Multibody Model for Planetary Gearbox of 500 kW Wind Turbine

Jørgensen, Martin Felix

Publication date: 2013

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Multibody Model for Planetary Gearbox of 500 kW Wind Turbine

Martin F. Jørgensen

DTU Mechanical Engineering
Overview / topics

1. Introduction
2. Aeroelastic model (FLEX 5)
3. Experiments vs. simulations
4. Multibody model - description
5. Results
6. Conclusions
1. Introduction

Objective:
To create a multibody program for modelling drivetrain loads, forces etc on main components such a bearings and all stages in the gearbox.

Method:
Matlab code with input for generator and rotor loads from FLEX5, using a complete structural model of the windturbine.
1. Introduction

“Multibody drivetrain model of a 500 kW wind turbine for predicting gear tooth stresses in a planetary gearbox” – methods:

Shown on the next 3 slides

(a) Illustration of rotor, nacelle, main shaft, gearbox (planetary + 2 parallel stages), brake, 500 kW generator, 3 yaw motors etc.

(b) Outline of method used.

DTU Mechanical Engineering – p.4
2. Aeroelastic model (FLEX 5)

a) **Input:**
 a) “Real” atmospheric turbulent wind speed.
 - Wind field (based on TI+mean wind sp)
 - Blade aerodynamic data: Lift+ Drag coefficients, radial stations
 - Elastic properties, mass, structural damping, (bending) stiffness, distances, generator data (mass, moment of inertia, slip, loss/efficiency)

b) **Output:**
 Main shaft/generator torque, rotor/blade forces, displacements etc.

\[M\ddot{x} + C\dot{x} + Kx = F_g \]
2. Aeroelastic model (+ validation: winddata.com)

FLEX5 Input

FLEX5 Output

Wind speed (m/s)

Power (kW)

Main shaft torque (kNm)
4. Multibody model – bodies and constraints
4. Multibody model – bodies and constraints

For a constrained mechanical system with \(m \) independent constraints
\[\Phi = 0 \] (9.51)
the velocity and acceleration equations are
\[\Phi_q \ddot{q} = 0 \] (9.52)
and
\[\Phi_q \ddot{q} - \gamma = 0 \] (9.53)
The equations of motion for this constrained system are as given in Eq. 9.6:
\[M\ddot{q} - \Phi_q^T \lambda = g \] (9.54)
Equation 9.53 can be appended to Eq. 9.54 and the result can be written as
\[
\begin{bmatrix}
M & \Phi_q^T \\
\Phi_q & 0
\end{bmatrix}
\begin{bmatrix}
\ddot{q} \\
-\lambda
\end{bmatrix} =
\begin{bmatrix}
g \\
\gamma
\end{bmatrix}
\] (9.55)

Convert 2\(^{nd}\) order Initial Value Problem \(\rightarrow\) Two 1\(^{st}\) order ODEs: ODE45 in Matlab to integrate and get velocities and positions
4. Multibody model – bodies and constraints

\[
\dot{\Phi} : (A_{70} \cdot v_r)^T \begin{bmatrix} \dot{x}_1 \\ \dot{y}_1 \end{bmatrix} + r_{p1}(\omega_1 \hat{v}_r) - (A_{70} \cdot v_r)^T \begin{bmatrix} \dot{x}_2 \\ \dot{y}_2 \end{bmatrix} - r_{p2}(\omega_2 \hat{v}_r) = 0
\]

20 deg. pressure angle

2D gear constraint equation

\[
\ddot{\Phi} : (A_{70} \cdot v_r)^T (\ddot{r}_1 + r_{p1}\omega_1 \hat{v}_r) + (A_{70} \cdot v_r)^T (\dddot{r}_1 + r_{p1}\omega_1 \hat{v}_r + r_{p1}\omega_1 \hat{v}_r) - (A_{70} \cdot v_r)^T (\dddot{r}_2 - r_{p2}\omega_2 \hat{v}_r) - (A_{70} \cdot v_r)^T (\dddot{r}_2 - r_{p2}\omega_2 \hat{v}_r + r_{p2}\omega_2 \hat{v}_r) = 0
\]
4. Multibody model – equations of motion

\[
\begin{bmatrix}
M & \Phi_q^T \\
\Phi_q & 0
\end{bmatrix}
\begin{bmatrix}
\ddot{q} \\
-\lambda
\end{bmatrix}
=
\begin{bmatrix}
g \\
\gamma
\end{bmatrix}
\]

Reaction forces (in bearings/gear tooth forces etc):

\[
M \ddot{q} = \sum F \quad \text{or:} \quad M \ddot{q} = \sum F_{ext} + \sum F_{react} \Rightarrow M \ddot{q} - \Phi_q^T \lambda = F_{ext}
\]

Used for calculating bearing and gear tooth reaction forces and moments
5. Results (gear tooth normal forces)
5. Results

Example: Mean sun/planet gear tooth stresses:

<table>
<thead>
<tr>
<th>Speed (m/s)</th>
<th>Stress Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>
5. Results

Rigid gearbox animation

Flexible gearbox animation
(work in progress)
Step: 2072

Simulation time: 8.85

Time elapsed: 130.875

FPS = 16

Speed: 0
6. Conclusions

- Realistic dimensions and input parameters have been used for modelling a real 500 kw wind turbine and gearbox.
- Input to multibody code from Flex 5 has successfully been validated using real data (wind speed + strain gauge torque + electrical power).
- A realistic drive-train multibody model has been made.
- The multibody program makes it possible to extract e.g. bearing and gear tooth forces and moments (information which cannot be found with Flex 5 without modifications).
- Results from the program can easily be extracted for further analysis using FEM or other tool (e.g. FEM-model of gear tooth stresses made in Comsol Multiphysics).
Thank you for your time