingrobust and gradient-free optigation algorithm [19]. PSO also
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distinguishes itself from other hestic optimization methods Step 3) Initialize a population array of particl€op with

by its fast convergence speed. It can be seen that the objective random positions around the output weights; of
function in (17) is non-differentiable with respect to the ELM the ELM obtained in the Step 2) and velocitiésn
output weights. Therefore PSO is applied for objective function the S-dimensional search space.

minimization to obtain the optimized ELM. Step 4) Set the iteration counter= 0.

Given that the search space of PS@idimensional and the Step 5) WHILE maximum number of iterations or buf
size of the parti@s population isVg, the ith particle of the ciently goodbtness has not been reached, do
swarm can be represented by thiedimensional vector; = a) For each particle ifPop, evaluate the objec-
[Ti1, 9, . .., 2i5]T and the best particle in the swarm, i.e., the tive function accordingd the Pls generated by
particle generating the smallest objective function value, is ex- ELM with the output weights over the original
pressed byPy". The previous best position, i.e., the position training dataD;,.
with the smallest objective function value of titl particle, is b) Compare the particle’s evaluation through
stored in a vector and expressedi{s= [P}, P%. ..., Pk]T, value of objective function (17) satisfying the
and the position velocity of théh particle is represented as constraints (18) and (19) with its previous best
v; = [vi1, %2, ..., vis]T . In each iteration of PSOhe velocity positionPf. If current value is better than tha
of each particle is computed, atite particles are manipulated of P!, then sef? equal to the current location.
accordingly c) ldentify the particle in the swarm better than

the best experience and update the smilles
v; =wv; + a1 Ry (PP — z;) + csz(Pg’) —-z;)  (21) value of objective function (17) and the best
2 =i + du; (22) position P}
d) Change the velocities and move thesitions
wherei = 1,2,..., Np;w is the inertia weight is a constric- of particles according to (21) and (22).
tion factor controlling and keeping the velocity within the range e) Keep the particles in the given search space in
[—Usmaxs +Umax); €1 @nde, are two positive constant®; and case that they exceed their ithboundaries,
R, are random numbers withiid, 1]. The velocity of theith and when the decision variable is out of its
particle is a function with respect to three components: the par- lower or upper boundary, takes the value of its
ticle’s previous velocity, the distance between the previous best corresponding boundgr
position of the particle and its exent position, and the distance f) Increment the iteration countér= L + 1.

between the swarm’s best success and the particle’s current fBtep 6) END WHILE
cation. The performance of each particle is evaluated throughtePp 7) Based on the test daéaaluate the Pls generated by

the objective function modeled. the ELM with optimized parameters
According to the detailed poedures of the proposed algo-
C. Hybrid Intelligent Algorithm for PI Optimization rithm introduced bove, the proposed HIA approach can con-

struct an optimized ELM to direlst generate the bounds of Pls

The proposed HIA method aims to achieve the Pls of the begty, itterent corpdences of the best quality, avoiding the ef-
q“?‘"tY through_ directly optlmlzmg the ELM W_'th respect to th%rts neededdr statistical inference and distribution assumption
objective function (17) using PSO. The core idea underneatiys, int forecasting errors foraditional approaches. The ap-
simply to Q|rectly approximate the'PI_s through aregression prBl'lcation of ELM provides an extremely fast initialization pro-
cedure using the PSO based optimization, where the objectiygy .o aqd signbcantly reduces the complexity of optimizing
function strictly measures the quality of resultant Pls includin@ecisiOn variables. The proposed algorithm demonstrates high
both reliability and s_harpness. The major steps of the develoq?&ib”ity due to the high mapping capability of ELM. The pro-
algorithm are described as follows: _  posal HIA approach is indeed performance-oriented, and the

Step 1) W'th the historical data _Of wind generathnqua”ty of constructed Pls can be ensured through optimization
wind speed and numerical weather prediCyy the formulated objective function.

tion information and so forth, formulate the
datasetD; = {(x;,t;)}Y,, based on which
two training dataset®; = {(x;,# )}, and V. CASE STUDIES
D; = {(xi,t;)}X,, respectively, for the upper
and lower bounds of the PI should be prepared fg{_
ELM initialization. The targets of bounds including
£ andf; can be generated by slightly increasing or The highly chaotic climate systems are responsible for
decreasing original; by, e.g.,=p%, 0 < p < 100, the high level of uncertaintie wind power generation. To
respectively. This manipulation is based on theomprehensively validate theffectiveness of the proposed
knowledge that the actual wind power should bapproach, it is tested by two wind farms the Challicum Hills
enclosed by the potential Pls. wind farm and the St@sh Hill wind farm in Australia. The

Step 2) Given the randomly determined the input weightgeather conditions and wind speeds vary digantly in the
a; and biase$;, establish an ELM to initialize the two regions where the wind fasrocate. Therefore forecasting
output weights3;,: which is.S-dimensional, using models and case studies are aepely constrated and con-
the modbped training datasets obtained in Step 1). ducted for the two wind farms, respectively.

Introduction of Experiment Data
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The Challicum Hills wind farm locates near Ararat in westeroperation always requires acaite information with high com
Victoria, Australia, with coordinate latitude37.38°S and lon- dence levels, e.g., state estimation always pursues higher con
gitude143.09° E. The wind farm has a combined generating cadence level like in [38] to ensure operation security. Therefore
pacity P.52.5 MW consisting of 35 wind turbines of 1.5 MW. it is much more practically meaningful to produce high con-
Wind power generation data with one-hour resolution of thisdence level Pls to satisfy the requirements of power system
wind farm used in the study covers the period from Septembaperation. In our case studylsRwith different PINCs involuig
2008 to August 2010. 90%, 95%, and 99% are constradto evaluate the performance

The second wind farm Stash Hill is near Cape Jervis onof the proposed approach, i.e.= [0.1,0.05,0.01]7 andn = 3
the Fleurieu Peninsula, SduAustralia, with coordinatlatitude in the optimization objective function teed by (17).The pa-
—35.57°S and longitudel 38.16" E. It consists of 23 wind tur- rameterp in Step 1) of the HIA algorithm is set to 30 in the
bines of 1.5 WM each, with a total installed capacity of 34.Base studies. The proposed nuttand applied benchmarks are
MW. Wind power generation data with one-hour regmn of tested for the two wind farms for detailed anasyand com-
Stabsh Hill wind farm used in the study covers the period frorparisons. For the Challicum Hills wind farm, the wind power
January 2009 to May 2010. generation data from March 2010 to August 2010 are used for

To ensure both forecasting performancgl @omputation ef- testing the foecasting methods. Fthe Stalbsh Hill wind farm,
bciency, in the case study the wind power series is used as the wind power generation data from January 2010 to May 2010
inputs alone to the proposed HIA approach to conduct houlye used for testing the forecasting methods. The rest data of the
ahead forecasting, of which the tdts can be sigiRcant to gen- two wind farms are used for tmasing the applied methods sepa-
eration and ancillary service diggch and so on in practice, e.g.rately.
in the Nord Pool market in Scandinavia, the hourly market plays The detailed testing results from the two wind farms, in-

a key role in maintaining stem balance [34]. cluding the Pls evaluaih indices PICP, ACE and overall score,
] ) are given in Tables | and Il , respectively. It can be observed
B. Experimental Results and Analysis that the proposed method caropide fairly satisfactory per-

To evaluate the fecast performance of the proposedormances for bothwind farms from Tables | and II. At all
approachpve other Pl forecasting methods including the cliconbdence levels in the case studies, the PICPs of the proposed
matology method, the constamtrécast method, the persistencenethod are close to the corresponding nominalbcemces.
method, tle exponential smoothing method (ESM), and th&he absoluteACEs obtained from the proposed method at dif-
quantile regression (QR) apyach are employed to computeferent nominal cobpdence levels for the two farms are smaller
Pls using the same training and testing data for benchmarkirthan 1%, indicating a sightantly high reliability of the gen-

The climatology is the most commonly used benchmark fagratedPls. E.g., at the cdmlence level withPINC = 90%,
probabilistic foecasts of meteorological or weather-related prahe proposed method produces PICPs of 90.80% and 90.91%
cesses. It is the unconditional predictive distribution computédr the Challicum Hills wind farm and the Stesh Hill wind
from all historical observations ailable. The constant forecastfarm respectively, which outperform all other methods. As
takes the form of normal distriltion, and the mean and variancean advanced approach, quaatilegression method provides
are derived from the observed wipower data. Since the clima-comparable reliability as the proposed approach, better than
tology and constant approaches &irly easy to outperform for the other four benchmarks. Nevertheless, the proposed method
short look-ahead time forecastingther three methods also arehas the smallest absolute intal scores for all studied cases
applied for comparisons. For paiforecasting, the persistencein the two wind farms, which indicates the best overall skill
forecast method is a widely used benchmark and is knowndad the highest sharpness of the Pls generated by the proposed
be difbcult to outperform for short look-ahead time. The persispproach compared to other methods. E.g., at the nominal
tence based probabilistic forecast model is used as benchmawkibdence level 90%, the proposed method produces Pls with
herein, of which the forecast error is assumed to be rand@hsolute interval score 6.43% for the $tsin Hill wind farm,
and normally distributed. Its mean is given by the last avaiwhich outperforms the appliebve benchmarks. Accounting
able power measurement, and the variance is computed udimgboth reliability and overall skill, the proposed HIA approach
the latest observations. In addition, a nice benchmark the grxoduces the best Pls in terms of comprehensive performance
ponential smoothing method is employed for comparisons against the othdpve benchmarks.
well, which applies a normal predictive density with its con- The climatology and constanpproaches are unconditional
ditional mean based on exponential smoothing of past mdarecasts and do not take intaccount the nonstationarity
sured values and its conditional variance determined from eand heteroscedasticity of wind power series. Though Pls de-
ponential smoothing of previous squared residuals [33]. Itis obived by the climatology and constant forecasts demonstrate
vious that both the persistence and ESM approaches are bdsadreliability at the tested high cdémence levels, they are
on the normal assumption of fecasting uncertainty. To bettergenerally too wide with low sharpness and therefore not mean-
demonstrate the effectivenedstioe proposed approach, quaningful for practical applicatns. ESM and persistence based
tile regression approach is employed as an advanced benakterval forecasting approaches arebdifilt to outperform for
mark, which does not need the assumption of probability dishort-term forecasts. Accordjrto the experiment results, the
tribution for forecasting errors [7], [37]. ESM and persistence forecasts cannot generate Pls tdobest

The proposed model mainly aims to optimally compute relthe expected cdmlences especially for the PINCs larger than
able Pls with expected cbtdences. In practice, power systen®5%. According to the experiment results, quantile regression
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TABLE |
RESULTS OFDIFFERENTMETHODS IN CHALLICUM HiLLS WIND FARM

Fig. 2. Pls with PINC 90% in March 2010 of the Challicum Hills wind farm
obtained the proposed HIA approach.

TABLE I
RESULTS OFDIFFERENT METHODS IN STARFISH HILL WIND FARM

Fig. 3. Pls with PINC 90% in June 2010 of the Challicum Hills wind farm
obtained by the proposed HIA approach.

approach can derive relativetpmparable Pls to the proposed
approach, especially from the &b of reliability. Generally,
it performs better than the other four benchmarks from the
perspectives of both reliability and sharpness. This should not
be unreasonable since the quantile regression approach does
not require any distribution assytion of forecasting errors,
as a conditional forecasting approach. ) ) ) -

Pls with PINC 90% obtained by the proposed method algé%éﬂ'edpgm;hpfg;gsggtﬁlﬂ gs&rgg_zom of the St Hill wind farm
the corresponding actual wind power are displayed in Figs. 2-5
where the actual measured wiridrm outputs are perfectly
covered by the constructed Pls in the tested two wind farnmdensities shown in Figs. 2-5 have been censored to concentrate
Figs. 2-5 visually demonstrated highly satisfactory perfor- probability of abnormal conditions mass on the bounds.
mance of the proposed approach in different months for theThe experimental results demonstrate that the proposed
two wind farms. It also can be easily found that the wind powenethod is highly satisfactory for short-term probabilistic wind
series have different nonstatiary characteristics at differentpower forecasting in comparisons with ottfere benchmarks
time and different regions. In consideration of that some gemcluding both time series and statistical models. Though wind
erated Pls may have abnormal values beyond the possiptaver series is taken as the input alone to produce hourly ahead
generation range of the wind farms, the resultant predictiVds in the case study, the proposed HIA approach in this paper
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simultaneously through one simgperformance-oriented opti-
mization process to ensure both reliability and sharpness. The
effectiveness of the proposedethod for short term forecast
has been successfully veed through tests and comparisons
with several well-established benchmarks using practical wind
farm data. The proposed HIA approach provides a general
framework of probabilistic wid power forecasting, with high
Rexibility. With large scale of wind power integration in
modern power systems, the proposed HIA approach itelica
high potential in practical apjgiations in power systems oper-
ations, e.g., reserve determination by TSO to meet the load and
safely and economically operate the systems.

Fig. 5. Plswith PINC 90% in May 2010 of the Sksh Hill wind farm obtained

by the proposed HIA approach. [1]
[2]
gives a generalized forecasting framework having the advan-
tages offRexible extendibility in terms of inputs, outputs and
look-ahead time window, becauséthe high mapping ability [3]
of ELM. It is well known that wind power generatiductuates
due to the volatility of the wind speed, wind direction, etc. For 4]
wind power prediction with longer than a few hours look-ahead
time, it is necessary to involveumerical weather prediction (5]
data as the forecasting model inputs. Certainly, this can be
easily included to the proposed model. [6]
In most existing interval farcasting methods, it is necessary
to conduct quantile analysis pbint forecast eors involving 7]
statistical inferences, with or without prior assumption of the
forecast error distribution. Fonstance, in the case study the 8]
ESM and persistence rely on the normal assumption of wind
power forecasting errors. Comirag with quantile regression [

without the need of distribution assumption, the proposed ap-
proach show®exible and higher regression ability due to the [10]
universal mapping capability of ELM. The HIA approach fo-
cuses on Pls quality and offers a novel framework that does not[ll]
require any information of poirforecast results or the associ-

ated errors at all. Moreover, sia the proposed method provides
a performance oriented optigation model, the quality of Pls
can be ensured through the optimization directly. Dutaéoop-
timization and3exibility, it has high pogntial practical applica-
tions to power systems operation, including reserve determina-
tion, wind power trading, wind farm control, unit canitment [13]
and so on.

[12]

V. 4]
wind power forecasting is critical to modern power system
operation with increased wind penetration. However, wind
power forecasting errors are nadlly inevitable due to the
chaotic nature of weather systems. Traditional probabilistic
wind power forecasting approae$ are usually based on prior
knowledge or assumption of forecasting errors. In this paper,
a novel HIA approach combining extreme learning machine
and particle swarm optimizatiois developed and successfully
applied for interval forecasting avind power without the prior
knowledge of forecasting erraré\ novel objective function
accounting for Pls coverage pratility and overall skill is
constructed to obtain optimal Pls at multiple tolence levels

CONCLUSION

(18]

(16]

[17]

(18]
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