Co-Electrolysis of Water and CO2 for synthetic fuels

Jensen, Søren Højgaard

Publication date: 2013

Co-Electrolysis of Water and CO₂ for synthetic fuels

Søren Højgaard Jensen
Technical University of Denmark,
DTU Risø Campus
DK-4000 Roskilde
Denmark

shjj@dtu.dk
Outline

1. Solid Oxide Electrolyser Cell (SOEC)

2. SOEC Electrode Potentials, Thermodynamic

3. Gas Diffusion and Conversion
The Solid Oxide Cell
The Solid Oxide Cell

Ni-YSZ support & current collector

Ni-YSZ electrode

YSZ electrolyte

LSM-YSZ electrode

LSM current collector

\[\text{LSM} = (\text{La}_{0.75}\text{Sr}_{0.25})_{0.95}\text{MnO}_3 \quad \text{YSZ} = \text{Zr}_{0.84}\text{Y}_{0.16}\text{O}_{1.92} \]
The Solid Oxide Cell

Solid Oxide Electrolysis Cell

1.3 V

H₂O (and CO₂) → H₂ (and CO)

O₂ → O₂

Solid Oxide Fuel Cell

0.8 V

O₂ → O₂

H₂ (and CO) → H₂O (and CO₂)
The Solid Oxide Cell

SOFC

950 °C, 70% CO₂

950 °C, 70% H₂O

850 °C, 50% H₂O

750 °C, 50% H₂O

Cell voltage \(V \) [V]

Current density \(i \) [A/cm²]

SOEC
Thermodynamics

H₂O → H₂ + ½O₂

\[E_{\text{cell}} = E_{\text{tn}} \]

\[\eta = 100\% \text{ at } E = E_{\text{tn}} \] (no heat loss)
Thermodynamics

\[\text{CO}_2 \rightarrow \text{CO} + \frac{1}{2}\text{O}_2 \]

- Total energy demand (ΔH_f)
- Electrical energy demand (ΔG_f)
- Heat demand ($T\Delta S_f$)

Energy demand (KJ/mol) vs. Temperature (ºC)
Electrical energy demand (ΔG_f)

- $\text{CO}_2 \rightarrow \text{CO} + \frac{1}{2}\text{O}_2$
- $\text{H}_2\text{O} \rightarrow \text{H}_2 + \frac{1}{2}\text{O}_2$

750°C - 900°C

$\Delta G_{\text{H}_2\text{O} \rightarrow \text{H}_2 + \frac{1}{2}\text{O}_2} = \Delta G_{\text{CO}_2 \rightarrow \text{CO} + \frac{1}{2}\text{O}_2}$
Co-electrolysis of H$_2$O and CO$_2$

1 kW - 10-cell stack – 12 × 12 cm2
850 ºC, -0.50 (-0.75) A/cm2, 45 % CO$_2$ / 45% H$_2$O / 10 % H$_2$

S. Ebbesen et al.
Electrolyte degradation at high current

DTU Energy Conversion, Technical University of Denmark
Electrolyte degradation at high current

TEM of YSZ grain boundary near oxygen electrode from cell tested at -2 A/cm² (R_s increase)

Pore / gaps inbetween YSZ grains in the YSZ close to the electrolyte – oxygen electrode interface observed.
The Pressure Test Setup

850 °C, 50% H₂ + 50% H₂O, Air

Cell voltage / V

Current density / A/cm²

1 bar 10 bar
Synthetic Fuel Production
Synthetic Fuel Production Economy

S. D. Ebbesen, S. H. Jensen, A. Hauch and M. Mogensen, to be submitted

DTU Energy Conversion, Technical University of Denmark
Synthetic Fuel Production Economy

- Hydrogen production price (€/kg H_2)
- FT-diesel production price (€/l)

```
SOEC -0.25 A/cm²
74% 2%
24%

SOEC -1.00 A/cm²
91% 2%
7%
```

1.15 €/L Diesel, EU average excluding taxes

S. D. Ebbesen, S. H. Jensen, A. Hauch and M. Mogensen, to be submitted
DK Electricity Price in 2010

Average Price
SOEC Economy

Electrolysis activity (hours)

Equivalent crude oil price (€/barrel)

Methane

Methanol

Søren Højgaard Jensen, Unpublished work

DTU Energy Conversion, Technical University of Denmark
WTI and BRENTH Crude Oil price

WTI

BRENT

$/barrel

$/barrel
Conclusions

1. Stable co-electrolysis operation below -1 A/cm²

2. Operation at high pressure makes internal catalysis possible which enables high production efficiency

3. Using Only Cheap Electricity Doesn’t change the synthetic fuel production costs significantly
Acknowledgement

I wish to thank Colleagues at DTU Energy Conversion for contributions to this presentation
CO₂ + 2H₂O \leftrightarrow CH₄ + 2O₂

$\frac{\Delta H^0}{8F} = 1.15 \text{ V}$

$\frac{\Delta G^{1000\text{C}}}{8F} = 1.04 \text{ V}$
At 15 Mpa and 650 °C, a mixture of 85% methane and 15% hydrogen dry gas with small concentrations of CO and CO$_2$ can be produced without producing equilibrium carbon, at V= 1.08 V vs. air.

S. H. Jensen and M. Mogensen, 19th World Energy Congress, Sydney, Australia 2004

\[
\text{CO}_2 + 2\text{H}_2\text{O} \leftrightarrow \text{CH}_4 + 2\text{O}_2
\]

\[
\frac{\Delta H^0}{8F} = 1.15 \text{ V}
\]

\[
\frac{\Delta G^{1000C}}{8F} = 1.04 \text{ V}
\]
Vision

LI. Thorup Salt caverns

- 150-200 bar
- 500 mill Nm\(^3\) storage
- 5000 mill kWh stored
- 200 M€ CAPEX
Vision

<table>
<thead>
<tr>
<th>Operating cost and conditions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating pressure</td>
<td>150-200 bar</td>
</tr>
<tr>
<td>Storage capacity (volume)</td>
<td>500 Mio Nm³</td>
</tr>
<tr>
<td>Storage capacity (Energy (CH₄))</td>
<td>5000 GWh</td>
</tr>
<tr>
<td>Cavern CAPEX (CH₄)</td>
<td>200 M€</td>
</tr>
<tr>
<td>Cavern CAPEX (CO₂ + CH₄)</td>
<td>0.08 €/kWh</td>
</tr>
<tr>
<td>Electrolysis/Fuel-cell operation/year</td>
<td>4000 hours</td>
</tr>
<tr>
<td>SOC cost</td>
<td>150 €/kW</td>
</tr>
<tr>
<td>Total SOC CAPEX</td>
<td>200 M€</td>
</tr>
<tr>
<td>Total system CAPEX</td>
<td>600 M€ (0.12 €/kWh)</td>
</tr>
</tbody>
</table>

Assume the return of investment on the storage facility is 5 years, the round trip efficiency is 70% and that the storage facility buys electricity during the summer (4000 h) at a cost of 9.6 €¢/kWh. Then the storage facility will be able to sell electricity during the winter periods (4000 h) for 14 €¢/kWh.