Co-Electrolysis of Water and CO2 for synthetic fuels

Jensen, Søren Højgaard

Publication date:
2013

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Co-Electrolysis of Water and CO$_2$ for synthetic fuels

Søren Højgaard Jensen
Technical University of Denmark,
DTU Risø Campus
DK-4000 Roskilde
Denmark

shjj@dtu.dk
Outline

1. Solid Oxide Electrolyser Cell (SOEC)

2. SOEC Electrode Potentials, Thermodynamic

3. Gas Diffusion and Conversion
The Solid Oxide Cell
The Solid Oxide Cell

Ni-YSZ support & current collector

Ni-YSZ electrode

YSZ electrolyte

LSM-YSZ electrode

LSM current collector

LSM = \((La_{0.75}Sr_{0.25})_{0.95}\)MnO$_3$

YSZ = Zr$_{0.84}$Y$_{0.16}$O$_{1.92}$

DTU Energy Conversion, Technical University of Denmark
The Solid Oxide Cell

Solid Oxide Electrolysis Cell

\[\text{H}_2\text{O (and CO)} \rightarrow \text{H}_2 (\text{and CO}) + \text{O}_2 \]

\[\text{1.3 V} \]

Solid Oxide Fuel Cell

\[\text{O}_2 \rightarrow \text{H}_2 (\text{and CO}) + \text{H}_2\text{O (and CO)} \]

\[\text{0.8 V} \]

DTU Energy Conversion, Technical University of Denmark
Thermodynamics

\[\text{H}_2\text{O} \rightarrow \text{H}_2 + \frac{1}{2}\text{O}_2 \]

- **Total energy demand** (\(\Delta H_f\))
- **Electrical energy demand** (\(\Delta G_f\))
- **Heat demand** (\(\Delta S_f\))

\[\frac{1}{2}nF \cdot \text{Energy demand (Volt)} \]

\[\eta = 100\% \text{ at } E = E_{tn} \text{ (no heat loss)} \]

DTU Energy Conversion, Technical University of Denmark
CO₂ → CO + ½O₂

Total energy demand (ΔH_f)

Electrical energy demand (ΔG_f)

Heat demand ($T\Delta S_f$)
Thermodynamics

Electrical energy demand (ΔG_f)

Energy demand (KJ/mol)

Temperature (ºC)

- $CO_2 \rightarrow CO + \frac{1}{2}O_2$
- $H_2O \rightarrow H_2 + \frac{1}{2}O_2$

$750^\circ C - 900^\circ C$

$\Delta G_{H_2O \rightarrow H_2 + \frac{1}{2}O_2} = \Delta G_{CO_2 \rightarrow CO + \frac{1}{2}O_2}$
Co-electrolysis of H₂O and CO₂

1 kW - 10-cell stack – 12 × 12 cm²
850 °C, -0.50 (-0.75) A/cm², 45 % CO₂ / 45% H₂O / 10 % H₂

S. Ebbesen et al.

Temperature slip
Electrolyte degradation at high current

Cell with R_s constant
(-1 A/cm2)

Cell with R_s increase
(-2 A/cm2)

TEM study of the YSZ grain boundaries.... →

Ref. Knibbe et al., J. Electrochem. Soc., 157(8), B1209, 2010

DTU Energy Conversion, Technical University of Denmark
Electrolyte degradation at high current

TEM of YSZ grain boundary near oxygen electrode from cell tested at -2 A/cm² (Rₛ increase)

Pore / gaps inbetween YSZ grains in the YSZ close to the electrolyte – oxygen electrode interface observed.
The Pressure Test Setup

850 °C, 50% H₂ + 50% H₂O, Air

Cell voltage / V

Current density / A/cm²

1 bar 10 bar

DTU Energy Conversion, Technical University of Denmark
Synthetic Fuel Production

\[\text{CO}_2 \xrightarrow{\text{Purification}} \text{H}_2\text{O(l)} \xrightarrow{\text{Recycling}} \text{Catalyst} \]

\[\text{Insulation} \]

\[300 \, ^\circ\text{C} \]

\[\text{SOEC stack} \]

\[900 \, ^\circ\text{C} \]

\[\text{O}_2 \]

\[\text{CO} + \text{H}_2 + \text{H}_2\text{O(g)} + \text{CO}_2 \]

\[\text{O}_2 \]
Synthetic Fuel Production Economy

S. D. Ebbesen, S. H. Jensen, A. Hauch and M. Mogensen, to be submitted
Synthetic Fuel Production Economy

$\text{SOEC - 0.25 A/cm}^2$
$\text{SOEC - 1.00 A/cm}^2$

- Hydrogen production price (€/kg H_2)
- FT-diesel production price (€/l)

- Electricity
- Investment cost
- Other cost

1.15 €/L Diesel, EU average excluding taxes

S. D. Ebbesen, S. H. Jensen, A. Hauch and M. Mogensen, to be submitted
DK Electricity Price in 2010

Average Price
SOEC Economy

Søren Højgaard Jensen, Unpublished work

DTU Energy Conversion, Technical University of Denmark
WTI and BREN'T Crude Oil price

WTI

$/barrel

BREN'T

$/barrel

DTU Energy Conversion, Technical University of Denmark
Conclusions

1. Stable co-electrolysis operation below -1 A/cm²

2. Operation at high pressure makes internal catalysis possible which enables high production efficiency

3. Using Only Cheap Electricity Doesn’t change the synthetic fuel production costs significantly
I wish to thank Colleagues at DTU Energy Conversion for contributions to this presentation
CO₂ + 2H₂O \leftrightarrow CH₄ + 2O₂

$$\frac{\Delta H^o}{8F} = 1.15 \text{ V}$$

$$\frac{\Delta G^{1000^\circ C}}{8F} = 1.04 \text{ V}$$
At 15 Mpa and 650 C, a mixture of 85% methane and 15% hydrogen dry gas with small concentrations of CO and CO₂ can be produced without producing equilibrium carbon, at V= 1.08 V vs. air.

S. H. Jensen and M. Mogensen, 19th World Energy Congress, Sydney, Australia 2004

\[\text{CO}_2 + 2\text{H}_2\text{O} \leftrightarrow \text{CH}_4 + 2\text{O}_2 \]

\[\frac{\Delta H^o}{8F} = 1.15 \text{ V} \]

\[\frac{\Delta G^{1000^\circ C}}{8F} = 1.04 \text{ V} \]
Vision

Li. Thorup Salt caverns

- 150-200 bar
- 500 mill Nm3 storage
- 5000 mill kWh stored
- 200 M€ CAPEX
Vision

<table>
<thead>
<tr>
<th>Operating cost and conditions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating pressure</td>
<td>150-200 bar</td>
</tr>
<tr>
<td>Storage capacity (volume)</td>
<td>500 Mio Nm³</td>
</tr>
<tr>
<td>Storage capacity (Energy (CH₄))</td>
<td>5000 GWh</td>
</tr>
<tr>
<td>Cavern CAPEX (CH₄)</td>
<td>200 M€</td>
</tr>
<tr>
<td>Cavern CAPEX (CO₂ + CH₄)</td>
<td>0.08 €/kWh</td>
</tr>
<tr>
<td>Electrolysis/Fuel-cell operation/year</td>
<td>4000 hours</td>
</tr>
<tr>
<td>SOC cost</td>
<td>150 €/kW</td>
</tr>
<tr>
<td>Total SOC CAPEX</td>
<td>200 M€</td>
</tr>
<tr>
<td>Total system CAPEX</td>
<td>600 M€ (0.12 €/kWh)</td>
</tr>
</tbody>
</table>

Assume the return of investment on the storage facility is 5 years, the round trip efficiency is 70% and that the storage facility buys electricity during the summer (4000 h) at a cost of 9.6 €¢/kWh. Then the storage facility will be able to sell electricity during the winter periods (4000 h) for 14 €¢/kWh.