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Abstract

In this paper, we consider an electricity market that consists of a day-ahead

and a balancing settlement, and includes a number of stochastic produc-

ers. We first introduce two reference procedures for scheduling and pricing

energy in the day-ahead market: on the one hand, a conventional network-

constrained auction purely based on the least-cost merit order, where stochas-

tic generation enters with its expected production and a low marginal cost; on

the other, a counterfactual auction that also accounts for the projected bal-

ancing costs using stochastic programming. Although the stochastic clearing

procedure attains higher market efficiency in expectation than the conven-

tional day-ahead auction, it suffers from fundamental drawbacks with a view

to its practical implementation. In particular, it requires flexible producers

(those that make up for the lack or surplus of stochastic generation) to accept

losses in some scenarios. Using a bilevel programming framework, we then

show that the conventional auction, if combined with a suitable day-ahead

dispatch of stochastic producers (generally different from their expected pro-

duction), can substantially increase market efficiency and emulate the ad-
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vantageous features of the stochastic optimization ideal, while avoiding its

major pitfalls.

A two-node power system serves as both an illustrative example and a

proof of concept. Finally, a more realistic case study highlights the main

advantages of a smart day-ahead dispatch of stochastic producers.

Keywords: OR in energy, electricity market, stochastic programming,

electricity pricing, wind power, bilevel programming

1. Introduction

The penetration of stochastic production in electric energy systems is

notably increasing worldwide, primarily owing to a booming wind power

industry. There is a broad consensus in the research community that today’s

electricity market designs are to be revisited so that stochastic producers can

enter the competition in a fair and efficient manner.

In its most basic form, an electricity market consists of a forward (typ-

ically day-ahead) market and a balancing market. On the one hand, the

day-ahead market is required to accommodate the generation from the in-

flexible power plants, i.e. from those generating units that need advance

planning in order to efficiently and reliably set their production levels. On

the other, the balancing market clears the energy deployed to maintain the

constant balance of supply and demand over periods of time with finer reso-

lution, commonly spanning from minutes to one hour. Being cleared shortly

before real time, balancing markets allow the trade of energy between flexible

firms, which can adjust their output quickly, and stochastic producers, whose

generation is predictable only with limited accuracy at the day-ahead stage.

Conventionally the day-ahead and the balancing markets are settled inde-

pendently. Furthermore, with respect to the participation of stochastic pro-

ducers, the day-ahead market is typically cleared considering their expected

production at a very low marginal cost (e.g., zero). The eventual energy

adjustments needed to cope with the associated forecast errors are left then

2
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to the flexible units participating in the balancing market. Consequently, if

this market is not provided with enough flexible capacity, balancing costs

may escalate dramatically. It is expected that this problem becomes exacer-

bated as the penetration of stochastic production increases (Holttinen, 2005;

Doherty & O’Malley, 2005; Helman et al., 2010).

To face this challenge, two main solution strategies have been considered,

namely:

1. To establish reserve markets, where flexible capacity is procured suffi-

ciently in advance of energy delivery and then made available to the

balancing market, where it is dispatched if needed. The reserve demand

in these markets is exogenously specified by the Transmission System

Operator, which opens up a number of different ad-hoc criteria, see e.g.

Ela et al. (2011).

2. To clear the forward market using stochastic programming (Birge &

Louveaux, 2011), which allows modeling future balancing needs and

costs in a probabilistic framework, thus yielding the day-ahead energy

dispatch that minimizes the expected system operating costs. One of

the major advantages of this approach is that it endogenously solves

for the optimal amount of reserve capacity to be left to the balanc-

ing market, weighing the expected costs and benefits of such capacity

(Galiana et al., 2005; Bouffard & Galiana, 2008; Morales et al., 2009;

Papavasiliou et al., 2011).

Ideally, the stochastic solution method attains maximum market effi-

ciency (as it minimizes the expected system operating cost) and therefore,

it is used here as a reference in this respect. For its practical application

within a market environment, though, it must be first complemented with a

set of prices and payments that make market participants satisfied with the

resulting day-ahead dispatch. In this vein, Galiana et al. (2005) and Wong

& Fuller (2007) define prices for both energy and reserve capacity. However,

determining who should pay for such reserve and to which extent is still a

3
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major source of conflict and debate (Hogan, 2005).

In this paper, we follow the approach of Pritchard et al. (2010) and

Morales et al. (2012), where the stochastic dispatch is supported by energy

prices only. However, this approach is not without its problems either. In-

deed, Morales et al. (2012) illustrate that the energy-only market settlement

associated with the stochastic dispatch requires flexible producers to accept

losses for some realizations of the stochastic production, which also raises

concerns on its practical applicability.

Starting from this point, the objective of this paper is to show that, if

cleared with an appropriate value of stochastic production, generally differ-

ent from the expected value, the conventional settlement of the day-ahead

market can notably approach the behavior of the ideal stochastic dispatch,

while sidestepping its theoretical drawbacks. For this purpose, we construct

a bilevel programming formulation that determines the optimal value of

stochastic production that should be used to clear the day-ahead market

under the conventional settlement.

The rest of this paper is organized as follows. Section 2 presents the

conventional and stochastic dispatch models that we use as references in

our work, and provides the mathematical insight to calculate the optimal

day-ahead schedule of stochastic production under the conventional market

settlement. Section 3 discusses results from a small example and a case

study. More specifically, the example serves to illustrate the different dispatch

models, which are subsequently compared and tested using a more realistic

setup in the case study. Lastly, Section 4 concludes the paper.

2. Dispatch Models

Consider the sequence of a day-ahead and a balancing market. The day-

ahead market is cleared on day d−1 (e.g., by 10 am) and covers energy trans-

actions for delivery on day d, typically on an hourly basis. The balancing

market settles the energy imbalances with respect to the day-ahead produc-

4
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tion and consumption schedule. These imbalances are computed throughout

day d, usually over time intervals ranging from minutes to 1 hour.

Let us begin by outlining a standard model for the dispatch of energy.

This will serve to present the notation and provide a starting point for the

developments of the rest of the paper. The setting will be an electric power

system comprising a collection N of nodes.

2.1. Conventional Dispatch (ConvD)

Let pG and pW denote the vectors of decisions on the day-ahead dispatch

of conventional and stochastic producers, respectively. For simplicity and

without loss of generality, the demand at each node n of the system, ln, is

considered to be known with certainty. We also assume that power flows in

the transmission network are determined by the vector δ0 of nodal voltage

angles.

The conventional economic dispatch model (ConvDM) identifies the opti-

mal schedule (p∗G, p
∗
W ) that minimizes day-ahead generating costs, CD(pG, pW ),

as follows:

Minimize
pG,pW ,δ0

CD (pG, pW ) (1a)

s.t. hD
(
pG, pW , δ0

)
− l = 0 : λD , (1b)

gD
(
pG, δ

0
)
≤ 0 , (1c)

pW ≤ Ŵ , (1d)

where Ŵ is the forecast vector of stochastic production. The equality con-

straints (1b) enforce the day-ahead balancing conditions, stating that the

dispatch plus net power flow equals the demand at each node. The inequal-

ities (1c) include upper and lower bounds to the dispatch of conventional

producers and scheduled power flows, as well as declarations of non-negative

variables. Constraints (1d) limit the day-ahead schedule of stochastic pro-

ducers to their expected generation.

5
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The dispatch model (1) can be understood as a network-constrained auc-

tion that follows a least-cost merit-order principle, i.e., the cheapest gener-

ators are dispatched first. Consequently, because stochastic producers enter

the market with very low or zero marginal cost, their dispatch up to the

forecast mean Ŵ is prioritized.

Notice that the vector of dual variables associated with constraint (1b),

which is indicated in (1) by λD, constitutes the vector of day-ahead locational

marginal prices.

Once the optimal day-ahead schedule (p∗G, p
∗
W ) has been obtained from (1),

the balancing market must deal with the energy imbalance caused by the

stochastic production. Consider a specific realization vector of this produc-

tion, denoted by Wω′ . The energy imbalance is then given by Wω′ − p∗W ,

which represents a surplus of generation, if positive, or a shortage, if nega-

tive. To accommodate an excess of production, several actions may be taken,

namely:

• To decrease the power production of flexible generating units. In mar-

ket terms, this is equivalent to say that flexible producers repurchase a

certain amount r−ω′ of energy in the balancing market.

• To spill a part W spill
ω′ of the stochastic production.

Similarly, to balance a deficit of generation, the following actions may be

taken:

• To increase the power output of flexible units, which is equivalent to

say that flexible producers sell an additional amount r+ω′ of energy in

the balancing market.

• To shed a portion lshedω′ of the demand. This action is, in general, very

costly, as the so-called value of lost load is normally very high.

It should be noticed that the previous decision vectors r−ω′, r
+
ω′, W

spill
ω′ , and lshedω′

have been intentionally augmented with the subscript ω′ to underline their

6
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implicit dependence on the specific realization Wω′ of stochastic production.

For ease of presentation, we group all these decision variables into one single

vector yω′ (the notation introduced here will become relevant later on in the

illustrative example of Section 3). Thus, the vector y∗ω′ that minimizes the

cost of balancing the energy deviation Wω′ − p∗W is solution to the following

optimization problem:

Minimize
y
ω′ ,δω′

CB (yω′) (2a)

s.t. hB
(
yω′, δω′ , δ0∗

)
+Wω′ − p∗W = 0 : λB

ω′ , (2b)

gB (yω′, δω′ , p∗G;Wω′) ≤ 0 , (2c)

where δω′ is the vector of nodal voltage angles at the balancing stage. The

equality constraints (2b) ensure that generating units and loads are redis-

patched so that the system remains in balance. The vector λB
ω′ of dual vari-

ables associated with these constraints define the locational marginal prices

at the balancing market. Similarly to (1c), the inequalities (2c) comprise up-

per and lower bounds on the re-dispatch of generating units, load shedding,

wind spillage, actual power flows, and declarations of nonnegative variables.

If we now denote the optimal vector of balancing actions by y∗ω′, the overall

cost of operating the power system under the realization Wω′ of stochastic

production is given by CD (p∗G, p
∗
W ) + CB (y∗ω′).

It is important to stress that both constraints (2b) and (2c), and hence

also the balancing costs CB (yω′), are dependent on the optimal day-ahead

schedule (p∗G, p
∗
W , δ0∗). Since the conventional dispatch model (1) is blind

to such dependency, the market becomes more and more inefficient as the

penetration of stochastic production increases. In this vein, the stochastic

dispatch model presented next intends to capture precisely the interaction

between day-ahead and balancing decisions.

7
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2.2. Stochastic Dispatch (StochD)

Consider that the electricity production from stochastic producers can

be efficiently modeled by a finite set Ω of scenarios, each characterized by a

vector of power values Wω and a probability of occurrence πω. It must hold

that πω ≥ 0, for all ω ∈ Ω, and
∑

ω∈Ω πω = 1. The scenario set Ω is assumed

to be available to the Transmission System Operator.

The stochastic dispatch model writes as follows:

Minimize
pG,pW ,δ0;yω,δω ,∀ω

CD (pG, pW ) + Eω

[
CB (yω)

]
(3a)

s.t. hD
(
pG, pW , δ0

)
− l = 0 : λD , (3b)

gD
(
pG, δ

0
)
≤ 0 , (3c)

pW ≤ W , (3d)

hB
(
yω, δω, δ

0
)
+Wω − pW = 0 , ∀ω ∈ Ω , (3e)

gB (yω, δω, pG;Wω) ≤ 0 , ∀ω ∈ Ω , (3f)

where W is the vector of capacities of stochastic producers and Eω[·] is the

expectation operator over the scenario set Ω. Notice that, based on this set,

the dispatch problem (3) explicitly models and thus anticipates the balancing

operation of the power system by means of constraints (3e) and (3f) and

the expectation of the balancing costs in the objective function (3a). This

way, the stochastic programming problem (3) yields the day-ahead dispatch

(p∗G, p
∗
W ) that maximizes market efficiency, provided that the scenario set

Ω is properly constructed. As we shall see later, according to (3), flexible

producers may be dispatched out of merit order in the day-ahead market to

provide the power system with sufficient flexible capability to cope with the

energy imbalances caused by stochastic producers in real time.

2.3. Improved Dispatch of Stochastic Producers (ImpD)

In an attempt to increase the performance of the conventional dispatch

model (1), we address now the following question: Which value pmax
W should

8
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the forecast vector Ŵ in (1d) be replaced with to maximize market efficiency?

The answer to this question is naturally given by the following bilevel pro-

gramming problem:

Minimize
pG,pW ,δ0,pmax

W
;yω,δω ,∀ω

CD (pG, pW ) + Eω

[
CB (yω)

]
(4a)

s.t. hB
(
yω, δω, δ

0
)
+Wω − pW = 0 , ∀ω ∈ Ω , (4b)

gB (yω, δω, pG;Wω) ≤ 0 , ∀ω ∈ Ω , (4c)

0 ≤ pmax
W ≤ W , (4d)

(
pG, pW , δ0

)
∈ arg

{
Minimize
xG,xW ,θ

CD (xG, xW ) (4e)

s.t. hD (xG, xW , θ)− l = 0 : λD , (4f)

gD (xG, θ) ≤ 0 , (4g)

xW ≤ pmax
W

}
. (4h)

The lower-level problem (4e)–(4h) is equivalent to the conventional dis-

patch (1), except for the upper bound of the day-ahead schedule of stochas-

tic producers in (4h), which is, in this case, endogenously computed by the

upper-level problem (4a)–(4d) to minimize the sum of day-ahead dispatch

costs and the expected balancing costs. Consequently, the bilevel model (4)

manages to dispatch stochastic producers not only based on their marginal

costs (which are often very low or zero), but also on the cost of their uncer-

tainty (which is estimated by (4a)–(4d)).

If the conventional dispatch model (1) is linear—note that this includes

the family of dispatch models that consider piecewise linear supply costs

functions, a DC power-flow network model, a piecewise linear approximation

of the transmission losses, ramping constraints, etc. (see e.g. Motto et al.

(2002))—the lower-level problem (4e)–(4h) can be replaced by its KKT con-

ditions. In turn, the associated complementarity conditions can be recast

using the equivalent mixed-integer formulation proposed by Fortuny-Amat

9
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& McCarl (1981). The steps required to transform a bilevel programming

problem of the type of (4), with a linear lower level, into a manageable

single-level optimization problem are well known in the technical literature

(see e.g. Fernández-Blanco et al. (2012)) and are omitted here for concise-

ness. However, this transformation is illustrated later, in Section 3, using a

small example.

For ease of comparison, the short form “ImpD” is used to refer to the

conventional dispatch model (1) where Ŵ in (1d) is replaced with the optimal

value of pmax
W that results from (4).

2.4. Energy-only Market Settlement

We now introduce a standard settlement scheme whereby market partic-

ipants are paid for energy only.

Consider a certain market participant k and define ED
k as the amount of

energy sold (if positive) or purchased (if negative) in the day-ahead market,

and EB
kω′ as the amount of energy sold (if positive) or purchased (if negative)

in the balancing market in scenario ω′. These quantities are directly derived

from the power schedule that is solution to the dispatch model under consid-

eration. The payment to (if positive) or from (if negative) market participant

k under scenario ω′ is then given by

λD
s(k)E

D
k + λB

s(k)ω′EB
kω′ , (5)

where s(k) indicates the node where market participant k is located. The lo-

cational day-ahead market price λD
s(k) is obtained from either ConvD, StochD,

or ImpD, while the locational balancing market price λB
s(k)ω′ is computed

from (2) after the day-ahead market is cleared and the actual realization ω′

of the stochastic production becomes known.

Morales et al. (2012) shows that, if generating units are fully dispatchable

from zero to their maximum capacities (the problem of pricing in markets

with non-convexities is not treated here; see e.g. Bjørndal & Jörnsten (2008)

10
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for further information on this topic), the energy-only settlement scheme (5)

under the stochastic dispatch model (3) guarantees cost recovery for flexible

producers only in expectation. This expectation is, besides, contingent on

the probabilistic characterization of the stochastic production at a market-

wide level, which is in possession of the TSO and out of the control of the

individual producers. Furthermore, we show in the illustrative example of

Section 3 that StochD may actually dispatch flexible units in the day-ahead

market in a loss-making position.

On the contrary, the conventional dispatch model, either in the traditional

form of ConvD or in the variant ImpD proposed in this paper, ensures cost

recovery for flexible producers for any possible realization of the stochastic

production.

3. Results and Discussion

In this section, we first make use of a small two-node system to intu-

itively illustrate the main features of the previously discussed dispatch mod-

els. Then, we provide meaningful results from a more realistic case study.

3.1. Illustrative Example

The different dispatch models are illustrated next using the two-node

system depicted in Fig. 1. This small system consists of one line, two loads

(L1 and L2), three conventional generators (G1, G2, and G3), and one wind

power plant (WP). The capacity and reactance of the line are 100 MW and

0.13 pu, respectively. Loads L1 and L2 are assumed to be inelastic and equal

to 80 and 90 MW, respectively. The demand that is involuntarily shed is

valued at $200/MWh. The stochastic power output of the wind farm is

modeled by two plausible scenarios, which are referred to as high (50 MW)

and low (10 MW), with probabilities of occurrence equal to 0.6 and 0.4.

Data for the conventional units are collated in Table 1, where P is the

unit capacity; C is the price offer for energy sale in the day-ahead market;

11
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Figure 1: Two-bus power system.

Table 1: Unit data— Two-bus system

Unit G1 G2 G3

P (MW) 100 110 50

C ($/MWh) 35 30 10

C+ ($/MWh) 40 – –

C− ($/MWh) 34 – –

R+ (MW) 20 0 0

R− (MW) 40 0 0

C+ and C− are, respectively, the price offers for energy sale and purchase in

the balancing market; and R+ and R− are, in that order, the upper bounds

of the energy sale and purchase offers in the balancing market. Note that,

in comparative terms, unit G1 is expensive, but flexible; unit G2 is a little

bit cheaper, but inflexible; and unit G3 is very cheap, but inflexible. There-

fore, G1 is the only unit in the system that can be re-dispatched to provide

balancing energy. Besides, observe that, for this unit, C+ > C and C− < C,

meaning that producer G1 is willing to be flexible in return for a price pre-

mium on the energy traded during the balancing operation (Pritchard et al.,

2010).

The marginal cost of the energy produced by the wind farm is considered

12
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to be zero. The expected wind power production is 50 × 0.6 + 10 × 0.4 =

34 MW.

3.1.1. Dispatch Models

Firstly, we consider the conventional dispatch model (1), which writes for

this particular example as follows:

Min. 35pG1
+ 30pG2

+ 10pG3
(6a)

s.t. pG1
+ pG2

+ pW − 80 = −
δ02
0.13

, (6b)

pG3
− 90 =

δ02
0.13

, (6c)

pG1
≤ 100 , pG2

≤ 110 , pG3
≤ 50 , (6d)

− 100 ≤
δ02
0.13

≤ 100 , (6e)

pW ≤ 34 , (6f)

pG1
, pG2

, pG3
, pW ≥ 0 , (6g)

where bus 1 is considered as the reference node, i.e. δ01 = 0. Optimization

problem (6) aims at minimizing the day-ahead production costs (6a). The

dispatch problem is built upon a DC modeling of the transmission network,

which leads to the set of nodal power balance equations (6b) and (6c), and

includes generation and transmission capacity limits, (6d) and (6e), respec-

tively. As it is customary, constraint (6f) limits the dispatch of the wind

power plant to its expected production. Constraints (6g) enforce the non-

negative character of production quantities.

Observe that, according to the dispatch model (6), the day-ahead market

is settled irrespective of the potential impact that the resulting day-ahead

program {p∗G1
, p∗G2

, p∗G3
, p∗W}may have on the subsequent balancing operation.

The day-ahead market is thus cleared purely based on a least-cost merit-order

principle. This way, the wind farm is first dispatched to 34 MW (its expected

production), followed by generating units G3 and G2, in that order, which

13
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are dispatched to 50 and 86 MW, respectively, to cover the total system

load of 170 MW. Unit G1 (the flexible producer) is consequently left out of

the day-ahead schedule. Afterwards, during the balancing operation of the

power system, energy adjustments to the day-ahead schedule are required to

cope with the uncertain wind power production. Specifically, if the power

output of the wind farm turns out to be high (50 MW), the wind power

producer seeks to sell the leftover 50−34 = 16 MW in this market. However,

the only flexible unit in the system, unit G1, cannot purchase the extra

wind, as it cannot decrease its production below zero. As a result, these

16 MW of free wind power have to be spilled. On the other hand, if the

eventual wind generation is low (10 MW), there is a wind generation deficit

of 34− 10 = 24 MW. This deficit has to be covered in the balancing market,

but generating unit G1 can only increase its production 20 MW at most.

Consequently, the remaining 24− 20 = 4 MW are obtained from costly load

curtailment.

We can alternatively compute the day-ahead generation schedule using

the stochastic dispatch model (3), which writes as follows:

Min. 35pG1
+ 30pG2

+ 10pG3
+ 0.6

(
40r+G1h

− 34r−G1h
+ 200

(
lshed1h + lshed2h

) )

+ 0.4
(
40r+G1l

− 34r−G1l
+ 200

(
lshed1l + lshed2l

) )
(7a)

s.t. (6b)− (6e) , (6g) , (7b)

pW ≤ 50 , (7c)

r+G1h
− r−G1h

+ lshed1h + 50− pW −W spill
h =

(δ02 − δ2h)

0.13
, (7d)

r+G1l
− r−G1l

+ lshed1l + 10− pW −W spill
l =

(δ02 − δ2l)

0.13
, (7e)

lshed2h = −
(δ02 − δ2h)

0.13
, (7f)

lshed2l = −
(δ02 − δ2l)

0.13
, (7g)

pG1
+ r+G1h

≤ 100 , pG1
+ r+G1l

≤ 100 , (7h)

14
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pG1
− r−G1h

≥ 0 , pG1
− r−G1l

≥ 0 , (7i)

− 100 ≤
δ2h
0.13

≤ 100 , −100 ≤
δ2l
0.13

≤ 100 , (7j)

r+G1h
≤ 20 , r+G1l

≤ 20 , (7k)

r−G1h
≤ 40 , r−G1l

≤ 40 , (7l)

W spill
h ≤ 50 , W spill

l ≤ 10 , (7m)

lshed1h ≤ 80 , lshed1l ≤ 80 , lshed2h ≤ 90 , lshed2l ≤ 90 , (7n)

r+G1h
, r+G1l

, r−G1h
, r−G1l

,W spill
h ,W spill

l , lshed1h , lshed1l , lshed2h , lshed2l ≥ 0 , (7o)

where subscripts “h” and “l” index the corresponding augmented variable

with scenario “high” and “low”, respectively. Note that the cleared amount

of wind production in the day-ahead market, pW , is limited to its capacity

(50 MW) through constraint (7c).

Optimization problem (7) includes the scenario-based modeling of the

balancing operation through the set of constraints (7d)–(7o). Balancing ac-

tions comprise the production increase/decrease of flexible unit G1 (r
+
G1
/r−G1

),

wind spillage (W spill), and load shedding (lshed1 , lshed2 ). The stochastic dis-

patch model seeks to minimize the overall expected system costs (7a), which

consists of the day-ahead dispatch costs plus the expectation of the balanc-

ing operation costs. Constraints (7d)–(7g) enforce the power balances per

node and scenario. Inequalities (7h)–(7j) impose generation and transmission

capacity limits at the balancing stage. Constraints (7k) and (7l) limit the

balancing energy provided by unit G1 to its “flexible capacity”, which is spec-

ified through R+ and R− in Table 1 for production increases and decreases,

respectively. Inequalities (7m) and (7n) cap, in that order, the amount of

wind power that is spilled and the amount of load that is shed to the actual

wind power production and the actual load consumption. Finally, the set of

constraints (7o) constitute positive variable declarations.

The essential feature of the stochastic dispatch model (7) is that the day-

ahead generation schedule {pG1
, pG2

, pG3
, pW} is determined considering its

15
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projected implications for the subsequent balancing operation of the power

system. Following this rationale, only 10 MW of wind power production are

cleared in the day-ahead market. Furthermore, the flexible, but expensive,

generating unit G1 is dispatched to 40 MW in order to exploit its capabil-

ity of reducing its power output during the balancing operation. Thus, if

scenario high materializes, the 40-MW wind production surplus can be sold

to unit G1 instead of being curtailed. Besides, since the share of unit G1

in the day-ahead schedule is increased up to 40 MW, unit G2 is only dis-

patched to 70 MW, even though this unit is $5/MWh cheaper than unit G1.

Therefore, the least-cost merit-order principle that drives the conventional

dispatch model is here violated.

We compute next the amount of wind power production that should clear

the day-ahead market to maximize power system efficiency under the con-

ventional dispatch model. For this purpose, we solve the following bilevel

programming problem:

Min. 35pG1
+ 30pG2

+ 10pG3
+ 0.6

(
40r+G1h

− 34r−G1h
+ 200

(
lshed1h + lshed2h

) )

+ 0.4
(
40r+G1l

− 34r−G1l
+ 200

(
lshed1l + lshed2l

) )
(8a)

s.t. r+G1h
− r−G1h

+ lshed1h + 50− pW −W spill
h =

(δ02 − δ2h)

0.13
, (8b)

r+G1l
− r−G1l

+ lshed1l + 10− pW −W spill
l =

(δ02 − δ2l)

0.13
, (8c)

lshed2h = −
(δ02 − δ2h)

0.13
, (8d)

lshed2l = −
(δ02 − δ2l)

0.13
, (8e)

pG1
+ r+G1h

≤ 100 , pG1
+ r+G1l

≤ 100 , (8f)

pG1
− r−G1h

≥ 0 , pG1
− r−G1l

≥ 0 , (8g)

− 100 ≤
δ2h
0.13

≤ 100 , −100 ≤
δ2l
0.13

≤ 100 , (8h)

r+G1h
≤ 20 , r+G1l

≤ 20 , (8i)

16
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r−G1h
≤ 40 , r−G1l

≤ 40 , (8j)

W spill
h ≤ 50 , W spill

l ≤ 10 , (8k)

lshed1h ≤ 80 , lshed1l ≤ 80 , lshed2h ≤ 90 , lshed2l ≤ 90 , (8l)

r+G1h
, r+G1l

, r−G1h
, r−G1l

,W spill
h ,W spill

l , lshed1h , lshed1l , lshed2h , lshed2l ≥ 0 , (8m)

0 ≤ pmax
W ≤ 50 , (8n)

(
pG1

, pG2
, pG3

, pW , δ02
)
∈ arg

{
Minimize

xG1
,xG2

,xG3
,xW ,θ

35xG1
+ 30xG2

+ 10xG3
(8o)

s.t. xG1
+ xG2

+ xW − 80 = −
θ

0.13
: λD

1 , (8p)

xG3
− 90 =

θ

0.13
: λD

2 , (8q)

xG1
≤ 100 : µG1

, xG2
≤ 110 : µG2

, xG3
≤ 50 : µG3

, (8r)

− 100 ≤
θ

0.13
≤ 100 : (µ

δ
, µδ) , (8s)

xW ≤ pmax
W : ρ , (8t)

xG1
, xG2

, xG3
, xW ≥ 0 : (µ

G1

, µ
G2

, µ
G3

, ρ)

}
, (8u)

where the dual variables of the lower-level problem (8o)–(8u) have been made

explicit after the corresponding constraint, separated by a colon.

Notice that pmax
W is a decision variable of the upper-level problem that

enters the lower-level problem as a constant. This variable is limited to the

capacity of the wind farm through constraint (8n). The remaining equations

are the same as those in the conventional and stochastic dispatch models (6)

and (7).

For the bilevel programming problem (8) to be processed by optimization

solvers, it has to be first transformed into an equivalent single-level opti-

mization problem. To this end, we can replace the lower-level minimization

problem (8o)–(8u) with its KKT conditions, which are as follows:

35 + λD
1 + µG1

− µ
G1

= 0 , (9a)

17
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30 + λD
1 + µG2

− µ
G2

= 0 , (9b)

10 + λD
2 + µG3

− µ
G3

= 0 , (9c)

λD
1 + ρ− ρ = 0 , (9d)

λD
1 − λD

2 + µδ − µ
δ

0.13
= 0 , (9e)

(6b)− (6e) , (6g) , (9f)

pW ≤ pmax
W , (9g)

µG1
(pG1

− 100) = 0 , µG2
(pG2

− 110) = 0 , µG3
(pG3

− 50) = 0 , (9h)

µ
δ

(
δ02
0.13

+ 100

)
= 0 , µδ

(
δ02
0.13

− 100

)
= 0 , (9i)

ρ(pW − pmax
W ) = 0 , (9j)

µ
G1

pG1
= 0 , µ

G2

pG2
= 0 , µ

G3

pG3
= 0 , ρ pW = 0 (9k)

µ
G1

, µG1
, µ

G2

, µG2
, µ

G3

, µG3
, ρ , ρ , µ

δ
, µδ ≥ 0 . (9l)

Besides, the complementarity conditions (9h)–(9k) can be recast using

the mixed-integer linear formulation introduced by Fortuny-Amat & McCarl

(1981). For example, consider a large enough constant M . The complemen-

tarity condition (9j) can be equivalently formulated as

ρ ≤ Mu ,

pmax
W − pW ≤ W (1− u) ,

where u is a binary variable, i.e. u ∈ {0, 1}, and W is the capacity of the

wind farm, equal to 50 MW. Notice that both quantities in the left-hand side

of the inequalities above must be nonnegative as a result of (9g) and (9l).

After all these transformations, the bilevel program (8) leads to a single-

level mixed-integer linear programming problem that can be readily pro-

cessed by off-the-shelf optimization software and results in pmax∗
W = 30 MW.

Consequently, under ImpD (the conventional settlement with a smart day-

18



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Table 2: Comparison of expected system operation costs ($)— Two-bus system

Total Day ahead Balancing
Load

curtailment

ConvD 3720 3080 320 320

StochD 3184 4000 −816 0

ImpD 3520 3200 320 0

ahead dispatch of the wind farm), only 30 MW of wind power production are

cleared in the day-ahead market, which avoids expensive load curtailment if

scenario low eventually realizes. The conventional units are cleared following

a least-cost merit order. In particular, generating units G1, G2, and G3 are

dispatched to 0, 90, and 50 MW, respectively. As a consequence, 20 MW of

wind power have to be spilled if scenario high realizes.

Table 2 provides the breakdown of the expected system operation cost

under each dispatch model. Logically, both StochD and ImpD outperform

ConvD. Observe, moreover, that both StochD and ImpD result in a more

costly day-ahead dispatch, which leads, however, to savings in the balancing

operation stage without load shedding. In fact, the stochastic dispatch model

is able to reduce costs at the balancing operation phase through a more

efficient integration of the wind production. However, the energy-only market

settlement associated with this dispatch model requires the flexible producer

G1 to accept economic losses if scenario low comes true, as we show in the

following section.

3.1.2. Prices and Revenues

Energy prices resulting from each of the dispatch models are shown in

Table 3. Note that these prices do not differ between buses, because no

network congestion occurs in any of the two wind power scenarios consid-

ered. Observe that, for the three dispatch models, the resulting day-ahead

electricity price is $30/MWh, which is the marginal cost of unit G2. In the

19
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Table 3: Day-ahead and balancing energy prices ($/MWh)–Two-bus system

λD
n ,∀n ∈ N

λB
nω,∀n ∈ N

High Low

ConvD 30 0 200

StochD 30 25.67 36.50

ImpD 30 0 75

case of ConvD, the value of lost load ($200/MWh) determines the balancing

energy price in scenario low, where load shedding actions need to be under-

taken if the day-ahead generation schedule given by this dispatch model is

implemented. In both ConvD and ImpD, the balancing electricity price is

set to $0/MWh in scenario high due to the occurrence of wind curtailment.

Given the energy prices in Table 3 and the dispatch results previously

discussed, we can determine the profit made by each market participant in

expectation and per scenario according to each dispatch model (see Table 4).

For example, the payment to the flexible generator G1 in scenario low under

StochD is given by 40 × 30 = $1200. Since its marginal cost is equal to

$35/MWh, the profit that generator G1 makes in this scenario is equal to

1200 − 40 × 35 = −$200. Here we bump into one of the most controversial

features of StochD, namely, the likelihood that flexible units incur economic

losses in some scenarios, even though the recovery of costs is guaranteed in

expectation. Actually, notice that unit G1 enters the day-ahead dispatch in

a loss-making position, because its marginal cost, $35/MWh, is higher than

the resulting day-ahead market price, $30/MWh. Therefore, under StochD,

being flexible may involve higher risk than being inflexible, which may po-

tentially discourage power producers from providing balancing service. In

contrast, ConvD and the proposed ImpD ensure revenue adequacy in the

day-ahead market and per scenario, and therefore they do not suffer from

this problem.
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Table 4: Profit ($) of market participants–Two-bus system

Agent Expected
Per scenario

High Low

ConvD

G1 1320 0 3300

G2 0 0 0

G3 1000 1000 1000

WP −900 1020 −3780

L1 −2400 −2400 −2400

L2 −2380 −2700 −1900

StochD

G1 24 173.33 −200

G2 0 0 0

G3 1000 1000 1000

WP 916 1326.66 300

L1 −2400 −2400 −2400

L2 −2700 −2700 −2700

ImpD

G1 320 0 800

G2 0 0 0

G3 1000 1000 1000

WP 300 900 −600

L1 −2400 −2400 −2400

L2 −2700 −2700 −2700
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Table 5: Generator data (* = {+, −}). Powers in MW

Unit Type Bus # P R∗

1 U76 1 152 40

2 U76 2 152 40

3 U100 7 300 70

4 U197 13 591 180

5 U12 15 60 60

6 U155 15 155 30

7 U155 16 155 30

8 U400 18 400 0

9 U400 21 400 0

10 U50 22 300 0

11 U155 23 310 60

12 U350 23 350 40

3.2. Case Study

We now consider a 24-bus power system that is based on the single-area

version of the IEEE Reliability Test System (Grigg et al., 1999). It includes 34

lines, 17 loads, and 12 generating units. The nodal location, type, capacity,

and flexibility parameters of these units are collated in Table 5. Energy

offers submitted by power producers in the day-ahead market consist of the

four incremental cost/power blocks listed in Table 9 of Grigg et al. (1999),

assuming the fuel costs used by Bouffard et al. (2005). We consider that

nuclear and hydro power producers offer their production at zero price. Price

premiums of 5% and 4% are assumed for the energy sold and purchased,

respectively, in the balancing market. This means that flexible producers

are willing to sell (purchase) energy in the balancing market at a price 5%

higher (4% lower) than their energy offer price in the day-ahead market.

Nuclear and hydro units are assumed to be inflexible and therefore, they do

not provide balancing energy.

Two wind farms are located at nodes 5 and 7. The per-unit power pro-
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duction of these wind farms is modeled using Beta distributions, as in Fabbri

et al. (2005). The shape parameters of these Beta distributions, denoted by

(α, β), are equal to (0.71, 0.08) and (3.78, 1.62), respectively. Thus, the per-

unit forecast power outputs of the wind farms at nodes 5 and 7 are 0.9 and

0.7, in that order. Furthermore, the power outputs of both wind farms are

assumed to be correlated with a correlation coefficient ρ. Correlated samples

from the previous Beta distributions are obtained using the sampling proce-

dure described by Morales et al. (2011). An original scenario set comprising

10 000 wind power samples is first generated and then reduced to 100 using

the fast forward selection algorithm presented by Heitsch & Römisch (2003).

The marginal costs of the wind farms are assumed to be zero.

Loads are considered to be inelastic with a value of lost load equal to

$1000/MWh. These loads are geographically distributed among buses as

indicated in Table 5 of Grigg et al. (1999). The total system demand is

2000 MW. The capacities of lines 1–5, 5–10, and 7–8 are doubled (up to

350 MW) so that higher amounts of wind power production can be injected

at buses 5 and 7.

The single-level mixed-integer linear programming problem that results

from the bilevel program (4) has been solved using CPLEX 12.3.0 under

GAMS on a Windows-based personal computer Intel(R) Core(TM) i5 with

four processors clocking at 2.4 GHz and 6 GB of RAM. Solution time is kept

below 30 seconds in all instances.

The stochastic dispatch model (3) has, among others, two properties that

make it particularly useful to facilitate the large-scale integration of stochas-

tic production in electricity markets, namely, its ability to avoid the uneco-

nomic scheduling of stochastic production capacity and its ability to effi-

ciently accommodate generation from stochastic producers that are spatially

correlated. We show below that these two properties are conferred, to a large

extent, on the conventional dispatch model (1), if solved for an appropriate

value of stochastic production, generally different from the mean. This is
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actually what we refer to as ImpD.

Figure 2 shows the expected cost of the power system operation as a

function of the wind power penetration level, for the three dispatch models.

The wind power penetration level is defined as the ratio of the forecast wind

power production to the total system demand and is increased by augmenting

the capacity installed at both wind farms by the same amount. The figure

is arranged in two illustrations, each corresponding to a different correlation

coefficient between wind farms. Observe that from a certain penetration

level, the expected cost resulting from the implementation of the conven-

tional dispatch begins to significantly diverge from the expected cost yielded

by the other two dispatch models. Furthermore, note that this “breaking

point”, roughly identified on the graphs using a vertical dashed line, occurs

for lower penetration levels if the correlation coefficient between wind sites

increases. Indeed, the breaking point moves approximately from 38% to 33%

if the correlation coefficient goes from 0.35 to 0.75. In contrast, StochD and

ImpD are significantly less affected by correlated winds, as they both account

for the wind production variability to decide the wind generation schedule.

Furthermore, notice that, in the case of ConvD, the expected cost exhibits an

increasing trend after a high enough wind power penetration level, whereas

both StochD and ImpD guarantee that an increase in wind power capacity

never leads to an increase in the expected cost.

We now show that, unlike ConvD or ImpD, the stochastic dispatch leads

to a conflicting energy-only settlement of the market, because it requires

flexible producers to incur losses in some scenarios. Let us consider a wind

power penetration level of 38%. In this instance, generators 1, 2, 6, 7, 11

and 12 are mostly the units providing balancing energy. Table 6 includes the

expected profit made by some of these units in these conditions under the

three dispatch models. For the case of StochD, the average losses incurred by

the selected units and the probability of their profit being eventually negative

are also shown. Note that this probability is remarkably high.
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Figure 2: Impact of the wind power penetration level and spatial correlation on the ex-
pected cost of the system operation. Total system demand = 2000 MW.
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Table 6: Highlights of profits. Wind penetration 38% (ρ = 0.35)

Unit

1 6 11 12

ConvD
Expected
profit ($) 379.8 359.7 724.9 389.1

StochD

Expected
profit ($) 45.6 48.4 99.7 64.9

Average
losses ($) −17.4 −10.9 −17.6 −11.5

Probability
profit < 0 0.81 0.71 0.71 0.75

ImpD
Expected
profit ($) 170.2 263.7 531.6 178.7

Lastly, observe that the expected profit made by the selected units is

significantly higher under ConvD than under ImpD. This is so because, un-

der the conventional dispatch where the expected wind power production is

cleared, there is a considerable transfer of money from the wind power pro-

ducers to the flexible producers, as the wind power producers have to bear the

cost of a very inefficient balancing operation. ImpD manages to substantially

mitigate this effect by clearing an amount of wind power production—not

necessarily equal to the mean—that avoids high balancing costs.

4. Conclusions

This paper deals with the clearing of a day-ahead electricity market that

includes a significant number of stochastic producers. Our study uses two

reference models for generation scheduling: on the one hand, a conventional

network-constrained auction based on a least-cost merit order for dispatch,

where stochastic generation enters with its expected production and a very
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low marginal cost; on the other, a full stochastic dispatch method that max-

imizes market efficiency by anticipating balancing costs. The conventional

dispatch may turn out to be very uneconomical, while the stochastic one leads

to an energy-only market settlement that does not guarantee cost recovery

for flexible producers is some scenarios.

We show that the conventional auction, if cleared with an appropriate

value of stochastic production, generally different from the mean, can signifi-

cantly approach the stochastic dispatch ideal. We construct a bilevel program

that optimally computes this value. Our analysis prompts two fundamental

conclusions, namely:

1. Current day-ahead markets should not clear the expected stochastic

production by default. There is indeed room for substantial improve-

ment in market efficiency by abandoning this practice, in particular in

those markets with a high share of stochastic generation.

2. The amount of stochastic production to be cleared in the day-ahead

market should be driven not only by the marginal cost of stochastic

generation, which is usually very low or zero, but also by the cost

of its uncertainty, understood as its economic impact due to system

balancing.

As future research, it is necessary to develop computationally efficient

methods that allow us to determine a day-ahead schedule for stochastic pro-

ducers better in terms of market efficiency than their expected power outputs

without having to directly solve a computationally costly bilevel program.

Likewise, the idea introduced in this paper is compatible with the imple-

mentation of reserve capacity markets or the flexible ramping products that

are currently under development in CAISO (Abdul-Rahman et al., 2012)

and Midwest ISO (Navid & Rosenwald, 2012). The combination of these

strategies may bring current market efficiency closer to the full stochastic

optimization ideal.
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