Multibody Model for Planetary Gearbox of 500 kW Wind Turbine

Jørgensen, Martin Felix

Publication date: 2013

Multibody Model for Planetary Gearbox of 500 kW Wind Turbine

Martin F. Jørgensen

DTU Mechanical Engineering
Overview / topics

1. Introduction
2. Aeroelastic model (FLEX 5)
3. Experiments vs. simulations
4. Multibody model - description
5. Results
6. Conclusions
1. Introduction

Objective:
To create a multibody program for modelling drivetrain loads, forces etc on main components such as bearings and all stages in the gearbox.

Method:
Matlab code with input for generator and rotor loads from FLEX5, using a complete structural model of the windturbine.
1. Introduction

“Multibody drivetrain model of a 500 kW wind turbine for predicting gear tooth stresses in a planetary gearbox” – methods:

Shown on the next 3 slides

(a) Illustration of rotor, nacelle, main shaft, gearbox (planetary + 2 parallel stages), brake, 500 kW generator, 3 yaw motors etc.

(b) Outline of method used.

DTU Mechanical Engineering – p.4
2. Aeroelastic model (FLEX 5)

a) **Input:**
 a) "Real" atmospheric turbulent wind speed.
 - Wind field (based on TI+mean wind speed)
 - Blade aerodynamic data: Lift+ Drag coefficients, radial stations
 - Elastic properties, mass, structural damping, (bending) stiffness, distances, generator data (mass, moment of inertia, slip, loss/efficiency)

b) **Output:**
 Main shaft/generator torque, rotor/blade forces, displacements etc.
2. Aeroelastic model (+ validation: winddata.com)

FLEX5 Input

Wind speed (m/s)

FLEX5 Output

Power (kW)

Main shaft torque (kNm)
4. Multibody model – bodies and constraints
For a constrained mechanical system with m independent constraints

\[\Phi = 0 \]

(9.51)

the velocity and acceleration equations are

\[\Phi_q \dot{q} = 0 \]

(9.52)

and

\[\Phi_q \ddot{q} - \gamma = 0 \]

(9.53)

The equations of motion for this constrained system are as given in Eq. 9.6:

\[M\ddot{q} - \Phi_q^T \lambda = g \]

(9.54)

Equation 9.53 can be appended to Eq. 9.54 and the result can be written as

\[
\begin{bmatrix}
M & \Phi_q^T \\
\Phi_q & 0
\end{bmatrix}
\begin{bmatrix}
\ddot{q} \\
-\lambda
\end{bmatrix}
=
\begin{bmatrix}
g \\
\gamma
\end{bmatrix}
\]

(9.55)

Convert 2nd order Initial Value Problem \rightarrow Two 1st order ODEs: ODE45 in Matlab to integrate and get velocities and positions
4. Multibody model – bodies and constraints

\[\Phi : (A_{70} \cdot v_r)^T \left(\begin{bmatrix} \dot{x}_1 \\ \dot{y}_1 \end{bmatrix} + r_{p1}(\omega_1 \dot{v}_r) \right) - (A_{70} \cdot v_r)^T \left(\begin{bmatrix} \dot{x}_2 \\ \dot{y}_2 \end{bmatrix} - r_{p2}(\omega_2 \dot{v}_r) \right) = 0 \]

20 deg. pressure angle

2D gear constraint equation

\[\Phi : (A_{70} \cdot v_r)^T (\ddot{r}_1 + r_{p1}\omega_1 \dot{v}_r) + (A_{70} \cdot v_r)^T (\ddot{r}_1 + r_{p1}\omega_1 \dot{v}_r + r_{p1}\omega_1 \dot{v}_r) - (A_{70} \cdot v_r)^T (\ddot{r}_2 - r_{p2}\omega_2 \dot{v}_r) - (A_{70} \cdot v_r)^T (\ddot{r}_2 - r_{p2}\omega_2 \dot{v}_r - r_{p2}\omega_2 \dot{v}_r) = 0 \]
4. Multibody model – equations of motion

\[
\begin{bmatrix}
M & \Phi_q^T \\
\Phi_q & 0
\end{bmatrix}
\begin{bmatrix}
\ddot{q} \\
-\lambda
\end{bmatrix}
= \begin{bmatrix}
g \\
\gamma
\end{bmatrix}
\]

Reaction forces (in bearings/gear tooth forces etc):

\[
M\ddot{q} = \sum F \quad \text{or:} \quad M\ddot{q} = \sum F_{ext} + \sum F_{react} \Rightarrow M\ddot{q} - \Phi_q^T \lambda = F_{ext}
\]

Used for calculating bearing and gear tooth reaction forces and moments
5. Results (gear tooth normal forces)

- **Sun/planet**: ≈ 236 kN
- **Planet/ring**: ≈ -236 kN
- **Par.gear 1**: ≈ -83 kN
- **Par.gear 2**: ≈ 30 kN
5. Results

Example: Mean sun/planet gear tooth stresses:
5. Results

Rigid gearbox animation

Flexible gearbox animation (work in progress)
Step: 2072
Simulation time: 8.85
Time elapsed: 130.875
FPS = 16
Speed: 0
6. Conclusions

- Realistic dimensions and input parameters have been used for modelling a real 500 kw wind turbine and gearbox
- Input to multibody code from Flex 5 has successfully been validated using real data (wind speed + strain gauge torque + electrical power)
- A realistic drive-train multibody model has been made
- The multibody program makes it possible to extract e.g. bearing and gear tooth forces and moments (information which cannot be found with Flex 5 without modifications).
- Results from the program can easily be extracted for further analysis using FEM or other tool (e.g. FEM-model of gear tooth stresses made in Comsol Multiphysics).
Thank you for your time