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We investigate the effects of nonlocal response on the surface-plasmon polariton guiding properties of the
metal-insulator (MI), metal-insulator-metal (MIM), and insulator-metal-insulator (IMI) waveguides. The nonlocal
effects are described by a linearized hydrodynamic model, which includes the Thomas-Fermi internal kinetic
energy of the free electrons in the metal. We derive the nonlocal dispersion relations of the three waveguide
structures taking into account also retardation and interband effects, and examine the delicate interplay between
nonlocal response and absorption losses in the metal. We also show that nonlocality breaks the complementarity
of the MIM and IMI waveguides found in the nonretarded limit.
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I. INTRODUCTION

Guiding of light at metal-dielectric interfaces has attracted
a lot of attention in recent years due to the subwavelength
light confinement achievable by excitation of propagating
surface-plasmon polariton (SPP) modes.1,2 SPP guiding in
a number of configurations is not limited by the diffraction
limit, allowing for the manipulation and concentration of
light on the nanoscale.3 At the same time, stronger SPP
mode confinement is typically associated with stronger mode
absorption in the metal, resulting in a trade-off between light
confinement and propagation distances.4 This trade-off can be
tailored by considering various waveguide structures, where
especially waveguides based on thin metal films or narrow
dielectric gaps between two metal surfaces have shown to
provide a considerably better trade-off.5,6 Symmetric metal-
insulator-metal (MIM) and insulator-metal-insulator (IMI)
waveguides, see Fig. 1, are the most fundamental of this class
of waveguide structures and provide a solid foundation for
the understanding of more complex plasmonic waveguides.
The key property of the IMI waveguide is its ability to
support the so-called long-range SPP mode, which exhibits
considerably low propagation loss. Furthermore, the MIM
configuration forms the basis for the effective-index modeling
(EIM) technique of more complex waveguiding structures,
such as V-groove, slot, and trench waveguides.5,7

The MIM and IMI waveguides have been extensively stud-
ied experimentally8–12 and theoretically.6,13–16 A key feature of
any theoretical description of SPPs involves a suitable choice
for the modeling of the response of free electrons of the metal.
By far, the most common approach in the literature has been
to apply the local-response approximation (LRA). The LRA
solutions for the MIM and IMI structures were determined
very early by Economou17 and comprise two SPP modes being
of even and odd symmetry with respect to the electric and
magnetic fields, respectively. The properties of these modes
are determined by their respective dispersion relations, i.e., by
the relations between the frequency ω and the SPP propagation
constant k, which are given by transcendental equations. In the

nonretarded limit of the LRA, the surface modes of the MIM
and IMI structures become identical,18 which is an interesting
property that stems from Babinet’s principle of complementary
structures.19–21

However, issues with the approach of the LRA arise when
either considering large values of k, where an unphysical limit
is found for the frequency, or considering narrow insulator
or metal widths (w < 10 nm), where singularities occur.4,22

In particular when investigating extremely narrow V-grooves,
as recently realized experimentally,23 with techniques such as
EIM, the inadequacy of the LRA manifests itself. Nonlocal
response (or spatial dispersion) has been shown to remove
this flawed behavior of the SPP modes in waveguiding
structures such as single metal-dielectric interfaces,24 infinite
cylinders,25 and more recently, hyperbolic metamaterials,26

conical tips,27,28 hybrid plasmonic waveguides,29 wedges, and
V-grooves.30

Extensive theoretical work has been done on the fundamen-
tal MIM and IMI waveguides, yet only a few studies24,31–33

have focused on nonlocal effects in these structures. In this
paper, we fill this gap by determining the dispersion relations
of SPP modes of the IMI and MIM waveguides taking
into account nonlocal response, retardation effects as well
as interband transitions in the metals. We also revisit the
simple metal-insulator (MI) waveguide structure. The nonlocal
response is described by a linearized semiclassical hydrody-
namic model,34,35 which includes the quantum kinetics of the
free-electron gas described by Thomas-Fermi theory.

The derivations and corresponding results for the nonlocal
retarded dispersion relations of the IMI, MIM, and MI
waveguides are presented in Sec. II. With the dispersion
relations for the three waveguides at hand, we examine in detail
the interplay between losses and nonlocality in the metal by
gradually increasing the absorption losses. The fundamental
influence of losses versus nonlocality on the SPP dispersion
has, to our knowledge, not yet been investigated. Furthermore,
we compare modes of the IMI and MIM waveguides with and
without retardation and nonlocality and show that only in the
nonretarded LRA do the modes of these two complementary
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waveguides become identical. Retardation and nonlocality
are shown to break their complementarity. These topics are
discussed in Sec. III. Finally, Sec. IV concludes the paper.

II. THEORY

A. Nonlocal theory for thin-film systems

To determine the modes of thin-film systems, we first
outline the main equations for the electric and magnetic fields
that must be solved. We then consider the class of guided
solutions with transverse magnetic (TM) polarization. The
boundary conditions for the metal-dielectric interfaces are also
discussed.

The free-electron gas of the metals comprising the thin-film
waveguides is described by a nonlocal hydrodynamic equation
of motion.35,36 An intuitive way of describing the effect of
nonlocal response is that it serves to smear out the charges
at the surface of the metal on the scale of the Thomas-Fermi
screening length.37–39 One of the key impacts of this charge
smearing is the removal of field divergences that are known
to occur in the LRA.40–44 The hydrodynamic equation relating
the current density J(r,ω) to the electric field E(r,ω) is given
by36,40

β2
F

ω(ω + iγ )
∇ [∇ · J(r,ω)] + J(r,ω) = σ (ω)E(r,ω), (1)

where σ (ω) = iε0ω
2
p/(ω + iγ ) is the Drude conductivity

and β2
F = (3/5)v2

F is the nonlocal parameter obtained from
Thomas-Fermi theory, where vF is the Fermi velocity of the
metal. By combining Eq. (1) with Maxwell’s equations, the
general equations describing the electric field E(r,ω) in a
metal with hydrodynamic nonlocal response can be compactly
written as24,36,45

(∇2 + k2
m

)∇ × E(r,ω) = 0, (2a)(∇2 + k2
nl

)∇ · E(r,ω) = 0, (2b)

where km ≡ k0
√

εm is the usual wave vector in the metal while

knl ≡
√
ω2 + iγ ω − ω2

p/ε∞/βF is the additional longitudinal
wave vector present in a nonlocal description of the metal.
Here, k0 ≡ ω/c is the vacuum wave vector, εm ≡ ε∞(ω) −
ω2

p/(ω2 + iγ ω) is the local-response Drude permittivity in-
cluding additional frequency-dependent polarization effects
through ε∞(ω) not due to the free-electron plasma response.

At this stage, we point out that for a homogeneous
material, we may advantageously Fourier transform Eq. (1)
and Maxwell’s equations to k space. Using the Helmholtz
decomposition, we can uniquely decompose the electric
field and current density into transverse (FT · k = 0) and
longitudinal (FL × k = 0) components. The transverse εT and
longitudinal εL components of the permittivity tensor of the
homogeneous material are then determined as35

εT(ω) = εm(ω) = ε∞(ω) − ω2
p

ω(ω + iγ )
, (3a)

εL(k,ω) = ε∞(ω) − ω2
p

ω(ω + iγ ) − β2k2
, (3b)

M I M I M
w

I M I
w

x

z

y

FIG. 1. The three waveguide systems: metal-insulator (MI),
metal-insulator-metal (MIM), and insulator-metal-insulator (IMI)
along with the chosen coordinate system.

where the k dependence (which in the real-space representation
corresponds to nonlocal response) is only present in the
longitudinal component of the permittivity tensor. Just as the
influence of the electric field also at preceding times results in
the frequency dispersion of the material response, so does the
influence of the electric field also at neighboring locations
result in momentum dispersion. For the inhomogeneous
structures that we consider in this paper, i.e., MI, MIM, and
IMI, the full k-space approach is not particularly practical, due
to the breaking of symmetry along the out-of-plane direction,
and we instead opt to consider all equations in real space
initially.

The electric field in the insulator regions with permittivity
εd is described by the Helmholtz equation

(∇2 + k2
d

)
E(r,ω) = 0, (4)

where kd ≡ k0
√

εd is the wave vector in the insulator.
Once the electric field has been determined, the magnetic

field H(r,ω) can be found from Faraday’s law

H(r,ω) = 1

iωμ0
∇ × E(r,ω), (5)

and then the free-electron current density J(r,ω) in the metal
can be found as

J(r,ω) = ∇ × H(r,ω) + iωε0ε∞(ω)E(r,ω). (6)

Without loss of generality, we set the propagation direction
along the z axis and define the x axis as perpendicular to the
propagation plane, as in Fig. 1. Then the electric and magnetic
fields for TM polarization can be simplified to

E(r,ω) = [Ex(x)êx + Ez(x)êz] eikz, (7a)

H(r,ω) = Hy(x)eikz êy, (7b)

where k is the SPP propagation constant. With the definitions
in Eqs. (7), we can simplify the general expressions of Eqs. (2)
and (4)–(6) to the following component form:

(
∂2

∂x2
− κ2

nl

) [
kEz(x) − i

∂Ex(x)

∂x

]
= 0, (8a)(

∂2

∂x2
− κ2

m

) [
kEx(x) + i

∂Ez(x)

∂x

]
= 0, (8b)

Hy(x) = 1

ωμ0

[
kEx(x) + i

∂Ez(x)

∂x

]
, (8c)

Jx(x) = −ikHy(x) + iωε0ε∞Ex(x), (8d)

115401-2



NONLOCAL RESPONSE IN THIN-FILM WAVEGUIDES: . . . PHYSICAL REVIEW B 88, 115401 (2013)

which are to be solved in the metal regions, while in the
insulator regions the governing equations are(

∂2

∂x2
− κ2

d

)
Ex(x) = 0, (9a)

Ez(x) = i

k

∂Ex(x)

∂x
. (9b)

The magnetic fields in the insulator regions are also determined
using Eq. (8c). For convenience, we have defined a propagation
constant normal to the interfaces in the respective regions given
as

κ2
j ≡ k2 − k2

j for j ∈ {m,d,nl}. (10)

With Eqs. (8) and (9), solutions for the electric field,
magnetic field, and current density can be determined in the
metal and insulator regions. At the metal-dielectric interfaces,
we must connect the solutions using boundary conditions
(BCs). Maxwell’s BCs provide two of the three needed, namely
the continuity of the tangential components of the electric and
magnetic fields (Ez and Hy , respectively). In our treatment,
we neglect effects due to electron spill-out and quantum
tunneling, which unambiguously determines the third and
additional BC to be the vanishing of the normal component
of the free-electron current density (Jx).26,35,36,46 With this
assumption, we reduce our range of consideration to widths
larger than 1 nm for the MIM waveguide.47,48

B. Single metal-insulator (MI) interface

Before considering thin-film waveguides, it is instructive to
revisit the fundamental problem of SPPs propagating at a single
MI interface. The MI problem with hydrodynamic nonlocal
response in the metal has been solved by Boardman et al.,24

in the simplest of cases where interband contributions and
intraband damping were neglected. These results were recently
generalized to include such contributions,33 however, without
considering the delicate interplay between the absorption
losses and nonlocality in the metal, which we examine in
Sec. III.

The retarded nonlocal dispersion relation for a single MI
interface is exactly given as

1 = −εmκd

εdκm
− δnl, (11)

where δnl is an important nonlocal correction that will also
appear below for the more complex thin-film waveguides and
is given as

δnl = k2

κnlκm

εm − ε∞
ε∞

. (12)

We emphasize that when βF → 0, the local-response disper-
sion relation in Ref. 17 is retrieved since δnl → 0. We also
note that the k solutions of the radical equation in Eq. (11) can
be obtained analytically by the standard method for solving
radical equations through squaring, and can be represented in
terms of the solutions of a third-order polynomial.

For completeness, we also note that in the nonretarded limit
c → ∞, the nonlocal correction δnl simplifies to

δnr
nl ≡ lim

c→∞ δnl = k

κnl

εm − ε∞
ε∞

, (13)

and the dispersion relation for a single MI interface Eq. (11)
simplifies to

1 = −εm

εd
− δnr

nl . (14)

The nonretarded local-response dispersion relation is retrieved
by letting δnr

nl → 0 in Eq. (14).

C. Metal-insulator-metal (MIM)

The problem of determining the SPP modes of the MIM
waveguide can, as in the LRA, be simplified by considering the
even and odd modes separately. The symmetry considerations
apply to the electric field. The exact retarded nonlocal
dispersion relation for the fundamental, even mode is

tanh

(
κdw

2

)
= −εdκm

εmκd
(1 + δnl) , (15a)

while for the odd mode, we find

coth

(
κdw

2

)
= −εdκm

εmκd
(1 + δnl) , (15b)

where w is the width of insulator slab. These equations are in
agreement with recent results.33 In the nonretarded limit, Eqs.
(15) simplifies to

tanh

(
kw

2

)
= − εd

εm

(
1 + δnr

nl

)
, (16a)

coth

(
kw

2

)
= − εd

εm

(
1 + δnr

nl

)
. (16b)

As previously mentioned, inclusion of nonlocal response
regularizes the unphysical divergences encountered in the
LRA. This property is also preserved for the MIM waveguide,
and we may see how it comes about by examining the limit
w → 0 for the fundamental mode (which in the LRA produces
a singularity). In this regard, we may neglect retardation effects
and additionally simplify Eq. (16a) by using the small-x
expansion tanh(x) � x. This yields

k = −2εd

εm
[w − 
MIM]−1 , 
MIM = iεd(εm − ε∞)

2knlεmε∞
, (17)

where 
MIM is the nonlocal correction, which vanishes in
the local-response limit βF → 0. We emphasize that k stays
finite even in the case of w = 0 in contrast to the diverging
local-response relation22 given by Eq. (17) with 
MIM = 0.

D. Insulator-metal-insulator (IMI)

The two SPP modes of the IMI waveguide can be classified
into even and odd modes, as in the case of the MIM waveguide.
However, while the symmetry characterization applied to the
electric field for the MIM waveguide, here it is with respect
to the magnetic field.26 The nonlocal modes for the IMI
waveguide have previously been studied in the case of a
lossless metal without interband contributions.31 Here, we
generalize these results to include such contributions, which
are important in realistic waveguides. The retarded nonlocal
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dispersion relation for the odd and even modes are

coth

(
κmw

2

)
= −εmκd

εdκm
− δnl coth

(
κnlw

2

)
, (18a)

tanh

(
κmw

2

)
= −εmκd

εdκm
− δnl tanh

(
κnlw

2

)
. (18b)

We note that, in contrary to the MIM waveguide, the odd mode
Eq. (18a) is in fact the fundamental mode.

In the nonretarded limit, Eqs. (18a) and (18b) simplify to

coth

(
kw

2

)
= −εm

εd
− δnr

nl coth

(
κnlw

2

)
, (19a)

tanh

(
kw

2

)
= −εm

εd
− δnr

nl tanh

(
κnlw

2

)
. (19b)

As in the case for the MIM waveguide, we can again
examine the limit of w → 0 for the fundamental mode.
Neglecting retardation effects and using the small-x expansion
coth(x) � 1/x, we find

k = − 2εd

wεm

[
1 −

(

IMI

w

)2
]

, (20a)


IMI = 2εd

knlεm

√
εm − ε∞
εmε∞

. (20b)

Here, 
IMI is the nonlocal correction for the IMI waveguide
that vanishes for vanishing βF. Unlike the MIM waveguide,
the nonlocal correction does not regularize the diverging k

when w = 0. Due to the confinement of the electron plasma
in the IMI waveguide, as opposed to the MIM waveguide, the
regularization of the dispersion likely requires inclusion of
electron spill-out, which is not treated here, see Sec. II A.
Further elaboration on the comparison of Eqs. (20) with
Eq. (17), in the context of complementarity, is done in
Sec. III B.

III. RESULTS

The dispersion relations introduced in Sec. II are complex-
valued transcendental equations of the implicit form F (ω,k) =
0, with the propagation constant in general being a complex
number k = k′ + ik′′. Thus to determine the waveguide modes,
solutions to the dispersion relations must be found in the
complex k plane for each frequency, which in general is a
nontrivial task. Fortunately, a robust and reliable numerical
scheme suitable for determining the zeros in the complex
plane, based on the Cauchy integral formula, has been
previously developed49,50 and is employed in this work.

In the following, we focus on the free-electron properties
(i.e., ε∞ = 1) of the modes of the three different waveguides.
This allows us to rescale the dispersion relations with normal-
ized quantities, here introduced as � = ω/ωp, K = kc/ωp,
� = γ /ωp, η = βF/c, and for the IMI and MIM waveguides,
W = wωp/c. The normalized parameters � and η characterize
the losses and the strength of nonlocality in the metals,
respectively.

This section is divided into two parts: Sec. III A concerns the
interplay between metal losses and nonlocality. Here, we first
study this interplay in the simple MI waveguide that does not
contain any geometric length scales, whereafter we examine

how nonlocal effects are enhanced in confined waveguides
such as the MIM and IMI waveguides. Section III B deals
with the breaking of complementarity in the MIM and IMI
waveguides due to nonlocal response.

A. Losses and nonlocality

1. MI waveguide

Due to the absence of length scales associated with the
geometry, the MI waveguide is an ideal system to study, when
considering the interplay between losses and nonlocality of the
SPP mode. An additional benefit of studying the MI structure
is that it is not obscured by the effects of multiple interface
reflections that is present in the MIM and IMI structures, such
that only the intrinsic properties of free electrons affect the
waveguiding properties. In this section, we therefore focus
on how the presence of absorption losses in the metal, i.e., a
finite-valued �, affects the nonlocal and local retarded modes
of the MI waveguide, as described by Eq. (11) with and without
δnl, respectively.

The interplay between losses and nonlocality in the MI
waveguide is seen in Fig. 2, where we display the effect
of increasing the metal losses on the local and nonlocal
dispersion relations of the SPP mode, given by Eq. (11) with
η = 5 × 10−3. In the lossless case (� = 0), the local dispersion
relation converges towards the well-known �SP = 1/

√
2εd

limit for large K values, while the nonlocal dispersion relation
increases in frequency without bound, in agreement with
earlier results.24 However, in the presence of very weak
losses (� = 10−3) the infinite K values at the frequency �SP

in the LRA are removed and the SPP mode bends back.
This back-bending effect is a well-known textbook result,4

which occurs for any positive value for � in the LRA. The
extreme sensitivity to even minute losses in the LRA is due
to the vanishing group velocity vg = ∂ω/∂k at �SP.51 In
striking contrast, the nonlocal SPP mode [i.e., Re(K)] is robust
due to the finite group velocity vg � βF. Consequently, no
pronounced slow-light enhancement of weak losses takes place
and the nonlocal SPP mode does not bend back until the losses
of the system start to dominate. Although nonzero Im(K) is
generated for the nonlocal SPP mode for � 
= 0, the real part
of the propagation constant Re(K) remains largely unaffected.
It is also interesting to note that the behavior of Im(K),
which is related to the SPP propagation length lSPP through
lSPP = 1/[2Im(K)], changes drastically from � = 10−3 to
10−2. For � = 10−3, the nonlocal SPP mode propagates longer
than the local one in the frequency region � > �SP, while the
opposite result is seen for � = 10−2. At the same time, Re(K)
for the nonlocal mode is unchanged and substantially larger
than in the LRA, resulting in shorter wavelengths and thereby
stronger confinement of the SPP mode at the MI surface.
Not until � = 10−1, which is significantly larger than the
nonlocal parameter η, do the losses in the metal dominate
over nonlocality and force the nonlocal SPP mode to bend
back. At such losses, the local and nonlocal models result
in almost identical solutions. Intuitively, we may understand
this result by recalling that the influence of nonlocal effects is
related to the free movement of the electron gas, which can
be significantly impaired in the case of large losses, i.e., high
collision frequencies.
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FIG. 2. (Color online) Local and nonlocal complex dispersion relations of the SPP mode of the MI waveguide, given by Eq. (11), with
εd = 1 and metal losses increasing from � = 0 to 10−1. Local results are shown in red, while nonlocal are shown in green. Solid lines display
the real part of the propagation constant, Re(K), while the dashed lines display the imaginary part of the propagation constant, Im(K). The
value η = 5 × 10−3 suitable for noble metals has been used.

The transition of the nonlocal mode from being dominated
primarily by nonlocality to being dominated by losses (i.e.,
� = 10−2 → 10−1 in Fig. 2) is investigated in more detail in
Fig. 3. To explain the transition, we must also consider the
presence of the high-energy branch known as the Brewster
mode52 (for clarity not shown in Fig. 2) and not only the SPP
mode. The Brewster mode, which is also a solution emerging
from Eq. (11), does not correspond to a true surface wave,
since, in the lossless case, the wave is unbound and radiative.
In fact, the Brewster mode corresponds to a zero-valued
reflection coefficient, which for a lossless Drude metal can
be satisfied in the transparency window � > 1. In Fig. 3,
we see the merging of two separated modes, plotted as red
and blue lines. For the lowest loss of log(�) = −1.7, the red
line corresponds to the continuation of the Brewster mode
to frequencies lower than � = 1 (see inset of Fig. 3), which
in the lossless case would be a forbidden region (i.e., only
purely lossy solutions exist).52 The blue line represents the

standard, low-loss, nonlocal SPP mode. As the losses increase
[log(�) = −1.6 → −1.575], the real parts of the dispersion
of the Brewster mode and SPP mode begin to merge.53

At approximately log(�) = −1.55, the mode-appearance has
qualitatively changed, with the appearance of the usual well-
known loss-dominated SPP mode (in blue), which is also
present in LRA, as well as the emergence of a relatively
flat-band, nonlocal surface plasmon mode (in red) near the
surface plasmon resonance �SP.35 We notice that the nonlocal
flat-band mode is significantly damped in comparison with the
usual SPP mode, and that the damping increases drastically
with increased material loss. In contrast, the usual SPP
mode is not nearly so sensitive to the small change in
material loss from log(�) = −1.55 to −1.5. A similarly abrupt
qualitative merging of two modes was previously studied
in Ref. 53 in the context of mode-interaction in spatially
separated waveguiding structures in a local description, by
consideration of complex-frequency poles of the dispersion

0 3
0

1.5

0 3
0

1.5

0 3
0

1.5

0 3
0

1.5

0 3
0

1.5

FIG. 3. (Color online) Nonlocal complex dispersion relations of the SPP and Brewster modes of the MI waveguide, both attained from
solution of Eq. (11), with εd = 1 and metal losses increasing from � = 10−1.7 to 10−1.5. Solid lines display the real part of the propagation
constant, Re(K), while the dashed lines display the imaginary part of the propagation constant, Im(K). The insets show zoom-outs of the
real dispersion relation and illustrate more clearly the Brewster mode. The transition and mode evolution from nonlocality to loss-dominated
behavior is explored. The value η = 5 × 10−3 suitable for noble metals has been used.
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equation, migrating across the real-frequency axis for increas-
ing loss.

We now present a simple analysis to understand when
the metal losses dominate nonlocal effects in the MI waveg-
uide. The back-bending occurs at the frequency �SP, where the
propagation constant is significantly larger than the free-space
propagation constant. We can therefore justify to examine the
simpler nonretarded dispersion relation given by Eq. (14)
instead of the retarded dispersion relation [see Eq. (11)].
From Eq. (14), we see that nonlocality becomes negligible
when |δnr

nl | � |1 + εm/εd|. Evaluating this condition at the SPP
frequency with εd = 1 (as in Fig. 2) for small � leads to the
simple condition for loss-dominated behavior

� � η, (21)

which is consistent with our numerical analysis. We point out
that the loss parameter � is just one of several options for
introducing an imaginary part to the metal permittivity. An
alternative approach to introducing losses is by simply adding
a constant imaginary part to the lossless free-electron Drude
model. In either case, the metal permittivity becomes complex-
valued. To bridge these different approaches, we can relate
the condition in Eq. (21) to the imaginary part of the metal
permittivity by noting that Im[εm(� = �SP)] = 2

√
2�/(1 +

2�2) in which case Eq. (21) can be rewritten as

Im(εm) � vF

c
. (22)

In noble metals, the nonlocal parameter is of the order
vF/c ≈ 10−3 and the losses are of the order Im(εm) ≈ 100,
which in general means that metal losses largely dominate
nonlocal effects in the SPP mode of the MI waveguide.54 In
other words, in the MI waveguide, the spatial dispersion of
the metal becomes invisible to the SPP mode in the limit of
infinitely high absorption losses.

2. MIM and IMI waveguides

Figure 4 displays the effect of increasing losses on nonlo-
cality for the fundamental modes of the MIM (first row) and
IMI waveguides (second row) given by Eqs. (15a) and (18a),
respectively. The normalized width of the waveguides is set
to W = 0.25, which corresponds to a width of w ≈ 5nm for
Ag and Au (ωp ≈ 9 eV). Considering the MIM waveguide
first, we see that in the lossless case nonlocal response within
the hydrodynamic model predicts a blueshift compared to the
LRA (for a fixed K). As the losses in the metal increase
(� = 10−2), the local dispersion relation [Re(K)] immediately
bends back and the propagation length is significantly shorter
than for the nonlocal case. Both of these effects are similar
to those observed for the MI waveguide. When � = 10−1 the
nonlocal dispersion relation also bends back and the nonlocal
propagation length becomes comparable to LRA, albeit for
� < �SP nonlocal response gives rise to longer propagation
lengths than in the LRA. Although the nonlocal dispersion
relation bends back at these large losses, nonlocal response
still reveals a blueshift and larger values of Re(K) than in the
LRA.

The trend is very similar for the IMI waveguide (see second
row of Fig. 4). In fact, in the LRA, the difference between
the fundamental modes of the IMI and MIM waveguides is

FIG. 4. (Color online) Local and nonlocal complex dispersion
relations of the fundamental mode of the MIM (first row) and IMI
(second row) waveguides, given by Eqs. (15a) and (18a), respectively,
with W = 0.25, εd = 1, η = 5 × 10−3, and metal losses increasing
from � = 0 to 10−1. Local results are shown in red, while nonlocal are
shown in green. Solid lines display the real part of the propagation
constant Re(K), while the dashed lines display the imaginary part
of the propagation constant Im(K). The black lines represent the
approximate nonlocal dispersion relations given by Eqs. (17) and
(20) for the MIM and IMI waveguides, respectively.

practically negligible. As for the nonlocal case, the biggest
difference between the IMI and MIM waveguides is seen for
� = 10−1, where nonlocal response shows a slight increase in
the maximum values of both the Re(K) and Im(K) for the IMI
waveguide.

In Fig. 4, we have also examined the validity of the
approximate relations for the nonlocal fundamental modes of
the MIM and IMI waveguides given by Eqs. (17) and (20),
respectively. They are plotted as black lines for the lossless
case. We see that the approximate relations are in excellent
agreement with the exact calculations when KW � 1.

The important feature for both waveguides is that even
for large losses (of order � = 10−1) the nonlocal and local
dispersion relations are different, in stark contrast to the MI
waveguide. The nonlocal dispersion relations show larger
values of Re(K) than in the LRA for both waveguides. Thus
the limitations and undesired properties of metal losses are
counteracted by nonlocality, which gives rise to a shorter
wavelength of the SPP mode and thereby an increase of the
mode confinement. These interesting features arise due to
the multiple reflections present in the IMI/MIM waveguides,
introducing a new length scale given by the scaled width
of the slab W . The importance of nonlocal effects increases
with decreasing width (or, in general, size),36 and it is clear
from the nonlocal dispersion relations for the IMI and MIM
waveguides that the strength of nonlocality is different in
these two waveguide structures, as also observed in Fig. 4.
This difference arises due to the presence of confined nonlocal
pressure waves, which are naturally only present in the IMI
waveguide.
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B. Breaking of complementarity due to nonlocal response

It is well known that the LRA dispersion relations for the
SPP modes of the MIM and IMI waveguides are identical in
the nonretarded limit,4,18 which is also clear from comparing
Eqs. (16) to Eqs. (19) with δnr

nl = 0. This property of identical
surface modes in complementary waveguide structures, such
as the MIM and IMI waveguides, is broken when retardation
effects are included in the LRA, which become important for
SPP propagation values K close to the light line K0 = �.18

Here, we show explicitly that nonlocal response also breaks
the symmetry by considering the SPP modes of the MIM
and IMI waveguides in the nonretarded limit, i.e., in the limit
where K � K0. In the following, we divide the discussion
of breaking of complementarity into two parts: one due to
retardation effects alone in the LRA, and one solely due to
nonlocal response in the nonretarded limit. For the latter, we
consider the nonretarded limit to ensure that the breaking of
complementarity is due to nonlocal response rather than being
attributed to retardation.

Breaking of complementarity is illustrated in Fig. 5.
In Fig. 5(a), we plot the SPP modes of the MIM and

FIG. 5. (Color online) Plots of both surface modes of the lossless
IMI and MIM waveguides (a) with and without retardation in the
LRA and (b) with and without nonlocal response (η = 5 × 10−3) in
the nonretarded limit. The light line is shown in grey. The widths of
the waveguides are (a) W = 1 and (b) 0.25.

IMI waveguides only in the LRA, displaying the effect of
retardation. First, we note, as already mentioned, that the SPP
modes of the MIM and IMI modes in the nonretarded limit
are completely identical and overlap in Fig. 5(a) (black lines).
When retardation effects are included the MIM (green lines)
and IMI (red lines) surface modes are no longer identical for K

values close to the light line. The main consequence of properly
taking retardation into account is that no guided modes exist
above the light line (grey line). In Fig. 5(a), we clearly see
that the retarded modes terminate at the light line, unlike the
nonretarded modes.

Figure 5(b) shows the nonlocal and local SPP modes of the
MIM and IMI waveguides calculated in the nonretarded limit.
We see clearly that nonlocal response distinguishes between
the MIM and IMI waveguide modes, for both of the two
surface modes. This effect was observed upon earlier,55 but
not elaborated on. As the propagation constant increases, both
of the nonlocal modes of both waveguides converge towards
the hydrodynamic nonlocal large-K limit K = �/η, as for the
MI waveguide,24,26 and become indistinguishable. Finally, we
also note the characteristic shift to higher frequencies of both
nonlocal SPP modes compared to the LRA.

The breaking of the complementarity property of the MIM
and IMI waveguides due to nonlocal response can of course
be understood from the fact that the dispersion relations for
the two waveguides are different even in the nonretarded limit,
as seen by comparison of Eqs. (16) with Eqs. (19). We can
quantify this difference for the fundamental mode of the two
structures by considering the difference 
k = kMIM − kIMI,
where kMIM and kIMI are given by the approximate relations in
Eqs. (17) and (20), respectively. Using a Padé approximation,
we find to the lowest order in w that


k � −2εd

εm


2
IMI

w3
. (23)

From Eq. (23), we clearly see that in the absence of nonlocal
response (
IMI = 0), the difference between the fundamental
modes of the MIM and IMI waveguides vanishes. Additionally,
we observe that the dispersion-difference depends strongly
on the width. At very narrow widths, we therefore expect a
strong breaking of complementarity. Thus, in the presence
of nonlocality, a thin film of electron gas embedded in an
insulator behaves qualitatively different from a thin insulator
gap embedded in an electron gas.

In an intuitive, but simplified picture of nonlocality, one
could be inclined to attribute the complementarity breaking
to the nonlocal smearing of the induced surface charge. In
the nonlocal hydrodynamic model the induced surface charge
is smeared over a length scale comparable to the Thomas-
Fermi screening length, leading to an effective width increase
(decrease) for the MIM (IMI) waveguide. In this picture, the
dispersion relations of the nonlocal IMI and MIM SPP modes
should then be below and above the local dispersion relations,
respectively, which is not the case, see Fig. 5(b). In fact, the
nonlocal IMI and MIM SPP modes are always above the
local results, discrediting the simple interpretation of nonlocal
response as local response with effective size parameters.

The complementarity breaking originates from the inclu-
sion of pressure waves in the description of a metal with
nonlocal response. More precisely, the breaking is due to the
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confinement of these pressure waves in the IMI waveguide,
which becomes more important for narrower widths. This
confinement results in a significantly different description of
the IMI waveguide compared to the MIM waveguide, where
the pressure waves are not confined. For this reason, nonlocal
effects are also stronger in the IMI waveguide, as can be
seen from the presence of only the nonlocal IMI correction
in Eq. (23). In contrast, in the nonretarded LRA, the absence
of both retardation and the pressure waves leads to a faulty
identical treatment of the MIM and IMI waveguides.

IV. CONCLUSIONS

The effects of nonlocal response, described by a linearized
hydrodynamic model, on the waveguiding properties of the
MI, MIM, and IMI waveguides have been investigated. The
corresponding dispersion relations for the three waveguides
have been derived, taking into account nonlocality, interband
transitions, and retardation. The intriguing transition from
nonlocal- to loss-dominated waveguiding behavior, which has
not previously been studied extensively, was examined for
the MI system, demonstrating that nonlocal response can
counteract the effects of low metal losses. In the LRA, the
presence of even minute losses drastically alters the dispersion
relation of the SPP mode due the slow-light regime at the
surface plasmon frequency �SP. For larger losses, the effects
of nonlocality in the MI structure is less important, and
the difference between local and nonlocal response becomes
negligible. In general, for the MI structure, the impact of metal

losses is much more pronounced than that of nonlocal effects,
partially due to the high losses in metals and partially due to
the absence of any geometric length scale in the MI structure.

Conversely, for the MIM and IMI structures, the presence
of an additional length scale, given by the geometric width of
the waveguide, yields a comparative boost to the effect of
nonlocality vis-à-vis the effect of metal losses. In turn,
the increased strength of nonlocality gives rise to larger
propagation constants and thereby an increased plasmonic
confinement of the SPP modes. Nonlocal effects are shown to
be slightly stronger in the IMI waveguide due to the presence
of confined longitudinal pressure waves, which are absent in
the MIM structure.

Lastly, we also examined the complementarity property
of the MIM and IMI waveguides in the context of Babinet’s
principle. In the nonretarded limit of the LRA, the waveguide
modes of the MIM and IMI modes are known to be identical.
When retardation is taken into account, this symmetry is
broken. In addition, we have shown that in the nonretarded
limit the symmetry is also broken by the inclusion of nonlocal
effects due to the presence of nonlocal pressure waves.
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