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Chapter 1

Introduction

Bj�rn Petersen
DTU Management Engineering, Technical University of Denmark

1 Motivation

Operation Research (OR) is an interdisciplinary branch of applied mathematics and formal
science that uses advanced analytical methods such as mathematical modeling, statistical
analysis, and mathematical optimization to arrive at optim al or near-optimal solutions to
complex decision making problems. OR is often concerned with determining the maximum
(of pro�t, performance, or yield) or minimum (of loss, risk, or cost) of some real-world ob-
jective, and strives to support the decision making by providing a number of tools such as
mathematical modeling and mathematical programming. Mathematical modeling is used to
formulate problems in a concrete way using mathematical equations, whereas mathematical
programming covers solution methods for the mathematical formulations. Even though this
approach by its nature often has an exponential running time, it has still been very successful,
partially due to increased computing power but primarily due to algorithmic improvements.
Optimization refers to choosing the best element from a set of available alternatives.

OR is used in many di�erent disciplines including transportation (vehicles, trains, air-
planes, ships), production, telecommunication, and �nance. In this thesis the focus is on
transportation and more concretely on vehicle routing and shortest path problems. Vehicle
routing problems, speci�cally the Capacitated Vehicle Routing Problem (CVRP) and the Ve-
hicle Routing Problem with Time Windows (VRPTW), are intere sting because they contain
the structure of what makes this type of problems hard to solve. This has historically made
CVRP and VRPTW the test ground for new techniques and developments for many other
problems.

Through a focus on shortest paths this thesis will mainly look at how to solve vehicle
routing problems when they get hard to solve. The di�culty of these problems grows when
the solution space grows, e.g., VRPTW instances with loose time windows and large capacities
where the possibility of long routes (measured in number of customers) exists. Some instances
with these characteristics with as little as 100 customers cannot be solved at present.
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Chapter 1

1.1 Mathematical Modeling and Programming

Mathematical modeling is de�ned by a set of variables, used to represent decisions in a
problem, and a set of equations (or inequalities) denoted constraints, used to limit the amount
of valid decisions. The constraints de�ne the feasible solution space of a problem, i.e., a
polytope in a multi-dimensional space that contains all valid solutions to the problem. The
objective is a function of the variables that points to the solution(s) in the feasible solution
space where the objective function reaches the global optimum.

When the variables are continuous and the constraints and the objective function are
linear, the problem is called a linear program (LP). If integrality is imposed on the variables,
it is denoted an integer program (IP), and if both types of variables exist, a mixed integer
program (MIP) is obtained. In this thesis, problems of the two latter kinds are sought solved,
and in that process these problems are relaxed into LP problems.

Many problems can be formulated as (M)IPs and various solution methods have received
a lot of attention during the years. The di�erent solution met hods can roughly be divided
into three categories:

� Exact algorithms �nd solutions that are proven optimal, i.e., no other soluti on exists
with a better objective function value.

� Heuristics give no guaranty for the quality of the solution value. They can be useful in
cases where running time is an issue and it is not imperative that an optimal solution
is found.

� Approximation algorithms have bounds on how much their solution can di�er from the
optimal solution.

Due to the P ?= NP issues exact solution methods mostly have exponential running time.
Nonetheless, the study of exact methods often give insight into the problem behavior that
may otherwise be hard to obtain. Furthermore, the improvements of exact methods have
pushed the boundaries for what can be solved in reasonable time. Even though heuristic
solution methods can speed up exact solution methods the focus in this thesis is solely on
exact algorithms.

1.2 Exact Methods

Many exact methods are based on the Branch-and-Bound paradigm, where a relaxation of the
problem is used in each node of the branch tree, i.e., an enlarged solution space is considered.
If the gap between the lower (LB) and upper bounds (UB) for some node is non-positive
it is possible to fathom the sub-tree rooted in that node. Assuming a minimizing objective
function, one way of calculating a lower bound is by solving the LP relaxation of the (M)IP
de�ning the problem, i.e., the enlarged solution space allows for integer variables taking on
continuous values.

Raising the LB or lowering the UB will make the gap smaller. Still assuming a minimizing
objective function, a well studied way to raise the lower bound is by the use of cutting planes.
Cutting planes are inequalities that cut o� some of the current fractional solution, i.e., the
non-integer solution obtained by the LP relaxation. For the raised LB to be a valid LB the
inequalities may not cut o� any feasible solutions. When incorporating cutting planes into
the Branch-and-Bound paradigm a Branch-and-Cut algorithm is obtained.
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Introduction

Some problem formulations may have special structure, i.e., there are variable sets where
some constraints are non-overlapping, or a sub-set of constraints is in itself a problem with an
e�ective solution algorithm. In these cases it is possible toapply Dantzig-Wolfe decomposition
to divide the problem into smaller subproblems that have their solutions combined in a master
problem, see Dantzig and Wolfe [2]. This approach is known ascolumn generation. If the
subproblems are solved iteratively (until the master problem objective value cannot improve
further) it is called delayed column generation. When incorporating decomposition into the
Branch-and-Bound paradigm a Branch-and-Price algorithm is obtained. The subproblems
are often problem speci�c, e.g., shortest path problems which is the focus of this thesis.

It is possible to combine cutting planes with column generation. This is denoted Branch-
Cut-and-Price. However, adding cuts is not as straight forward as in the Branch-and-Cut
algorithms. The cuts can be divided into two categories:

� Cuts expressed in the original formulation.

� Cuts expressed in the master problem formulation.

The �rst alternative can be thought of as having the cuts part of the model before decom-
position and thereby handling them as any other constraint in the model would be handled.
This will in most cases mean that there are some changes in thecosts associated with the
subproblem but no structural changes, i.e., the same special purpose algorithm can be used
without changes to solve the subproblems.

The second alternative may have complicating repercussions for the subproblems, since
cuts on master variables do not necessarily map back to the original model, and thus the
special structure of the subproblems. The altered subproblems may contain non-linear ob-
jective functions and it may be necessary to add additional variables. This may change the
complexity of the subproblems and can result in much higher computational e�orts being
needed. This case is less studied both theoretically and experimentally and is in the context
of shortest paths the main focus of this thesis.

2 Goals

The focus of this thesis is on shortest path problems and how to solve them in the context
of column and cut generation algorithms, i.e., with negative weights and extra complicating
issues to handle costs not directly mappable to the edge weights. The main goals can be
summarized as:

� Investigate how to solve shortest path problems in the presence of negative cycles and
resource constraints.

� In a column generation context to investigate how to handle e�ects of cutting planes
derived from the master problem formulation.

� Investigate the impact of the cutting planes on the subproblems complexity, on the
quality of the lower bounds for the master problem, and the overall running time of the
Branch-Cut-and-Price algorithm.

� Explore alternative reformulations to target di�cult part of problems.
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Shortest path problems are present many places, both on its own and as subproblems. Accord-
ing to Dror [3] solving the elementary shortest path problemon a graph containing negative
cost cycles is stronglyNP -hard.

Many problems decompose into a set partitioning master problem and some kind of short-
est path problem. Cuts valid for the problem before the decomposition are often directly
applicable to the decomposed model. This is in contradiction to cuts valid for the set par-
titioning problem which often require some extra handling in the shortest path subproblem.
Very e�cient cuts are known for the set partitioning polytop e including some of the general
purpose cut family known as Chv�atal-Gomory cuts.

Cuts valid for the set partition polytope are incorporated into the existing subproblem
algorithms by modifying these special purpose algorithms.The increased complexity (and
thereby potentially increased running times) of the subproblems is a trade-o� with the quality
of the lower bound obtained in the master problem. The running time saved by exploring
fewer branch nodes due to the improved lower bound is hopefully overshadowing the increased
e�ort put in solving the subproblems.

Solving the shortest path problems is often the bottleneck of decomposition algorithms,
especially for hard instances. Alternative decompositions target this behavior by moving some
of the complexity from the pricing stage to the master problem.

3 Contribution

The main contributions of the thesis, summarized in the points below, is to show

� how to �nd resource constrained shortest paths by the use of aBranch-and-Cut algo-
rithm.

� how alternative reformulations can be obtained through the use of Partial Paths, so
that movement of complexity between master and pricing problem is facilitated.

� theoretically and experimentally how to apply the Chv�atal -Gomory cuts of rank 1 known
from Branch-and-Cut algorithms for general MIPs to the vehicle routing problem with
time windows. Furthermore, to show how to incorporate this into a dynamic program-
ming algorithm for the subproblem. The approach appears very successful and it is
possible to solve several previously unsolved instances from the benchmarks of Solomon
[7].

A more detailed description of the contributions of each chapter can be found in the following
reading guide in Section 4.

4 Reading Guide

This thesis is divided into four parts. The �rst part consist s of this introductory chapter and
a chapter on solving Resource Contrained Shortest Paths Problems by Labeling Algorithm.
The second part is the main contribution consisting of the most relevant papers produced.
The third part sums up the thesis. Finally, the fourth part ac ts as an appendix and presents
contributions that are not within the primary scope of the th esis, but have been performed
during the Ph.D. course.
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In the following is a chapter-wise guide for reading this thesis.

Chapter 2: Resource Contrained Shortest Paths Problems Solved by a Labeling Algorithm.
The chapter presents a general labeling algorithm for solving various resource constrained
shortest path problems. A parallelized version of the algorithm is introduced and some brief
computational results are presented. When labeling algorithms are applied throughout this
thesis this is the algorithm used.

4.1 Part II: Shortest Paths and Vehicle Routing

This part concerns the main topic of the thesis.

Chapter 3: Subset-Row Inequalities Applied to the Vehicle Routing Problem with Time Win-
dows. The paper presents how a subset of the Chv�atal-Gomory cutsmay be applied to the
master problem of a decomposition of the vehicle routing problem with time windows. It
is shown how each cut in the master problem increases the complexity of the subproblem
and how this is handled in a dynamic programming algorithm. Experimental results were
carried out on the Solomon instances and it was possible so solve several previously unsolved
instances by this new approach. Furthermore, experiments showed that the cuts improved
the lower bounds to an extent that signi�cantly reduced the size of the branch tree. The
paper is co-authored with Mads Jepsen, Simon Spoorendonk, and David Pisinger and has
been published in the journal Operation Research, see Jepsen et al. [5].

Chapter 4: Chv�atal-Gomory Rank 1 Cuts used in a Dantzig-Wolfe Decomposition of the Vehi-
cle Routing Problem with Time Windows. This paper is an extension of the work described in
Jepsen et al. [5], and shows how any Ch�atal-Gomory rank 1 cutcan be applied to the vehicle
routing problem with time windows. Experimental results show that it was possible to solve
even more instances without branching. However, the cut separation times were substantial.
The work is co-authored with David Pisinger and Simon Spoorendonk and has been published
as a chapter in a book on recent advances within vehicle routing problems, see the chapter
by Petersen et al. [6] in the book edited by Golden et al. [4].

Chapter 5: Branch-and-Cut Algorithm for the Elementary Shortest Path Problem with a Ca-
pacity Constraint. Elementary shortest path problems with resource constraints occur as a
subproblem in many decompositions. This paper presents a very e�cient Branch-and-Cut
algorithm that regards a single capacity constraint. This is joint work with Mads Jepsen and
Simon Spoorendonk. The paper has been submitted for publication.

Chapter 6: Partial Path Column Generation for the Vehicle Routing Problem. This presents
a column generation algorithm for the Capacitated Vehicle Routing Problem (CVRP) and
the Vehicle Routing Problem with Time Windows (VRPTW). This is joint work with Mads
Jepsen and David Pisinger. The paper has been submitted for publication.

Chapter 7: Optimal Routing with Failure Independent Path Protection. This paper presents
a practical application of �nding shortest paths in the tele communication industry. The
problem consists of �nding a collection of paths in a telecommunication network that covers
a given bandwidth demand and follows a certain backup policy. Experimental results show
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that the implemented backup strategy gives signi�cant bandwidth savings. The paper is co-
authored with Thomas K. Stidsen, Simon Spoorendonk, MartinZachariasen, and Kasper B.
Rasmussen and has been published in the journal Networks, see Stidsen et al. [8].

4.2 Part III: Conclusion

This part of the thesis concludes and summarizes on the work presented in Part II.

Chapter 8: Conclusion. This chapter contains the concluding remarks and discussion of po-
tential directions for future research.

Chapter 9: Summary in Danish. This chapter contains a Danish summary of the thesis.

4.3 Part IV: Other Contributions

This part of the thesis presents contributions that are not within the primary scope of the
thesis, but have been performed during the Ph.D. course.

Chapter 10: The Simultaneous Vehicle Scheduling and Passenger Service Problem. Passen-
gers using public transport systems often experience waiting times when transferring between
two scheduled services. This paper propose a planning approach which seeks to obtain a
favorable trade-o� between the two contrasting objectives; passenger service and operating
cost, by modifying the timetable. The planning approach is referred to as the Simultaneous
Vehicle Scheduling and Passenger Service Problem (SVSPSP). The paper is co-authored with
Hanne L. Petersen, Allan Larsen, Oli. B. G. Madsen, and Stefan R�pke, and has been sub-
mitted for publication.

Chapter 11: The Multi-Commodity k-splittable Maximum Flow Problem. The Multi-Commodity
k-splittable Maximum Flow Problem consists of routing as much 
ow as possible through a
capacitated network so that each commodity uses at mostk paths and the capacities are
satis�ed. The problem is solved to optimality through Branc h-and-Price. This is joint work
with Mette Gamst. The paper has been submitted for publication.

Chapter 12: Partial Path Column Generation for the ElementaryShortest Path Problem with
Resource Constraints. As just noted previously, elementary shortest path problems with re-
source constraints occur as a subproblem in many decompositions. This paper introduces a
decomposition of the Elementary Shortest Path Problem with Resource Constraints (ESP-
PRC), where the path is combined by smaller sub-paths. Computational results by comparing
di�erent approaches for the decomposition and comparing thebest of these with existing al-
gorithms are shown. It is also shown that the algorithm for many instances outperforms a
bidirectional labeling algorithm. This is joint work with M ads Jepsen. The paper has been
published as an extended abstract at INOC 2009.

Chapter 13: Partial Path Column Generation for the Vehicle Routing Problem with Time
Windows. This paper is related to the work described in Chapter 6 and presents a column
generation algorithm for the Vehicle Routing Problem with T ime Windows (VRPTW). The
traditionally elementary route-columns are relaxed into partial paths, i.e., not necessarily
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starting and ending in the depot. This way, the length of the partial path can be bounded
and a better control of the size of the solution space for the pricing problem can be obtained.
This is joint work with Mads Jepsen. The paper has been published as an extended abstract
at INOC 2009.

Chapter 14: The Vehicle Routing Problem Solved by Bounding andEnumeration of Partial
Paths. This paper is extended work of Chapter 6, and is inspired by work described by Bal-
dacci et al. [1] where columns with potentially negative reduced cost are enumerated after
good upper and lower bounds are found. This is joint work withMads Jepsen. The paper
has been published as an extended abstract at Tristan 2010.

Chapter 15: A solution approach to the ROADEF/EURO 2010 challenge based on Benders
Decomposition. The French operations research society, Recherche Op�erationnelle et d'Aide
�a la D�ecision ROADEF, put forth a challenge to schedule and plan energy production in the
French energy sector. An approach based on Bender's Decomposition has been developed.
The paper is co-authored with Richard Lusby and Laurent F. Muller.
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Chapter 2

Resource Contrained Shortest Paths
Problems Solved by a Labeling Al-
gorithm

Bj�rn Petersen
DTU Management Engineering, Technical University of Denmark

1 Introduction

The Shortest Path Problem with Resource Constraints (SPPRC) can be stated as: Let
G(V; E) with nodes V and edgesE be a weighted directed graph, and letR be a set of
resources. For each edgee 2 E and resourcer 2 R three parameters are given: A lower
limit ar (e) on the accumulation of resourcer when traversing edgee 2 E; An upper limit
br (e) on the accumulation of resourcer when traversing edgee 2 E; and an amount cr (e) of
resourcer consumed by traversing edgee 2 E. In general cr (e) can be a function and can also
be dependent on other resources, e.g.,cr (e; r1; r2) : r1; r2 2 R, but will for ease of notation
be denotedcr (e) throughout this chapter. The objective is to �nd a minimum c ost path P,
i.e., minimize the cost resource �c, from a source nodeo 2 V to a destination node d 2 V ,
where the accumulated resources ofP satisfy the limits for all resources r 2 R. Without
loss of generality it is assumed that the limits must be satis�ed at the start of each edge e,
i.e., beforecr (e) has been consumed. It is noted that equivalent upper and lower limits and
consumptions on the nodes can be \pushed" onto the edges, e.g., the outgoing edges of a
node.

The Shortest Path Problem with Resource Constraints andk-cycle Elimination ( k-cyc-
SPPRC) can be stated as the SPPRC but with an additional constraint that the path is k-cycle
free. In k-cycle free paths, cycles of sizek or smaller are not allowed, i.e., paths containing
node sequence (: : : ; v0; v1; : : : ; vk� 1; v0; : : :) are forbidden. The Elementary Shortest Path
Problem with Resource Constraints (ESPPRC) can be stated asan SPPRC with an additional
constraint that path P is cycle free, i.e., no nodev 2 V is in P more than once. This is
essentially the same as ak-cyc-SPPRC with k = 1 . Relaxing the ESPPRC so that all nodes
do not have to be elementary gives rise to the Partial Elementary Shortest Path Problem with
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Chapter 2

Resource Constraints (PESPPRC), where only a subsetS � V of the nodes are not allowed
to be in the path more than once. Finally, the integration of k-cyc-SPPRC and PESPPRC
demands that the nodes inS � V are not allowed to be in the path more than once at the
same time as none of the other nodes�S = V nS among themselves forms a cycle of sizek
or smaller. That is, paths containing node sequence (: : : ; v0; e0; v1; e1; : : : ; vk� 1; ek� 1; v0; : : :)
where vi 2 �S ^ ei � S [ ; : 0 � i � k � 1 are not allowed.

Dror [8] showed that the ESPPRC is stronglyNP -hard, hence a relaxation of the ESPPRC
was used as the pricing problem in early BCP algorithms. The Shortest Path Problem
with Resource Constraints (SPPRC), �rst named so by Desrochers [6], can be solved in
pseudo-polynomial time, e.g., by use of labeling algorithms. Christo�des et al. [4] denoted
the SPPRC solutions asq-routes when only a single capacity resource is present. To improve
lower bounds of the master problem Desrochers et al. [7] used2-cycle elimination which was
later extended by Irnich and Villeneuve [13] to k-cycle elimination (k-cyc-SPPRC), still with
pseudo-polynomial running time.

Beasley and Christo�des [1] proposed to solve the ESPPRC using Lagrangian relaxation.
However, recently labeling algorithms have become the mostpopular approach to solve the
ESPPRC, see e.g., Dumitrescu [9] and Feillet et al. [10]. When solving the ESPPRC with a
labeling algorithm a binary resource for each node is added which increases the complexity of
the algorithm compared to solving the SPPRC or thek-cyc-SPPRC. Righini and Salani [17]
developed a labeling algorithm using the idea of Dijkstra'sbi-directional shortest path algo-
rithm that expands both forward from the source nodeo and backward from the destination
node d and connects paths in the middle, thereby potentially reducing the running time of
the algorithm. Furthermore, Righini and Salani [16] and Boland et al. [2] proposed to solve
ESPPRC by use of a decremental state space algorithm that iteratively solves a SPPRC by
applying resources forcing nodes to be visited at most once.Recently Chabrier [3], Danna and
Le Pape [5], and Salani [18] successfully solved several previously unsolved instances of the
VRPTW from the benchmarks of Solomon [19] using a labeling algorithm for the ESPPRC.

The chapter is outlined as follows: In Section 2 a quick introduction to the concepts of
labeling algorithms as well as a description of how they are applied to general shortest paths
are given. Section 3 describes how to make the search for shortest paths bidirectional and
a proof of correctness is presented. Section 4 introduces a parallel labeling algorithm. In
Section 5 brief computational results are shown. Finally, Section 6 contains some concluding
remarks.

2 Labeling Algorithm

Several articles covering the basics of solving shortest path problems by use of labeling al-
gorithms already exist, so it is beyond the scope of this chapter to go into these details.
However, a short introduction to settle the notation will be given. For a detailed description
see e.g. Irnich [12].

The central part of the algorithm is the use of labels which represent partial paths rooted
at node o. Each label has associated a set of attributes:

� A node to which it belongs �v 2 V

� A pointer to the label of the parent node p

12
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� The accumulated consumption of each resourcer 2 R (including the cost resource �c)

� An ordered set of lastk � 1 visited nodes� � �S

Thus, a label L with �v(L ) = v represents a partial path from nodeo to node v and all the
accumulated resources along the path. We will usef (L ) to refer to attribute f of a label. E.g.
r (L ) refers to the accumulated consumption of resourcer in label L . The parent p(L ) of label
L is the label L p that was extended to createL . L p is recursively used to �nd the path P(L )
that label L represents.V (P(L )) (or shorthand V(L)) is the multiset of the predecessors and
E(P(L )) (or shorthand E(L)) are the edges onP. The attributes r and � are not strictly
necessary and are only present for notational and computational reasons, they can always be
computed by following the chain of parent labelsL p; L p� 1; :::; L o back to the starting node o.

In the following it is assumed that all resources are boundedstrongly from above, and
weakly from below, i.e., if the current resource accumulation is below the lower limit on a
given edgee, it is allowed to �ll up the resource to the lower limit, e.g., waiting for a time
window to open. This means that two consecutive labelsL u and L v related by an edge
e = ( u; v), i.e., L u is extended and createsL v , where �v(L u) = u and �v(L v) = v, must satisfy

r (L v) � br (e) 8r 2 R (1)

r (L v) = max f r (L u) + cr (e); ar (e)g 8r 2 R (2)

v 6= w 8w 2 � (L u) (3)

Here (1) demands that L v satis�es the upper limit of resource r corresponding to edgee =
(u; v), while (2) states that resourcer at label L v corresponds to the resource consumption at
label L u plus the amount consumed by traversing edgee, respecting the lower limit on edge
e and (3) ensures no cycles of size smaller thank.

The concept of labeling algorithms is to iteratively extend labels (according to (1){(3)) in
the following way, until there are no more labels left. When alabel has been extended it, is
considered treated:

Labeling (G; o; d)

1 L init = First-Label( o)
2 PQ.enqueue( L init )
3 while PQ 6= ;
4 Remove-Dominated (PQ)
5 L = PQ.dequeue()
6 for each nodev 2 Extendables (L ) // Nodes to which L can be extended
7 L v = Extend-Label( L; v )
8 if �v(L v) = d
9 Store-Solution( L v; sol)

10 else PQ.enqueue( L v)
11 return sol

Line 1 makes the �rst label which is then put in a queue in line 2. Lines 4{10 loop as long
as there are untreated labels left. A label is selected in line 5 which is then extended in line
7. If the new label represents a path fromo to d, it is stored in line 9. Otherwise it is put in
the queue for later treatment.

From the pseudocode it is clear that without Remove-Dominated in line 4 this results
in a complete enumeration of all feasible paths.
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Chapter 2

2.1 Dominance

The goal of dominance is to reduce the number of labels that are created during the execution
of the labeling algorithm, since it is not desirable to extend labels that are not part of
an optimal solution. Unfortunately, it is not known in advan ce which labels span optimal
solutions, but it might be possible to decide for some labelsthat they are not part of any
optimal solution. If just any optimal solution is sought, do minance is to reduce the number
of labels extended and still be able to �nd an optimal solution. A label is thus said to be
dominated if its removal during the run of the algorithm does not remove all optimal solution.

In the following it is assumed that all the extension functions cr (e) are non-decreasing. A
non-decreasing functioncr (e) has the following property:

De�nition 1. A function f is non-decreasing i�:

x � y ) f (x) � f (y) 8x; y

In relation to dominance it is necessary to consider extensions of labels. For this reason
three de�nitions are presented (slightly modi�ed from Irni ch and Villeneuve [13]):

De�nition 2. The set of all feasible paths from labelL to node u considering the resource
consumption of labelL is de�ned as F (L; u ).

De�nition 3. The set of all feasible paths from labelL to node u considering the k-cycle
elimination and the partial elementarity is de�ned to be S(L; u ).

De�nition 4. All feasible extensions of labelL is de�ned as:

E(L ) = F (L; t ) \ S (L; t )

With De�nition 4 as a building block the following de�nition of domination is now given:

De�nition 5. A set of labelsL i dominates labelL j if:

�v(L i ) = �v(L j ) 8L i 2 L i (4)

�c(L i ) � �c(L j ) 8L i 2 L i (5)

E(L j ) �
[

L i 2L i

E(L i ) (6)

In other words, the paths corresponding to labels inL i and the path L j should end at
the same node �v(L i ) = �v(L j ) 2 V : 8L i 2 L i , each path corresponding to some labelL i 2 L i

should cost no more than the path corresponding to labelL j , and �nally any feasible extension
of L j is also a feasible extension of someL i 2 L i .

De�nition 5 implies that if L j is dominated then any path P(L j ; � ) consisting of L j con-
catenated with a feasible extension� 2 E(L j ) is not a unique optimal solution, since at least
one other labelL i 2 L i can also be concatenated with� and make a path P(L i ; � ) that is as
least as cheap, because �c(L i ) + c�c(�; r (L i )) � �c(L j ) + c�c(�; r (L j )) due to De�nition 1, that is:

8� 2 E(L j ) 9L i 2 L i : � 2 E(L i ) ^ �c(L i ) � �c(L j )

) 8 � 2 E(L j ) 9L i 2 L i : � 2 E(L i ) ^ �c(P(L i ; � )) � �c(P(L j ; � ))
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Each node in the set of elementary nodesS, i.e., the nodes that can only be visited once,
can be modeled using a binary resource. Feillet et al. [10] suggested to consider the set of
nodes inS that cannot be reached from a labelL i and compare the set with the unreachable
nodes of a labelL j in order to determine if some extensions are impossible. Or in other words:
update the node resources in an eager fashion instead of a lazy. The following de�nition is a
generalization of Feillet et al. [10][De�nition 3].

De�nition 6. Given a start node o 2 V and a label L with �v(L ) = u, a node v 2 V is
consideredunreachable if v has already been visited on the path fromo to u, i.e., v 2 V(L )
or if a resource window is violated, e.g.:

9r 2 R r (L ) + ` r (u; v) > br (v)

where ` r (u; v) is a lower bound on the consumption of resourcer on all feasible paths fromu
to v. The node resourcesare then given as:v(L ) = 1 indicates that node v 2 V is unreachable
from node �v(L ) 2 V , and v(L ) = 0 otherwise.

In the following �E(� (L )) (or shorthand �E(L )) will be the set of all feasible extensions for
label L only considering the k-cycle elimination constraint, and is equivalent to the concept
of Hole-Setsas de�ned by Irnich [12].

To determine if (6) holds can be quite cumbersome, as the straightforward de�nition
suggests that we calculate all extensions of the involved labels. Therefore a su�cient criteria
for (6) is sought which can be computed faster. If labelL i has consumed less resources than
label L j , then no resources are limiting the possibilities of extending L i compared to L j ,
hence the following proposition can be used as a restricted version of the dominance criteria
in De�nition 5.

Proposition 1 (Su�cient condition) . A set of labelsL i dominates labelL j if:

�v(L i ) = �v(L j ) 8L i 2 L i (7)

r (L i ) � r (L j ) 8r 2 R; 8L i 2 L i (8)

�E(L j ) �
[

L i 2L i

�E(L i ) (9)

and node resources are set according to De�nition 6.

Proof. We check De�nition 5. Equation (4) follows directly from (7) and (5) follows from
(8) with r = �c, i.e., the cost resource. The remaining concern is if (6) holds for L i and L j .
The proof is by contradiction. Assume that (7), (8), and (9) are satis�ed but that (6) is not
satis�ed. Then an extension � 2 E(L j )n

S
L i 2L i

E(L i ) must exist which is feasible forL j but
not for any L i 2 L i . Let L u denote the label that is obtained with �v(L u) = vu after L j has
recursively been extended through� , let L u be equivalently de�ned, let v1; : : : ; vh� 1; vh ; : : : be
the nodes on� , and let vh be the �rst node on � preventing the extension of allL h� 1

i 2 L h� 1
i .

There are only three conditions where this can happen for each L h� 1
i 2 L h� 1

i :

1) vh(L h� 1
i ) = 1

2) 9r 2 R; r (L h� 1
i ) + l r (vh� 1; vh) > br (h)
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3) � 62�E(L i )

SinceL j can be extended with� , the equivalent conditions for L h� 1
j are:

1) vh(L h� 1
j ) = 0

2) r (L h� 1
j ) + cr (vh� 1; vh) � br (h); 8r 2 R

3) � 2 �E(L j )

Since all resources are consumed according to De�nition 1 on� until vh� 1 for all L i 2 L i

and L j , the above conditions contradict that (7) and (8) are satis� ed. Moreover, � 2 �E(L j )
and � 62�E(L i ) contradict that (9) is satis�ed. Hence, E(L j )n

S
L i 2L i

E(L i ) = ; , which implies
E(L j ) �

S
L i 2L i

E(L i ), and (6) holds. That is, De�nition 5 holds and L i dominates L j .

Using Proposition 1 as a dominance criteria is a restrictionof the dominance criteria of
De�nition 5 since only a subset of labels satisfying (7), (8), and (9) satis�es (4), (5), and (6).
It is noted that Condition (8) can be tightened by being lazy with r (L i ) and eager with r (L j ).
Furthermore, if k � 1 Condition (9) is automatically satis�ed so jL i j = 1.

Decreasing extension-functions can always be handled by use of equality on the a�ected
resources, but can be tightened if a lower and an upper bound in known, see Reinhardt
and Pisinger [15] for further details. Being more aggressive in Remove-Dominated , i.e.,
removing non-dominated labels, yields a heuristic solution but with likely improved running
time.

3 Bidirectional Search

The concept of bidirectionality is to look for the shortest path from node o to node d by
�nding paths from o to `the middle' and `reverse paths' fromd to `the middle'. The paths
meeting in `the middle' are then spliced together, and thereby a shortest path is obtained.
`The middle' is de�ned by the consumption of a monotone resource rmono , i.e., cr mono is either
non-negative or non-positive. Furthermore, it is requiredthat all cycles de�ned by cr mono are
non-zero.

The reason for doing this for ESPPRC is to halve the exponential factor in the worst case
number of labels, e.g.,O(V !2V ) can be reduced toO( V

2 !2V=2) by selecting rmono as the number
of visited nodes. For k-cyc-SPPRC and pure SPPRC the theoretical worst case numberof
labels is not a�ected but a better practical running time is hoped for. For PESPPRC the
worst case number of labels is dependent on the number of nodes in S and will be somewhere
in between that of SPPRC and ESPPRC.

The bidirectional algorithm consists of the following three parts:

� Find (part of) the shortest forward path going from o towards d at the same time as
�nding (part of) the shortest backward `reverse path' going fromd towards o.

� Combine a forward label L f and backward label L b with �v(L f ) = �v(L b) to obtain a
path P(L f ; L b).

� Stop at the `middle', e.g., stop when the consumption of resource rmono in a label reaches
xstop, where minv2 V (ar mono (v)) � xstop � maxv2 V (br mono (v)).
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Forward and Backward Paths

The algorithm from Section 2 can be reversed by starting witha label L b in node d with
the consumption of each resource set to the upper boundr (L ) = br (d) for all r 2 R. Then
go towards nodeo and treat extensions and dominance equivalently { this of course is only
possible if an inverse of the extension function exists. Thealgorithm from Section 2 will be
referred to as the forward algorithm and the reversed counterpart will be referred to as the
backward algorithm. Using equivalent argumentation as for the forward algorithm it is clear
that the backward algorithm also yields optimal solutions to the problems.

The bidirectional algorithm works by running a forward algorithm together with a back-
ward algorithm keeping two sets of labels: The forward labels L f and the backward labels
L b. The following pseudocode shows how the bidirectional algorithm works.

BiDirectional-Labeling (G; o; d)

1 L o = First-Label-Forward( o)
2 L d = First-Label-Backward( d)
3 PQf .enqueue( L o)
4 PQb.enqueue( L d)
5 while PQf 6= ; or PQb 6= ;
6 if PQf .size() < PQ b.size()
7 Remove-Dominated (PQf )
8 L = PQf .dequeue()
9 else Remove-Dominated (PQb)

10 L = PQb.dequeue()
11 for each nodev 2 Extendables( L )
12 L v = Extend-Label( L; v )
13 PQ.enqueue( L v)
14 for each labelL 2 Spliceable (L v)
15 path = Splice (L v; L )
16 Store-Solution( path; sol)
17 return sol

As before, after the initial labels are created and enqueuedthe algorithm loops until no labels
are left untreated. The functions in the pseudocode have knowledge about the direction
(forward or backward) and behave accordingly. Line 6 lets the two directions grow in parallel.

Disregarding the stopping criterion, it is clear that the algorithm will �nd at least two
optimal paths. One is found going forward and one is found going backwards. These two
paths may be identical.

Splicing the Paths

At any time during the execution of the algorithm above there are two sets of labelsL f
v : L 2

L f ^ �v(L ) = v and L b
v : L 2 L b ^ �v(L ) = v belonging to each nodev 2 V . Consider a label

L f 2 L f
v and a label L b 2 L b

v . If the sub-path L b is in the extension L b 2 E(L f ) of L f , the
two labels can be combined to form a feasible solutionP, this is denoted splicing. Since a
path may use several nodes, a given pathP may be the product of several di�erent splicings,
e.g., one for each of thejP j nodes inP.
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For obvious reasons it is desirable only to get unique paths,so when searching for a path
P, two labels L f 2 L f

v and L b 2 L b
v in P with �v(L f ) = �v(L b) are only spliced when �v(L f ) = v

is a unique nodev 2 V(P) on P. One way to �nd this unique node v to splice at was proposed
by Righini and Salani [17] and is de�ned as the nodev 2 V(P) where L f and L b are as close
as possible to having the same consumption ofrmono . A tie is broken arbitrarily, e.g., L f

takes priority.
Consequently, we propose another way to �nd the unique nodev. If more than half the

upper limit

xstop =
�

maxv2 V (br mono (v))
2

�

of resourcermono is consumed on pathP, one edge (i; j ) 2 E(P) either crossesxstop or ends
at xstop, choosing nodej as the splicing point for P will be unique. If the consumption of
rmono (P) � xstop, choosing the �rst (or the last) node of P as splicing point will be unique.

Stop at the Middle

It is clear that if rmono (P) > x stop then at least one sub-path from the forward algorithm or
one sub-path from the backward algorithm has to contain the edge (i; j ) 2 E(P) that crosses
the `middle'. Furthermore, at least one of them has to contain the �rst (or last) edge.

From the description of splicing nodes above, it is clear that there is no reason, for the
algorithm without the responsibility of crossing, to extend a label if a consumption of more
than xstop will be obtained. For the algorithm with the responsibility of crossing, there is no
reason to extend a label further when a consumption ofxstop is obtained. Therefore, both
algorithms can be stopped early and an optimal pathP is still found.

Proposition 2. The bidirectional algorithm returns an optimal solution fo r any value of
xstop.

Proof. Without loss of generality assume that the forward algorithm crossesxstop if rmono (P) >
xstop, the last node is chosen for splicing ifrmono (P) � xstop, and the optimal path P is unique.
Let P = v1 ! : : : ! vn , let L i

f : �v(L i
f ) = vi ; 8vi 2 V(P) be the labels representingP for the

forward algorithm, and let L i
b : �v(L i

b) = vi ; 8vi 2 V(P) be the labels representingP for the
backward algorithm.

The proof is by contradiction. Assume that the optimal path P is not found. This can
only happen in three cases:

1) For some nodevi 2 V(P) neither L i
f nor L i

b is created.

2) For some nodevi 2 V(P) neither L i
f nor L i

b exist after domination.

3) There is no nodevi 2 V(P) where both L i
f and L i

b exist after domination.

It will now be shown that none of the three cases can happen.

Since both the forward and the backward algorithm �nd P, for `Case 1' to happen the
stopping criteria must have stopped both of them before nodevi was reached. This means
that rmono (L i

f ) > x stop and rmono (L i
b) � xstop thus L i

f =2 E(L i
b) which contradicts that P is

feasible.
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For `Case 2' to happen at least one ofL i
f and L i

b must have been deleted during domination,
which is in contradiction with De�nition 5 or that P is unique and optimal.

`Case 3' can be divided into two cases: one wherermono (P) � xstop and another where
rmono (P) > x stop. If rmono (P) � xstop, then the splicing must be done atvn . L n

b clearly exists,
so L n

f must be absent. This can only happen whenrmono (L n� 1
f ) > x stop which contradicts

that rmono (P) � xstop. If rmono (P) > x stop, then there must be a nodevi 2 V (P) where L i
b

cannot be extended more due tormono (L i
b) � rmono (e(vi � 1; vi )) = rmono (L i � 1

b ) � xstop. Since
L i

f does not exist, rmono (L i � 1
f ) > x stop. This means that rmono (L i � 1

f ) > x stop � rmono (L i � 1
b )

implying L i � 1
f =2 E(L i � 1

b ) which contradicts that P is feasible.

Since any value ofxstop yields an optimal solution, xstop can be adjusted to balance the
amount of labels created by the forward and the backward algorithms respectively. As long
as xstop � min(PQb) the value of xstop can be raised.

4 Parallel Labeling Algorithm

The algorithm just described is a so-calledpushing algorithm because labels are extended
from a node to neighbouring nodes. A slightly di�erent variant is a pulling algorithm where
labels are extendedto a node from neighbouring nodes. Pulling nodes have a slightly di�er-
ent structure that facilitates parallelization. Going fro m a label pushing to a label pulling
approach only takes a little rearranging of the pseudo-codeand a priority queue for each node.

Parallel-Labeling (G; o; d)

1 PQo.enqueue(First-Label( o))
2 while 9v 2 V : PQv 6= ;
3 for each nodei 2 V
4 for each nodej 2 V
5 L i = PQj .getSome()
6 for eachL 2 L i : Extendable (L; i )
7 L i = Extend-Label( L; i )
8 if �v(L i ) = d
9 Store-Solution( L i ; sol)

10 else PQtemp
i .enqueue( L i )

11 Remove-Dominated (PQtemp
i )

12 for each nodei 2 V
13 PQi .deleteSome()
14 PQi .add( PQtemp

i )
15 return sol

As long as there is an untreated label left, each node tries topull in labels, which have not
consumed too much ofrmono , from neighbouring nodes. The consumption check is performed
in the getSome() function in line 5. Domination is performed in line 11 after the new labels
are created. When all nodes are �nished pulling in labels, the priority queues are updated in
lines 13{14.

Since only local data are changed for each nodei 2 V in the lines 3{11, they can be run
in parallel.
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5 Computational Results

A bidirectional parallelized label-pulling algorithm has been implemented in C++ with GCC
[11] as compiler. POSIX thread [14] is used as means of obtaining concurrency. Binary
min heaps have been used for priority queues.

Only brief computational results are shown here, since the parallel bi-directional labeling
algorithm presented in this chapter is used in the followingchapters and the performance
is documented there. The computational evaluation has beenperformed on a dual 2.66GHz
Intel R
 XeonR
 X5355 machine with 16 GB of RAM. Table 1 shows the running times and
speedup for two di�erent kinds of ESPPRC.

Instance T1 T2 Speedup2 T4 Speedup4 T8 Speedup8

A-n61-k9 3.05 2.19 1.39 1.80 1.69 1.71 1.78
A-n69-k9 6.48 4.83 1.34 3.81 1.70 3.36 1.93
B-n50-k8 7.61 5.32 1.43 4.47 1.70 4.09 1.86
C203.100 4.96 3.75 1.32 3.44 1.44 3.27 1.52
R112.100 2.84 1.95 1.46 1.66 1.71 1.35 2.10
R203.100 5.51 3.75 1.47 3.14 1.75 2.60 2.12
R204.50 163.06 138.58 1.18 95.29 1.71 75.74 2.15
R206.100 14.13 8.72 1.62 6.71 2.11 5.30 2.67
R210.100 15.16 9.65 1.57 7.68 1.97 6.37 2.38
RC203.100 13.80 9.46 1.46 8.01 1.72 7.38 1.87
RC206.100 1.18 0.89 1.33 0.84 1.40 0.71 1.66
RC207.100 8.34 5.27 1.58 4.09 2.04 3.35 2.49

Average 1.43 1.75 2.04

Table 1: ESPPRC solved by parallel bi-directional labeling algorithm. The A* and B* in-
stances have a single load resource, whereas the C*, R*, and RC* have a load as well as a
time resource. Ti is the time in seconds when run oni cores. Speedupi is the relative speedup
from one to i cores.

It can be concluded that some speedup is present. It can also be concluded that more
cores give larger speedup. The speedup is not linear in the number of cores, which can be
explained by limited memory bus speed. An average speedup ofmore than two must be
considered satisfactory.

6 Concluding Remarks

A general labeling algorithm for solving various resource constrained shortest path problems
has been presented. A parallel version was introduced and some computational results were
presented that showed that a speedup is experienced when running on multiple cores.
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Abstract

This paper presents a branch-and-cut-and-price algorithm for the vehicle routing prob-
lem with time windows. The standard Dantzig-Wolfe decomposition of the arc 
ow for-
mulation leads to a set partitioning problem as the master problem andan elementary
shortest path problem with resource constraints as the pricing problem. We introduce
the subset-row inequalities, which are Chvatal-Gomory rank-1 cuts based on a subset of
the constraints in the master problem. Applying a subset-row inequality in the master
problem increases the complexity of the label-setting algorithm usedto solve the pricing
problem since an additional resource is added for each inequality. Wepropose a modi-
�ed dominance criterion that makes it possible to dominate more labelsby exploiting the
step-like structure of the objective function of the pricing problem. Computational ex-
periments have been performed on the Solomon benchmarks wherewe were able to close
several instances. The results show that applying subset-row inequalities in the master
problem signi�cantly improves the lower bound, and in many cases makes it possible to
prove optimality in the root node.
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1 Introduction

The vehicle routing problem with time windows (VRPTW) can be described as follows: A set
of customers, each with a demand, needs to be serviced by a number of vehicles all starting
and ending at a central depot. Each customer must be visited exactly once within a given time
window, and the capacity of the vehicles must not be exceeded. The objective is to service
all customers traveling the least possible distance. In this paper we consider a homogenous

eet, i.e., all vehicles are identical.

The standard Dantzig-Wolfe decomposition of the arc 
ow formulation of the VRPTW
is to split the problem into a master problem (a set partition ing problem) and a pricing
problem (an elementary shortest path problem with resourceconstraints (ESPPRC), where
capacity and time are the constrained resources). A restricted master problem can be solved
with delayed column generation and embedded in a branch-and-bound framework to ensure
integrality. Applying cutting planes either in the master o r the pricing problem leads to a
branch-and-cut-and-price algorithm (BCP).

Kohl et al. [23] implemented a successful BCP algorithm for the VRPTW by applying
subtour elimination constraints and two-path cuts. Cook and Rich [8] generalized the two-
path cuts to the k-path cuts. Common for these BCP algorithms is that all applied cuts
are valid inequalities for the VRPTW, i.e., the original arc 
ow formulation, and contain
a structure making it possible to handle values of the dual variables in the pricing problem
without increasing the complexity of the problem. Fukasawaet al. [17] refer to this as arobust
approach in their paper, where a range of valid inequalitiesfor the capacitated vehicle routing
problem are used in a BCP algorithm. The topic of column generation and BCP algorithms
has been surveyed by Barnhart et al. [1] and L~A 1

4bbecke and Desrosiers [27].
Dror [13] showed that the ESPPRC is stronglyN P -hard, hence a relaxation of the ESP-

PRC was used as a pricing problem in earlier BCP approaches for the VRPTW. The relaxed
pricing problem where non-elementary paths are allowed is denoted the shortest path prob-
lem with resource constraints (SPPRC) and can be solved in pseudo-polynomial time using
a label-setting algorithm, which was initially done by Desrochers [11]. To improve lower
bounds of the master problem, Desrochers et al. [12] used 2-cycle elimination, which was later
extended by Irnich and Villeneuve [20] to k-cycle elimination (k-cyc-SPPRC) where cycles
containing k or less nodes are not permitted.

Beasley and Christo�des [2] proposed to solve the ESPPRC using Lagrangian relaxation.
However, recently label-setting algorithms have become the most popular approach to solve
the ESPPRC; see e.g. Dumitrescu [14] and Feillet et al. [16].When solving the ESPPRC
with a label-setting algorithm a binary resource for each node is added, which increases the
complexity of the algorithm compared to solving the SPPRC or the k-cyc-SPPRC. Righini
and Salani [32] developed a label-setting algorithm using the idea of Dijkstra's bi-directio-
nal shortest path algorithm that expands both forward and backward from the depot and
connects routes in the middle, thereby potentially reducing the running time of the algorithm.
Furthermore Righini and Salani [32] and Boland et al. [3] proposed a decremental state space
algorithm that iteratively solves a SPPRC by applying resources that force nodes to be visited
at most once. Recently Chabrier [5], Danna and Le Pape [9], and Salani [33] successfully solved
several previously unsolved instances of the VRPTW from thebenchmarks of Solomon [34]
using a label-setting algorithm for the ESPPRC.

In this paper, we extend the BCP framework to include valid inequalities for the master
problem, more speci�cally by applying the subset-row (SR) inequalities to the set partitioning
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master problem. Nemhauser and Park [28] developed a similarBCP algorithm for the edge
coloring problem, but to our knowledge no such algorithms for the VRPTW have been pre-
sented. Applying the SR inequalities leads to an increased complexity of the pricing problem
since each inequality is represented by an additional resource. To improve the performance of
the label-setting algorithm, we introduce a modi�ed dominance criterion that handles the re-
duced cost calculation in a reasonable way. Moreover, the SRinequalities potentially provide
better lower bounds and smaller branch trees.

The paper is organized as follows: In Section 2 we give an overview of the Dantzig-Wolfe
decomposition of the VRPTW and describe how to calculate thereduced cost of columns
when column generation is used. In Section 3 we introduce theSR inequalities and show that
the separation problem isNP -complete. In Section 4 we review the basics of a label-setting
algorithm for solving the ESPPRC and show how to handle the modi�ed pricing problem
in the same label-setting algorithm. For details regardinglabel-setting algorithms (including
bi-directionality) we refer to Desaulniers et al. [10], Irnich and Desaulniers [19], Irnich [18],
Righini and Salani [31]. An algorithmic outline and computational results, using the Solomon
benchmark instances, are presented in Section 5. Section 6 concludes the paper.

2 Decomposition

Let C be the set of customers, let the set of nodes beV = C [ f o; o0g where f og denotes the
depot at the start of the routes and f o0g denotes the depot at the end; and letE = f (i; j ) :
i; j 2 V; i 6= j g be the edges between the nodes. LetK be the set of vehicles with jK j
unbounded, each vehicle having capacityD , and let di be the demand of customeri 2 C and
do = do0 = 0. Let ai be the beginning andbi be the end of the time window for nodei 2 V .
Let si be the service time fori 2 V and let t ik be the time vehicle k 2 K visits node i 2 V ,
if k visits i . Let cij be the travel cost on edge (i; j ) 2 E and let x ijk be a variable indicating
whether vehiclek 2 K traverses edge (i; j ) 2 E . Last let � ij = cij + si > 0 be the travel time
on edge (i; j ) 2 E plus the service time of customeri . The three-index 
ow model (Toth and
Vigo [36]) for the VRPTW is:

min
X

k2 K

X

(i;j )2 E

cij x ijk (1)

s.t.
X

k2 K

X

(i;j )2 � + (i )

x ijk = 1 8i 2 C (2)

X

(i;j )2 � + (o)

x ijk =
X

(i;j )2 � � (o0)

x ijk = 1 8k 2 K (3)

X

(j;i )2 � � (i )

x j ik �
X

(i;j )2 � + (i )

x ijk = 0 8i 2 C; 8k 2 K (4)

X

(i;j )2 E

di x ijk � D k 2 K (5)

ai � t ik � bi 8i 2 V; 8k 2 K (6)

x ijk (t ik + � ij ) � t jk 8(i; j ) 2 E; 8k 2 K (7)

x ijk 2 f 0; 1g 8(i; j ) 2 E; 8k 2 K (8)
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Here (2) ensures that every customeri 2 C is visited, while (3) ensures that each route starts
and ends in the depot. Constraint (4) maintains 
ow conservation, while (5) ensures that the
capacity of each vehicle is not exceeded. Constraints (6), (7) ensure that the time windows
are satis�ed. Note that (7) together with the assumption tha t � ij > 0 for all (i; j ) 2 E
eliminates sub-tours. The last constraints de�ne the domain of the arc 
ow variables. Note
that a zero-cost edgexoo0k between the start and end depot must be present for all vehicles
for (3) to hold if not all vehicles are used.

The standard Dantzig-Wolfe decomposition of the VRPTW, seee.g. Desrochers et al.
[12], leads to the following master problem:

min
X

p2 P

X

(i;j )2 E

cij � ijp � p (9)

s.t
X

p2 P

X

(i;j )2 � + (i )

� ijp � p = 1 8i 2 C (10)

� p 2 f 0; 1g 8p 2 P (11)

where P is the set of all feasible routes, the binary constant� ijp is one if and only if edge
(i; j ) is used by route p 2 P, and the binary variable � p indicates whether route p is used.
The master problem can be recognized as a set partitioning problem, and the LP relaxation
may be solved using delayed column generation. Let� 2 R be the dual variables of (10) and
let � 0 = 0. Then the reduced cost of a routep is:

cp =
X

(i;j )2 E

cij � ijp �
X

(i;j )2 E

� j � ijp =
X

(i;j )2 E

(cij � � j )� ijp (12)

The pricing problem becomes an ESPPRC where the cost of each edge is cij = cij � � j

for all edges (i; j ) 2 E . When applying cuts during column generation we will distinguish
between valid inequalities for the VRPTW constraints (2)-( 8) and valid inequalities for the
set partitioning constraints (10)-(11).

Consider a valid inequality for the VRPTW constraints (2){( 8) in terms of the arc 
ow
variables x: X

k2 K

X

(i;j )2 E

� ij x ijk � � 0 (13)

When decomposed into the master problem, inequality (13) isreformulated as:
X

p2 P

X

(i;j )2 E

� ij � ijp � p � � 0 (14)

Let � � 0 be the dual variable of (14). The reduced cost of a columnp is then

cp =
X

(i;j )2 E

cij � ijp �
X

(i;j )2 E

� j � ijp � �
X

(i;j )2 E

� ij � ijp

=
X

(i;j )2 E

(cij � � j � �� ij )� ijp (15)

Compared to (12) an additional coe�cient �� ij is subtracted from the cost of edge (i; j )
and the complexity of the pricing problem remains unchangedif we use the edge costscij =
cij � � j � �� ij .
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Now, consider adding a valid inequality for the set partitioning master problem (10){(11)
that cannot be written as a linear combination of the arc 
ow variables:

X

p2 P

� p� p � � 0 (16)

Let � � 0 be the dual variable of (16). The reduced cost of a columnp is:

ĉp = cp � �� p =
X

(i;j )2 E

cij � ijp � �� p (17)

In addition to the reduced cost computed for a column p in (15) the cost � �� p must be
considered. To re
ect the possible extra cost� �� p it may be necessary to modify the pricing
problem by adding constraints or variables, thereby increasing its complexity.

3 Subset-Row Inequalities

The set of valid inequalities for the set packing problem is asubset of the set of valid inequali-
ties for the set partitioning problem since the latter problem is a special case of �rst-mentioned.
Two well-known valid inequalities for the set packing problem are the clique and the odd-hole
inequalities, where the �rst is known to be facet-de�ning for the set partitioning problem
(Nemhauser and Wolsey [29]).

Since the master problem is a set partitioning problem, it would be obvious to go in this
direction when looking for valid inequalities for the master problem. Consider the separation
of a clique or an odd-hole inequality. The undirected con
ict graph G0(P; E0) is de�ned as
follows: Each column is a vertex inG0 and the edge set is given as:

E 0 =

8
<

:
(p; q) :

X

(i;j )2 � + (i )

� ijp = 1 ^
X

(i;j )2 � + (i )

� ijq = 1 ; i 2 C; p; q 2 P; p 6= q

9
=

;

That is, an edge is present if the two columnsp and q have coe�cient one in the same row. In
a VRPTW context it reads: Two routes are con
icting if they ar e visiting the same customer.
A clique in G0 leads to the valid clique inequality:

X

p2 P̂

� p � 1 (18)

where P̂ � P are the columns corresponding to the vertices of a clique inG0. A cycle visiting
an odd number of verticesP in G0 leads to the valid odd-hole inequality:

X

p2 P̂

� p �

$
jP̂ j
2

%

(19)

where P̂ � P are the columns corresponding to the vertices visited on thecycle in G0.
However, when column generation is applied, it is not obvious how to re
ect the reduced cost
of (18) or (19) in the pricing problem since there is no speci�c knowledge of the columns of
the master problem when solving the pricing problem.
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Example 1
SR inequalities derived from the con
ict graph of a set packing problem. In the LP-solution
to A� � 1 all � variables are 1

2 , which results in two violated SR inequalities:

� With jSj = 3 and k = 2 due to variables � 1, � 2, and � 3 giving the set of rows S =
f r1; r2; r3g

� With n = 5 and k = 2 due to variables � 1, � 2, � 3, � 4, and � 5 giving the set of rows
S = f r1; r3; r4; r5; r6g

� 1 � 2 � 3 � 4 � 5

r1 1 1 � 1
r2 1 1 � 1
r3 1 1 � 1
r4 1 1 � 1
r5 1 1 � 1
r6 1 1 � 1

Set packing problemA� � 1.

u u

u

u

u

� 1 � 2

� 3

� 4

� 5

r1

r2 r3r4

r5r6

Corresponding con
ict graph.

Inspired by the above inequalities (18) and (19) we introduce the subset-row inequalities
(SR inequalities). These inequalities are speci�cally linked to the rows (rather than the
columns) of the set packing problem, hence making it possible to identify the coe�cient of a
column in an SR inequality.

De�nition 1. Consider the set packing structure

X = f � 2 BjP j : A� � 1g (20)

with the set of rowsM and columnsP, and a jM j � j P j binary coe�cient matrix A. The SR
inequality is de�ned as:

X

p2 P

$
1
k

X

i 2 S

� ip

%

� p �
�

jSj
k

�
(21)

where S � M and 0 < k � j Sj.

Example 1 illustrates some SR inequalities derived from thecon
ict graph of a set packing
problem.

Given a column p 2 P we need to have
P

i 2 S � ip � k to get a non-zero coe�cient of
� p in (21). For the master problem of VRPTW the coe�cient matrix can be translated as
� ip =

P
(i;j )2 � + (i ) � ijp , i.e., � ip is the sum of all the outgoing edges of a customeri . Hence,

$
1
k

X

i 2 S

� ip

%

=

6
6
6
4 1

k

X

i 2 S

X

(i;j )2 � + (i )

� ijp

7
7
7
5

which is only 1 or larger whenk or more customers ofS are visited on route p.
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Proposition 1. The SR inequalities (21) are valid for the Set Packing structureX .

Proof. The proof follows directly from Chavtal-Gomory's procedure to construct valid in-
equalities (Wolsey [37]). Scale thejSj inequalities

P
p2 P � ip � p � 1 for each row i 2 S � M

from (20) with 1
k � 0 and add them:

X

p2 P

1
k

X

i 2 S

� ip � p �
jSj
k

Flooring on left side and right side leads to (21).

Observe that, when the coe�cient
� 1

k

P
i 2 S � ip

�
evaluates to 0 or 1 for all p 2 P and

the right hand side
j

jSj
k

k
= 1 then the set of SR inequalities (21) is a subset of the clique

inequalities (18).
From De�nition 1 it is clear that the SR inequalities are Chva tal-Gomory rank-1 cuts, see

Chvatal [6]. Eisenbrand [15] has shown that the separation problem isNP -complete for general
Chvatal-Gomory rank-1 cuts. However, in some special casespolynomial time separation is
possible, e.g. the maximally violated mod-k cuts for a �xed k by Caprara et al. [4]. Since the
SR inequalities are another special case, the separation problem will be investigated further.

3.1 Separation of Subset-Row Inequalities

The separation problem of SR inequalities is de�ned as follows: Given the current LP-solution
� where � p < 1 for all p 2 P, and let n be the size ofS. For some �xed valuesn and k where
1 < k � n, �nd the most violated SR inequality. Using the binary varia ble x i to denote
whether i 2 S this can be stated as:

max
X

p2 P

$
1
k

X

i 2 M

aip x i

%

� p �
j n

k

k
(22)

s.t.
X

i 2 M

x i = n (23)

x i 2 f 0; 1g 8i 2 M (24)

The corresponding decision problem SR-DECISION asks whether

X

p2 P

$
1
k

X

i 2 M

aip x i

%

� p � c (25)

is feasible subject to (23) and (24), where 1� c < n and c 2 Z. Since we may multiply (25)
by any coe�cient 1


 > 0, the coe�cient bounds � p < 1 and c < n can be softened to

� p <
1



; c <
n



(26)

This leads to the following proposition:

Proposition 2. The separation problem SR-DECISION isNP -complete.
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Example 2
Illustration of the transformation 3CNF-SAT to SR-DECISIO N. Given the 3CNF-SAT ex-
pression

� = ( x1 _ : x1 _ : x2) ^ (x3 _ x2 _ x4) ^ (: x1 _ : x3 _ : x4)

the matrix A = ( aij ) becomes

1 : : : m m + 1 : : : : : : m + n m + n + 1
C1 : : : Cm x1 : : : : : : xn

1 x1 1 1
2 : x1 1 1 1

x2 1 1
... : x2 1 1

x3 1 1
: x3 1 1
x4 1 1

2n : x4 1 1
2n + 1 1
2n + 2 1 1 1 1 1 1 1 1
2n + 3 1 1 1 1 1 1 1 1

while we setk = 3, � p = 1 for p 2 P and c = 8.

Proof. We will show the statement by reduction from 3-conjunctive normal form satis�ability
(3CNF-SAT). Given an expression � written in three-conjunctive normal form, the 3CNF-
SAT problem asks whether there is an assignment of binary values to the variables such that
� evaluates to true. An expression is in three-conjunctive normal form when it consists of
a collection of disjunctive clausesC1; : : : ; Cm of literals, where a literal is a variable x i or a
negated variable: x i , and each clause contains exactly three literals.

Let x1; : : : ; xn be the set of variables which occurs in the clause� . We transform the
3CNF-SAT instance to a SR-DECISION instance by constructing a matrix A = ( aij ) with
2n + 3 rows and m + n + 1 columns, i.e., M = f 1; : : : ; 2n + 3g and P = f 1; : : : ; m + n + 1g.

The rows 1; : : : ; 2n of matrix A corresponds to literalsx1; : x1; x2; : x2; : : : ; xn ; : xn , while
columns j = 1 ; : : : ; m correspond to clausesC1; : : : ; Cm , and columns j = m + 1 ; : : : ; m + n
correspond to variablesx1; : : : ; xn .

We now de�ne matrix A as follows: For j = 1 ; : : : ; m let aij = 1 i� the corresponding
literal appears in clauseCj . For j = 1 ; : : : ; n let ai;j + m = 1 i� the corresponding literal is
x j or : x j . For j = m + n + 1 let aij = 0. The last three rows of A are de�ned as follows:
For j = 1 ; : : : ; m + n let a2n+1 ;j = 0, while a2n+1 ;m+ n+1 = 1. For j = 1 ; : : : ; m + n + 1 let
a2n+2 ;j = a2n+3 ;j = 1. Finally we set k = 3, � p = 1 for all p 2 P and c = m + n + 1. Note
that all coe�cients are within the bounds (26) for 
 su�ciently large. An example of the
transformation is illustrated in Example 2.

With the chosen constants, the SR-DECISION problem (25) reads

X

p2 P

$
1
3

X

i 2 M

aip x i

%

� m + n + 1 = jP j
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which is satis�ed if and only if
X

i 2 M

aip x i � 3 8p 2 P

As the last three rows ofA always must be chosen, it is equivalent to

2nX

i =1

aip x i � 1 8p = 1 ; : : : ; m + n

(i) Assume that there is a feasible assignment of binary values to x1; : : : ; xn such that
� evaluates to true in the 3CNF-SAT instance. In the corresponding SR-DECISION
problem choose rowi if and only if the corresponding literal is true in � . Since exactly
n literals are true, we will in this way choosen rows. Since at least one literal is true
in each clause, and each column 1; : : : ; m corresponds to a clause inA we will get a
contribution of at least one in each of these columns. Moreover, since exactly one ofx i

and : x i is true in � we will get a contribution of exactly one in column m+1; : : : ; m+ n.
Hence, the corresponding SR-DECISION problem is true.

(ii) Assume on the other hand that SR-DECISION is true. Let P0 � P be the set of rows
corresponding to the solution. By assumptionjP0j = n. First we notice that exactly
one of the rows corresponding to the literalsx i and : x i is chosen. This follows from
the fact that we have n columnsm + 1 ; : : : ; m + n which needs to be covered byn rows,
and each row covers exactly one column. For each literal in� let x i or : x i be true if
the corresponding row was chosen in SR-DECISION. Each variable will be well-de�ned
due to the above argument. Moreover, since the rowsP0 must cover at least oneapi = 1
for each columnj = 1 ; : : : ; m, we see that each clause in� becomes true.

Since the reduction is polynomial, and SR-DECISION obviously is in NP , we have proved
the statement.

Example 3 shows that typical separation problems of SR inequalities actually possess the
properties assumed in theNP -completeness proof.

4 Label-Setting Algorithm

When solving the pricing problem, it is noted that �nding a ro ute with negative reduced
cost corresponds to �nding a negative cost path starting andending at the depot, i.e., an
ESPPRC. Our ESPPRC algorithm is based on standard label setting techniques presented
by e.g. Beasley and Christo�des [2], Dumitrescu [14], Feillet et al. [16], Chabrier [5], Danna
and Le Pape [9]; hence in the following we mainly focus on the dominance criterion used for
handling the modi�cations stemming from the SR inequalities of the master problem.

The ESPPRC can be formally de�ned as: Given a weighted directed graph G(V; E) with
nodesV and edgesE, and a set of resourcesR. For each edge (i; j ) 2 E and resourcer 2 R
three parameters are given: A lower limit ar (i; j ) on the accumulation of resourcer when
traversing edge (i; j ) 2 E ; an upper limit br (i; j ) on the accumulation of resourcer when
traversing edge (i; j ) 2 E ; and �nally an amount cr (i; j ) of resourcer consumed by traversing
edge (i; j ) 2 E . The objective is to �nd a minimum cost path p from a source nodeo 2 V to
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Example 3
To illustrate that the bounds (26) indeed are realistic consider the case k = 3. Choose

 = m+ n+1

� where � = n� 2
3 or � = n� 1

3 depending on which of the expressions that evaluates
to an integral value. The right hand side of (25) evaluates to

c �
1



= ( m + n + 1) �
�

m + n + 1
= �

where an integral value of� gives
� =

j n
3

k
< n

The value of � gives

� p �
1



= 1 �
�

m + n + 1
� 1 8p 2 P

Hence all bounds are valid according to the separation problem (22)-(24).

a target nodeo0 2 V , where the accumulated resources ofp satisfy the limits for all resources
r 2 R. Without loss of generality, we assume that the limits must be satis�ed at the start of
each edge (i; j ), i.e., beforecr (i; j ) has been consumed.

Remark that equivalent upper and lower limits and consumptions on the nodes can be
\pushed" onto the edges, e.g., the ingoing edges of the node.

For the pricing problem of the VRPTW, the resources are demand d, time t, a binary
visit-counter for each customerv 2 C and reduced costc. Note that also the reduced cost is
considered a resource. When considering the pricing problem of the VRPTW, the consump-
tions and upper and lower limits of the resources at each edge(i; j ) in ESPPRC are:

ad(i; j ) = 0, bd(i; j ) = D � dj , cd(i; j ) = dj 8(i; j ) 2 E
at (i; j ) = ai , bt (i; j ) = bi , ct (i; j ) = � ij 8(i; j ) 2 E
av(i; j ) = 0, bv(i; j ) = 1, cv(i; j ) = 1 8v 2 V : v = j; 8(i; j ) 2 E
av(i; j ) = 0, bv(i; j ) = 1, cv(i; j ) = 0 8v 2 V : v 6= j; 8(i; j ) 2 E
ac(i; j ) = �1 , bc(i; j ) = 1 , cc(i; j ) = cij 8(i; j ) 2 E

In the label-setting algorithm labels at node v represent partial paths from o to v. The
following attributes for a label L are considered:

v(L ) The current end-node of the partial path represented byL .
c(L ) The sum of the reduced cost along pathL .
r (L ) The accumulated consumption of resourcer 2 R along path L .

A feasible extension� 2 E(L ) of a label L is a partial path starting in a node v(L ) 2 V
and ending in the target nodeo0, that does not violate any resources when concatenated with
the partial path represented by L .

In the following it is assumed that all resources are boundedstrongly from above, and
weakly from below. This means that if the current resource accumulation of a label is below
the lower limit on a given edge, it is allowed to �ll up the resource to the lower limit, e.g.,
waiting for a time window to open. This means that two consecutive labels L u and L v related
by an edge (u; v), i.e., L u is extended and createsL v , where v(L u) = u and v(L v) = v, must

34



Subset-Row Inequalities Applied to the Vehicle Routing Problem with Time Windows

satisfy

r (L v) � br (u; v); 8r 2 R (27)

r (L v) = max f r (L u) + cr (u; v); ar (u; v)g; 8r 2 R (28)

Here (27) demands that each labelL u satis�es the upper limit br (u; v) of resource r cor-
responding to edge (u; v), while (28) states that resource r at label L v corresponds to the
resource consumption at labelL u plus the amount consumed by traversing edge (u; v), re-
specting the lower limit ar (u; v) on edge (u; v).

A simple enumeration algorithm could be used to produce all these labels, but to limit
the number of labels considered, dominance rules are introduced to fathom labels which do
not lead to an optimal solution.

De�nition 2. A label L i dominates labelL j if

v(L i ) = v(L j ) (29)

c(L i ) � c(L j ) (30)

E(L j ) � E (L i ) (31)

In other words, the paths corresponding to labelsL i and L j should end at the same node
v(L i ) = v(L j ) 2 V , the path corresponding to label L i should cost no more than the path
corresponding to labelL j , and �nally any feasible extension of L j is also a feasible extension
of L i .

Feillet et al. [16] suggested to consider the set of nodes that cannot be reached from a
label L i and compare the set with the unreachable nodes of a labelL j in order to determine
if some extensions are impossible. Or in other words: updatethe node resources in an eager
fashion instead of a lazy. The following de�nition is a generalization of De�nition 3 in Feillet
et al. [16].

De�nition 3. Given a start nodeo 2 V , a label L , and a nodeu 2 V wherev(L ) = u a node
v 2 V is considered unreachableif v has already been visited on the path fromo to u or if a
resource window is violated, e.g.:

9r 2 R r (L ) + ` r (u; v) > br (v)

where ` r (u; v) is a lower bound on the consumption of resourcer on all feasible paths fromu
to v. The node resourcesare then given as:v(L ) = 1 indicates that nodev 2 V is unreachable
from node v(L ) 2 V , and v(L ) = 0 otherwise.

Determining if (31) holds can be quite cumbersome because the straightforward de�nition
demands that we calculate all extensions of the two labels. Therefore, a su�cient criterion
for (31) is sought that can be computed faster. If labelL i has consumed less resources than
label L j then no resources are limiting the possibilities of extending L i compared toL j , hence
the following proposition can be used as a relaxed version ofthe dominance criterion.

Proposition 3. Desaulniers et al. [10]. If all resource extension functions are non-decreasing,
then labelL i dominates labelL j if:

v(L i ) = v(L j ) (32)

c(L i ) � c(L j ) (33)

r (L i ) � r (L j ) 8r 2 R (34)
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Using Proposition 3 as a dominance criterion is a relaxationof the dominance criterion
of De�nition 2 since only a subset of labels satisfying (29),(30) and (31) satis�es inequalities
(32), (33) and (34).

4.1 Solving the Modi�ed Pricing Problem

Consider some valid SR inequality of the form (21),

X

p2 P

$
1
k

X

i 2 S

� ip

%

� p �
�

jSj
k

�

where S � M and 0 < k � j Sj. Let � � 0 be the corresponding dual variable when solving
the master problem to LP-optimality. From (17) the reduced cost of a column in the VRPTW
master problem is:

ĉp = cp � �

$ P
i 2 S

P
(i;j )2 � + (i ) � ijp

k
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=
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(i;j )2 E
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P
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(35)

We analyze how this additional cost can be handled in the label-setting algorithm for ESP-
PRC.

Let V (L ) be the nodes visited on the partial path of labelL . The cost of a labelL can
then be expressed as:

ĉ(L ) = c(L ) � �
�

jS \ V (L )j
k

�
(36)

A new resourcem can be used to compute the coe�cient of penalty � for label L , i.e.,
m(L ) = jS \ V (L )j, the number of customers involved in the cut. Note that the consumption
of resourcem is 1 for each e.g. outgoing edge of the involved customers. Therefore the
usual dominance criterion of Proposition 3 can be used. Notethat in case L i dominates L j ,
c(L i ) � c(L j ) and m(L i ) � m(L j ) so ĉ(L i ) � ĉ(L j ) since � � > 0. Hence the penalty term
must only be considered on the last edge to the target node to compute the reduced costĉ(L )
of path L . However, further labels can be eliminated by exploiting the structure of (36).

For a label L let
T (L ) = jS \ V (L )j mod k

be the number of visits made toS since the last penalty was paid for visiting k nodes inS.
Recall E(L ) as the set of feasible extensions from the labelL to the target node o0 and note
that when label L i dominates labelL j , their common extensions areE(L j ) due to (31). The
following cost dominance criterion is obtained for a singleSR inequality:

Proposition 4. If T (L i ) � T (L j ), v(L i ) = v(L j ), ĉ(L i ) � ĉ(L j ), and r (L i ) � r (L j ) 8r 2 R,
then labelL i dominates labelL j .

Proof. Consider any common extension� 2 E(L j ). SinceT (L i ) � T (L j ) the relation between
the number of future penalties for the two labels when concatenated with � is:

�
jS \ � j + T (L i )

k

�
�

�
jS \ � j + T (L j )

k

�
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This leads to the following relation between the costs:

ĉ(L i + � ) = ĉ(L i ) + c(� ) � �
�

jS \ � j + T (L i )
k

�

� ĉ(L j + � ) = ĉ(L j ) + c(� ) � �
�

jS \ � j + T (L j )
k

�

Hence labelL i dominates labelL j .

Proposition 5. If T (L i ) > T (L j ), v(L i ) = v(L j ), ĉ(L i ) � � � ĉ(L j ), and r (L i ) � r (L j ) 8r 2
R, then label L i dominates labelL j .

Proof. Consider any common extension� 2 E(L j ). SinceT (L i ) > T (L j ) the relation between
the number of future penalties for the two labels when concatenated with � is:

�
jS \ � j + T (L i )

k

�
�

�
jS \ � j + T (L j )

k

�
(37)

Since 0� T (L j ) < T (L i ) � k it is clear that the left hand side of (37) is at most one unit
larger than the right hand side, i.e., labelL i will pay the penalty at most one more time than
label L j . Hence, �

jS \ � j + T (L i )
k

�
� 1 �

�
jS \ � j + T (L j )

k

�

That is, the additional cost of extending L i with � is at most � � more than extending L j

with � . This leads to the following relation between the costs:

ĉ(L i + � ) = ĉ(L i ) + c(� ) � �
�

jS \ � j + T (L i )
k

�

= ĉ(L i ) � � + c(� ) � �
��

jS \ � j + T (L i )
k

�
� 1

�

� ĉ(L j ) + c(� ) � �
�

jS \ � j + T (L j )
k

�

= ĉ(L j + � )

Hence labelL i dominates labelL j .

Observe that if T (L i ) + jS \ � j < k for all � 2 E(L j ), it is not possible to visit S enough
times to trigger a penalty, i.e., the temporary penalty to th e cost ofL i can be disregarded.

In case of several SR inequalities, the new dominance criterion is as follows:

Proposition 6. Let Q = f q : � q < 0^ T q(L i ) > Tq(L j )g. Then label L i dominates labelL j if:

v(L i ) = v(L j ) (38)

ĉ(L i ) �
X

q2 Q

� q � ĉ(L j ) (39)

r (L i ) � r (L j ) 8r 2 R (40)

Proof. The validity of (39) follows directly from Propositions 4 and 5. The validity of (38)
and (40) follows from Proposition 3.
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5 Computational Results

The BCP algorithm has been implemented using the BCP framework and the open source
linear programming solver CLP, both parts of the framework COIN [7]. All tests are run on
an Intel R
 Pentium R
 4 3.0 GHz PC with 4 GB of memory.

The benchmarks of Solomon [34] follow a naming convention ofDTm.n. The distribution
D can be R, C and RC, where the C instances have a clustered distribution of customers,
the R instances have a random distribution of customers, andthe RC instances are a mix of
clustered and randomly distributed customers. The time window T is either 1 or 2, where
instances of type 1 have tighter time windows than instancesof type 2. The instance number
is given by mand the number of customers is given byn.

The outline of the BCP algorithm presented in this paper is asfollows:
Step 1. Choose an unprocessed branch node. If the lower bound is above the upper bound,

then fathom branch node.
Step 2. Solve the LP master problem.
Step 3. Solve the pricing problem heuristically. If columns with negative reduced cost

have been found, then add them to the master problem and go back to Step 2.
Step 4. Solve the pricing problem to optimality. Update the lower bound. If the lower

bound is above the upper bound, then fathom the branch node. If some new columns have
been found, then add them to the master problem and go to Step 2.

Step 5. Separate SR inequalities. If any violated cuts are found, then add them to the
master problem and go to Step 2.

Step 6. If the LP solution is fractional then branch and add the children to the set of
unprocessed branch nodes. Mark the current node as processed and go to Step 1.

We allow a maximum of 400 variables and 50 cuts to be generatedin each of steps 3, 4,
and 5 respectively. The pricing-problem heuristic is basedon the label-setting algorithm but
a simpler heuristic dominance criterion is used. If a labelL i dominates L j on cost, demand
and time it is regarded as dominated andL j is discarded. That is, no concern is taken to
the node resources. The separation of SR inequalities is done with a complete enumeration
of all inequalities with jSj = 3 and k = 2. Let B be the set of basic variables in the current
LP solution and C be the set of customers, then the separation can be done inO(jCj3jB j).
Preliminary tests showed that SR inequalities with di�erent values ofn and k seldom appeared
in the VRPTW instances, hence no separation of these inequalities was done.

The branch tree is explored with a best-bound search strategy, i.e., the node with the
lowest lower bound is chosen �rst, breaking ties based on theLP result of the strong branching.
We have adapted the branching rule used by Fukasawa et al. [17]: For a subset of customers
S � C the number of vehicles to visit that set is either two or greater than or equal to four,
i.e.,

X

k2 K

X

(i;j )2 � + (S)

(x ijk + x j ik ) = 2

and X

k2 K

X

(i;j )2 � + (S)

(x ijk + x j ik ) � 4

We are using the cut library of Lysgaard [25] to separate candidate sets for branching, which
is an implementation of the heuristic methods described in Lysgaard et al. [26].
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Author(s) CPU SpecINT SpecCFP Normalized

Irnich and Villeneuve [20] P3 600 MHz � 295 204 0.23
Chabrier [5] P4 1.5 GHz 526 606 0.52
Jepsen et al. [this paper] P4 3.0 GHz 1099 1077 1.00

Table 1: Comparison of computer speed. Based on CPU2000 benchmarks from SPEC [35]. (� ) benchmarks
are given for P3 650 MHz since no benchmarks were available for P3 600. The normalized value is an average
of SpecINT and SpecCFP.

5.1 Running Times

To give a fair comparison between running times of our algorithm and the two most recent
algorithms presented by Irnich and Villeneuve [20] and Chabrier [5], the CPU speed is taken
into account. This is done according to the CPU2000 benchmarks reported by The Standard
Performance Evaluation Corporation SPEC [35]. Table 1 gives the integer and 
oating point
benchmark scores and a normalized value, e.g. our computations were carried out on a
computer approximately twice as fast as that of Chabrier.

A comparison of running times is shown in Table 2. To save space we only report results
on what we consider hard instances, i.e., the Solomon instances that were closed by either
Irnich and Villeneuve [20] or Chabrier [5] and by us.

Our algorithm outperforms those of Irnich and Villeneuve and Chabrier for 17 out of 22
instances. Seven of these instances were solved without anySR inequalities. In these cases,
the faster running times were probably due to the bi-directional label-setting algorithm.

With the introduction of SR inequalities our algorithm becomes competitive with the
algorithm based on solvingk-cyc-SPPRC (e.g. instances R104.100, RC104.100, RC107.100,
RC108.100, and R211.50) and clearly outperforms the ESPPRCbased algorithm on the harder
instances (e.g., instances R210.50, RC202.100, RC205.100, and RC208.25). In some cases
when solving the C1 and C2 instances the BCP algorithm tails o� leading to slow solution
times or no solution at all. However, this must be seen in the light of a simple implementation
and no use of other cutting planes than the SR inequalities.

5.2 Comparing Lower Bounds in the Root Node

Table 3 reports the lower bounds obtained in the root node of the master problem with and
without SR inequalities and with best bounds obtained by Irnich and Villeneuve [20] using
k-cyc-SPPRC. Again we only report results on what we considerthe hard instances from
Table 2 plus the instances closed by us.

As seen, the lower bounds obtained with SR inequalities are improved quite signi�cantly
for most of the instances. Moreover, in most cases the problems are solved without branching.
Out of the 32 instances considered, the gap was closed in the root node in 8 instances due
to the ESPPRC and in an additional 16 instances due to the SR inequalities. However, one
needs to take into account that the running time of solving the root node is increased due to
the increased di�culty of the pricing problems.

39



Chapter 3

Irnich and Villeneuve [20] Chabrier [5] Jepsen et al.
[this paper]

Instance Time (s) Time (s) Time (s) Speedup

R104.100 268106.0 - 32343.9 1.9 / -

RC104.100 986809.0 - 65806.8 3.4 / -
RC107.100 42770.7 - 153.8 64.0 / -
RC108.100 71263.0 - 3365.0 4.9 / -

R203.50 217.1 3320.9 50.8 1.0 / 34.0
R204.25 123.1 171.6 7.5 3.8 / 11.9
R205.50 585.7 531.0 15.5 8.6 / 17.8
R206.50 22455.3 4656.1 190.9 27.1 / 12.7
R208.25 321.9 741.5 � 2.9 25.5 / 133.0
R209.50 142.4 195.4 16.6 2.0 / 6.1
R210.50 11551.4 65638.6 � 332.7 8.0 / 102.6
R211.50 21323.0 - 10543.8 0.5 / -

RC202.50 241.6 13.0 � 10.7 5.2 / 0.6
RC202.100 124018.0 19636.5 312.6 91.2 / 32.7
RC203.25 1876.0 5.1 � 0.7 616.4 / 3.8
RC203.50 54229.2 4481.5 � 190.9 65.3 / 12.2
RC204.25 - 13.0 � 2.0 - / 3.4
RC205.50 52.6 10.6 � 5.9 2.1 / 0.9
RC205.100 13295.9 15151.7 221.2 13.8 / 35.6
RC206.50 469.1 9.4 � 8.2 13.2 / 0.6
RC207.50 - 71.1 � 21.5 - / 1.7
RC208.25 - 33785.3 78.4 - / 224.1

Table 2: Comparison of running time. Speedup is calculated based on the normalized values in Table 1 and
are versus Irnich and Villeneuve and Chabrier respectively. Results with ( � ) are based on an algorithm without
the SR inequalities. Results in boldface indicate the fastest algorithm after normalization. (-) in dicates that
no running times were provided by the author(s) or that the in stance was not solved.
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Irnich and Villeneuve [20] Jepsen et al. [this paper]

Instance UB k LB LB(1) LB(2)

R104.100 971.5 3 955.8 956.9 971.3
R108.100 932.1 4 913.9 913.6 932.1
R112.100 948.6 3 925.9 926.8 946.7

RC104.100 1132.3 3 1114.4 1101.9 1129.9
RC106.100 1372.7 4 1343.1 1318.8 1367.3
RC107.100 1207.8 4 1195.4 1183.4 1207.8
RC108.100 1114.2 3 1100.5 1073.5 1114.2

R202.100 1029.6 0 933.5 1022.3 1027.3
R203.50 605.3 4 598.6 598.6 605.3
R203.100 870.8 2 847.1 867.0 870.8
R204.25 355.0 4 349.1 350.5 355.0
R205.50 690.1 4 682.8 682.9 690.1
R206.50 632.4 4 621.3 626.4 632.4
R207.50 575.5 4 557.4 564.1 575.5
R208.25 328.2 4 327.1 328.2 328.2
R209.50 600.6 4 599.9 599.9 600.6
R209.100 854.8 3 834.4 841.5 854.4
R210.50 645.6 4 633.1 636.1 645.3
R211.50 535.5 4 526.0 528.7 535.5

RC202.50 613.6 4 604.5 613.6 613.6
RC202.100 1092.3 3 1055.0 1088.1 1092.3
RC203.25 326.9 4 297.7 326.9 326.9
RC203.50 555.3 4 530.0 555.3 555.3
RC203.100 923.7 0 693.7 922.6 923.7
RC204.25 299.7 4 266.3 299.7 299.7
RC205.50 630.2 4 630.2 630.2 630.2
RC205.100 1154.0 3 1130.5 1147.7 1154.0
RC206.50 610.0 4 597.1 610.0 610.0
RC206.100 1051.1 3 1017.0 1038.6 1051.1
RC207.50 558.6 4 504.9 558.6 558.6
RC208.25 269.1 4 238.3 269.1 269.1
RC208.50 476.7 3 422.3 472.3 476.7

Table 3: Comparison of root lower bounds. LB by Irnich and Villeneuve is the best lower bound obtained with
k-cyc-SPPRC and valid inequalities, LB(1) is with ESPPRC and LB(2) is with ESPPRC and SR inequalities.
Lower bounds in boldface indicate lower bounds equal to the upper bound. Instances in boldface are the
Solomon instances closed by us.
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25 customers 50 customers 100 customers

Class No. Prev. Jepsen et al. Prev. Jepsen et al. Prev Jepsen et al.

[this paper] [this paper] [this paper]

R1 12 12 12 12 12 10 12
C1 9 9 9 9 9 9 9
RC1 8 8 8 8 8 8 8

R2 11 11 11 9 9 1 4
C2 8 8 8 8 7 8 7
RC2 8 8 8 8 7 3 5

Summary 56 56 56 55 52 39 45

Table 4: Summary of solved Solomon instances. No. is the number of instances in that class, and for 25, 50
and 100 customers the two columns refers to the number of instances previously solved to optimality and the
number of instances solved to optimality by us.

Instance UB LB Vehicles Tree LP Time root (s) Time var (s) Time LP (s) Time (s)

R108.100 932.1 932.1 10 1 132 5911.71 5796.04 77.36 5911.74
R112.100 948.6 946.7 10 9 351 55573.68 199907.03 1598.63 202803.94
R202.100 1029.6 1027.3 8 13 514 974.51 730.04 4810.47 8282.38
R203.100 870.8 870.8 6 1 447 54187.15 48474.45 3973.42 54187.40
R207.50 575.5 575.5 3 1 107 34406.92 34282.47 118.69 34406.96
R209.100 854.8 854.4 5 3 337 31547.45 74779.58 2978.42 78560.47
RC203.100 923.7 923.7 5 1 402 14917.18 13873.53 1025.65 14917.36
RC206.100 1051.1 1051.1 7 1 179 339.63 159.33 171.34 339.69

Table 5: Instances closed by Jepsen et al. [this paper].UB is the optimal solution found by us, LB is lower
bound at the root node, Vehicles is the number of vehicles in the solution, Tree is the number of branch nodes,
LP is the number of LP iterations, Time root is the time solving the root node, Time var is time spent solving
the pricing problem, Time LP is the time spent solving LP problems, and Time is the total time.

5.3 Closed Solomon Instances

Table 4 gives an overview of how many instances were solved for each class of the Solomon
instances. We were able to close 8 previously unsolved instances. We did not succeed to solve
four previously solved instances (R204.50, C204.50, C204.100, and RC204.50).

Information on all solved Solomon instances can be found in Tables 6{8 in Appendix A.
Furthermore Table 5 provides detailed information of the instances closed in this paper. The
solutions can be found in Tables 9{16 in Appendix B.

6 Concluding Remarks

The introduction of the SR inequalities signi�cantly impro ved the results of the BCP al-
gorithm. This made it possible to solve 8 previously unsolved instances from the Solomon
benchmarks.
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Except for four cases (R204.50, C204.50 and C204.100 solvedwith k-cyc-SPPRC by Irnich
and Villeneuve [20] and RC204.50 solved by Danna and Le Pape [9]) our BCP algorithm is
competitive and in most cases superior to earlier algorithms within this �eld. With minor
modi�cations in the de�nition of the con
ict graph the SR ine qualities can be applied to the
k-cyc-SPPRC algorithm using the same cost-modi�ed dominance criterion as described in this
paper. Preliminary results by Jepsen et al. [21] have shown that the lower bounds obtained
in a BCP algorithm for VRPTW using the k-cyc-SPPRC algorithm and SR inequalities are
almost as good as those obtained using the approach presented in this paper. This seems
to be a promising direction of research in order to solve large VRPTW instances, since the
ESPPRC algorithm is considerably slower than thek-cyc-SPPRC algorithm when the number
of customers increases.

Moreover, we note that the SR inequalities can be applied to any set packing problem.
That is, they can be used in BCP algorithms for other problemswith a set packing problem
master problem. One only needs to consider how the dual variables of the SR inequalities
are handled in the pricing problems, however this is not necessarily trivial and must be
investigated for the individual pricing problems.

Adding SR inequalities to the master problem means that the pricing problem becomes a
shortest path problem with non-additive non-decreasing constraints or objective function. By
modifying the dominance criterion, we have shown that this is tractable in a label-setting al-
gorithm. A further discussion of shortest path problems with various non-additive constraints
can be found in Pisinger and Reinhardt [30]. The developmentof algorithms which e�ciently
handle non-additive constraints is important to increase the number of valid inequalities which
can be handled.

A Results on Solomon Instances

This appendix contains detailed information about solved Solomon instances. The �rst col-
umn of the tables is the instance name, then three columns forthe branch-and-cut-and-price
algorithm with ESPPRC and with ESPPRC and SR-inequalities follow. The columns are the
lower bound in the root node, the number of branch tree nodes and the total running time.
A (-) means that the instance was not solved. The last two columns are the optimal upper
bound and a reference to the authors who were the �rst to solvethat instance, disregarding
Desrochers et al. [12] who solved many of the instances with adi�erent calculation of the
travel times making it hard to compare with later solutions. The author legend is:

C: Chabrier [5]
CR: Cook and Rich [8]
DLP: Danna and Le Pape [9]
IV: Irnich and Villeneuve [20]
JPSP: Jepsen et al. [this paper]
KDMSS: Kohl et al. [23]
KLM: Kallehauge et al. [22]
L: Larsen [24]
S: Salani [33]
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with ESPPRC with ESPPRC and SR

Instance LB Tree Time (s) LB Tree Time (s) UB Ref.

R101 617.1 1 0.02 617.1 1 0.02 617.1 KDMSS
R102 546.4 3 0.13 547.1 1 0.09 547.1 KDMSS
R103 454.6 1 0.11 454.6 1 0.11 454.6 KDMSS
R104 416.9 1 0.12 416.9 1 0.12 416.9 KDMSS
R105 530.5 1 0.02 530.5 1 0.02 530.5 KDMSS
R106 457.3 5 0.29 465.4 1 0.10 465.4 KDMSS
R107 424.3 1 0.12 424.3 1 0.12 424.3 KDMSS
R108 396.9 3 0.31 397.3 1 0.24 397.3 KDMSS
R109 441.3 1 0.06 441.3 1 0.06 441.3 KDMSS
R110 438.4 17 1.16 444.1 3 0.29 444.1 KDMSS
R111 427.3 3 0.23 428.8 1 0.13 428.8 KDMSS
R112 387.1 13 1.19 393.0 1 0.52 393.0 KDMSS

C101 191.3 1 0.13 191.3 1 0.13 191.3 KDMSS
C102 190.3 1 0.53 190.3 1 0.53 190.3 KDMSS
C103 190.3 1 0.80 190.3 1 0.80 190.3 KDMSS
C104 186.9 1 3.29 186.9 1 3.29 186.9 KDMSS
C105 191.3 1 0.17 191.3 1 0.17 191.3 KDMSS
C106 191.3 1 0.14 191.3 1 0.14 191.3 KDMSS
C107 191.3 1 0.20 191.3 1 0.20 191.3 KDMSS
C108 191.3 1 0.37 191.3 1 0.37 191.3 KDMSS
C109 191.3 1 0.62 191.3 1 0.62 191.3 KDMSS

RC101 406.7 5 0.20 461.1 1 0.09 461.1 KDMSS
RC102 351.8 1 0.05 351.8 1 0.05 351.8 KDMSS
RC103 332.8 1 0.19 332.8 1 0.19 332.8 KDMSS
RC104 306.6 1 0.52 306.6 1 0.52 306.6 KDMSS
RC105 411.3 1 0.06 411.3 1 0.06 411.3 KDMSS
RC106 345.5 1 0.10 345.5 1 0.10 345.5 KDMSS
RC107 298.3 1 0.29 298.3 1 0.29 298.3 KDMSS
RC108 294.5 1 0.67 294.5 1 0.67 294.5 KDMSS

R201 460.1 3 0.44 463.3 1 0.27 463.3 CR+KLM
R202 410.5 1 0.61 410.5 1 0.61 410.5 CR+KLM
R203 391.4 1 0.80 391.4 1 0.80 391.4 CR+KLM
R204 350.5 19 18.40 355.0 1 7.51 355.0 IV+C
R205 390.6 3 1.62 393.0 1 1.06 393.0 CR+KLM
R206 373.6 3 1.67 374.4 1 0.93 374.4 CR+KLM
R207 360.1 5 4.03 361.6 1 1.39 361.6 KLM
R208 328.2 1 2.87 328.2 1 2.87 328.2 IV+C
R209 364.1 9 4.99 370.7 1 2.26 370.7 KLM
R210 404.2 3 1.52 404.6 1 1.04 404.6 CR+KLM
R211 341.4 29 38.17 350.9 1 22.62 350.9 KLM

C201 214.7 1 0.84 214.7 1 0.84 214.7 CR+L
C202 214.7 1 3.00 214.7 1 3.00 214.7 CR+L
C203 214.7 1 3.02 214.7 1 3.02 214.7 CR+L
C204 213.1 1 7.00 213.1 1 7.00 213.1 CR+KLM
C205 214.7 1 1.10 214.7 1 1.10 214.7 CR+L
C206 214.7 1 1.75 214.7 1 1.75 214.7 CR+L
C207 214.5 1 2.70 214.5 1 2.70 214.5 CR+L
C208 214.5 1 1.85 214.5 1 1.85 214.5 CR+L

RC201 360.2 1 0.25 360.2 1 0.25 360.2 CR+L
RC202 338.0 1 0.58 338.0 1 0.58 338.0 CR+KLM
RC203 326.9 1 0.72 326.9 1 0.72 326.9 IV+C
RC204 299.7 1 1.95 299.7 1 1.95 299.7 C
RC205 338.0 1 0.62 338.0 1 0.62 338.0 L+KLM
RC206 324.0 1 0.87 324.0 1 0.87 324.0 KLM
RC207 298.3 1 0.88 298.3 1 0.88 298.3 KLM
RC208 269.1 1 78.42 269.1 1 78.42 269.1 C

Table 6: Instances with 25 customers.
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with ESPPRC with ESPPRC and SR

Instance LB Tree Time (s) LB Tree Time (s) UB Ref.

R101 1043.4 3 0.14 1044.0 1 0.09 1044.0 KDMSS
R102 909.0 1 0.27 909.0 1 0.27 909.0 KDMSS
R103 769.3 13 4.98 772.9 1 2.02 772.9 KDMSS
R104 619.1 21 33.29 625.4 1 6.73 625.4 KDMSS
R105 892.2 29 2.78 893.7 5 1.15 899.3 KDMSS
R106 791.4 5 1.41 793.0 1 0.83 793.0 KDMSS
R107 707.3 11 5.56 711.1 1 4.76 711.1 KDMSS
R108 594.7 789 1723.29 607.4 23 1601.68 617.7 CR+KLM
R109 775.4 77 20.11 783.3 7 11.54 786.8 KDMSS
R110 695.1 9 3.38 697.0 1 1.46 697.0 KDMSS
R111 696.3 41 19.21 707.2 1 3.67 707.2 CR+KLM
R112 614.9 165 169.26 630.2 1 35.67 630.2 CR+KLM

C101 362.4 1 0.47 362.4 1 0.47 362.4 KDMSS
C102 361.4 1 1.59 361.4 1 1.59 361.4 KDMSS
C103 361.4 1 6.06 361.4 1 6.06 361.4 KDMSS
C104 358.0 1 1564.88 358.0 1 1564.88 358.0 KDMSS
C105 362.4 1 0.49 362.4 1 0.49 362.4 KDMSS
C106 362.4 1 0.69 362.4 1 0.69 362.4 KDMSS
C107 362.4 1 0.97 362.4 1 0.97 362.4 KDMSS
C108 362.4 1 1.55 362.4 1 1.55 362.4 KDMSS
C109 362.4 1 3.62 362.4 1 3.62 362.4 KDMSS

RC101 850.1 39 5.60 944.0 1 2.12 944.0 KDMSS
RC102 721.9 127 60.41 822.5 1 8.68 822.5 KDMSS
RC103 645.3 9 8.56 710.9 1 40.05 710.9 KDMSS
RC104 545.8 1 5.71 545.8 1 5.71 545.8 KDMSS
RC105 761.6 21 7.22 855.3 1 4.31 855.3 KDMSS
RC106 664.5 11 3.35 723.2 1 3.88 723.2 KDMSS
RC107 603.6 7 4.60 642.7 1 4.49 642.7 KDMSS
RC108 541.2 5 15.88 594.8 5 260.95 598.1 KDMSS

R201 791.9 1 4.97 791.9 1 4.97 791.9 CR+KLM
R202 698.5 1 9.88 698.5 1 9.88 698.5 CR+KLM
R203 598.6 25 355.99 605.3 1 50.80 605.3 IV+C
R204 - - 506.4 IV
R205 682.9 35 118.12 690.1 1 15.45 690.1 IV+C
R206 626.4 47 288.00 632.4 1 190.86 632.4 IV+C
R207 564.1 141 15400.44 575.5 1 34406.96 575.5 JPSP
R208 - - - -
R209 599.9 3 24.45 600.6 1 16.63 600.6 IV+C
R210 636.1 49 332.70 645.3 3 18545.61 645.6 IV+C
R211 528.7 31 44644.89 535.5 1 10543.81 535.5 IV+DLP

C201 360.2 1 42.07 360.2 1 42.07 360.2 CR+L
C202 360.2 1 67.05 360.2 1 67.05 360.2 CR+KLM
C203 359.8 1 214.88 359.8 1 214.88 359.8 CR+KLM
C204 - - 350.1 KLM
C205 359.8 1 64.18 359.8 1 64.18 359.8 CR+KLM
C206 359.8 1 38.91 359.8 1 38.91 359.8 CR+KLM
C207 359.6 1 72.81 359.6 1 72.81 359.6 CR+KLM
C208 350.5 1 55.79 350.5 1 55.79 350.5 CR+KLM

RC201 684.8 1 3.00 684.8 1 3.00 684.8 L+KLM
RC202 613.6 1 10.69 613.6 1 10.69 613.6 IV+C
RC203 555.3 1 190.88 555.3 1 190.88 555.3 IV+C
RC204 - - 442.2 DLP
RC205 630.2 1 5.88 630.2 1 5.88 630.2 IV+C
RC206 610.0 1 8.17 610.0 1 8.17 610.0 IV+C
RC207 558.6 1 21.53 558.6 1 21.53 558.6 C
RC208 - 476.7 1 1639.40 476.7 S

Table 7: Instances with 50 customers.
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with ESPPRC with ESPPRC and SR

Instance LB Tree Time (s) LB Tree Time (s) UB Ref.

R101 1631.2 57 20.08 1634.0 3 1.87 1637.7 KDMSS
R102 1466.6 1 4.39 1466.6 1 4.39 1466.6 KDMSS
R103 1206.8 19 55.78 1208.7 1 23.85 1208.7 CR+L
R104 - 971.3 3 32343.92 971.5 IV
R105 1346.2 113 126.96 1355.2 5 43.12 1355.3 KDMSS
R106 1227.0 147 511.07 1234.6 1 75.42 1234.6 CR+KLM
R107 - 1064.3 3 1310.30 1064.6 CR+KLM
R108 - 932.1 1 5911.74 932.1 JPSP
R109 - 1144.1 19 1432.41 1146.9 CR+KLM
R110 - 1068.0 3 1068.31 1068.0 CR+KLM
R111 - 1045.9 39 83931.48 1048.7 CR+KLM
R112 - 946.7 9 202803.94 948.6 JPSP

C101 827.3 1 3.02 827.3 1 3.02 827.3 KDMSS
C102 827.3 1 12.92 827.3 1 12.92 827.3 KDMSS
C103 826.3 1 33.89 826.3 1 33.89 826.3 KDMSS
C104 822.9 1 4113.09 822.9 1 4113.09 822.9 KDMSS
C105 827.3 1 5.34 827.3 1 5.34 827.3 KDMSS
C106 827.3 1 7.15 827.3 1 7.15 827.3 KDMSS
C107 827.3 1 6.55 827.3 1 6.55 827.3 KDMSS
C108 827.3 1 14.46 827.3 1 14.46 827.3 KDMSS
C109 827.3 1 20.53 827.3 1 20.53 827.3 KDMSS

RC101 1584.1 59 56.62 1619.8 1 12.39 1619.8 KDMSS
RC102 - 1457.4 1 76.69 1457.4 CR+KLM
RC103 - 1257.7 3 2705.78 1258.0 CR+KLM
RC104 - 1129.9 7 65806.79 1132.3 IV
RC105 1472.0 191 309.83 1513.7 1 26.73 1513.7 KDMSS
RC106 - 1367.3 37 15891.55 1372.7 S
RC107 - 1207.8 1 153.80 1207.8 IV
RC108 - 1114.2 1 3365.00 1114.2 IV

R201 - 1143.2 1 139.03 1143.2 KLM
R202 - 1027.3 13 8282.38 1029.6 JPSP
R203 - 870.8 1 54187.40 870.8 JPSP
R204 - - - -
R205 - - - -
R206 - - - -
R207 - - - -
R208 - - - -
R209 - 854.8 3 78560.47 854.8 JPSP
R210 - - - -
R211 - - - -

C201 589.1 1 203.34 589.1 1 203.34 589.1 CR+KLM
C202 589.1 1 3483.15 589.1 1 3483.15 589.1 CR+KLM
C203 588.7 1 13070.71 588.7 1 13070.71 588.7 KLM
C204 - - 588.1 IV
C205 586.4 1 416.56 586.4 1 416.56 586.4 CR+KLM
C206 586.0 1 594.92 586.0 1 594.92 586.0 CR+KLM
C207 585.8 1 1240.97 585.8 1 1240.97 585.8 CR+KLM
C208 585.8 1 555.27 585.8 1 555.27 585.8 KLM

RC201 - 1261.7 3 229.27 1261.8 KLM
RC202 - 1092.3 1 312.57 1092.3 IV+C
RC203 922.6 11 34063.95 923.7 1 14917.36 923.7 JPSP
RC204 - - - -
RC205 - 1154.0 1 221.24 1154.0 IV+C
RC206 - 1051.1 1 339.69 1051.1 JPSP
RC207 - - - -
RC208 - - - -

Table 8: Instances with 100 customers.
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B Solutions of Closed Solomon Instances

Cost Route

8.8 53
119.2 70, 30, 20, 66, 65, 71, 35, 34, 78, 77, 28
105.4 92, 98, 91, 44, 14, 38, 86, 16, 61, 85,100, 37
84.1 2, 57, 15, 43, 42, 87, 97, 95, 94, 13, 58

106.5 73, 22, 41, 23, 67, 39, 56, 75, 74, 72, 21, 40
114.6 52, 88, 62, 19, 11, 64, 63, 90, 32, 10, 31
78.4 6, 96, 59, 99, 93, 5, 84, 17, 45, 83, 60, 89

107.3 26, 12, 80, 68, 29, 24, 55, 4, 25, 54
93.2 27, 69, 76, 3, 79, 9, 51, 81, 33, 50, 1

114.6 18, 7, 82, 8, 46, 36, 49, 47, 48

932.1 10

Table 9: Solution of R108.100. The left column is
the cost of the routes and the total cost. The right
column is a comma separated list indicating the cus-
tomers visited on the routes in the order of visit and
the total number of routes.

Cost Route

78.1 6, 94, 95, 87, 42, 43, 15, 57, 58
115.8 2, 41, 22, 75, 56, 23, 67, 39, 25, 55, 54
117.4 28, 76, 79, 78, 34, 35, 71, 65, 66, 20, 1
128.2 31, 62, 19, 11, 63, 64, 49, 36, 47, 48
62.8 53, 40, 21, 73, 74, 72, 4, 26
98.0 52, 88, 7, 82, 8, 46, 45, 17, 84, 5, 89
76.4 12, 80, 68, 24, 29, 3, 77, 50

100.5 61, 16, 86, 38, 14, 44, 91,100, 37, 59, 96
67.6 18, 83, 60, 99, 93, 85, 98, 92, 97, 13

103.8 27, 69, 33, 81, 9, 51, 30, 32, 90, 10, 70

948.6 10

Table 10: Solution of R112.100.

Cost Route

8.8 53
93.6 52, 62, 63, 90, 10, 32, 70

177.2 83, 45, 82, 48, 47, 36, 19, 11, 64, 49, 46, 17, 5, 60, 89
223.8 50, 33, 65, 71, 29, 76, 3, 79, 78, 81, 9, 51, 20, 66, 35, 34,68, 77
140.2 27, 69, 1, 30, 31, 88, 7, 18, 8, 84, 86, 91,100, 37, 98, 93,59, 94
67.1 40, 73, 41, 22, 74, 2, 58

148.9 28, 26, 21, 72, 75, 39, 67, 23, 56, 4, 54, 55, 25, 24, 80, 12
170.0 95, 92, 42, 15, 14, 38, 44, 16, 61, 85, 99, 96, 6, 87, 57, 43, 97, 13

1029.6 8

Table 11: Solution of R202.100.

Cost Route

24.2 53, 40, 58
142.1 27, 69, 1, 76, 3, 79, 78, 81, 9, 66, 71, 35, 34, 29, 68, 77, 28
187.3 89, 18, 45, 46, 36, 47, 48, 19, 11, 62, 88, 7, 82, 8, 83, 60,5, 84, 17, 61, 91,100, 37, 98, 93, 59, 94
183.3 95, 92, 97, 42, 15, 43, 14, 44, 38, 86, 16, 85, 99, 96, 6, 87, 57, 41, 22, 74, 73, 2, 13
190.3 50, 33, 51, 71, 65, 20, 30, 32, 90, 63, 64, 49, 10, 70, 31, 52
143.6 26, 21, 72, 75, 39, 67, 23, 56, 4, 55, 25, 54, 24, 80, 12

870.8 6

Table 12: Solution of R203.100.
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Cost Route

202.5 27, 31, 7, 48, 47, 36, 46, 45, 8, 18, 6, 37, 44, 14, 38, 16, 17, 5, 13
130.5 2, 42, 43, 15, 23, 39, 22, 41, 21, 40
242.5 28, 12, 3, 33, 50, 1, 30, 11, 49, 19, 10, 32, 20, 9, 35, 34, 29, 24, 25, 4, 26

575.5 3

Table 13: Solution of R207.50.

Cost Route

146.8 52, 7, 82, 83, 18, 6, 94, 13, 87, 57, 15, 43, 42, 97, 92, 37,100, 91, 93, 96
198.7 95, 99, 59, 98, 85, 5, 84, 61, 16, 44, 14, 38, 86, 17, 45, 8,46, 36, 49, 48, 60, 89
205.9 27, 69, 31, 88, 62, 47, 19, 11, 64, 63, 90, 30, 51, 71, 9, 81, 33, 79, 3, 77, 68, 80, 24, 54, 26
157.6 28, 12, 76, 29, 78, 34, 35, 65, 66, 20, 32, 10, 70, 1, 50
145.8 40, 2, 73, 21, 72, 75, 23, 67, 39, 25, 55, 4, 56, 74, 22, 41,58, 53

854.8 5

Table 14: Solution of R209.100.

Cost Route

139.4 81, 54, 72, 37, 36, 39, 42, 44, 41, 38, 40, 35, 43, 61, 68
172.8 90, 65, 83, 64, 85, 63, 89, 76, 23, 21, 48, 18, 19, 49, 22, 20, 51, 84, 56, 66
241.4 69, 98, 88, 53, 82, 99, 52, 86, 87, 9, 10, 47, 17, 13, 74, 59, 97, 75, 58, 77, 25, 24, 57
211.0 1, 3, 5, 45, 60, 12, 11, 15, 16, 14, 78, 73, 79, 7, 6, 8, 46, 4, 2, 55,100, 70
159.1 91, 92, 95, 62, 33, 32, 30, 27, 26, 28, 29, 31, 34, 50, 67, 94, 93, 71, 96, 80

923.7 5

Table 15: Solution of RC203.100.

Cost Route

8.4 90
186.6 81, 94, 67, 84, 85, 51, 76, 89, 48, 25, 77, 58, 74
168.6 92, 71, 72, 42, 39, 38, 36, 40, 44, 43, 41, 37, 35, 54, 93, 96
180.9 65, 83, 64, 95, 62, 63, 33, 30, 31, 29, 27, 28, 26, 32, 34, 50, 56, 91, 80
189.6 61, 2, 45, 5, 8, 7, 79, 73, 78, 53, 88, 6, 46, 4, 3, 1,100, 70, 68
120.9 82, 99, 52, 86, 57, 23, 21, 18, 19, 49, 20, 22, 24, 66
196.1 69, 98, 12, 14, 47, 16, 15, 11, 59, 75, 97, 87, 9, 13, 10, 17, 60, 55

1051.1 7

Table 16: Solution of RC206.100.
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Chv�atal-Gomory Rank-1 Cuts used
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Abstract

This chapter shows how Chv�atal-Gomory (CG) rank-1 cuts can be used in a branch-
and-cut-and-price algorithm for the vehicle routing problem with time windows (VRPTW).
Using Dantzig-Wolfe decomposition we split the problem into a set partitioning problem
as master problem and an elementary shortest path problem with resource constraints as
pricing problem. To strengthen the formulation we derive general CG rank-1 cuts based
on the master problem formulation. Adding these cuts to the master problem means that
an additional resource is added to the pricing problem for each cut. This increases the
complexity of the label algorithm used to solve the pricing problem since normal dom-
inance tests become weak when many resources are present and hence most labels are
incomparable. To overcome this problem we present a number of improved dominance
tests exploiting the step-like structure of the objective function of the pricing problem.
Computational experiments are reported on the Solomon test instances showing that the
addition of CG rank-1 cuts improves the lower bounds signi�cantly and makes it possible
to solve a majority of the instances in the root node of the branch-and-bound tree. This
indicates that CG rank-1 cuts may be essential for solving future large-scale VRPTW
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problems where we cannot expect that the branching process will close the gap between
lower and upper bounds in reasonable time.

Keywords: Vehicle routing problem with time windows, Dantzig-Wolfe decomposition,
Chvatal-Gomory rank-1 cuts.

1 Introduction

In the vehicle routing problem with time windows (VRPTW) we are given a set of customers
with an associated demand and a number of identical vehicles. The task is to �nd a set
of minimum-length routes starting and ending at a central depot such that each customer is
visited exactly once within a given time window, and the capacity of each vehicle is respected.

The standard Dantzig-Wolfe decomposition of the arc 
ow formulation of the VRPTW
is to split the problem into a master problem (a set partitioning problem with a convexity
constraint, stating that all customers should be visited with a limited number of vehicles) and
a pricing problem (an elementary shortest path problem with resource constraints (ESPPRC),
where capacity and time are the constrained resources). Delayed column generation may be
used to solve the LP-relaxed master problem, which can be used as lower bound in a branch-
and-bound algorithm to reach integrality. Applying cutting planes either in the master or the
pricing problem leads to a branch-and-cut-and-price algorithm (BCP).

BCP algorithms have been frequently used to solve the VRPTW, e.g., Kohl et al. [25],
Cook and Rich [6], Larsen [26], Kallehauge et al. [24], Irnich and Villeneuve [22], Chabrier
[4], Danna and Le Pape [7], Salani [31]. In all cases the valid inequalities have been based
on the original arc 
ow formulation of the VRPTW, i.e., the inequalities added are valid
for both the original arc formulation and the master problem. Fukasawa et al. [16] refer
to this as a robust approach. Recently Jepsen et al. [23] showed how the subset row (SR)
inequalities, which are valid inequalities for the set partitioning problem, successfully can be
applied to VRPTW in a column generation context. In their computational results they report
solving 8 out of 18 previously unsolved instances from the set of benchmarks by Solomon
[33]. In a following paper Desaulniers et al. [9] added fast pricing heuristics and improved
cutting policies for the SR inequalities to obtain even better results by closing an additional
5 instances. The latter approaches are denotednon-robust according to the classi�cation
by Fukasawa et al. [16], since the complexity of the pricing problem is increased when SR
inequalities are added to the master problem.

Jepsen et al. [23] showed that the separation of SR inequalities isNP -hard and that the
inequalities can be recognized as a subset of the Chv�atal-Gomory (CG) rank-1 cuts. A simple
enumeration algorithm was used to separate the SR inequalities for sets of rows of size three,
and even for such small sets the computational results were very good as mentioned above.
Not surprisingly the separation of CG rank-1 cuts is also known to beNP -hard, see Eisenbrand
[13]. Fischetti and Lodi [15] used the CG rank-1 cuts as cutting planes in an integer problem
and showed how the separation can be formulated as a mixed integer problem. They obtained
lower bounds when optimizing over the �rst Chv�atal closure, i.e., adding violated CG rank-1
cuts, and were the �rst to report an optimal solution to one instance from MIPLIB 3.0 by
Bixby et al. [1]. These results motivate the incorporation of the CG rank-1 cuts in a BCP
algorithm.

The pricing problem of the Dantzig-Wolfe decomposition of VRPTW, i.e., the ESPPRC,
was shown to beNP -hard by Dror [11]. Commonly the ESPPRC has been solved with labeling
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algorithms, see Dumitrescu [12], Feillet et al. [14], Righini and Salani [29, 30], Boland et al.
[2]. Due to the di�culty of the ESPPRC most earlier approaches solved relaxations of the
ESPPRC, see Desrochers et al. [10], Irnich and Villeneuve [22]. For a general introduction to
resource constrained shortest path problems, see Desaulniers et al. [8], Irnich and Desaulniers
[21], Irnich [20]. Jepsen et al. [23] provides an introduction of the SR inequalities and how
their application in the master problem leads to an additional resource per inequality in the
pricing problem. Furthermore, it is shown how the dominance criteria of the label algorithm
can be improved.

In this chapter we extend the work by Jepsen et al. [23] to include general CG rank-1
cuts for the Set Partitioning master problem. Each cut results in a new resource constraint
in the ESPPRC pricing problem. As the resource extension functions are non-decreasing any
dynamic programming algorithm for the ESPPRC can be used to solve the resulting problem.
However, the addition of new resources means that more labels become incomparable when
using a traditional dominance test, and hence the number of labels in the dynamic program-
ming explodes. To overcome this problem we exploit the fact that in the pricing problem
it is su�cient to �nd a cost-minimal solution, and not all Pareto-optimal solutions. Due to
this fact we may temporarily replace each label with a number of equivalent labels such that
resources become comparable in the dominance test. This approach considerably decreases
the number of labels generated in the dynamic programming algorithm. As demonstrated in
the computational results we can in this way solve the ESPPRC pricing problem even when
several hundreds of CG rank-1 cuts have been added, and hence several hundreds of resources
are to be dealt with in the label algorithm.

The chapter is organized as follows: In Section 2 we give an overview of the Dantzig-Wolfe
decomposition of the VRPTW and describe how to calculate the reduced cost of columns when
delayed column generation is used. For completeness we review the CG rank-1 cuts and their
separation, as described by Fischetti and Lodi [15], in Section 3. Furthermore, we clarify
how to use these techniques in a VRPTW context. In Section 4 the improved dominance
criteria of the label algorithm are described. An algorithmic outline, implementation details,
and computational results using the Solomon benchmark instances are presented in Section
5. Section 6 provides some concluding remarks.

2 Decomposition

Let C be the set of customers, and let the set of nodes beV = C [ f o; o0g whereo denotes the
depot at the start of the routes and o0 denotes the depot at the end. Each customeri 2 C
has a demanddi while we setdo = do0 = 0. Each node i 2 V has an associated servicesi and
a time windows [ai ; bi ] in which it should be visited.

Let E = f (i; j ) : i; j 2 V; i 6= j g be the set of arcs between the nodes. The set of vehicles
K is su�ciently large, e.g., jK j = V , such that the convexity constraint is not binding, and
each vehicle has capacityD . If vehicle k 2 K service nodei 2 V then the variable t ik denotes
the arrival time of the vehicle. Let cij be the travel cost on arc (i; j ) 2 E and let x ijk be the
variable indicating whether vehicle k 2 K traverses arc (i; j ) 2 E . The overall travel time � ij

on arc (i; j ) 2 E depends on the travel time of the arc and the service timesi at customer i .
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The 3-index 
ow model (Toth and Vigo [34]) for the VRPTW becomes:

min
X

k2 K

X

(i;j )2 E

cij x ijk (1)

s.t.
X

k2 K

X

(i;j )2 � + (i )

x ijk = 1 8i 2 C (2)

X

(i;j )2 � + (o)

x ijk =
X

(i;j )2 � � (o0)

x ijk = 1 8k 2 K (3)

X

(j;i )2 � � (i )

x jik �
X

(i;j )2 � + (i )

x ijk = 0 8i 2 C; 8k 2 K (4)

X

(i;j )2 E

di x ijk � D k 2 K (5)

ai � t ik � bi 8i 2 V; 8k 2 K (6)

x ijk (t ik + � ij ) � t jk 8(i; j ) 2 E; 8k 2 K (7)

x ijk 2 f 0; 1g 8(i; j ) 2 E; 8k 2 K (8)

Constraints (2) ensure that every customeri 2 C is visited, and (3) ensures that each route
starts and ends in the depot. Constraint set (4) ensure 
ow conservation for each vehicle
k. Note that a zero-cost arc xoo0k between the start and end depot must be present for all
vehicles to allow an empty tour in case not all vehicles are needed. The constraint set (5)
ensures that the capacity of each vehicle is not exceeded and constraint sets (6) and (7) ensure
that the time window constraints are satis�ed. Note that (7) together with the assumption
that � ij > 0 for all ( i; j ) 2 E eliminates all sub-tours. The last constraint de�ne the domain
of the arc 
ow variables.

The standard Dantzig-Wolfe decomposition of the VRPTW, see e.g. Desrochers et al.
[10], leads to the following master problem:

min
X

p2 P

X

(i;j )2 E

cij � ijp � p (9)

s.t
X

p2 P

X

(i;j )2 � + (i )

� ijp � p = 1 8i 2 C (10)

� p 2 f 0; 1g 8p 2 P (11)

where P is the set of all feasible routes, the binary constant� ijp is one if and only if arc
(i; j ) is used by route p 2 P, and the binary variable � p indicates whether route p is used.
The master problem is a set partitioning problem and the LP relaxation can be solved using
delayed column generation, i.e., consider arestricted master problem containing a subset of
the columns P and generate additional columns as needed. For the remainder of this chapter
the master problem will refer to the the restricted problem. Let � i 2 R for all i 2 C be the
dual values of (10) and let � 0 = 0. Then the reduced cost of a routep is:

cp =
X

(i;j )2 E

cij � ijp �
X

(i;j )2 E

� j � ijp =
X

(i;j )2 E

(cij � � j )� ijp (12)

The pricing problem is an ESPPRC where the cost of each arc iscij = cij � � j for all arcs
(i; j ) 2 E .
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Valid inequalities based on the VRPTW constraints (2)-(8), i.e.,
X

k2 K

X

(i;j )2 E

� ij x ijk � � 0 (13)

are handled as follows (Note that� ij can be dependent on a vehiclek but then di�erent pricing
problems must be considered). Let� be the dual values of (13), then an additional�� ij for
all arcs (i; j ) 2 E has to be subtracted from the reduced cost of a route, i.e., by subtracting
the dual value from the arc cost in the the pricing problem, i.e.,cij = cij � � j � �� ij .

Consider adding a valid inequality for the set partitioning master problem (10){(11) that
cannot be written as a linear combination of the arc 
ow variables, i.e.,

X

p2 P

� p� p � � 0 (14)

Let � � 0 be the dual values of (14), then an additional �� p has to be subtracted when
calculating the reduced cost of the column, i.e, the new reduced cost is ^cp = cp � �� p. To
handle the cost � �� p it is necessary to modify the pricing problem by adding constraints or
variables, thereby increasing its complexity.

3 Chv�atal-Gomory Rank-1 Cuts

CG cuts are well known valid inequalities for integer programming problems, see Gomory
[17], Chvatal [5]. However, in a BCP context these cuts have been given little attention.
Except for the recent papers by Jepsen et al. [23], Desaulniers et al. [9] only an early attempt
by Nemhauser and Park [28] has been found where general mixed-integer cuts for the master
problem is applied. Nemhauser and Park [28] solved the pricing problem as a MIP by adding
additional variables and constraints to take the dual values of the applied cuts into account.
As noted in Jepsen et al. [23], the SR inequalities are a subset of the CG cuts, and since the
SR inequalities were successfully used for VRPTW an obvious extension is to include a larger
set of the CG cuts into the BCP framework. Hence, in the following the focus will be on the
CG rank-1 cuts and their separation starting with the general case as described by Fischetti
and Lodi [15]. Next we specify the form of CG rank-1 cuts for the master problem of the
VRPTW and formulate the separation problem based the presented theory. Last we brie
y
discuss the interpretation of the SR inequalities with regards to the CG cuts.

Consider an IP problem:

minf c� : A� � b; � � 0; � 2 Zng

where A is a m � n matrix, N = 1 ; : : : ; n is the set of indices of variables, andM = 1 ; : : : ; m
is the set of indices of constraints. The two polyhedra

PLP = f � 2 Rn : A� � b; � � 0g

PIP = convf � 2 Zn : A� � b; � � 0g = conv(PLP \ Zn )

describe the solution space of the linear relaxationPLP and the convex hull of the integer
solutions in PLP . It is assumed that all coe�cients of A and b are integer. A CG cut is a
valid inequality for PIP given as:

buAc� � b ubc
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where u � 0 is called the CG multiplier vector. The inequality is said to have rank-1 with
respect to A� � b and � � 0. Higher rank cuts are obtained by considering systems that also
contain lower rank CG cuts, e.g., a rank-2 cut is based onA� � b and � � 0 and some rank-1
cuts. Note that given the above assumptions on the integrality ofA and b, undominated CG
cuts only arise for rational CG multipliers ui 2 [0; 1), for all i = 1 ; : : : ; m, see Schrijver [32].

The �rst Chv�atal closure of PLP is de�ned as the polyhedron:

P1 = f � � 0 : A� � b;buAc� � b ubc; u � 0 8u 2 Rng

Clearly PIP � P1 � PLP but even more interesting is it, that P1 � PLP i� PIP 6= PLP . The
better approximation of PIP is obtained, since it is possible to use a CG cut to cut o� a
fractional vertex � � 2 PLP corresponding to the basisB by choosing multipliers u equal to
the i th row of B � 1 where i is the row associated with any fractional part of � � , see Gomory
[17, 18].

The separation problem is stated by Fischetti and Lodi [15] as:

De�nition 1. Given a point � � 2 PLP . The CG separation problem consists of �nding a CG
cut that is violated by � � , i.e., �nd u � 0 for u 2 Rn such that buAc� > bubc, or prove that
no suchu exist.

Eisenbrand [13] showed that the separation problem isNP -hard and computational results
performed by Fischetti and Lodi [15] indicate that separation times can be cumbersome.

Given a fractional solution � � 2 PLP the maximally violated CG cut 
� � 
 0, where

 = buAc and 
 0 = bubc for some CG multipliers u � 0 for u 2 Rn can be found by solving
the following MIP:

max 
� � � 
 0 (15)


 j � uA j 8j 2 N (16)


 0 > ub � 1 (17)

ui � 0 8i 2 M (18)


 j 2 Z 8j 2 N [ f 0g (19)

Note that only basis variables with non-zero values can contribute to the violation of the
CG rank-1 cut. Hence, all zero valued variables can be left out of the formulation and their
coe�cients can be calculated after the CG multipliers are identi�ed. This reduces the size of
the MIP problem in both the number of variables and constraints.

Furthermore Fischetti and Lodi [15] suggest to reformulate the problem in order to obtain
a stronger formulation and numerical stability. Based on the fact that the CG multipliers of
undominated cuts are less than 1, bounding them from above provides a stronger formulation.
However, later observations showed that the MIP heuristics performed much better without
these bounds. To obtain numerical stability a slack variablef j 2 [0; 1 � � ] (e.g., � = 0 :01) is
introduced for each coe�cient � j .

Equivalent solutions to the separation problem can result in CG rank-1 cuts of di�erent
strength with respect to PIP . A strong cut tends to be sparse, i.e., the number of non-zero
entries is small. In order to obtain stronger and sparser cuts the objective function is modi�ed
by adding a small penalty wi (e.g., wi = 0 :0001) for the selection of a multiplier ui .
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Let N (� � ) is the set of non-zero basis variables. This leads to the following formulation
of the separation problem:

max
X

j 2 N (� � )


 j � �
j � 
 0 �

X

i 2 M

wi ui (20)

f j = uA j � 
 j 8j 2 N (� � ) (21)

f 0 = ub� 
 0 (22)

0 � f j � 1 � � 8j 2 N (� � ) [ f 0g (23)

ui � 0 8i 2 M (24)


 j 2 Z 8j 2 N (� � ) [ f 0g (25)

The model (20)-(25) can be modi�ed to handle systems asA� � b and A� = b by modifying
the bounds of the CG multipliers, i.e., removing (24) and letting u be a free variables is a
way to handle equations.

For VRPTW the the CG rank-1 cuts are based on the master problem constraints (10).
The set partitioning constraints give rise to cuts with CG multipliers u 2 RjC j , since they
are equalities. However, since the CG cuts will be used in a column generation context two
equally sparse cuts at separation time might not be equally sparse after column generation.
This is especially the case for CG rank-1 cuts with negative multipliers in a minimization
problem, where cuts tend to become very dense when columns price into the master problem.
Hence, we restrict ourselves to consider CG rank-1 cuts with non-negative multipliers for the
VRPTW.

The CG rank-1 cuts for the VRPTW with respect to the master problem (9)-(11) and
with non-negative CG multipliers are given as:

X

p2 P

6
6
6
4

X

i 2 C

ui

X

(i;j )2 � + (i )

� ijp

7
7
7
5 � p �

$
X

i 2 C

ui

%

(26)

Given a fractional solution � � for the master problem (9)-(11) the most violated CG cut
of rank-1 can be found by solving the following MIP:

max
X

p2 P (� � )


 p� �
p � 
 0 �

X

i 2 C

wi ui (27)

f p =
X

(i;j )2 � (i )+

� ijp ui � 
 p 8p 2 P(� � ) (28)

f 0 =
X

i 2 C

ui � 
 0 (29)

0 � f p � 1 � � 8p 2 P(� � ) [ f 0g (30)

0 � ui 8i 2 C (31)


 j 2 Z+ 8p 2 P(� � ) [ f 0g (32)

Again it is possible to reduce the number of variables by only considering the non-zero basis
variables.
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From Jepsen et al. [23] we recall the SR inequalities for the VRPTW based on the master
problem (9)-(11):

X

p2 P

6
6
6
4 1

k

X

i 2 S

X

(i;j )2 � + (i )

� ijp

7
7
7
5 � p �

�
1
k

jSj
�

(33)

where S � C and 0 < k � j Sj. This is equivalent to the set of CG rank-1 cuts wherejSj of
the CG multipliers are equal to 1

k and the rest are equal to 0, i.e., a very sparse CG multiplier
vector. A SR cut can also be interpreted as a mod-k cut proposed by Caprara et al. [3]. The
mod-k cuts are CG rank-1 cuts with multipliers in the set f 0; 1

k ; : : : ; k� 1
k g, i.e., a SR cut is a

mod-k cut with jSj multipliers equal to 1
k and the rest are equal to 0. Extending the SR cut

to allow a row (customer) to be present multiple times in S, i.e., let S be a multiset, leads to
an SR cut with maximal jSj multipliers in the set f 0; 1

k ; : : : ; k� 1
k g. That is, the CG multiplier

of a row is raised by 1
k for each time it is present in S. This is indeed also a mod-k cut.

4 Label Algorithm

Finding a route with negative reduced cost in the pricing problem corresponds to �nding
a negative reduced cost path starting and ending at the depot, i.e., an ESPPRC. In the
following sections we formally describe the ESPPRC and show how the pricing problem can
be solved when new resources are introduced as a consequence of adding CG cuts.

4.1 The Pricing Problem

Assuming that no cuts have been added, the ESPPRC can be formally de�ned as: Given a
weighted directed graph G(V; E) with nodes V and arcs E , and a set of resourcesR. For
each arc (i; j ) 2 E and resourcer 2 R three parameters are given: A lower limit ar (i; j ) on
the accumulation of resourcer when traversing arc (i; j ) 2 E ; an upper limit br (i; j ) on the
accumulation of resourcer when traversing arc (i; j ) 2 E ; and �nally an amount cr (i; j ) of
resourcer consumed by traversing arc (i; j ) 2 E . The objective is to �nd a minimum cost
path p from a source nodeo 2 V to a target node o0 2 V , where the accumulated resources
of p satisfy the limits for all resources r 2 R. Without loss of generality we assume that the
limits must be satis�ed at the end of each arc (i; j ), i.e., after cr (i; j ) has been consumed.

If the nodes have associated some resource consumptions and some upper and lower limits
on the accumulated resources are present, these can be expressed by equivalent resource
constraints on the arcs (e.g. the incoming arcs of the node).

For the pricing problem of VRPTW the resources are loadd, time t, and a binary visit-
counter for each customerv 2 C. When considering the pricing problem of VRPTW, the
consumptions and upper and lower limits of the resources at each arc (i; j ) in ESPPRC are:

ad(i; j ) = 0, bd(i; j ) = D � dj , cd(i; j ) = dj 8(i; j ) 2 E
at (i; j ) = ai , bt (i; j ) = bi , ct (i; j ) = � ij 8(i; j ) 2 E
av(i; j ) = 0, bv(i; j ) = 1, cv(i; j ) = 1 8v 2 V : v = j; 8(i; j ) 2 E
av(i; j ) = 0, bv(i; j ) = 1, cv(i; j ) = 0 8v 2 V : v 6= j; 8(i; j ) 2 E

In the label algorithm labels at node v represent partial paths from o to v. The following
attributes for a label L are considered:
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v(L ) The current end-node of the partial path represented byL .
c(L ) The sum of the reduced cost along pathL .
r (L ) The accumulated consumption of resourcer 2 R along path L .

A feasible extension� 2 E(L) of a label L is a partial path starting in node v(L ) 2 V and
ending in the target node o0 without violating any resource constraints when concatenated
with the partial path represented by L .

In the following it is assumed that all resources are bounded strongly from above, and
weakly from below. This means that if the current resource accumulation of a label is below
the lower limit on a given arc, it is allowed to �ll up the resource to the lower limit, i.e.,
waiting for a time window to open. This means that two consecutive labelsL u and L v related
by an arc (u; v), i.e., L u is extended and createsL v , where v(L u) = u and v(L v) = v, must
satisfy

r (L v) � br (u; v); 8r 2 R (34)

r (L v) = max f r (L u) + cr (u; v); ar (u; v)g; 8r 2 R (35)

Here (34) demands that each labelL v satis�es the upper limit br (u; v) of resourcer corre-
sponding to arc (u; v), while (35) states that resource r of L v corresponds to the resource
consumption at label L u plus the amount consumed by traversing arc (u; v), respecting the
lower limit ar (u; v) on arc (u; v). Other authors refer to (35) as aresource extension function,
see e.g. Desaulniers et al. [8].

A simple enumeration algorithm could be used to produce all these labels, but to limit
the number of labels considered, dominance rules are introduced to fathom labels which do
not lead to an optimal solution.

De�nition 2. A label L i dominates label L j if

v(L i ) = v(L j ) (36)

c(L i ) � c(L j ) (37)

E(L j ) � E (L i ) (38)

In other words, the paths corresponding to labelsL i and L j should end at the same node
v(L i ) = v(L j ) 2 V , the path corresponding to label L i should cost no more than the path
corresponding to labelL j , and �nally any feasible extension of L j is also a feasible extension
of L i . Notice that we are only interested in one cost-minimal path and not all pareto-optimal
paths, hence our dominance rule is tighter than the one used in e.g. Desaulniers et al.
[8], Irnich and Desaulniers [21].

Feillet et al. [14] suggested to consider the set of nodes that cannot be reached from a
label L i and compare the set with the unreachable nodes of a labelL j in order to determine if
some extensions are impossible and thereby potentially dominate where else not possible, since
vold(L i ) � vold(L j ) ) vnew (L i ) � vnew (L j ) but vnew (L i ) � vnew (L j ) 6) vold(L i ) � vold(L j ).
Or in other words: update the node resources in an eager fashion instead of a lazy one. The
following de�nition is a generalization of Feillet et al. [14][De�nition 3].

De�nition 3. Given a start nodeo 2 V , a label L , and a nodeu 2 V wherev(L ) = u a node
v 2 V is considered unreachableif v has already been visited on the path fromo to u or if a
resource window is violated, i.e.:

9r 2 R r (L ) + ` r (u; v) > br (v)
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where ` r (u; v) is a lower bound on the consumption of resourcer on all feasible paths fromu
to v. The node resourcesare then given as:v(L ) = 1 indicates that nodev 2 V is unreachable
from node v(L ) 2 V , and v(L ) = 0 otherwise.

To determine if (38) holds can be quite cumbersome, as the straightforward de�nition
demands that we calculate all extensions of the two labels. Therefore a su�cient criterion for
(38) to hold is sought which can be computed faster. If labelL i has consumed less resources
than label L j then no resources are limiting the possibilities of extendingL i compared to L j ,
hence the following proposition can be used as a relaxed version of the dominance criteria.

Proposition 4. Desaulniers et al. [8]. If all resource extension functions are non-decreasing,
then labelL i dominates labelL j if:

v(L i ) = v(L j ) (39)

c(L i ) � c(L j ) (40)

r (L i ) � r (L j ) 8r 2 R (41)

Using Proposition 4 as a dominance criteria is a relaxation of the dominance criteria of
De�nition 2 since only a subset of labels satisfying (36), (37), and (38) satis�es inequalities
(39), (40), and (41).

4.2 Solving the Pricing Problem with New Resources

Recall that a CG rank-1 cut (26) for the VRPTW master problem (9){(11) is:

X

p2 P

6
6
6
4

X

i 2 C

ui

X

(i;j )2 � + (i )

� ijp

7
7
7
5 � p �

$
X

i 2 C

ui

%

Let � � 0 be the corresponding dual variable when solving the master problem to LP-
optimality. The reduced cost of column p in the VRPTW master problem is:

ĉp = cp � �

6
6
6
4

X

i 2 C

ui

X

(i;j )2 � + (i )

� ijp

7
7
7
5 =

X

(i;j )2 E

cij � ijp � �

6
6
6
4

X

i 2 C

ui

X

(i;j )2 � + (i )

� ijp

7
7
7
5

We analyze how this additional cost can be handled in the label algorithm for ESPPRC.
Let V (L ) = f i 2 V : i (L ) = 1 g be the nodes visited on the partial path of labelL . The

reduced cost ofL can then be expressed as:

ĉ(L ) = c(L ) � �

6
6
6
4

X

i 2 V (L )

ui

7
7
7
5 (42)

A new resourcem can be used to compute the coe�cient of penalty � for label L , i.e.,
m(L) =

P
i 2 V (L ) ui , is the un
oored amount involved in the cut. Note that the consumption

of resourcem is ui for each outgoing (incoming) arc of the customersi 2 C. Even though
the update of resource ^c is de�ned by a decreasing function, the usual dominance criteria
of Proposition 4 can still be used, because in caseL i dominates L j , c(L i ) � c(L j ) and
m(L i ) � m(L j ) so ĉ(L i ) � ĉ(L j ) since � � > 0. Note that the resource ĉ can be ignored
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during the label algorithm and only be considered at the last arc to the target node to
compute the reduced cost ^c(L ) of path L from c(L) and m(L).

Since all resource extension functions (includingm(L)) are non-decreasing we can apply
the label algorithm described in the previous section to solve the ESPPRC, using the domi-
nance rule from Proposition 4 for the extended set of resources. However, as further cuts are
added and hence more resources are to be compared in (41) the dominance rule is satis�ed
very rare. In order to overcome this problem, we note the following property of constraint
(42)

ĉ(L ) = c(L ) � � bm(L)c = c(L ) + k� � � bm(L) � kc (43)

for any integer k. Hence a label (ĉ(L ); r (L ); m(L)) is equivalent to a label (ĉ(L )� k�; r (L ); m(L)�
k), meaning that we can make resources comparable in (41) at the cost of modifyingc(L ) in
(40) and vice versa. This is the main idea in Proposition 5, 6 and 7 to be presented.

For a label L let

T (L ) =

0

@
X

i 2 V (L )

ui

1

A mod 1

be the amount involved in the cut since the last penalty was paid, i.e., the fractional part ofP
i 2 V (L ) ui . Recall E(L ) as the set of feasible extensions from the labelL to the target node

o0 and note that when label L i dominates label L j , their common extensions areE(L j ) due
to (38). The following cost dominance criteria are obtained for a single CG rank-1 cut:

Proposition 5. If T (L i ) � T (L j ), v(L i ) = v(L j ), ĉ(L i ) � ĉ(L j ), and r (L i ) � r (L j ) 8r 2 R,
then labelL i dominates labelL j .

Proof. Consider any common extension� 2 E(L j ). SinceT (L i ) � T (L j ) the relation between
the number of future penalties for the two labels when concatenated with� is:

$
X

i 2 �

ui + T (L i )

%

�

$
X

i 2 �

ui + T (L j )

%

This leads to the following relation between the costs:

ĉ(L i + � ) = ĉ(L i ) + c(� ) � �

$
X

i 2 �

ui + T (L i )

%

� ĉ(L j ) + c(� ) � �

$
X

i 2 �

ui + T (L j )

%

= ĉ(L j + � )

Hence, labelL i dominates labelL j .

Proposition 6. If T (L i ) > T (L j ), v(L i ) = v(L j ), ĉ(L i ) � � � ĉ(L j ), and r (L i ) � r (L j ) 8r 2
R, then labelL i dominates labelL j .

Proof. Consider any common extension� 2 E(L j ). SinceT (L i ) > T (L j ) the relation between
the number of future penalties for the two labels when concatenated with� is:

$
X

i 2 �

ui + T (L i )

%

�

$
X

i 2 �

ui + T (L j )

%

(44)
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Since 0� T (L j ) < T (L i ) < 1 it is clear that the left hand side of (44) is at most one unit
larger than the right hand side, i.e., labelL i will pay the penalty at most one more time than
label L j . Hence, $

X

i 2 �

ui + T (L i )

%

� 1 �

$
X

i 2 �

ui + T (L j )

%

That is, the additional cost of extending L i with � is at most � � more than extending L j

with � . This leads to the following relation between the costs:

ĉ(L i + � ) = ĉ(L i ) + c(� ) � �

$
X

i 2 �

ui + T (L i )

%

= ĉ(L i ) � � + c(� ) � �

 $
X

i 2 �

ui + T (L i )

%

� 1

!

� ĉ(L j ) + c(� ) � �

$
X

i 2 �

ui + T (L j )

%

= ĉ(L j + � )

Hence labelL i dominates labelL j .

Observe that if T (L i )+
P

i 2 � ui < 1 for all � 2 E(L j ), it is not possible to trigger a penalty,
i.e., the temporary penalty to the cost of L i can be disregarded.

In case of several CG rank-1 cuts, the new dominance criteria are as follows:

Proposition 7. Let Q = f q : � q < 0^ T q(L i ) > Tq(L j )g. Then label L i dominates labelL j if:

v(L i ) = v(L j ) (45)

ĉ(L i ) �
X

q2 Q

� q � ĉ(L j ) (46)

r (L i ) � r (L j ) 8r 2 R (47)

Proof. The validity of (46) follows directly from Propositions 5 and 6. The validity of (45)
and (47) follows from Proposition 4.

5 Experimental Results

The experimental study is intended to show how much it is possible to strengthen the lower
bound by adding CG rank-1 cuts, while still being able to solve the corresponding pricing
problem in reasonable time. The SR inequalities have already proved their worth, see Jepsen
et al. [23], Desaulniers et al. [9], but in both cases only sets of rows with size 3 were included,
i.e., CG rank-1 cuts with precisely 3 non-zero entries in the CG multiplier vector. Hence, it is
expected that the introduction of a separation routine for denser CG multiplier vectors could
improve the lower bounds further. Using the exact separation routine for the CG rank-1 cuts
is expected to be time consuming, but for test purposes it is interesting to see how well the
column generation reacts to these cuts and also how much the lower bounds are improved.
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5.1 Settings

The test instances are the well known benchmarks introduced by Solomon [33]. The bench-
marks are divided into two series, both of which are again divided into a C (customers are
grouped in larger clusters), an R (customers are distributed randomly), and an RC (a mix of
the two previous) series. Of the 56 instances with 100 customers �ve instances are unsolved
at the time of writing. Furthermore, 16 of the solved instances have not yet been solved in
the root node of the branch-and-bound tree. We will only consider the R and RC instances,
since all C instances can be solved in the root node without cutting planes, see Jepsen et al.
[23], Desaulniers et al. [9].

The experiments were performed on a Pentium 4 3.0 GHz with 1 GB RAM. The basic BCP
algorithm was developed with the framework COIN, see Lougee-Heimer [27]. The exact MIP-
based CG rank-1 separation procedure is a slight modi�ed version of a procedure provided
by Hunsaker [19]. The MIPs were solved using CPLEX 9.1 with a maximal running time of
3600 seconds.

An exact separation procedure for a limited set of the SR inequalities have been devel-
oped exploiting the SSE2 vector-processing instructions intended for multimedia 
oating-
point purposes which are present in all x86 processors since the introduction of Pentium 4
in 2001. The separation routine is an exact enumeration of SR inequalities with multipliers
ui 2 f 0; 1

k ; : : : ; k� 1
k g for i 2 C where

P
i 2 C ui = n

k , and 0 < k < n � j Cj and k and n are
integer, i.e., mod-k cuts with restriction on the sum of the multipliers.

Our implementation of the brute-force evaluation of all sub-multisets of rows of sizen,
can evaluate the SR inequalities (33) in constant time for each sub-multiset using the vector-
processing capabilities. This makes it possible to separate all violated cuts in timejSjn=n!
when jP j � 16, where S is the set of rows andP is the set of basis columns. Still, the
complexity is so high that we cannot expect to separate inequalities with more than seven
non-zero coe�cients in reasonably time.

Note that our implementation of the BCP algorithm is not competitive with the recent
implementation by Desaulniers et al. [9]. Also it is slower than the one used in Jepsen et al.
[23] due to the implementation of the more general dominance criteria in the label algorithm.
However, the point of our experiments is to study the quality of the lower bounds, i.e., the
number of branch nodes, compared to the increase in computational time of the pricing
problem by adding various cuts. These conclusions hold for all implementations based on the
same decomposition.

5.2 Lower Bounds

Table 1 and 2 show the lower bounds obtained in the root node when di�erent cutting policies
are applied.

The cutting policies are:

\no" No cutting planes
\ n = 3" SR cuts with n = 3 and k = 2
\ n � 5" Like option n = 3 and with n = 5 and k = 2 ; 3
\ n � 7" Like option n � 5 and with n = 7 and k = 2 ; 3; 4
\CG1" General CG rank-1 cuts

A maximum of 50 cuts violating more than 0:0001 are added in each iteration. No time
limit was imposed, but the space limit of 1 GB RAM prevented some instances to run to
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Table 1: Lower bound comparison for the 1-series.
Instance no n = 3 n � 5 n � 7 CG1 UB

R101 1631.2 1634.0 1636.3 1636.31637.7 1637.7
R102 1466.6 1466.6 1466.6 1466.6 1466.6 1466.6
R103 1206.8 1208.7 1208.7 1208.7 1208.7 1208.7
R104 956.9 971.3 971.5 971.5 971.5 971.5
R105 1346.2 1355.2 1355.3 1355.3 1355.3 1355.3
R106 1227.0 1234.6 1234.6 1234.6 1234.6 1234.6
R107 1053.3 1064.3 1064.6 1064.6 1064.6 1064.6
R108 913.6 932.1 932.1 932.1 932.1 932.1
R109 1134.3 1144.1 1146.7 1146.9 1146.9 1146.9
R110 1055.6 1068.0 1068.0 1068.0 1068.0 1068.0
R111 1034.8 1045.9 1047.3 - - 1048.7
R112 926.8 943.5 - - - 948.6
RC101 1584.1 1619.8 1619.8 1619.8 1619.8 1619.8
RC102 1406.3 1457.4 1457.4 1457.4 1457.4 1457.4
RC103 1225.6 1257.7 1258.0 1258.0 1258.0 1258.0
RC104 1101.9 1129.9 - - - 1132.3
RC105 1472.0 1513.7 1513.7 1513.7 1513.7 1513.7
RC106 1318.8 1367.3 1371.9 1372.7 1372.7 1372.7
RC107 1183.4 1207.8 1207.8 1207.8 1207.8 1207.8
RC108 1073.5 1114.2 1114.2 1114.2 1114.2 1114.2

completion.
Upper bounds in the \UB" column are optimal values or best known upper bounds.

Entries in tables marked with an asterisk � are from Danna and Le Pape [7], entries marked
with a double-asterisk �� are from Desaulniers et al. [9], and entries marked with a triple-
asterisk ��� are from Jepsen et al. [23]. A dash indicates that our implementation failed due
to memory limitation. Entries in bold face indicate optimal integer solution.

Of the 28 solved instances one instance (R102) was solved without adding any cuts. The
lower bounds for all remaining instances were considerably improved by adding \n = 3" cuts
resulting in integer solutions for 15 of the 27 remaining (17 out of 33 when considering the
results of Desaulniers et al. [9]). When adding \n � 5" cuts improvements were present in
all but one instance (RC201) resulting in further �ve integer solutions of the 10 remaining
instances that could be solved with this approach. Of the remaining four instances solved
with \ n � 7" cuts, two showed no improvement and two resulted in integer solutions. The last
two instances were solved to integrality when applying CG rank-1 cuts. Hence, we succeeded
in closing the gap between the upper and lower bound for all the instances that we were able
to solve within the memory limit.

Tables 1 and 2 also show that the SR inequalities provide almost as good lower bounds as
general CG rank-1 cuts. For \n = 7" the SR inequalities become time consuming to separate,
and hence in practical applications one should con�ne to \n = 3" or \ n � 5".

Table 3 presents an overview of problems solved in the root node as reported in this chapter
or by Jepsen et al. [23] or Desaulniers et al. [9]. Column \solved" refers to the number of
instances solved to optimality at the time of writing and \total" refers to the total number
of instances. Results from the C-series are included for completeness.

As already noted, adding SR inequalities and CG rank-1 cuts greatly strengthens the
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Table 2: Lower bound comparison for the 2-series.
Instance no n = 3 n � 5 n � 7 CG1 UB

R201 1140.3 1143.2 1143.2 1143.2 1143.2 1143.2
R202 1022.3 1027.3 1029.6 1029.6 1029.6 1029.6
R203 867.0 870.8 870.8 870.8 870.8 870.8
R204 - - - - - �� 731.3
R205 939.0 - - - - 949.8
R206 866.9 �� 875.9 - - - 875.9
R207 �� 790.7 �� 794.0 - - - 794.0
R208 - - - - - � 701.2
R209 841.5 ��� 854.8 - - - 854.8
R210 889.4 - - - - 900.5
R211 - - - - - �� 746.7
RC201 1256.0 1261.7 1261.7 1261.71261.8 1261.8
RC202 1088.1 1092.3 1092.3 1092.3 1092.3 1092.3
RC203 922.6 923.7 923.7 923.7 923.7 923.7
RC204 - - - - - � 783.5
RC205 1147.7 1154.0 1154.0 1154.0 1154.0 1154.0
RC206 1038.6 1051.1 1051.1 1051.1 1051.1 1051.1
RC207 947.4 - - - - 962.9
RC208 - - - - - �� 776.5

Table 3: Summary of instances solved in the root node.
Instance no n = 3 n � 5 n � 7 CG1 solved total

C1 9 9 9 9 9 9 9
C2 8 8 8 8 8 8 8
R1 1 5 8 9 10 12 12
R2 0 4 5 5 5 8 11
RC1 0 5 6 7 7 8 8
RC2 0 4 4 4 5 6 8
All 18 35 40 42 44 51 56

lower bounds. Of the 56 instances 35 were previously reported solved in the root node by
Jepsen et al. [23], Desaulniers et al. [9]. With our additional cutting planes we were able
to solve an additional nine instances in the root node of the remaining 16 previously solved
instances. Note that all the instances we were able to solve were solved in the root node.
The remaining seven instances, which have previously been solved with \n = 3", could not
be solved with the current implementation due to hardware limitations. Hence, there exists
12 Solomon instances (seven solved with branching and �ve unsolved) where CG rank-1 cuts
could potentially improve the lower bound in the root node.

5.3 Running Times of the Pricing Problem

Table 4 and 5 contain the results obtained when solving the instances to optimality using
di�erent cutting planes. In column \CPU" we report the CPU-time in seconds for solving the
last pricing problem, while column \cuts" gives the number of cuts applied. Column \BB"
indicates the number of branch-and-bound nodes considered. As before, a dash in the tables
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indicates that a memory insu�ciency had occurred. Entries marked with a double-asterisk
�� are from Desaulniers et al. [9].

Table 4: Running time for pricing problem and number of branch-and-bound nodes for the
1-series.1) Data log-�les were lost during machine upgrade.

no n = 3 n � 5 CG1
Instance CPU BB CPU cuts BB CPU cuts BB CPU cuts BB

R101 0.1 11 0.1 2 3 0.1 4 3 0.1 15 1
R102 0.2 1 0.2 0 1 0.2 0 1 0.2 0 1
R103 0.4 15 1.3 33 1 1.3 33 1 1.3 33 1
R104 5.8 - 910.5 328 3 - - 11 - - 1
R105 0.1 55 0.2 52 3 0.2 56 1 0.2 56 1
R106 0.5 147 4.8 114 1 4.8 114 1 4.8 114 1
R107 2.2 - 46.1 224 3 78.4 242 1 78.4 242 1
R108 13.0 - 244.8 192 1 244.8 192 1 244.8 192 1
R109 0.3 - 1.6 127 17 8.7 374 3 10.0 367 1
R110 1.1 - 26.0 269 1 26.0 269 1 26.0 269 1
R111 1.5 - 36.6 175 39 293.7 379 - - - -
R112 35.9 - - - 91 - - - - - -
RC101 0.1 59 0.2 69 1 0.2 69 1 0.2 69 1
RC102 0.3 - 1.4 140 1 1.4 140 1 1.4 140 1
RC103 1.2 - 42.8 276 3 49.1 290 1 49.1 290 1
RC104 15.6 - 569.2 237 7 - - - - - -
RC105 0.2 191 0.5 73 1 0.5 73 1 0.5 73 1
RC106 0.3 - 3.5 250 37 16.5 543 5 21.6 572 1
RC107 1.4 - 4.3 85 1 4.3 85 1 4.3 85 1
RC108 9.7 - 86.7 175 1 86.7 175 1 86.7 175 1

The tables show that adding \n � 5" cuts and \CG1" cuts is relatively cheap with respect
to the running time of the pricing problem, while decreasing the number of branch-and-bound
nodes signi�cantly e.g., in instances R109, RC106, and R202.

If we had access to \ideal" heuristics for the pricing problem (with low running time and
high solution quality) we would only need to solve one pricing problem to optimality in each
branch-and-bound node. The running time of the overall algorithm would then be dictated
by the running time for optimally solving the pricing (CPU) and the number of branch-and-
bound nodes (BB). With the exception of R202 (where massive paging occurred due to lack
of memory) the lower bound on the running time \BB � CPU" is not increasing when n
grows and \CG1" cuts are applied. This shows, that good heuristics for the pricing problem
can make the addition of SR and CG-1 cuts attractive for the overall running time.

6 Concluding Remarks

We have demonstrated that it is possible to apply general CG rank-1 cuts derived from the
master problem formulation in a BCP algorithm for VRPTW. As each cut results in the
introduction of a new resource in the pricing problem it was necessary to develop new, tighter
dominance rules for use in the pricing algorithm.

Our computational experiments indicate that the addition of CG rank-1 cuts leads to
signi�cantly improved lower bounds. In our tests the cuts made it possible to close the gap
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Table 5: Running time for pricing problem and number of branch-and-bound nodes for the
2-series.

no n = 3 n � 5 CG1
Instance CPU BB CPU cuts BB CPU cuts BB CPU cuts BB

R201 0.2 - 0.4 15 1 0.4 15 1 0.4 15 1
R202 2.9 - 3.0 24 13 419.6 132 1 419.6 132 1
R203 83.2 - 505.6 35 1 505.6 35 1 505.6 35 1
R204 - - - - - - - - - - -
R205 1.5 - - �� 345 �� 9 - - - - - -
R206 131.7 - - �� 171 �� 1 - - - - - -
R207 - - - �� 24 �� 1 - - - - - -
R208 - - - - - - - - - - -
R209 6.5 - - �� 248 �� 3 - - - - - -
R210 - - - �� 266 �� 5 - - - - - -
R211 - - - - - - - - - - -
RC201 0.2 - 0.3 25 3 0.3 25 3 0.3 29 1
RC202 0.6 - 1.7 26 1 1.7 26 1 1.7 26 1
RC203 58.8 11 185.2 15 1 185.2 15 1 185.2 15 1
RC204 - - - - - - - - - - -
RC205 1.0 - 1.8 21 1 1.8 21 1 1.8 21 1
RC206 1.7 - 4.6 23 1 4.6 23 1 4.6 23 1
RC207 - - - �� 210 �� 5 - - - - - -
RC208 - - - - - - - - - - -

between the upper and lower bounds in the root node of the branch-and-bound tree for 44
of the 51 currently solvable instances from Solomon's test library. This is an additional 9 in-
stances compared to previous results. The increased complexity of the pricing problem caused
by CG rank-1 cuts do a�ect the running time of the pricing problems but not signi�cantly.

This indicates that CG rank-1 inequalities may be essential when solving larger instances
to optimality, as one cannot expect that the branching process will close the gap between the
upper and lower bound in reasonable time. Note that one should also take into account the
additional time spent in each branch node since the number of LP iterations increases when
valid inequalities are added. As for classical branch-and-cut algorithms it will always be a
question when to add cuts and when to start branching.

Another important note is the separation time of the CG rank-1 cuts which can indeed
be very time consuming. Also the current MIP-based heuristics only �nds a limited number
of violated cuts as the main e�ort is put in cut violation quality not violated cut quantity.
We suggest that MIP-based heuristics which focus on �nding numerous violated CG rank-1
cuts could improve the performance of the BCP algorithm. Fortunately the SR inequalities
generally give rise to almost as tight lower bounds as general CG rank-1 cuts, while being
easier to handle in the pricing problem (due to integer modulo operations, see Jepsen et al.
[23]). For n = 7 the separation of SR inequalities takes almost one hour, making them too
expensive to separate. Forn � 5 the inequalities can be separated in a couple of minutes.
So until more e�cient separation methods have been developed, one should only apply SR
inequalities for n � 5.

During our experiments we noticed that speci�c values of the CG multipliers u occurred
more frequently than others. For instance, multiplier vectors u 2 f 0; 1

2gjC j occurred very
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frequently, showing that it is promising to investigate these inequalities further (note that
the SR inequalities for a givenn with k = 2 are a subset of these inequalities). Knowing the
structure of promising CG rank-1 inequalities will make it possible to develop fast, specialized
separation heuristics and better handling of these speci�c inequalities in the pricing problem.
Adapting the separation algorithm by Caprara et al. [3] for maximally violated mod-k cuts
in the master problem could be an interesting direction of research.
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Abstract

This paper introduces a branch-and-cut (BAC) algorithm for the elementary short-
est path problem with resource constraints (ESPPRC), which commonly appears as a
subproblem in column generation based algorithms, e.g., in the classical Dantzig-Wolfe
decomposition of the capacitated vehicle routing problem. Speci�cally, we consider an
undirected graph with arbitrary edge costs (i.e., negative cost cycles may appear) and
with resources that are equally constrained at all nodes and arcs.A mathematical model
and valid inequalities are presented, including a new family of valid inequalities denoted
the generalized capacity inequalities. Experimental tests are performed on a set of gener-
ated instances with graphs of high edge density and a set of instances from the literature.
Traditionally, labeling algorithms have been the dominant solution method for the ESP-
PRC, but experimental results show that the BAC algorithm is superior on all the tested
instances.

Keywords: Branch-and-cut algorithm, elementary shortest path problem with resource
constraints
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1 Introduction

The elementary shortest path problem with resource constraints (ESPPRC) can informally be
stated as the problem of �nding a shortest path between two nodes in a graph where resources
are accumulated along the path, and where the amount of resources are constrained.

In this paper, we consider the case where the graph is undirected and edge costs are
allowed to take on any value. Furthermore, we demand that thepath is simple such that no
nodes are visited more than once. The resources considered in this paper are all bounded such
that the lower and upper bound of the amount of a resource thatare accumulated along the
path is equal for all nodes and edges. We assume, that the resource lower bounds are zero and
that the accumulations are monotone increasing and only performed at the nodes. This type
of globally constrainedresource compares to the vehicle capacity known from the capacitated
vehicle routing problem, where the resource accumulates a positive value (demand) at each
node and the upper bound (capacity of the vehicle) may not be exceeded.

It is now possible to give a more formal statement of the ESPPRC. Let G = ( V; E) be
an undirected graph with nodesV and edgesE. Let a cost ce be associated with each edge
e 2 E, let dr

i be a positive resource accumulation associated to each nodei 2 V for each
resourcer 2 R, and let Qr be the upper bound on the resourcer . Then given a source node
s 2 V and a target node t 2 V ; �nd a path between s and t with minimum cost satisfying
that the sum of the resourcer from at each of the visited nodes is not more thanQr for all
r 2 R.

The ESPPRC de�ned as above isNP -hard in the strong sense. This is easily veri�ed
by reduction from the longest path problem. The de�nition of the ESPPRC varies in the
literature, especially with regard to edge costs, resourcebounds, and resource accumulations.

Beasley and Christo�des [7] presented a mathematical model(very similar to the one used
in this paper) and performed experimental tests using a branch-and-bound algorithm based
on Lagrangian dual bounds. Dumitrescu and Boland [15] presented a labeling algorithm that
was improved by preprocessing based on resource availability. Carlyle et al. [10] proposed a
Lagrangian relaxation algorithm where paths with cost between the Lagrangian bound and
the current upper bound are found using thek-shortest path algorithm by Carlyle and Wood
[9]. Common for these approaches are that they all assume that the graph have no negative
cost cycles. This makes it easier to ensure simplicity of thepath, since it cannot pay o� to
visit a node more than once. The ESPPRC in this form is weaklyNP -hard, and results of
the algorithms presented above are therefore not directly comparable to the results in this
paper.

Another common de�nition is to consider resource bounds individually for each node (or
edge). In this case, it is often necessary to consider an undirected graph, because the direction
of the path determines the correct resource accumulation ata given node. Such resources
compare to the time in the vehicle routing problem with time windows, where the resource
(time) accumulates for each edge and the nodes must be visited within a resource window (a
time window de�ned by a minimum and a maximum arrival time for a node). Such resources
are said to belocally constrained. Dror [14] proved that the ESPPRC with a single globally
constrained resource and a single locally constrained resource isNP -hard in the strong sense.
Feillet et al. [16] presented a labeling algorithm where thesimplicity of the path is ensured with
the use of an additional globally constrained resource per node. Chabrier [11] improved on
the labeling algorithm by applying various bounding procedures to avoid extending unwanted
paths. Righini and Salani [24] proposed a bi-directional labeling algorithm where paths are
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extended from both the source node and the target node until agiven middle of a monotone
increasing resource is reached, e.g., when half the time wasconsumed on the path. The partial
paths are then combined to construct a full path. Independently, Boland et al. [8] and Righini
and Salani [25] proposed to extend the labeling algorithm byrelaxing the node resources and
adding them incrementally until the path is simple. In the former paper, this is referred to
as astate space augmentationalgorithm, and in the latter, it is denoted a decremental state
space relaxationalgorithm. Furthermore, Righini and Salani [25] propose touse the result of
the relaxed problem in a branch-and-bound algorithm.

The algorithms presented above are mainly labeling algorithms. As mentioned in Beasley
and Christo�des [7], even the algorithms based on Lagrangian relaxation make use of a dy-
namic programming algorithm if negative costs cycles are allowed. The strength of the la-
beling algorithms is, that the locally constrained resources are easily implemented, since the
paths are build piece by piece such that resource limits can be checked at every step. In fact,
non-linear functions for accumulation of resources can be handled easily, see e.g., Desaulniers
et al. [12]. Generally, labeling algorithms are assumed to perform well on a sparse graphs
with tightly constrained resources, since this yields a very reduced solution space to search,
i.e., few states in the dynamic programming table needs to besearched. However, when the
graph is dense and the resources are loosely constrained, the labeling algorithms get closer to
a full enumeration of all paths.

Modeling of resources (accumulation and bounds) is limitedin branch-and-cut (BAC)
algorithms that are based on linear programming (which is the case in this paper). Glob-
ally constrained resources with positive accumulation canbe modeled as single knapsack
constraints (and remain simple to model with negative accumulation). Locally constrained
resources with positive accumulation can be modeled for a directed graph with the use of
the Miller-Tucker-Zemlin (MTZ) constraints, see Miller et al. [22]. This gives rise to jE j
additional constraints and jV j variables per resource. Another modeling approach gives rise
to jV j constraints and jE j variables per resource, see e.g., Ascheuer et al. [1, 2]. A di�erent
approach is to relax the resource constraints and, in a cutting plane fashion, make use of the
infeasible path inequalities which cuts of any path (or partial path) that violates a resource
bound. In Ascheuer et al. [2] a BAC algorithm for the traveling salesman problem with time
windows makes use of the three modeling approaches described above. Results indicate that
the infeasible path inequalities are to be preferred.

When considering the ESPPRC as a subproblem in a column generation context, another
issue comes up. Recent branch-and-cut-and-price algorithms, see e.g., Jepsen et al. [20],
Petersen et al. [23], Desaulniers et al. [13], Spoorendonk and Desaulniers [27], Baldacci et al.
[5], make use of cutting planes where the dual values are not directly subtractable from the
edge costs, which has previously been the preferred approach, see e.g., Fukasawa et al. [18].
The subtraction of such dual values depend on the complete path and can be very cumbersome
to overcome in labeling algorithms. However, when following the ideas in Spoorendonk et al.
[28] it is clari�ed how to model the additional costs in the subproblem, whereupon the BAC
algorithm can be applied.

Results by Ascheuer et al. [2] for the traveling salesman problem with time windows
indicate, that it is expensive (in running time) in a BAC algo rithm, to use either of the
modeling approaches for locally constrained resources, i.e., the time windows. However,
when only globally constrained resources are considered, it seem likely that a BAC algorithm
can be competitive with labeling algorithms. So, although locally constrained resources can
be modeled in a BAC algorithm, it is not within the scope of this paper to investigate
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that approach. The reason for considering an undirected graph in this paper is mainly for
simplicity. The BAC algorithm can easily be extended to the directed case by doubling the
number of variables in the mathematical formulation. Neither of the separation routines are
a�ected by this (except for the doubling of variables). the undirected graphs favors the

The main contribution of this paper is the introduction of a B AC algorithm for solv-
ing the ESPPRC. This includes a 2-index mathematical model and a presentation of valid
inequalities with emphasis on the introduction of the generalized capacity inequalities. The
computational results indicate that the BAC algorithm is co mpetitive with labeling algorithms
when considering dense graphs, and even more so when the resources are loosely constrained.

The paper is outlined as follows: Section 2 presents work on BAC algorithms for problems
that are related to the ESPPRC and Section 3 contains a formalinteger programming model
of the ESPPRC. Section 4 describes the cutting planes used inthe BAC algorithm and
the computational results are found in Section 5. Section 6 holds concluding remarks and
suggestions for further research.

2 Related Work

Bauer et al. [6] suggested to solve the ESPPRC by a BAC algorithm, but to our knowledge
nothing further has been published in the literature, although several BAC algorithms exist
for problems related to the ESPPRC. Bauer et al. [6] considerthe knapsack constrained circuit
problem (KCCP) where a minimal capacitated cycle in a graph is sought. This is equivalent
to the ESPPRC if one node is �xed in the KCCP, since this node can be spilt into a source and
a target node in the ESPPRC. A BAC algorithm was implemented to solve the KCCP where
the demand of the nodes was given with unit weights. This variant is denoted the cardinality
constraint circuit problem. The instances considered by Bauer et al. [6] have positive edge
costs, but negative cost cycles would not a�ect the algorithm.

In the prize collecting traveling salesman problem (PCTSP), see e.g., Balas [3, 4], a prize
is collected at each visited node and a minimum amount of accumulated prizes must be
collected on the tour. That is, the edge costs are positive but the prizes may yield an overall
negative solution value. The di�erence with this variant of t he TSP and the ESPPRC is,
that in the PCTSP a minimum amount of prizes need to be collected, which forces some of
the intermediate nodes to be visited. This is not the case forthe ESPPRC as de�ned in this
paper.

In the orienteering problem, see e.g., Fischetti et al. [17], the pro�t of visiting the nodes is
maximized and the length of the tour is bounded by a maximum length. The only di�erence
compared to the de�nition of the ESPPRC of this paper is, that the resource accumulation
is on the edges instead of in the nodes. The instances considered by Fischetti et al. [17] have
positive edge costs, but again negative cost cycles would not a�ect the algorithm.

3 Mathematical Models

This section presents a 
ow model for the ESPPRC in the undirected graph G. Recall
the resource demanddr

i for nodes i 2 V , and the resource upper boundQr for resource
r 2 R. Let the binary variable xe indicate the 
ow on edge e 2 E. When describing
the model some shorthand notation will be used. For a set of nodes S � V let the set
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of edges� (S) = f (i; j ) : i 2 S ^ j 2 V n Sg denote the edges betweenS and V n S where
� (i ) is shorthand for � (f ig) when the node set S consists of a single nodei 2 V . Let
E(S) = f (i; j ) : i 2 S ^ j 2 Sg be the set of edges between the nodes inS. Let the short-hand
notation

x(T) =
X

e2 T

xe

indicate the 
ow in the edge set T. Let the shorthand notation yi =
P

e2 � (i ) xe=2 indicate
the 
ow in node i 2 V n f s; tg, and for a set of nodesS � V let

y(S) =
X

i 2 S

yi

be the 
ow in that node set. The mathematical model of the ESPPRC is then:

min
X

e2 E

cexe (1)

s.t. x(� (s)) = 1 (2)

x(� (t)) = 1 (3)

x(� (i )) = 2 yi i 2 V n f s; tg (4)
X

i 2 V

dr
i yi � Qr r 2 R (5)

x(E(S)) � y(S) � yi i 2 S; S � V;jSj � 2 (6)

xe 2 f 0; 1g e 2 E (7)

The objective function (1) minimizes the overall edge cost. Constraints (2) and (3) ensure
that the source node and the target node are end points of the path. Constraints (4) are the

ow conservation constraints. Constraints (5) impose the resource constraints. Constraints
(6) impose connectivity and subtour elimination. Finally, constraints (7) de�ne the domain
of the variables. Note, that yi 2 f 0; 1g due to (2), (3), (6), and (7).

This model hasjE j+ jV � 2j variables and an exponential number of constraints due to (6).
In a BAC algorithm, these constraints will be relaxed and separated when violated to ensure
feasibility. That is, when disregarding constraints (6) the model havejV j + jRj constraints.

4 Cutting Planes

This section presents the inequalities used in the BAC algorithm: The generalized subtour
elimination constraints (constraints (6) the mathematical model), the 0-1 knapsack cover
inequalities, and the generalized capacity inequalities for the ESPPRC.

4.1 Generalized Subtour Elimination Constraints

These constraints are generalizations of the subtour elimination constraints known from the
traveling salesman problem, which are also valid for ESPPRCon the form:

x(E(S)) � j Sj � 1 8S � V (8)
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Restricting the constants on the right-hand side to re
ect t he actual node 
ow provides a
tighter inequality, since yi � 1 for all i 2 V n f s; tg. The generalized subtour elimination
constraints can be written on either of the forms:

x(E(S)) � y(S) � yi 8i 2 S;8S � V (9)

x(� (S)) � 2yi 8i 2 S;8S � V n f s; tg (10)

Separation of (9) and (10) can be done by solving a minimum cutproblem from each node
i 2 V n f s; tg to the target node t (or the source nodes) on the induced graph of the LP
solution (x?; y?) with edge weights we given as:

we =
�

x?
e e 2 E n f (s; t)g

M e = ( s; t)

where M is a su�ciently large constant to ensure that s and t are on the same side of the
cut, see Wolsey [30].

4.2 0-1 Knapsack Cover Inequalities

A 0-1 knapsack cover inequality for a set of nodesS � V where
P

i 2 S dr
i > Q r for somer 2 R

is given as:

y(S) � j Sj � 1 (11)

The inequality states, that if a set of nodes violates the upper bound on the resourcer , then
not all nodes in the set can be visited by the path. The 0-1 knapsack cover inequality (11)
can be rewritten as

X

i 2 S

(1 � yi ) � 1 (12)

Given the LP solution (x � ; y� ), the separation problem becomes �nding a coverS, i.e, a set
S � V satisfying

P
i 2 S dr

i > Q r for somer 2 R such that
X

i 2 S

(1 � y�
i ) < 1 (13)

in which case the corresponding 0-1 knapsack cover inequality (11) is violated. The most
violating (11) is identi�ed by minimizing the left-hand sid e of (13) for all r 2 R, i.e., by
solving:

� = min
r 2 R

(

min
S� V

(
X

i 2 S

(1 � y�
i )zi :

X

i 2 S

dr
i zi > Q r ; z 2 f 0; 1gjV j

))

If � � 1, no cover that violates (11) exists. The separation problem consists of jRj mini-
mization versions of the well known 0-1 knapsack problem, see Kellerer et al. [21], Wolsey
[30].

Jepsen and Spoorendonk [19] suggested to exploit the fact that, since yi � 1 for all
i 2 V n f s; t; g, the 
ow through a set of nodes S can be less than 2 in an LP solution. That
is, scaling the right-hand side of (11) with half the 
ow x(� (S)) yields

y(S) �
1
2

(jSj � 1)x(� (S)) (14)
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When x(� (S)) < 2, there are cases where the inequality (14) is violated and the normal 0-1
knapsack cover inequality (11) is not. Jepsen and Spoorendonk [19] suggested an enumeration
scheme to separate the inequalities. Their results indicated, that (14) did improve the lower
bound in the root node, but had a negative e�ect on the convergence of the BAC algorithm.
Therefore, this family of inequalities are not pursued further in this paper.

4.3 Generalized Capacity Inequalities

This subsection introduces a family of inequalities inspired by the fractional capacity in-
equalities of the capacitated vehicle routing problem (CVRP), see Toth and Vigo [29]. The
generalized capacity inequalities are given as:

1
2

Qr x(� (S)) �
X

i 2 S

dr
i yi S � V n f s; tg; r 2 R (15)

The inequalities ensure that a setS of nodes are visited according to their demand, e.g., if
2=3 of the resource is consumed inS, then the 
ow in and out of S should be at least 4=3.
An example of a violated (15) can be seen in Figure 4.3.

The validity of (15) is proved in the following proposition:

Proposition 1. The generalized capacity inequalities (15) are valid for the ESPPRC.

Proof. If y(S) = 0 then x(� (S)) = 0, therefore both the left-hand side and the right hand side
evaluate to 0. If y(S) � 1 then x(� (S)) � 2 and due to the resource constraint (5) for resource
r , the right-hand side can never evaluate to more thanQr which will be the minimal value of
the left-hand side, i.e., in this case the resource constraint (5) for resource r dominates the
generalized capacity inequality.

Given an LP solution (x?; y?) the separation problem of (15) is the problem of �nding a
set S � V n f s; tg for a resourcer 2 R such that

1
2

Qr x?(� (S)) <
X

i 2 S

dr
i y?

i

,
1
2

Qr x?(� (S)) �
X

i 2 S

dr
i y?

i +
X

i 2 V

dr
i <

X

i 2 V

dr
i

,
1
2

Qr x?(� (S)) +
X

i 2 S

dr
i (1 � y?

i ) +
X

i 2 V nS

dr
i <

X

i 2 V

dr
i

Separating (15) for an be done by solvingjRj(jV j � 2) di�erent minimum cut problems one
from each nodeh 2 V n f s; tg to the target node t for each resourcer 2 R. The problems
are solved as max
ow problems using the same procedure as forseparating (9) and (10).
The max
ow problem for each h is solved on a directed graph induced from the LP solution
(x?; y?), i.e., edges are split into opposite directed arcs, and thearcs into h are disregarded.
The edge weightseij are given as:

wij =

8
>><

>>:

1
2Qr x?

hj + dr
j i = h; j 2 V n f h; tg

1
2Qr x?

it + dr
i (1 � y?

i ) i 2 V n f s; tg; j = t
1
2Qr x?

ij i 2 V n f h; tg; j 2 V n f h; tg
M i = s; j = t
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Consider the fractional solution given by
the graph to the right with di�erent frac-
tional edge values indicated by the dotted
and dashed lines. The nodes are numbered
0; : : : ; 5 where a path is sought from node 0
to 0. For a single resource, the resource de-
mands are given asd = f 0; 2; 2; 2; 2; 1g and
the resource upper boundQ is 5.

Consider a generalized capacity inequality
(15) covering the node setS = f 1; 2; 3g result-
ing in a fractional 
ow x?(� (S)) = x?

01+ x?
03 =

4
3 through the node set. The corresponding
(15) is violated since

1
2

Qx?(� (S)) =
10
3

�
X

i 2 S

di y?
i =

12
3

0

1

4

2

3

5
2/3

1/3

Figure 1: A violated generalized capacity inequality (15).

where M is a su�ciently large constant to ensure that s and t are on the same side of the
cut. The induced graph is denser than the induced graph used for separating (9) and (10),
therefore the separation of (15) is expected to be slower.

5 Computational Results

The experiments begin with an investigation of the impact of the parameter settings for
the cut generation of the generalized subtour elimination constraints (9). Next, the impact
of the generalized capacity inequalities (15) are investigated. For the parameter test, we
consider 10 of the harder problems of the generated instances. This is followed by a lower
bound comparison on the generated instances using di�erent separation strategies. Last is
a comparison of the BAC algorithm and a labeling algorithm. We use a labeling algorithm,
that is implemented as described in Righini and Salani [24].For the known instances, the
comparison is made with the results obtained in Righini and Salani [25]. The mathematical
model for the ESPPRC presented in this paper contains an exponential number of constraints,
so it is not possible to input it directly into a general purpose mixed integer solver such as
ILOG's CPLEX. However, it is possible to model the globally constrained resources in a
similar way as the locally constrained resources, e.g., with the MTZ constraints. Such a
model can be plugged into CPLEX and solved directly, but preliminary results indicate that
this approach is always signi�cantly slower than using the BAC algorithm proposed in this
paper.

All experiments are performed on a 2.66 GHz Intel(R) Xeon(R)X5355 machine with 8 GB
memory using CPLEX 10.2. The BAC algorithm is implemented using callback functions for
the cut generation, which is available in the CPLEX callable library. The tests are performed
using the default CPLEX parameters. This includes the generation of cuts for general mixed-
integer programs such as Chv�atal-Gomory, mixed-integer rounding, and disjunctive cuts.
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Also, the 0-1 knapsack covers are included in the CPLEX default settings and preliminary
tests indicated, that the separation time nor the change in lower bounds were much a�ected
by the cuts. Therefore, we have not performed any further tests of the 0-1 knapsack covers
but rely on the CPLEX default settings.

5.1 The Benchmark Instances

A set of benchmarks derived from the CVRP instances (dividedin series A, B, E, G, M,
and P) available at http://www.branchandcut.org has been generated. Here, the source
and target nodes are chosen by splitting the node representing the depot in two. To identify
su�ciently hard instances of the ESPPRC, we have used the BACalgorithm for the ESPPRC
in a simple column generation algorithm for the CVRP, see e.g., Baldacci et al. [5] for the
details on mathematical models. We have not included results for the CVRP, since it is not
in the scope of this paper. Note, that for all the generated instances there is a valid upper
bound of 0, since they are constructed from a column generation algorithm. The instances
are named from the derived CVRP instances, which are given asletter indicating the series
followed by the number of nodes and vehicles (the latter is not used for the ESPPRC). At
the end a number, indicating the �nal iteration number of our column generation algorithm,
is added, e.g., the instance P-n50-k7-92 is from the P-series and consists of 50 nodes (where
7 vehicles are used for the CVRP), and is from iteration 92. The ESPPRC instances are
gathered in the SPPRCLIB available at http://www.diku.dk/ ~spooren/spprclib.htm .

Beside the generated instances, we consider the instances used in Feillet et al. [16], Righini
and Salani [24, 25] with 100 nodes and a single globally constrained resource (the capacity
resource). These instances are derived from the benchmarksby Solomon [26] for the vehicle
routing problem with time windows, where the time constraints have been discarded. For
the c101, r101, and rc101, three di�erent distributions of nodes are chosen, and ten instances
have been created for each distribution, where the resourcebounds (capacity) range from 10
to 100 in steps of 10. We consider only instances with bounds of 60 and above. Additionally,
we have extended the set of instances by setting bounds to 200, 500, 700, and 1000. A larger
resource bound results in loosely constrained instances, that are expected to be harder to solve
to optimality. The instances are named according to the series and a tenth of the capacity,
e.g., c100 09 is from the c101 instance, with capacity 90.

5.2 Impact of the Parameters for the Generalized Subtour Eli mination
Constraints

The setting of the parameters for the generation of violatedgeneralized subtour elimination
constraints (6) can have a huge in
uence on the computation time of the BAC algorithm. A
low threshold on violation will result in good lower bounds and fewer branch nodes, but a
slower convergence in each node, while the opposite is true for a high threshold. Also, the
number of violated cuts added in each iteration can in
uencethe convergence and the time
spent when reoptimizing the LP-problem.

Figure 2 shows a plot with two axes given as the violation threshold and number of cuts
to add per iteration. The requirement of violation is ranging from 0.1 to 1 in steps of 0.1, and
the number of cuts to add is starting at 1 and then from 10 to 100in steps of 10. The vertical
axis indicates the average time spent. The time for each instance is scaled to the interval
]0; 1] where 1 is the maximum time given for all the parameter settings for that instance.
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Figure 2: Parameter test for the generalized subtour elimination constraints (9). Above is a plot of
the average time given the violation threshold and the number of cuts to add.

From Figure 2, it is observed that the best parameter setting appears to be to add 1 cut
per iteration with a violation of at least 0.4. This indicate s that the cut separation time is
insigni�cant compared to solving the LPs.

5.3 Investigating the Generalized Capacity Inequalities

Note, that the generalized capacity inequalities (15) can substitute the generalized subtour
elimination constraints (9) in the model (1)-(7), since any infeasible integer solution will be
violated by some generalized capacity inequality. However, due to the computational expen-
sive separation routine for constraints (15), a cut policy was chosen such that constraints
(15) are only separated (and possible added) whenever no violated constraints (9) are sepa-
rated (using the default parameters found above). Preliminary tests indicated, that due to
a computational expensive separation routine for constraints (15), the cuts were not worth
the e�ort. A slow separation was expected since the max-
ow calculations are done on very
dense graphs compared to the very sparse graph used in the separation of constraints (9).
However, we believe that constraints (15) may become useful, e.g., with the use of a faster
heuristic separation routine.

Figure 3 shows, as before, a plot of the violation threshold,number of cuts to add per
iteration, and average time. The time is calculated without the separation time of constraints
(15), and therefore only indicates if the convergence of theBAC is improved or not, when con-
straints (15) are added. Figure 3 indicates that a large violation threshold (� 0:8) is preferred
for constraints (15) and that, the convergence of the BAC algorithm is faster when few of the
constraints (15) are added. Figure 4 substantiate this result, as it can be seen that almost no
cuts are added with violation thresholds 0:8 and higher. Although the generalized capacity
inequalities (15) are a theoretically interesting set of inequalities, our tests have shown that
in their current form and with the proposed exact separation routine, the inequalities do not
appear to be computationally competitive.
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Figure 3: Parameter test for the generalized capacity inequalities (15). Above is a plot of the average
time given the violation threshold and the number of cuts to add.
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Figure 4: Parameter test for the generalized capacity inequalities (15). Above is given the average
scaled number of generalized capacity inequalities added with di�erent violation thresholds when
solving the instances, i.e., with a violation threshold of 0.1 the number of cuts are decreased by about
50 % compared to the setting with a violation threshold of 0.01.
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5.4 Lower Bound Comparison

Table 1 sums up the root lower bounds (root) and the number of branch nodes (nodes) for
three di�erent cut separation parameter settings. A `-' entry in the branch node columns
indicates that the BAC algorithm timed out at 600 seconds. The three parameter settings
tested are:

� GSECis the BAC algorithm where at most 1 violated generalized subtour elimination
constraint (9) with a minimum violation of 0.01 is added per iteration.

� GCI is the BAC algorithm with the GSECparameter setting and when no violated (9)
are found then at most 1 violated generalized capacity inequality (15) with a minimum
violation of 0.01 is added.

� default is the BAC algorithm where at most 1 violated generalized subtour elimination
constraint (9) with a minimum violation of 0.4 is added per it eration.

The optimal solution is given in the rightmost column.
When comparing the parameter settingsGSECand GCI, it is obvious that the general-

ized capacity inequalities (15) improve the lower bounds considerably. The average gap is
decreased by 63% when comparing the two settings, this includes the instances that timed
out and potentially could have improved the lower bound further. Surprisingly, the number
of branch nodes does not decrease proportionally with the size of the gap. That is, for the
instances that did not time out, the average gap is closed by 76% but with only 7% fewer
branch nodes. In several cases, the number of branch nodes actually increases considerably
(A-n63-k9-157, B-n45-k6-54, P-n50-k10-24, P-n55-k10-44). This indicates that (15) compli-
cates the branch decisions. The comparison of the settingsGSECand default is more as
expected: A worse lower bound with thedefault setting leads to more branch nodes. How-
ever, the previous test for the generalized subtour elimination (9) constraints showed, that
this setting was the fastest on average.

5.5 Comparison with a Labeling Algorithm

Table 2 shows the running time of the BAC algorithm (BAC time ( s)) with default parameters
compared to the running time of our implementation of a labeling algorithm (LA) (LA time
(s)) for the generated instances. The time limit was set to two hours and a timeout is indicated
with a '-' in the table. The rightmost column presents the speed up if both algorithms
�nished. The BAC algorithm clearly outperforms the labelin g algorithm. That is, in all 45
instances. However, it is worth noting that when the solution is near 0 (which is and upper
bound for all instances since they are generated as pricing problems in a column generation
algorithm) then the labeling algorithm performs much better than on the instances that
contains much negativity. That is, the label algorithm is faster when there are less negativity
in the problem whereas the BAC algorithm appears to be more robust. It should be noted
that the implementation of our labeling algorithm may be imp roved, but it is doubtful, that
it will be competitive with the BAC algorithm for the instanc es with a speed up of more than
100.
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GSEC GCI default

Name nodes root nodes root nodes root solution

A-n54-k7-149 231 -90877 - -41213 280 -109018 -12492
A-n60-k9-57 1641 -98206 - -64557 3071 -118437 -1000
A-n61-k9-80 205 -63534 92 -41032 462 -73397 -23549
A-n62-k8-99 133 -103839 - -47340 301 -122973 -35969
A-n63-k9-157 122 -63082 492 -38929 113 -78190 -24189
A-n63-k10-44 127 -76475 149 -51035 280 -80765 -32561
A-n64-k9-45 358 -92812 157 -65209 425 -104686 -50550
A-n65-k9-10 152 -93117 129 -58526 189 -103936 -42835
A-n69-k9-42 72 -56453 - -53299 179 -60410 -43290
A-n80-k10-14 84 -121510 45 -112483 120 -128508 -105283

B-n45-k6-54 277 -95588 497 -88761 502 -103214 -74278
B-n50-k8-40 166 -105497 - -41212 237 -128488 -12832
B-n52-k7-15 25 -85997 22 -79129 59 -90278 -74998
B-n57-k7-20 12 -876421 19 -876421 328 -882924 -867154
B-n66-k9-50 239 -81006 28 -38097 1195 -94120 -26520
B-n67-k10-26 184 -55180 178 -26808 343 -63086 -21924
B-n68-k9-65 150 -88375 - -55175 342 -99383 -31001
B-n78-k10-70 344 -91021 - -54330 480 -101516 -44333

E-n76-k7-44 117 -30127 115 -25885 338 -32038 -22214
E-n76-k10-72 239 -36569 164 -31404 138 -38613 -25241
E-n76-k14-102 3163 -28126 - -16153 3992 -31018 -1
E-n76-k15-40 3747 -25752 - -17526 4993 -28675 -1
E-n101-k8-291 48 -8296 - -7398 197 -9472 -4266
E-n101-k14-158 1468 -25748 - -22729 1350 -30882 -3590

G-n262-k25-316 669 -1434843 - -1434843 1510 -1434883 -1426535

M-n101-k10-97 40 -35323 37 -34758 76 -37825 -32628
M-n121-k7-260 89 -162680 - -161424 147 -164742 -160097
M-n151-k12-15 338 -87899 - -85488 822 -92880 -79996
M-n200-k16-143 6 -199411 4 -199411 118 -201772 -198792
M-n200-k17-12 4 -121506 1 -121210 7 -121506 -121210

P-n50-k7-92 950 -18594 1152 -12245 1319 -21516 -2
P-n50-k8-19 160 -89868 40 -89848 207 -90606 -83307
P-n50-k10-24 197 -19811 608 -11971 443 -21975 -2965
P-n51-k10-30 1028 -23812 - -18488 1588 -27061 -2
P-n55-k7-116 84 -27065 36 -22945 105 -28094 -17824
P-n55-k8-260 101 -18839 145 -11377 167 -22237 -3573
P-n55-k10-44 913 -21448 2197 -11798 1192 -25131 -1090
P-n55-k15-88 5971 -26723 - -20135 4781 -28128 -2
P-n60-k10-24 242 -26948 137 -21183 301 -29289 -15001
P-n60-k15-8 1495 -21889 1889 -13812 1507 -24674 -534
P-n65-k10-102 2390 -18923 - -10975 2532 -21424 -3
P-n70-k10-12 2 -72264 1 -70317 21 -73460 -70317
P-n76-k4-41 1 -88276 1 -88276 1 -88276 -88276
P-n76-k5-16 6 -108884 10 -108884 24 -108884 -107633
P-n101-k4-174 174 -19656 165 -19041 395 -19887 -17702

Table 1: Comparison of the number of branch nodes and lower bounds for the generated instances
using three di�erent cut separation strategies.
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Name BAC time (s) LA time (s) speed up

A-n54-k7-149 6.96 1735.23 249.3
A-n60-k9-57 36.55 242.64 6.6
A-n61-k9-80 4.44 - 1
A-n62-k8-99 17.94 - 1
A-n63-k9-157 3.16 - 1
A-n63-k10-44 2.12 693.80 327.3
A-n64-k9-45 14.57 - 1
A-n65-k9-10 4.43 - 1
A-n69-k9-42 1.76 3246.72 1844.7
A-n80-k10-14 12.14 - 1

B-n45-k6-54 1.32 - 1
B-n50-k8-40 11.01 - 1
B-n52-k7-15 1.00 - 1
B-n57-k7-20 1.74 - 1
B-n66-k9-50 66.93 - 1
B-n67-k10-26 4.62 - 1
B-n68-k9-65 11.88 - 1
B-n78-k10-70 24.30 - 1

E-n76-k7-44 6.02 - 1
E-n76-k10-72 1.19 - 1
E-n76-k14-102 14.77 45.19 3.1
E-n76-k15-40 19.59 151.59 7.7
E-n101-k8-291 8.08 - 1
E-n101-k14-158 37.84 - 1

G-n262-k25-316 53.00 - 1

M-n101-k10-97 3.12 - 1
M-n121-k7-260 34.46 - 1
M-n151-k12-15 78.03 - 1
M-n200-k16-143 3.18 - 1
M-n200-k17-12 17.75 - 1

P-n50-k7-92 2.42 104.22 43.1
P-n50-k8-19 0.36 - 1
P-n50-k10-24 0.72 2.91 4.0
P-n51-k10-30 2.18 4.06 1.9
P-n55-k7-116 0.58 2275.07 3922.5
P-n55-k8-260 1.20 133.45 111.2
P-n55-k10-44 2.14 14.69 6.9
P-n55-k15-88 3.97 44.73 11.3
P-n60-k10-24 1.04 110.20 106.0
P-n60-k15-8 1.95 2.50 1.3
P-n65-k10-102 6.65 163.48 24.6
P-n70-k10-12 0.24 - 1
P-n76-k4-41 1.85 - 1
P-n76-k5-16 0.57 - 1
P-n101-k4-174 11.25 - 1

Best 45 0

Table 2: Time comparison of the BAC algorithm and the labeling algorithm.
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Name BAC time (s) DSSR time (s)

c 100 06 0.36 0.21
c 100 07 0.38 0.18
c 100 08 0.53 1.34
c 100 09 0.62 2.02
c 100 10 1.14 7.68
c 100 20 0.82 n.a.
c 100 50 3.07 n.a.
c 100 70 2.70 n.a.
c 100 100 4.43 n.a.

r 100 06 0.75 34.64
r 100 07 0.85 143.63
r 100 08 1.35 281.62
r 100 09 1.04 1002.30
r 100 10 0.80 -
r 100 20 2.09 n.a.
r 100 50 26.96 n.a.
r 100 70 16.25 n.a.
r 100 100 1.76 n.a.

rc 100 06 0.23 0.35
rc 100 07 0.66 0.92
rc 100 08 0.90 1.77
rc 100 09 0.36 1.40
rc 100 10 0.77 7.33
rc 100 20 1.08 n.a.
rc 100 50 4.10 n.a.
rc 100 70 4.17 n.a.
rc 100 100 6.47 n.a.

Best 28 (13) 2

Table 3: Time comparison of the BAC algorithm and the labeling algorithm (Righini and Salani [25]).

In Table 3 the BAC algorithm is compared to the results obtained with the decremental
state-space relaxation (DSSR) algorithm by Righini and Salani [25] (recall from Section 1
that this a specialized labeling algorithm). The running ti mes for the two algorithms are
given in the columns (BAC time (s)) and (DSSR time (s)). Since Righini and Salani [25]
performed their tests on a 1.6 GHz Intel (R) Pentium 4(R) with 512 MB memory, and an
exact time comparison with our machine is hard, so we have notincluded the speed up factor.
'-' indicates that the algorithm timed out after one hour, th e 'n.a.' entry indicates that no
result is available for that instance.

Although the DSSR algorithm is faster on two instances out ofthe 15 comparable cases, it
is only marginally better (even when taken their slower machine into account). There is a clear
tendency, that when the capacity increases (i.e., when the ESPPRC becomes more loosely
constrained) the running times of the DSSR algorithm increase signi�cantly. The running
times are also generally increasing for the BAC algorithm when the capacity increases (except
for r 100 100), but not as drastically as for the DSSR algorithm. Results are not available
for the DSSR algorithm for the extended instances (with capacity from 200 and above), but
if the tendency from the smaller instances continues, then the DSSR algorithm will probably
not be able to solve the larger instances within the time limit. The BAC algorithm is clearly
superior for the loosely constrained instances.
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6 Concluding Remarks

This paper introduces a BAC algorithm for solving the ESPPRC. The algorithm clearly
outperformed the labeling algorithms (our own implementation of the one describes in Righini
and Salani [24] as well as the one by Righini and Salani [25]) for the tested instances. Labeling
algorithms have been the preferred solution approach up until now, but the experimental
results presented in this paper suggest otherwise. Furthermore, the generalized capacity
inequalities were introduced as a set of valid inequalitiesfor the ESPPRC. It can be concluded
that the inequalities improve the lower bounds signi�cantl y. However, this comes at a cost
of complicating the branch decision, and leads to a large amount of additional branch nodes.
Also, the exact separation routine takes a considerable amount of time. This is due to solving a
max
ow problem on an almost complete graph. That is, the generalized capacity inequalities
improve the lower bound, but lead to increased running times.

Future research could include the adaption of more valid inequalities known from related
problems, e.g., two-matching inequalities, comb inequalities, and infeasible path inequalities.
Another interesting direction is the conditional cuts by Fi schetti et al. [17]. Such cuts resemble
a specialized branch rule, as they cut o� some of the branch tree after solving a subproblem
that �nds the optimal solution for the subtree. Another natu ral extension of the work pre-
sented in this paper is to extend the BAC algorithm to include locally constrained resources.
This would lead to a larger mathematical formulation and will most de�nitely pose a serious
challenge for future research.
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Partial Path Column Generation for
the Vehicle Routing Problem
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Abstract

This paper presents a column generation algorithm for the Capacitated Vehicle Rout-
ing Problem (CVRP) and the Vehicle Routing Problem with Time Windows (V RPTW).
Traditionally, column generation models of the CVRP and VRPTW have consisted of
a Set Partitioning master problem with each column representing a route. The use of
Elementary routes, where no customer is visited more than once, have shown superior re-
sults for both CVRP and VRPTW. However, algorithms for solving the pricing problems
do not scale well when the number of feasible routes increases. We suggest to relax the
constraint that `each column is a route' into `each column is a part of the giant tour'; a
so-called partial path, i.e., not necessarily starting and ending in thedepot. This way, the
length of the partial path can be bounded and a better control ofthe size of the solution
space for the pricing problem can be obtained. It is shown that the LP-relaxed partial
path formulation gives a tighter bound than the LP-relaxation of a 2-index formulation,
and in some cases it is even tighter than the bound found by classicaldecomposition into
routes.

Keywords: Vehicle Routing Problem, Column Generation, Elementary Shortest Path
Problem with Resource Constraints

In revision.
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1 Introduction

The Capacitated Vehicle Routing Problem (CVRP) can be described as follows: A set of
customersC having a demanddi , needs to be serviced by a number of vehicles all starting
and ending at a central depot. Each customer must be visited exactly once and the capacity
Q of the vehicles may not be exceeded. The objective is to service all customers traveling the
least possible distance. In this paper we consider a homogeneous 
eet, i.e., all vehicles are
identical. The Vehicle Routing Problem with Time Windows (VRPTW) extends the CVRP
by imposing that each customer must be visited within a giventime window. We will use the
term VRP to denote Vehicle Routing Problems with time and/or capacity constraints.

The standard Dantzig-Wolfe decomposition of the arc 
ow formulation of the VRP is to
split the problem into a master problem formulated as a Set Partitioning Problem, and a pric-
ing problem formulated as an Elementary Shortest Path Problem with Resource Constraints
(ESPPRC), where capacity (and time) are the constrained resources. A restricted master
problem can be solved with delayed column generation and embedded in a branch-and-bound
framework to ensure integrality. Applying cutting planes either in the master or the pricing
problem leads to a Branch-and-Cut-and-Price algorithm (BCP). Kohl et al. [24] implemented
a successful BCP algorithm for the VRPTW by applying sub-tour elimination constraints and
two-path cuts, Cook and Rich [10] generalized thetwo-path cuts to k-path cuts, and Fukasawa
et al. [19] applied a range of valid inequalities for the CVRPbased on the branch and cut
algorithm of Lysgaard et al. [25]. Common for these BCP algorithms is that all applied cuts
are valid inequalities for the VRPTW respectively the CVRP w ith regard to the original arc

ow formulation, and have a structure which makes it possible to handle values of the dual
variables in the pricing problem without increasing the complexity of the problem. Fukasawa
et al. [19] refer to this as arobust approach in their paper. The topic of column generation
and BCP algorithms has been surveyed by Barnhart et al. [4] and L ~A 1

4bbecke and Desrosiers
[26]. Recently the BCP framework was extended to include valid inequalities for the master
problem, more speci�cally by applying the subset row (SR) inequalities to the Set Partitioning
master problem in Jepsen et al. [23] and later by applying Chv�atal-Gomory Rank-1 (CG1)
inequalities in Petersen et al. [28]. Desaulniers et al. [13] solved several unsolved instances
by adding generalized k-Path inequlities and generated columns heuristically using a tabu
search and �nally introduced a new algorithm to solve the pricing problem where partial
elementarity is used. Baldacci et al. [2] improved the lowerbound by adding strengthened
capacity inequalities and clique inequalities to an algorithm where columns with potentially
negative reduced cost are enumerated (after good upper and lower bounds are found).

Dror [16] showed that the ESPPRC, with time and capacity constraints, is strongly NP -
hard. Hence, a relaxation of the ESPPRC was used as the pricing problem in earlier BCP
approaches for the VRPTW. The relaxed pricing problem wherenon-elementary paths are
allowed is denoted the Shortest Path Problem with Resource Constraints (SPPRC) and can
be solved in pseudo-polynomial time by dynamic programmingusing for instance a labeling
algorithm, see Desrochers [14]. Considering a single capacity resource Christo�des et al. [9]
suggested to remove 2-cycles from the paths. This was later generalized to the variant with
time windows by Desrochers et al. [15]. Irnich and Villeneuve [22] extended the framework
further to k-cycle elimination (k-cyc-SPPRC), where cycles containingk or less nodes are
forbidden.

Beasley and Christo�des [5] proposed to solve the ESPPRC using Lagrangian relaxation.
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Figure 1: Giant-tour (left) and corresponding giant-tour split into partial paths (right), each
bounded by the capacity Q = 10.

However, labeling algorithms have recently become the mostpopular approach to solve the
ESPPRC, see e.g. Dumitrescu [17] and Feillet et al. [18]. When solving the ESPPRC with a
labeling algorithm, a binary resource for each node is added, increasing the complexity of the
algorithm compared to the solution of the SPPRC or the k-cyc-SPPRC. Righini and Salani
[29] developed a labeling algorithm using the idea of Dijkstra's bi-directional shortest path
algorithm that expands both forward and backward from the depot and connects routes in
the middle, thereby potentially reducing the running time of the algorithm. Furthermore,
Righini and Salani [30] and Boland et al. [6] proposed a decremental state space algorithm
that iteratively solves a SPPRC, by iteratively applying bi nary resources to force nodes to
be visited at most once. Recently Chabrier [7], Danna and Le Pape [11], and Salani [31]
successfully solved several previously unsolved instances of the VRPTW from the benchmarks
of Solomon [32] using a labeling algorithm for the ESPPRC. However, these algorithms have
some weaknesses when dealing with very long (measured in thenumber of visited nodes)
paths, when resource constraints are not tight. Christo�des and Eilon [8] introduced the
giant-tour representation in which all the routes are represented by one singlegiant tour, i.e.,
all the routes are concatenated into a single tour.

In this paper we propose a decomposition approach based on the generation of partial
paths and the concatenation of these. The main idea is to limit the solution space of the
pricing problem by bounding a resource, e.g., the number of nodes on a path or the capacity
on it. The master problem combines a known number of these bounded partial paths such
that all customers are visited. In this way we get a better controle of the pricing problem. If
the original pricing problem is too di�cult to solve for each vehicle, we may imposing a limit
on the nodes in a partial path. If the original pricing problem for each vehicle is easy, we can
choose looser bounds such that the partial paths get longer and lead to tighter bounds.

The paper is organized as follows: In Section 2 we describe how to use the giant tour
formulation of VRP to obtain the partial path formulation. S ection 3 introduces a mathe-
matical model based on partial paths. Section 4 shows how themodel is decomposed through
Dantzig-Wolfe decomposition, and describes how to calculate the reduced cost of columns in
a delayed column generation framework. Section 5 describeshow to use the load resource to
divide the solution space. Section 6 concludes the paper discussing future work.
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2 Bounded Partial Paths

Given a graph G(V; A) with nodes V = C [ f 0g and arcsA, whereC is the set of customers,
and 0 is the depot. Moreover, we have a setR of resources which e.g. can be load and/or
time. Each resourcer 2 R has a resource window [ar

i ; br
i ] that must be met upon arrival to

node i 2 V , and a consumption� r
ij � 0 for using arc (i; j ) 2 A. A resource consumption at a

nodei 2 C is modeled by a resource consumption at edge (i; j ), and hence usually� r
0j = 0 for

all j 2 C. A global capacity limit Q can be modeled by imposing a resource window [0; Q]
for the depot node 0.

The VRP can now be stated as: Find a set of routes starting and ending at the depot
node 0 satisfying all resource windows, such that the cost isminimized and all customersC
are visited.

A solution to the VRP will consist of a number of routes

0 ! i1
1 ! : : : ! i1

k1
! 0;

0 ! i2
1 ! : : : ! i2

k2
! 0;

...
0 ! in

1 ! : : : ! in
kn

! 0

wheren is the number of vehicles, andkj is the length of the j 'th route. A natural decompo-
sition of the VRP is to split the problem into these separate routes, where a master problem
ensures that all customers are visited once. We will call this the classical decomposition.
However, using the classical decomposition, the number of nodes in each individual route
may vary a lot, making it di�cult to solve some of the subprobl ems.

Instead we consider the giant-tour representation by Christo�des and Eilon [8]

0 ! i1
1 ! : : : ! i1

k1
! 0 ! i2

1 ! : : : ! i2
k2

! 0 ! : : : ! 0 ! in
1 ! : : : ! in

kn
! 0

A giant-tour (see Figure 1) is one long path visiting all customers once and the depot several
times. The consumption of resourcesr 2 R is reset each time the depot node is encountered.
If we decompose the VRP into smaller segments of the giant-tour, we may to a larger extent
controle that the number of nodes visited in each partial path is of similar length. In this
way we can balance the hardness of the subproblems (see Figure 1 for an illustration).

The decompostion is done by imposing an upper limit on a resource r 0 2 R, e.g., bounding
the path length in the number of nodes for each partial path, or bounding the load. The
giant tour introduced in Figure 1 can be decomposed into a number of partial paths by
bounding a resource. In the following the number of visited customers in C is considered to
be the bounding resource. Bounding the load resource is a bitmore complicated and will be
addressed in Section 5.

Each segment represents a partial path of the giant-tour. With a bounded number of
customersL on each partial path, K partial paths are needed to ensure that all customers
are visited i.e., L � K � j Cj. The partial paths can start and end in any node in V and it can
visit the depot several times. A partial path could for example be:

i1 ! i2 ! 0 ! i3 ! 0 ! i4

In the following we will make a graph representation for the problem of �nding the K
partial path of length at most L . This is done by replicating the graphK times and connecting
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the replications by special arcs. Each of the replications is connected with arcs directed from
one replication to a following replication. This leads to a layered graph with K layers 1; ::; K
where there are no outgoing arcs of the �nal layer. Each layerk 6= K is connected to the
subsequent layerk + 1. Each pair of subsequent layers are connected with the setof arcs
leaving nodei in layer k 6= K and entering layer k + 1.

Consider the graph G0(V 0; A0) consisting of a set of layersK = f 1; : : : ; K g, each layer
representing G for a partial path. Let Gk be the sub graph ofG0 representing layer k with
node setV k = f (i; k ) : i 2 Vg for all k 2 K and arc set Ak = f (i; j; k ) : ( i; j ) 2 Ag for all
k 2 K . Let A � = f (i; i; k ) : ( i; k ) 2 V k ^ (i; k +1) 2 V k+1 ^ k 2 Kg be the set of interconnecting
arcs, i.e., the arcs connecting a layerk with the layer above k namely layer k + 1 for all k 2 K
and all nodesi 2 V (layer K + 1 is de�ned to be layer 1 2 K and layer 0 is de�ned to be layer
K 2 K ). Let V 0 =

S
k2K V k and let A0 =

S
k2K Ak [ A � . An illustration of G0 can be seen in

Figure 2. Note, that arcs (i; i; k ) are not present in Ak and that arcs (i; j; k ) with i 6= j are
present in A � , so all arcs (i; j; k ) 2 A0 can be uniquely indexed.

The resource consumption� r
ij of arcs (i; j ) 2 Ak is the same as in the original graphA,

hence we omit the indexk. The resource consumption of interconnecting arcs (i; j ) 2 A � is
� r

ij = 0.

Let L be the upper bound on the length of each partial path, and letjCj be the length
of the combined path (the giant-tour). Now, exactly K = djCj=Le partial paths are needed
to form the combined path, since L djCj=Le � j Cj > L (djCj=Le � 1). Once K has been
calculated, we can further reduce the path length toL = djCj=K e.

With the length of a path de�ned as the number of customers on it, the problem is now
to �nd partial paths of length at most L in K layers with L � K � j Cj > L � (K � 1), so that
each partial path p ending in nodei 2 V is met by another partial path p0 starting in i . All
partial paths are combined while not visiting any customersmore than once and satisfying
all resource windows. A customeri 2 C is considered to be on a partial pathp if i is visited
on p and is not the end node ofp.

Layer: 1

0

i1 i2

i3

2

0

i1 i2

i3

: : :

: : :

K

0

i1 i2

i3

Figure 2: Illustration of G0 with jCj = 3, K = 3, and L = 1. Full-drawn lines represent two
arcs; one in each direction. Dashed lines are the interconnecting arcs A � .
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3 The Vehicle Routing Problem

We present two models for the VRP problem de�ned in previous section. The 2-index model
is most compact, while the 3-index model is better suited fordecomposition.

2-index formulation of the VRP In the following let cij be the cost of arc (i; j ) 2 A,
x ij be the binary variable indicating the use of arc (i; j ) 2 A, and T r

ij (the resource stamp)
be the consumption of resourcer 2 R at the beginning of arc (i; j ) 2 A. Let � + (i ) and � � (i )
be the set of outgoing respectively ingoing arcs of nodei 2 V . Combining the two index
model from Bard et al. [3] with the constraints ensuring the time windows for the ATSP by
Ascheuer et al. [1] a mathematical model can be formulated asfollows:

min
X

(i;j )2 A

cij x ij (1)

s.t.
X

(i;j )2 � + (i )

x ij = 1 8i 2 C (2)

X

(j;i )2 � � (i )

x j i =
X

(i;j )2 � + (i )

x ij 8i 2 V (3)

X

(j;i )2 � � (i )

(T r
ji + � r

ji x j i ) �
X

(i;j )2 � + (i )

T r
ij 8r 2 R; 8i 2 C (4)

ar
i x ij � T r

ij � br
i x ij 8r 2 R; 8(i; j ) 2 A (5)

T r
ij � 0 8r 2 R; 8(i; j ) 2 A (6)

x ij 2 f 0; 1g 8(i; j ) 2 A (7)

The objective (1) sums up the cost of the used arcs. Constraints (2) ensure that each customer
is visited exactly once, and (3) are the 
ow conservation constraints. Constraints (4) and (5)
ensure the resource windows are satis�ed. It is assumed thatthe bounds on the depot are
always satis�ed. Note, that no sub-tours can be present since only one resource stamp per
arc exists and the arc weights are positive for all (i; j ) 2 A : i 2 C.

For a one dimensional resource such asload a stronger lower bound of the LP relaxation
can be obtained by replacing (4) to (6) with

P
(i;j )2 � + (S) x ij � r (S), where r (S) is a minimum

number of vehicles needed to service the setS. All though this model can not be directly
solved it is possible to overcome this problem by only including the constraints that are
violated. For more details on how to separate the constraintand calculate the value ofr (S)
the reader is refered to Toth and Vigo [33].
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3-index formulation of the VRP Let xk
ij be the variable indicating the use of arc

(i; j; k ) 2 A0. Problem (1){(7) is rewritten to:

min
X

k2K

X

(i;j )2 A

cij xk
ij (8)

s.t.
X

k2K

X

(i;j )2 � + (i )

xk
ij = 1 8i 2 C (9)

X

(i;j )2 � + (i )

xk
ij � 1 8k 2 K ; 8i 2 C (10)

X

k2K

0

@xk� 1
ii +

X

(j;i )2 � � (i )

xk
ji

1

A =
X

k2K

0

@xk
ii +

X

(i;j )2 � + (i )

xk
ij

1

A 8i 2 V (11)

xk� 1
ii +

X

(j;i )2 � � (i )

xk
ji = xk

ii +
X

(i;j )2 � + (i )

xk
ij 8k 2 K ; 8i 2 V (12)

X

k2K

X

i 2 V

xk
ii = K (13)

X

i 2 C

X

(i;j )2 A

xk
ij � L 8k 2 K (14)

X

k2K

X

(j;i )2 � � (i )

�
T rk

ji + � r
ji xk

ji

�
�

X

k2K

X

(i;j )2 � + (i )

T rk
ij 8r 2 R; 8i 2 C (15)

X

(j;i )2 � � (i )

�
T rk

ji + � r
ji xk

ji

�
�

X

(i;j )2 � + (i )

T rk
ij 8r 2 R; 8k 2 K ; 8i 2 C (16)

ar
i

X

k2K

xk
ij �

X

k2K

T rk
ij � br

i

X

k2K

xk
ij 8r 2 R; 8(i; j ) 2 A (17)

ar
i xk

ij � T rk
ij � br

i xk
ij 8r 2 R; 8k 2 K ; 8(i; j ) 2 A (18)

T rk
ij � 0 8r 2 R; 8k 2 K ; 8(i; j ) 2 A (19)

xk
ij 2 f 0; 1g 8k 2 K ; 8(i; j ) 2 A (20)

The objective (8) sums up the cost of the used arcs. Constraints (9) ensure that all cus-
tomers are visited exactly once, while the redundant constraints (10) ensure that no customer
is visited more than once. Constraints (11) maintain 
ow conservation between the original
nodesV , and can be rewritten as

X

k2K

X

(j;i )2 � � (i )

xk
ji =

X

k2K

X

(i;j )2 � + (i )

xk
ij 8i 2 V

since
P

k2K xk� 1
ii =

P
k2K xk

ii . Constraints (12) maintain 
ow conservation within a layer .
Constraint (13) ensures that K partial paths are selected and constraints (14) that the length
of the partial path in each layer is at most L . Constraints (15) connect the resource variables
on a global level and constraints (16) connect the resource variables within each single layer.
Note, that since constraints (15) and (16) are omitted for the depot, it is not constrained
by resources. Constraints (17) globally enforce the resource windows and the redundant
constraints (18) enforce the resource windows within each layer.
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4 Dantzig-Wolfe Decomposition

We use Dantzig-Wolfe decompostion of the 3-index formulation of the VRP, de�ned in (8){
(20) to reach the following master and a pricing problem. In the process of the decomposition
the K identical pricing problems are combined into a single pricing problem.

4.1 Master Problem

Let � p a binary variable indicating whether partial path p is used. We use Dantzig-Wolfe
decomposition where the constraints (9), (11), (13), (15),and (17) are kept in the master
problem. Since the vehicles are identical, we can aggregateover the sets Ak getting the
following master problem (PP):

min
X

p2 P

cp� p (21)

s.t.
X

p2 P

X

(i;j )2 � + (i )

� p
ij � p = 1 8i 2 C (22)

X

p2 P :ep= i

� p =
X

p2 P :sp= i

� p 8i 2 V (23)

X

p2 P

� p = K (24)

X

(j;i )2 � � (i )

0

@T r
ji +

X

p2 P

� r
ji � p

ji � p

1

A �
X

(i;j )2 � + (i )

T r
ij 8r 2 R; 8i 2 C (25)

ar
i

X

p2 P

� p
ij � p � T r

ij � br
i

X

p2 P

� p
ij � p 8r 2 R; 8(i; j ) 2 A (26)

T r
ij � 0 8r 2 R; 8(i; j ) 2 A (27)

� p 2 f 0; 1g 8p 2 P (28)

In this formulation, � p
ij is the number of times arc (i; j ) 2 A is used on pathp 2 P and sp and

ep indicate the start respectively the end node of partial path p 2 P. Constraints (22) ensure
that each customer is visited exactly once. Constraints (23) link the partial paths together by

ow conservation. Constraint (24) is the convexity constraint ensuring that K partial paths
are selected. Constraints (25) and (26) enforce the resource windows.

Tightness of bounds: Before we turn our attention to the pricing problem we prove the
following theorems about the quality of the bounds obtainedby the decomposition.

Theorem 1. Let zLP be an LP-solution to (1){(7) and let zP P be an LP-solution to (21){(28)
then zLP � zP P for all instances of VRP.

Proof. zLP � zP P since all solutions to (21){(28) map to solutions to (1){(7) , see Nemhauser
and Wolsey [27].

Theorem 2. Let zP P as before be an LP-solution to (21){(28), andzEP be the LP-solution to
the classical decomposition of VRP into an elementary routefor each vehicle. Then instances
exist wherezP P > z EP .
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1

2 0

3

0

0

0

2

1

2

Figure 3: Three customers with demand of 1 and vehicle capacity Q = 2. Distances are
indicated on the edges. There are six feasible routes (f 0; 1; 0g, f 0; 2; 0g, f 0; 3; 0g, f 0; 1; 2; 0g,
f 0; 1; 3; 0g, f 0; 2; 3; 0g) having the costs (4; 2; 4; 3; 4; 3). The LP solution is (0; 0; 0; 1

2 ; 1
2 ; 1

2)
with objective zEP = 5. Using the partial path formulation with max path length L = 3 and
K = 1 we �nd the optimal solution ( f 0; 1; 3; 0; 2; 0g) with objective zP P = 6.

Proof. An instance with zP P > z EP can be constructed with three customers each with a
demand of 1 and vehicle capacityQ = 2. Using a max path length of L = 3, we �nd zP P = 6
while zEP = 5. (See Figure 3).

4.2 Pricing Problem

The K pricing problems corresponding to the master problem (21){(28) are de�ned by con-
straints (10), (12), (14), (16), and (18) and can be formulated as a single ESPPRC where the
depot is allowed to be visited more than once. Lets and e be a super source respectively a
super target node. Arcs (s; i) and (i; e) for all i 2 V are added toG with cost and resource
consumption 0.

min
X

(i;j )2 A

cij x ij (29)

s.t.
X

(s;i )2 � + (s)

xsi = 1 (30)

X

(i;e)2 � � (e)

x ie = 1 (31)

X

(i;j )2 A

x ij � 1 8i 2 C (32)

X

(j;i )2 � � (i )

x j i =
X

(i;j )2 � + (i )

x ij 8i 2 V (33)

X

(i;j )2 A

� r 0

ij x ij � L (34)

X

(j;i )2 � � (i )

(T r
ji + � r

ji x j i ) �
X

(i;j )2 � + (i )

T r
ij 8r 2 R; 8i 2 C (35)

ar
i x ij � T r

ij � br
i x ij 8r 2 R; 8(i; j ) 2 A (36)

x ij 2 f 0; 1g 8(i; j ) 2 A (37)

The objective (29) minimizes the reduced cost of a column in (PP). Constraints (30) and (31)
ensure that the path starts in s respectively ends ine. Constraints (32) dictates that no node
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is visited more than once, thereby ensuring elementarity. Constraints (33) conserve the 
ow.
Constraint (34) ensures that the partial path does not use more than the allowed amount
L of the restricted resourcer 0. Constraints (35) and (36) ensure the resource windows are
satis�ed for all customers. Note, since constraints (35) hold for i 2 U (excluding the depot),
a resource is only restricted by its lower limit ar

0 for all r 2 R each time a path leaves the
depot.

Let � (� i � 0 : 8i 2 C) be the duals of (22) and � 0 = 0, let � be the duals of (23), let
� � 0 be the dual of (24), let � (� � 0 : 8i 2 C) be the duals of (25) and � 0 = 0, and let
! � 0 and ! � 0 be the dual of (26). The cost of the arcs in this ESPPRC are then given as:

cij = � � +

8
<

:

cij � � i � � ij � j �
P

r 2 R ar
i ! r

i +
P

r 2 R br
i ! r

i 8(i; j ) 2 A n (� + (s) [ � � (e))
� j 8(s; j ) 2 � + (s)
� � i 8(i; e) 2 � � (e)

The pricing problem is now an to �nd an elementary shortest path from s to e.

Solving the pricing problem: ESPPRCs can be solved by various labeling algorithms,
see e.g. Desaulniers et al. [12], Irnich [20], Irnich and Desaulniers [21], and Righini and Salani
[29].

Branching: Integrality can be obtained by branching on the original variables, which can
be accomplished by cuts in the master problem (see Vanderbeck [34]), e.g., let X ij be the set
of partial paths that utilize arc ( i; j ) then the branch rule x ij = 0 _ x ij = 1 can be expressed
by the dichotomy: X

p2 X ij

� p = 0 _
X

p2 X ij

� p = 1 :

5 Bounding the Load Resource

The giant tour introduced in Section 1 can be decomposed intoa number of partial paths by
bounding a resourcer 0, e.g. the number of nodes, the time, or the load. In this section we
consider the latter. The load constraint is present in CVRP and VRPTW and is a special
type of resource constraints. If Q is the maximal load of a vehicle anddi : i 2 C is the
demand of the costumers, then the accumulated demand on a route may not exceedQ. The
goal is that equation (34) is expressed on the form:

X

(i;j )2 A

di x ij � L

whereL is a given threshold value for the load resource. This will potentially lead to an easier
pricing problem. For dynamic programming based algorithmsthe complexity is dependent
on the size ofL . In the length case we rounded up the expressionjCj=K to ensure feasibility.
In the following we will discuss a similar approach for bounding on the load resource.

Let the total demand of the customers beD =
P

i 2 C di . A lower bound on the number
of partial paths needed is: K = dD=L e. However, we cannot just split the giant tour into K
partial paths of capacity L since there is no guaranty that the optimal giant tour can be split
into partial paths of equal capacity.

100



Partial Path Column Generation for the Vehicle Routing Prob lem

Layer: 1

0

i1 i2

i3

2

0

i1 i2

i3

: : :

: : :

K

0

i1 i2

i3

Figure 4: Small subset of the connector arcs. Connector arcsfrom node 0 in layer 1 to nodes
in layer 2, and connector arcs from node 2 in layer 2 are shown as dashed lines. Not all
connector arcs are shown due to readability of the graph.

Let the largest demand be de�ned asdmax = max i 2 C di , and assume thatL � dmax . Then,
we need to allow up todmax � 1 extra capacity in each partial path, to compensate for possibly
uneven splitting. This means that for a given K we �nd L ub = dD=K e+ ( dmax � 1) as the
upper bound on the resource consumption.

An alternative approach to increasing L to L ub is to allow an additional edge exceeding
L to be selected in the pricing problem. This may complicate the pricing problem, though.

The remainder of this section addresses alternative strategies to avoid complicating the
pricing problem. One such alternative is to introduce the concept of connector arcs. A
connector arc is a single arc between two nodes which combines two partial paths. For each
layer k 2 K and original arc (i; j ) 2 A there is connector arc to the subsequent layer.

Figure 4 illustrates the idea of the connector arcs. The dashed lines from node 0 in layer 1
orientated towards layer 2 to nodei1; i2 and i3, illustrates the connectors out of node 0 in layer
1. Similar nodesi1 in layer one will have connectors to nodes 0,i2,i3 in layer 2, and likewise
for nodesi2 and i3 in layer 1 has connectors to layer 2. In layer 2 the dashed lines from node
i2 illustrates its connectors to layer 3. Similare all other nodes in layer 2 has connectors to
layer 3. In layer 3 the dashed lines illustrates the �nal set of connectors, which are the last
edges that can be used in the system and they therefor point tothe depot from all nodes.
The connector arcs plays the same role as the additional arc in the pricing problem suggested
above. They make it possible to obtain a path which exceedsL � 1 by the demand of a single
customer. By allowing K connector arcs it is therefore possible to obtain a solutionto the
problem where all the K layers include one additional node.

To model the connector arcs we introduce new variablesyk
ij for all ( i; j ) 2 A and for all

k 2 K . These variables substitute the variablesxk
ii by connecting every node (i; k ) 2 V k

in each layer k 2 K with the nodes (j; k + 1) 2 V k+1 : (i; j ) 2 A in the subsequent layer.
Furthermore, constraints (11) are modi�ed to:

X

k2K

X

(j;i )2 � � (i )

�
xk

ji + yk
ji

�
=

X

(i;j )2 � + (i )

�
xk

ij + yk
ij

�
; 8i 2 V

This ensures the global 
ow by taking the 
ow of the connector arcs into account. A similar
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substitution is made in constraint (12) and (13). The connector arcs are also present in
the resource constraints where they are added to any sum bounding the resource variables.
Constraint (15) is therefore changed to:

X

k2K

X

(j;i )2 � � (i )

�
T rk

ji + � r
ji

�
xk

ji + yk
ji

��
�

X

k2K

X

(i;j )2 � + (i )

T rk
ij ; 8r 2 R; 8i 2 C

A similar addition is made for constraints (16), (17), and (18).
When the model is decomposed into theK pricing problems each set of up toK connector

arcs yij : yk
ij ; (i; j ) 2 A; k 2 K becomes a single connector arc connecting the paths ending in

nodei with the path starting in node j . Using the aggregated connector arcs constraints (23)
are substituted with:

X

p2 P :ep= i

� p +
X

j 2 � � (i )

yj i =
X

j 2 � + (i )

yij +
X

p2 P :sp= i

� p 8i 2 V

6 Conclusion and Future Work

A new decomposition model of the VRP has been presented with the ESPPRC as the pricing
problem. The model makes it possible to balance the running time of the pricing problem
against the tightness of the lower bound. Due to the aggregation of the model, LP relaxed
bounds of (21){(28) are better than the direct model (1){(7) . Since (21){(28) is a generaliza-
tion of the traditional Dantzig-Wolfe decomposition model with elementary routes as columns,
the LP relaxed bounds may be both weaker and stronger. It has been shown that the bound
of the presented LP relaxation is sometimes better than thatof the classical decomposition
of VRP into an elementary route for each vehicle.

Future work: The quality of the bounds can be further improved by using special purpose
cutting planes, which this paper has not focused on. Furthermore, e�ective cuts such as
Subset Row-inequalities by Jepsen et al. [23] and Chv�atal-Gomory Rank-1 cuts (see Petersen
et al. [28]) can be applied to the Set Partition master problem to strengthen the bound.

More and better cuts have been added to the VRPTW Branch-and-Cut algorithm used in
this paper for comparison, but all of these cuts could also beadded to this model obtaining
at least as good a bound.

Considering the approach of Baldacci et al. [2] where columns are enumerated dependent
on strong upper and lower bounds, it should be clear that the partial path approach should
contain fewer enumerated columns due to the smaller solution space of the pricing problem.
Combining the relatively strong bound with the small soluti on space a powerful strategy
should be obtained.

References

[1] N. Ascheuer, M. Fischetti, and M. Gr~A{ tschel. Solving the asymmetric travelling sales-
man problem with time windows by branch-and-cut. Mathematical Programming, 90(3):
475{506, 2001. doi: 10.1007/PL00011432.

102



Partial Path Column Generation for the Vehicle Routing Prob lem

[2] R. Baldacci, N. Christo�des, and A. Mingozzi. An exact algorithm for the vehicle routing
problem based on the set partitioning formulation with additional cuts. Mathematical
Programming, 115(2):351{385, 2008. doi: 10.1007/s10107-007-0178-5.

[3] J. F. Bard, G. Kontoravdis, and G. Yu. A branch-and-cut pr ocedure for the vehicle
routing problem with time windows. Transportation Science, 36(2):250{269, May 2002.
doi: http://dx.doi.org/10.1287/trsc.36.2.250.565.

[4] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H. Vance.
Branch-and-price: Column generation for solving huge integer programs. Operations
Research, 46(3):316{329, 1998. doi: 10.1287/opre.46.3.316.

[5] J.E. Beasley and N. Christo�des. An algorithm for the resource constrained shortest
path problem. Networks, 19:379{394, 1989. doi: 10.1002/net.3230190402.

[6] N. Boland, J. Dethridge, and I. Dumitrescu. Acceleratedlabel setting algorithms for the
elementary resource constrained shortest path problem.Operation Research Letters, 34
(1):58{68, 2006. doi: 10.1016/j.orl.2004.11.011.

[7] A. Chabrier. Vehicle routing problem with elementary shortest path based column gen-
eration. Computers & Operations Research, 33(10):2972{2990, 2006. doi: 10.1016/j.cor.
2005.02.029.

[8] N. Christo�des and S. Eilon. An algorithm for the vehicle-dispatching problem. Opera-
tional Research Quarterly, 20(3):309{318, Sep 1969.

[9] N. Christo�des, A. Mingozzi, and P. Toth. Exact algorith ms for the vehicle routing prob-
lem, based on spanning tree and shortest path relaxations.Mathematical Programming,
20(1):255{282, Dec 1981. doi: 10.1007/BF01589353.

[10] W. Cook and J. L. Rich. A parallel cutting plane algorith m for the vehicle routing
problem with time windows. Technical Report TR99-04, Computational and Applied
Mathematics, Rice University, Houston, Texas, USA, 1999.

[11] E. Danna and C. Le Pape. Branch-and-price heuristics: Acase study on the vehicle
routing problem with time windows. In G. Desaulniers, J. Desrosiers, and M. M. Solomon,
editors, Column Generation, chapter 4, pages 99{129. Springer, 2005. doi: 10.1007/
0-387-25486-2n 4.

[12] G. Desaulniers, J. Desrosiers, J. Ioachim, I. M. Solomon, F. Soumis, and D. Villeneuve. A
uni�ed framework for deterministic time constrained vehicle routing and crew scheduling
problems. In T. G. Crainic and G. Laporte, editors, Fleet Management and Logistics,
pages 57{93. Kluwer, 1998.

[13] G. Desaulniers, F. Lessard, and A. Hadjar. Tabu search,partial elementarity, and gen-
eralized k-path inequalities for the vehicle routing problem with tim e windows. Trans-
portation Science, 42(3):387{404, 2008. doi: 10.1287/trsc.1070.0223.

[14] M. Desrochers.La fabrication d�2019horaires de travail pour les conducteurs d�2019autobus
par une m~A c
 thode de g~A c
 n ~A c
 ration de colonnes. PhD thesis, Universit~A c
 de
Montr ~A c
 al, Montr ~A c
 al, Canada, 1986.

103



Chapter 6

[15] M. Desrochers, J. Desrosiers, and M. Solomon. A new optimization algorithm for the
vehicle routing problem with time windows. Operations Research, 40(2):342{354, 1992.
doi: 10.1287/opre.40.2.342.

[16] M. Dror. Note on the complexity of the shortest path models for column generation in
VRPTW. Operations Research, 42(5):977{979, 1994. doi: 10.1287/opre.42.5.977.

[17] I. Dumitrescu. Constrained Path and Cycle Problems. PhD thesis, Department of Math-
ematics and Statistics, University of Melbourne, Australia, 2002.

[18] D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen. An exact algorithm for the ele-
mentary shortest path problem with resource constraints: Application to some vehicle
routing problems. Networks, 44(3):216{229, 2004. doi: 10.1002/net.v44:3.

[19] R. Fukasawa, H. Longo, J. Lysgaard, M. Poggi de Arag~A$o, M. Reis, E. Uchoa, and R.F.
Werneck. Robust branch-and-cut-and-price for the capacitated vehicle routing problem.
Mathematical Programming, 106(3):491{511, 2006. doi: 10.1007/s10107-005-0644-x.

[20] S. Irnich. Resource extension functions: Properties,inversion, and generalization to
segments.OR Spectrum, 30(1):113{148, 2008. doi: 10.1007/s00291-007-0083-6.

[21] S. Irnich and G. Desaulniers. Shortest path problems with resource constraints. In
G. Desaulniers, Jacques Desrosiers, and M.M. Solomon, editors, Column Generation,
chapter 2, pages 33{65. Springer, 2005. doi: 10.1007/0-387-25486-2n 2.

[22] S. Irnich and D. Villeneuve. The shortest path problem with resource constraints and
k-cycle elimination for k � 3. INFORMS Journal on Computing, 18:391{406, 2006. doi:
10.1287/ijoc.1040.0117.

[23] M. Jepsen, B. Petersen, S. Spoorendonk, and D. Pisinger. Subset-row inequalities applied
to the vehicle-routing problem with time windows. Operations Research, 56(2):497{511,
2008. doi: 10.1287/opre.1070.0449.

[24] N. Kohl, J. Desrosiers, O. B. G. Madsen, M. M. Solomon, and F. Soumis. 2-path cuts for
the vehicle routing problem with time windows. Transportation Science, 33(1):101{116,
1999. doi: 10.1287/trsc.33.1.101.

[25] J. Lysgaard, A. N. Letchford, and R. W. Eglese. A new branch-and-cut algorithm for
the capacitated vehicle problem.Mathematical Programming, 100(2):423{445, 2004. doi:
10.1007/s10107-003-0481-8.

[26] M. E. L ~A 1
4bbecke and J. Desrosiers. Selected topics in column generation. Operations

Research, 53(6):1007{1023, 2005. doi: 10.1287/opre.1050.0234.

[27] G. L. Nemhauser and L. A. Wolsey.Integer and Combinatorial Optimization. John Wiley
& Sons, Inc., 1988.

[28] B. Petersen, D. Pisinger, and S. Spoorendonk. Chv�atal-Gomory rank-1 cuts used
in a Dantzig-Wolfe decomposition of the vehicle routing problem with time win-
dows. In B. Golden, R. Raghavan, and E. Wasil, editors, The Vehicle Routing
Problem: Latest Advances and New Challenges, pages 397{420. Springer, 2008. doi:
10.1007/978-0-387-77778-818.

104



Partial Path Column Generation for the Vehicle Routing Prob lem

[29] G. Righini and M. Salani. Symmetry helps: bounded bi-directional dynamic program-
ming for the elementary shortest path problem with resourceconstraints. Discrete Op-
timization , 3(3):255{273, 2006. doi: 10.1016/j.disopt.2006.05.007.

[30] G. Righini and M. Salani. New dynamic programming algorithms for the resource con-
strained shortest path problem. Networks, 51(3):155{170., 2008. doi: 10.1002/net.20212.

[31] M. Salani. Branch-and-Price Algorithms for Vehicle Routing Problems. PhD thesis,
Universit�a Degli Studi Di Milano, Facolt�a di Scienza Mate matiche, Fisuche e Naturali
Dipartimento di Technologie dell'Informazione, Milano, I taly, 2005.

[32] M. M. Solomon. Algorithms for the vehicle routing and scheduling problem with time
window constraints. Operations Research, 35(2):234{265, 1987. doi: 10.1287/opre.35.2.
254.

[33] P. Toth and D. Vigo. An overview of vehicle routing problems. In P. Toth and D. Vigo,
editors, The Vehicle Routing Problem, chapter 1, pages 1{26. SIAM, 2002.

[34] F. Vanderbeck. On Dantzig-Wolfe decomposition in integer programming and ways to
perform branching in a branch-and-price algorithm. Operation Research, 48(1):111{128,
2000. doi: 10.1287/opre.48.1.111.12453.

105



Chapter 6

106



Chapter 7

Optimal Routing with Failure Inde-
pendent Path Protection

Thomas Stidsen
DTU Management Engineering, Technical University of Denmark

Bj�rn Petersen
DIKU Department of Computer Science, University of Copenhagen

Simon Spoorendonk
DIKU Department of Computer Science, University of Copenhagen

Martin Zachariasen
DIKU Department of Computer Science, University of Copenhagen

Kasper Bonne Rasmussen
Department of Computer Science, ETH Zurich, Switzerland

Abstract

Reliable communication has become crucial in today's information society. Modern
communication networks are required to deliver reliable communication to their cus-
tomers. Unfortunately, protection against network failures signi�cantly hampers e�cient
utilization of network investments, because the associated routing problems become much
harder. In this paper we present a rigorous mathematical analysisof one of the most
promising protection methods: Failure independent path protection. We present an LP
model which is solved by column generation. The subproblem is provento be strongly
NP -hard, but still solvable for medium sized networks through the useof specialized dy-
namic programming algorithms. This enables us to evaluate the performance of failure
independent path protection for 8 networks with up to 37 nodes and 57 links. The results
indicate that only between 3% and 8% extra network capacity is necessary when com-
pared to the capacity required by complete rerouting (which is the absolute lower bound
for single link failure protection).
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1 Introduction

Today's information society relies increasingly on advanced communication networks. This
has led to massive investments in increased communication network capacity. In order to
utilize these investments the network operators performt ra�c engineering, i.e., they route
communication to maximize the utilization of the capital in vested in the communication
network.

Most of the backbone networks which today carry long distance communication tra�c use
path based routing, i.e., a communication connection between two points in the network is
established along one or more �xed paths. Despite the huge success of the packet switched
Internet, path based routed network technology will continue to be the dominant technique
of backbone networks, because tra�c engineering can be performed much more e�ciently
than in packet switched networks. Examples of such path switched network technologies are
SDH/SONET or DWDM networks or circuit switched network tech nologies like PSTN/ISDN.
Furthermore, the new Multi Path Label Switching (MPLS) [34] protocol enables packets to
be routed on �xed paths.

The standard model of a path switched communication network is a directed graph
G = ( V; A) consisting of a set of nodesV and a set of arcsA. The nodes correspond to
telecommunication switches. The telecommunication switches route the communication sig-
nals through cables. We will assume that all cables enable bidirectional communication and
therefore we will model one cable using two arcs, one each waybetween the end nodes. We
assume that a static communication connection demand is given which requires one-way com-
munication between an origin nodeok and a terminating node dk of volume � k for a set of
demandsk 2 K . For each demandk we should construct a singleprimary (or working) path
from ok to dk , and all the required volume of tra�c � k should be sent over this primary path
(i.e., tra�c should be non-bifurcated).

Communication networks are increasingly required to bereliable. If we cannot trust our
messages to reach the receiver, the use of a communication network is limited. Communication
networks are prone to failures and many di�erent types of failures can occur. Switches (nodes)
can lose power, experience software and hardware failures,etc. Cables (arcs) can be cut by
entrepreneurs or by natural disasters. For simplicity, in this paper we will only consider single
cable failures, i.e., simultaneous failure of the two arcs which correspond to a cable. This is
a well-known and widely used simpli�cation [15, 26].

Multiple cable failures can occur in networks, but are less probable. Several cables can fail,
if, e.g., a switch fails or a single cable failure in a lower network layer may result in multiple
failures in the upper layers. These kind of network errors are of increasing importance but
they also make network protection signi�cantly harder, e.g., the problem of �nding failure
independent paths isNP -complete in the face of multiple cable failures [17].

When a cable fails, the network operator either has to repairthe cable orre-route the failed
paths around the failure. Because repairing a cable can takeconsiderable time, rerouting is
an interesting alternative. The main problem with reroutin g is that enough capacity needs to
be available on the remaining non-failed cables to enable rerouting. Tra�c engineering which
takes into account the possibility of a cable failure becomes signi�cantly more complex, but
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is again important in order to utilize network investments.
In this paper we assume that tra�c which is routed along one primary paths is rerouted

along the samebackup(or protection) path. Hence rerouted tra�c is non-bifurcat ed. The
cost function is simple: We assume that a linear cost termca for using capacity on arca has
to be paid. The required capacity of an arc is the maximum capacity required for all failure
situations (the network should be able to accommodate necessary rerouting). The total cost
of the network is the sum of costs over all arcs. It should be noted that in our model arcs
have no capacity bounds | in contrast to the well-known multi -commodity 
ow model [1].

In Figure 1(a) two paths are established, from node 2 to node 6and from node 5 to
node 9, both with a volume of 1, that is, (o1; d1; � 1) = (2 ; 6; 1) and (o2; d2; � 2) = (5 ; 9; 1). In
Figure 1(a) | and all the other �gures in this paper | we have on ly drawn the bidirectional
cables, andnot the two corresponding arcs for each cable, in order not to complicate the �gures
unnecessarily. The necessary capacity of a cable corresponds to the sum of the necessary arc
capacities for that cable. Given the paths chosen in Figure 1(a) an arc capacity of 1 is then
required on the arcs (2; 4), (4; 6), (5; 7) and (7; 9), resulting in a total required Non-Failure
(NF) network capacity of 4. In Figure 1(b) the cable between node 5 and node 7 fails resulting
in the failure of arc (5; 7) and arc (7; 5). This results in a communication breakdown for the
path from node 5 to node 9.
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(b) A cable break

Figure 1: Path switched routing.

In order to protect communication against a cable failure, arerouting strategy needs to
be planned for each possible cable failure, i.e., a protection method needs to be installed.
(Because rerouting methods protect against failures, we will use rerouting methods and pro-
tection methods interchangeably.) The importance of network reliability and the importance
of minimizing network investments have resulted in a large number of rerouting methods. It is
beyond the scope of this paper to review these and we refer thereader to [15] for a recent and
comprehensive survey. One of the promising methods isp-cycle protection. This is a clever
extension of the well-known ring protection scheme, which signi�cantly improves the capac-
ity requirements necessary for protection [15, 31]. Furthermore, the use ofp-cycles enable
fast protection of communication, as provided by ring protection. Despite these promising
features, p-cycles have not (yet) achieved widespread application.

In this paper we will consider tra�c engineering optimizati on methods for the Failure
Independent Path Protection (FIPP) method for path switche d networks. In this protection
method the backup path for a given demand is independent of the failure related to the
primary path, i.e., independent of which of the cables in theprimary path have failed. This
protection method is also called Shared Backup Path Protection in [15] or Global Backup
Path Protection in [6].

The outline of the paper is as follows. In Section 2 we give a brief description of di�erent
path protection methods. This leads us to focus on the FIPP method for which we give a
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mathematical model in Section 3. In the same section we also present a column generation
algorithm to solve a relaxed model and discuss the computational complexity of the sub-
problem. In Section 4 we then present and discuss the resultswhen applying the column
generation algorithm to a number of test cases. In Section 5 we discuss possible extensions
and in Section 6 we draw some conclusions.

2 Path protection method

The classic path protection method employed in path switched networks is 1+1 protection.
Figure 2(a) shows how the 1+1 protection method can be used toprotect the path connections
from Figure 1. In 1+1 protection, two cable disjoint paths (and hence arc disjoint paths) are
established and actively used. If an arc fails on one path, the other path will survive and
enable the receiving node to restore communication by just switching to the other incoming
signal. This method is simple, there are well-de�ned standards, but the required network
capacity is always at least twice the required non-failure network capacity. The total network
capacity required in the example in Figure 2(a), assuming the same demands, is 10. Notice
in particular that a capacity of 2 is required on arc (5; 6).
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(b) FIPP

Figure 2: Capacity sharing illustrated.

2.1 Comparing path protection methods

We now de�ne two measures: Restoration Over Build (ROB) network capacity and Relative
Restoration Over Build (RROB) network capacity.

ROB: The extra network capacity necessary to ensure protection,i.e., the network capacity
for both routing and protection minus the NF network capacit y, assuming shortest path
routing. In the example from Figure 2(a), ROB = 10 � 4 = 6.

RROB: The relative extra network capacity necessary to ensure protection, i.e., the ROB
network capacity divided by the NF network capacity. In the example from Figure 2(a),
RROB = 10� 4

4 = 1 :5, meaning that 1+1 protection in this case costs 150% extra
network capacity compared to the necessary non-failure network capacity.

The FIPP method is a slight variation of 1+1 protection: Inst ead of actively sending data
packets on both paths, one path is designated the primary path and only when that path fails
will the data packets be sent along the backup path. In Figure2(b) the same two protected
connections as in Figure 2(a) are shown, but now there is a primary path (full line) and a
backup path (dashed line) for each path. But the required network capacity has decreased.
The arc (5; 6) now only needs a capacity of 1, because the backup paths arenot being used
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at the same time. This concept is calledsharing and is possible because we only guarantee
protection against single cable failures and because the two primary paths are cable disjoint.
For the FIPP method, the NF network capacity is again 4, but th e ROB network capacity is
now 9, which leads to an RROB network capacity of 1:25.

In order to utilize the path protection methods tra�c engine ering has to be performed in
order to minimize the RROB network capacity. When working with 1+1 protection this is a
well-studied problem for which there exist polynomial-time algorithms [4, 33]. This isnot the
case for the FIPP method. Because of the possibility of sharing the capacity for the backup
paths, the best choice of primary path and backup path for each end-to-end demand node
pair becomes interdependent.

A practical solution to the FIPP tra�c engineering problem i s studied in [23]. In order to
simplify the problem, the dependency between di�erent protected communication connections
is ignored in [23]. Instead, the focus is on algorithms whichcan �nd pairs of disjoint paths,
where the cost of backup paths is assumed to be some constant factor cheaper than the
primary paths. Because of the sharing possibility it is reasonable that the capacity costs
for each arc of the backup path are less than the capacity costs for each arc of the primary
path. Even this simpli�ed problem is NP -hard [23] and a number of di�erent heuristics are
suggested to �nd good, though not optimal, solutions to the problem. This line of research
is continued in [22]. It should be emphasized that the cost model for backup paths used in
[22, 23] is approximate. We quantify the exact relationship between costs for primary and
backup paths in Section 3.1 and prove that the resulting optimization problem is strongly
NP -hard.

In [26] the full FIPP tra�c engineering problem is considere d. A column generation
approach, similar to the approach in this paper, is considered. The same mathematical
model for the column generation master problem is formulated, but the subproblem is not
formulated. This means that if an optimal solution is required, the full set of disjoint paths
has to be pre-generated, and this is only feasible for small networks.

2.2 Di�erent path protection methods

The Failure Independent Path Protection method is just one example of a path protection
scheme, and there are a number of other methods. The di�erent path protection methods
all use one primary path, but protect the primary path in di�er ent ways. In Figure 3, which
is (partly) taken from [6], six path protection methods are presented. If the path protection
methods are only allowed to choose the backup path based on the failed cable, this list
is complete, but a number of additional variations exists, some of which are described in
Section 2.3.

Full Backup Path Protection (FBPP)

Theoretically FBPP [24], see Figure 3(a), is the most e�cient path protection method. (This
method is not included in [6].) Given a primary path, each cable which can fail on the
primary path is protected by a unique backup path. There are no limitations regarding these
backup paths, except they are, obviously, not allowed to useany of the two failed arcs in the
cable which they protect. This gives the highest possible freedom in choosing the cheapest
protection paths and all the other path protection methods are more restrictive in the choice
of backup paths and hence more costly.
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Figure 3: Di�erent path protection schemes.

Segment Backup Path Protection (SEBPP)

SEBPP, see Figure 3(b), protects segments (sets of cables) of the primary path with the same
backup path. Hence several cables in the same segment are forced to share backup paths.

Failure Independent Path Protection (FIPP)

FIPP, see Figure 3(c), limits the choice of backup path even further, such that only one
backup path is allowed. This forces the backup path to be cable disjoint with the primary
path.

Local Backup Path Protection (LBPP)

LBPP [24], see Figure 3(d), performs a local protection, i.e., the rerouting paths are required
to lead from one node of the failed cable to the other node of the failed cable. This resembles
the classical span protection, but in this case di�erent reroute paths may be chosen for each
connection.

Local Destination Rerouting (LDR)

LDR [2], see Figure 3(e), is a variation of local protection,where the connection paths are
rerouted directly to the end node of the connection. LDR preserves the fast rerouting time
of Local Backup Path Protection, but is more e�cient regardi ng ROB network capacity.
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Front Dynamic Backup Path Protection (FDBPP)

FDBPP, see Figure 3(f), is another variation of local protection, where the connection path is
rerouted from the start node to the end node of the failed cable. To the best of our knowledge
this type of protection has not been suggested anywhere elseand is only included to make
the list of path protection methods complete. We do not expect the FDBPP method to be
implemented anywhere.

2.3 Further variations

The description of the di�erent path protection schemes is very simpli�ed and a number of
variations can be added. Here we brie
y mention two of these.

Stub-release is a technique which can be applied to further lower the required network
capacity. The idea is that in case of a failed cable, the unharmed parts of the primary path,
which are not in use any longer, are released and can be used for protection [25]. Stub-release
can improve the capacity e�ciency of each method, with the exception of the Local Backup
Path Protection method, at the price of a more complicated protection scheme.

To speed up the recovery process, Hashkin protection can be applied [16]. The idea is
to loop-back the communication signals at the switch just before the failed cable, to where
the backup path starts. Hashkin protection minimize packet-loss, but requires more network
capacity and cannot be used in Local Backup Path Protection and Local Dynamic Backup
Path Protection.

2.4 Motivation for FIPP

Out of the 6 di�erent types of path protection described in Section 2.2, we only consider the
FIPP method in this paper.

FIPP is the only path protection method for which the protect ion action does not depend
on which cable actually fails | it is failure independent. This makes FIPP the simplest of
the path protection methods. Furthermore, the complex switching schemes take place at the
start node of the connection path, which may be an advantage in future networks. It is not
the most capacity e�cient path protection method. The most e �cient method is FBPP, but
FBPP requires administration of a large number of backup paths. Furthermore, in Section 4
we demonstrate that the FIPP method is indeed avery e�cient protection method, when
optimal routing of the primary path and the backup path is per formed.

The main disadvantage with the FIPP method is the relatively long restoration time, i.e.,
the time it takes to restore communication. This is because of the noti�cation time { which
is the backward communication time between the node which observes the failure and the
node from which the connection paths originates. We have illustrated the noti�cation time
by dotted arrows in Figure 3 for the path protection methods for which this is necessary. For
a more complete discussion of restoration time, we refer to [6].

3 LP model and column generation approach

In this section we start by de�ning the FIPP optimization pro blem formally. Then we present
an LP model for a relaxed version of the FIPP optimization problem, the so-calledfractional
FIPP optimization problem. The LP model has an exponential number of variables, and
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hence we solve it using column generation. In Section 3.1 we describe the associated pricing
problem (or subproblem). A MIP model for solving the subproblem is given in Section 3.2,
and in Section 3.3 we show that the subproblem is in fact strongly NP -hard. Finally, in
Section 3.4 we give a labeling algorithm for solving the subproblem, and summarize our
column generation algorithm in Section 3.5.

Given, as previously de�ned, a directed graphG = ( V; A) with nodes V and arcsA. For
each failure situation s 2 S we have a set of failed arcsFs � A. There is a costca for using
one unit of capacity of an arca. We further assume to know a static set of demand node pairs
for which protected connections using the FIPP method should be established. A directed
connection between an origin nodeok and a terminating node dk with a volume of � k should
be established for each demandk 2 K . The optimization objective is to minimize the cost of
the required capacity when applying the FIPP method to protect the established connections.
This means that for each demand apair of directed failure disjoint paths needs to be found:
A primary path ppri and a backup path pbac, both connecting nodeok to node dk . Such a
pair of failure disjoint paths is denoted a path pair � = ( ppri ; pbac). The objective in the FIPP
problem is to �nd a path pair for each demand k 2 K , such that the total cost of the capacity
required is minimized. Note that the capacity required by an arc is the maximum capacity
required taken over all failure situations.

Given these de�nitions we are ready to present an LP model forthe fractional FIPP
optimization problem. In this problem we allow more than one path pair to accommodate
the 
ow required by a demand. Let Pk be the set of path pairs that can satisfy demandk,
that is, the set of primary/backup paths that connect origin node ok with terminating node
dk . Let Pk (a) � Pk be the subset of path pairs for which theprimary path uses arca 2 A.
Similarly, let Pk (a; s) � Pk be the set of path pairs for which theprimary path fails and the
backuppath uses arca 2 A n Fs in failure situation s 2 S. Finally, let variable � k

� denote
the amount of communication 
ow through path pair � 2 Pk , and let variable � a denote the
capacity required for arc a 2 A.

FIPP

minimize:
X

a2 A

ca � � a (1)

subject to:
X

� 2 Pk

� k
� � � k 8 k 2 K (2)

X

k2 K

X

� 2 Pk (a)

� k
� +

X

k2 K

X

� 2 Pk (a;s)

� k
� � � a 8 s 2 S; a 2 A n Fs (3)

� k
� ; � a 2 R+

The objective function is given by (1) and it is the cost of the summed network capacity.
The demand constraint (2) ensures that enough capacity is established on the path pairs. The
capacity constraint (3) ensures that enough capacity is allocated to route the communication
on each arca in each failure situation s which does not disrupt the arc.
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The problem with this LP-model is that the number of path pair s grows exponentially
with the network size, and hence the complete model can only be solved for small network
sizes. Instead, we will use a column generation algorithm such that only a subset of the path
pairs is generated. The optimization subproblem to generate new path pairs with negative
reduced costs is given in Section 3.1, and in Section 3.5 the column generation algorithm is
given.

It is clear that the fractional FIPP optimization problem is a relaxation of the original
FIPP optimization problem which is NP -hard [32]. The hardness of the fractional FIPP
optimization problem on the other hand is still an open problem. The LP model can there-
fore be used for lower bounding in a branch-and-price algorithm for the FIPP optimization
problem. The bound can however be weak, because the bound of the relaxed FIPP model
is equivalent to the bound of the relaxed FBPP model, if the primary paths consists of one
link. For primary paths of one link, each of the backup paths for the FBPP model can be
constructed by generating path pairs, i.e., the one hop primary path and di�erent backup
paths. For primary paths which are not one hop however, the relaxed FIPP model and the
relaxed FBPP model are not equivalent, because in the FIPP model the feasible backup paths
are more limited than the feasible backup paths for the FBPP model. In other words, it will
depend on the network and the communication demand how good abound the relaxed FIPP
model can deliver compared to the bound of the FBPP model.

3.1 Subproblem: Quadratic Cost Disjoint Path Problem

For the master problem for FIPP optimization problem let � k � 0, k 2 K , be the dual
variables associated with the (negated version of) constraint (2), and let � s

a � 0, s 2 S,
a 2 A nFs, be the dual variables associated with constraint (3). Our task is to decide if there
exists a pair of primary and backup paths � = ( ppri ; pbac) from some origin nodeok to some
terminating node dk with negative reduced cost for somek 2 K .

The reduced cost of a pair of paths (ppri ; pbac) is computed as follows. The cost of an arc
a 2 ppri is

P
s2 S � s

a, while the cost of an arca 2 pbac is
P

s2 S:Fs \ ppri 6= ; � s
a. Note the asymmetry

in the de�nition of arc costs in primary and secondary paths: For an arc on the primary path
the cost is the sum taken overall failure situations, while for an arc on the backup path the
sum is only taken over the failure situations that a�ect an arc on the primary path. The total
reduced cost of (ppri ; pbac) is now

� � k +

primary path cost
z }| {X

a2 ppri

X

s2 S

� s
a +

backup path cost
z }| {X

a2 pbac

X

s2 S:Fs \ ppri 6= ;

� s
a

The Quadratic Cost Disjoint Path Problem (QCDPP) is to compute a pair of paths � =
(ppri ; pbac) with minimum total cost. The name of the problem comes from the fact there
is a pairwise (or quadratic) dependence on the cost of the backup path as a function of the
primary path. Since the dual variables � s

a are non-negative, there clearly exists an optimal
solution where both the primary path ppri and the backup path pbac are simple. Hence in the
following we require that the paths ppri and pbac are simple and arc disjoint.
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3.2 MIP model for QCDPP

A primary path is de�ned by the binary variables xa for all a 2 A and a backup path is
de�ned by the binary variables ya for all a 2 A. We de�ne the sets � + (i ) as the arcs going
out of node i 2 V and � � (i ) as the set of arcs going into nodei 2 V . We again use the set of
failed arcsFs and de�ne the cardinality of the set as jFsj, i.e., the number of arcs which fails
in situation s 2 S. The binary variables us for all s 2 S detect whether the primary path is
interrupted by failure s and the binary variables vs for all s 2 S detect whether the backup
path is interrupted by failure s. Furthermore, the auxiliary variables za

s for all s 2 S and all
a 2 A detect if the primary path is interrupted by failure s at the same time as the backup
path use arca.

QCDPP

minimize:

ck
reduced = � � k +

primary path cost
z }| {X

a2 A

X

s2 S

� s
a � xa +

backup path cost
z }| {X

a2 A

X

s2 S

� s
a � za

s (4)

subject to:

X

a2 � + (i )

xa �
X

a2 � � (i )

xa =

8
<

:

1 i = ok

� 1 i = dk

0 otherwise
8 i 2 V (5)

X

a2 � + (i )

ya �
X

a2 � � (i )

ya =

8
<

:

1 i = ok

� 1 i = dk

0 otherwise
8 i 2 V (6)

jFsj � us �
X

a2 Fs

xa 8 s 2 S (7)

jFsj � vs �
X

a2 Fs

ya 8 s 2 S (8)

us + vs � 1 8 s 2 S (9)

za
s � us + ya � 1 8 s 2 S; a 2 A (10)

xa; ya; us; vs 2 f 0; 1g; zs
a 2 [0; 1] (11)

The objective function (4) is the reduced cost ck
reduced of the two disjoint paths. The

�rst double sum calculates the costs for the primary path. The second double sum then
calculates the cost for the backup paths. Notice that each arc a in the backup path only costs
� s

a in situation s if the primary path is disrupted in failure situation s. This is detected by
the variable za

s . Finally the dual value � k from constraint (2) is subtracted to calculate the
corresponding reduced cost. Both the primary path variables x and the backup path variables
y are constrained to form paths by constraint (5) and (6), respectively. The path disruption
variables, u for the primary path and v for the backup path, are set by constraint (7) and (8)
respectively. Variablesu and v are then used in constraint (9) to ensure failure disjointness of
the paths. In constraint (10) the auxiliary variable za

s is forced to the value 1 if the primary
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path is disrupted in situation s and the backup path uses the arca. Finally the domains of
the variables are given by constraint (11).

We consider two variants of failure situations: In the single arc failure variant there is
one failure situation for each arc in A. In the single link failure variant there is one failure
situation for each pair of opposite arcs, i.e., when the corresponding undirected edge is broken.

In Section 3.3 it is proved that the sub-problem above isNP -hard. However, if instead
the primary paths were pre-calculated and the task was to �nd the best usage of the primary
paths, at the same time �nding the best backup paths, the sub-problem would be a simple
shortest path problem (with links of the primary path removed from the network).

3.3 NP -hardness of QCDPP

We now prove that QCDPP is strongly NP -hard for the single arc and single link failure
variants. First we present the proof for the single arc variant and then we indicate how this
leads to an NP -hardness proof for the single link variant. In the single arc variant the set
of failure situations S is identical to the set of arcsA. The decision version of QCDPP with
single arc failures is formally de�ned as follows (where theconstant term � � k in the objective
function of QCDPP is ignored).

INSTANCE: Directed graph G = ( V; A), pairwise (integer and non-negative) costs� f
a for all

ordered pairs of arcs (a; f ) 2 A � A, origin node ok 2 V , terminating node dk 2 V and integer
C.

QUESTION: Does there exist a pair of simple arc disjoint paths � = ( ppri ; pbac) from ok to
dk in G such that X

a2 ppri

X

f 2 A

� f
a +

X

a2 pbac

X

f 2 ppri

� f
a � C ?

We prove that this problem is NP -complete by reduction from 3-SATISFIABILITY (3SAT) [14].
It is obvious that the decision version of QCDPP is in NP , since given� = ( ppri ; pbac) we can
compute the corresponding cost and compare it toC in polynomial time.

Let (U; C) be an instance of 3SAT, whereU = ( x1; x2; : : : ; xn ) is a �nite set of n variables
and C = ( c1; c2; : : : ; cm ) is a set of clauses wherejci j = 3, i = 1 ; : : : ; m. We assume without
loss of generality that each variable appears in at least oneclause.

Based on the 3SAT instance we create an instance of the QCDPP with the structure
illustrated in Figure 4. The graph consists of two chains of arcs { the so-called top chain and
the bottom chain. Two node disjoint paths from ok to dk must necessarily have the property
that one of the paths travels through the top chain while the other travels through the bottom
chain. By assigning costs appropriately, we will force the primary path to use the bottom
chain and the backup path to use the top chain.

We will �rst assume that we seek two nodedisjoint paths from ok to dk in this graph. Later
we describe how we can modify the graph so that the paths become arc disjoint. Furthermore,
the graph that is shown is a directed multigraph, and later wealso describe how this graph
can be transformed into an ordinary directed graph.

The arcs in the top chain are denotedvariable arcs, while the arcs in the bottom chain are
denoted clausearcs. For each clauseci 2 C we have 8 parallel arcs, one for each combination
of assignments for the three literals; these assignments are denoted 000, 001, 010 etc. As
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x 1 = 1

x n = 0

000

111

x 2 = 1

111

x 2 = 0

x n = 1

x 1 = 0

000

001

c2

001

dkok

c1 cm

Figure 4: Graph construction for NP -completeness proof.

an example, for the clause (x1 _ x2 _ �x3) the assignment 011 means thatx1 = 0, x2 = 1
and x3 = 0. Note that an assignment di�erent from 000 corresponds to a satis�ed clause.
Similarly, we have two variable arcs for each variablex j , one arc for x j = 0 and one arc for
x j = 1.

We will now assign pairwise costs� f
a for all ordered pairs of arcs (a; f ) 2 A � A. We set

� f
a = 0 for all ( a; f ) 2 A � A except from the following pairs:

� For a clausearc a corresponding to the assignment 000 we have� f 0

a = 1 for one arbitrary
variable arc f 0 (say, the arc corresponding tox1 = 0). This means that if the arc a is
used by a primary path from ok to dk then the cost of a is

P
f 2 A � f

a = 1.

� For a variable arc a and clause arcf , if the variable assignment given by arca doesnot
match the clause assignment given by arcf , then � f

a = 1. As an example, the variable
arc a corresponding to x3 = 1 has � f

a = 1 for the arc f corresponding to the clause
(x1 _ x2 _ �x3) with assignment 011. In Table 1 an extended example on how costs are
assigned for variable arcs is given.

Since we assume that each variable appears in at least one clause, each variable edgea
has cost at least 1 as a primary edge, since there will be at least one clause assignment
that does not match with the variable assignment given bya.

Finally, we set C = 0 in the QCDPP instance. Now we prove that we have YES-instance
for QCDPP if and only if we have a YES-instance for 3SAT.

Consider a YES-instance for QCDPP, that is, an instance withzero cost. Such an instance
must have a primary path ppri following the clausearcs from ok to dk , since the variable arcs
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Assignment x1 = 0 x1 = 1 x2 = 0 x2 = 1 x3 = 0 x3 = 1
000 0 1 0 1 1 0
001 0 1 0 1 0 1
010 0 1 1 0 1 0
011 0 1 1 0 0 1
100 1 0 0 1 1 0
101 1 0 0 1 0 1
110 1 0 1 0 1 0
111 1 0 1 0 0 1

Table 1: Costs � f
a associated with variable arcsa for clausef being equal to (x1 _ x2 _ �x3).

have positive costs as primary path arcs. Consequently, thebackup path pbac must follow
the variable arcs from ok to dk . Since the total cost of the solution � = ( ppri ; pbac) is zero,
all arcs of the path ppri correspond to clauses being satis�ed (i.e., are di�erent from the
clause assignments 000 which have cost 1 as primary path arcs). Also, since the total cost of
� = ( ppri ; pbac) is zero, the variable arcs followed bypbac match the assignments in the clause
arcs. Therefore, assigning the variablesx j , j = 1 ; : : : ; n, to the values indicated by the path
pbac gives a satisfying assignment for the 3SAT-instance.

For the other direction, consider a YES-instance for 3SAT. By letting pbac follow the
variable arcs in the QCDPP instance as given by a satisfying 3SAT-assignment, and letting
ppri follow the clause arcs corresponding to the 3SAT-assignment, we obtain a solution to
QCDPP of total cost zero.

By splitting each node in the graph (apart from ok and dk ) { that is, replacing the node
with an arc (u; v), and connecting all in-coming arcs tou and all out-going arcs to v { we
force the paths to beedgedisjoint. Furthermore, the multigraph can be transformed into an
ordinary directed graph G by replacing each arc in the multigraph by a sequence of two arcs,
and assigning pairwise costs appropriately. Thus we have the following:

Theorem 1 The decision version of QCDPP when reduced to singlearc failures is NP -
complete even when all pairwise costs are 0 or 1 (and only distinct pairs of arcs can have
non-zero costs).

Consider the directed graph G resulting from the above construction. If, for each arc
in G, we add an arc in the opposite direction we obtain a graphG0, where bidirectional
communication is feasible for each underlying link. Consider the single link failure variant
of QCDPP for the graph G0, where the costs are assigned as in the construction above, but
where the � f

a costs are replaced with� l
a costs (where l corresponds to a link). Since the

primary and backup paths in G0 should be simple, no backward arcs inG0 will ever be used,
and therefore we obtain the following:

Theorem 2 The decision version of QCDPP when reduced to singlelink failures is NP -
complete even when all pairwise costs are 0 or 1 (and non-overlapping pairs of arcs and links
can have non-zero costs).
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3.4 Labeling algorithm for the QCDPP

The QCDPP can be formulated as a Shortest-Path Problem with Resource Constraints (SP-
PRC). The SPPRC is a common subproblem in many graph based problems when using a
column generation based algorithm, e.g., the Vehicle Routing Problem with Time Windows
[20, 21] and the Crew Pairing Problem [8]. In the following wewill shortly de�ne the SPPRC,
discuss complexity issues and the application of recent developments within this area, and
describe the basic labeling algorithm. Last we will presentthe reformulation of the QCDPP
into an SPPRC.

The SPPRC can be stated as: Given a weighted directed graphG0 = ( V 0; A0) with nodes
V 0 and arcs A0, and a set of resourcesR. For each nodei 2 V 0 and arc (i; j ) 2 A0 there
is a weight of each resourcer 2 R that is determined by a (not necessarily linear but often
constant) function, as well as a lower and upper limit onr . For a sub-path in G0 there is a
resource accumulation of resourcer 2 R when visiting node i or traversing arc (i; j ), i.e., an
amount of resourcer is accumulated on the path. The total amount of r must respect the
lower and upper limits of r in when arriving at node i 2 V 0 or when using arc (i; j ) 2 A. The
increase in resource consumption and cost of a path when extended along an arc is de�ned by
a function, that are sometimes denotedresource extension functions, see [18]. The objective
is to �nd a minimum cost path from an origin node o 2 V 0 to an destination node d 2 V 0,
where the resources satisfy the limits for all resourcesr 2 R. In many cases it su�ces to have
the limits of the resources only at the nodes; in these cases the limits on the edges can be
made non-binding.

The SPPRC is NP -hard in the weak sense when the number of resources is a constant
and can be solved with dynamic programming based labeling algorithms in pseudo-polynomial
time. An extension of the SPPRC is the node elementary version; the elementary shortest path
problem with resource constraints (ESPPRC) where paths must be simple. The elementarity
constraint can be enforced with the use of a binary resource for each node to indicate if the
node is visited on the path and solved as an SPPRC. The ESPPRC is strongly NP -hard,
see [11]. However, ifG0 does not contain negative weight cycles the additional resources can
be disregarded since a least weight path that is simple will always exist, hence the problem
can be solved in pseudo-polynomial time. Although the reformulation (see details below)
of the QCDPP into a SPPRC leads to a graph with no negative weight cycles, the number
of resources amounts to one binary resource per failure scenario, i.e., one per two arcs in
G for the single link failure case in the QCDPP. That is, the number of resources in the
SPPRC depends on the input of the QCDPP, hence the complexityof the labeling algorithm
is exponential when regarding the reformulation of the QCDPP. Also, it is important to note
that the reformulation of the QCDPP into a SPPRC results in a n on-constant extension
function where the weight of the arcs on the backup path depend on the failure scenarios that
are a�ected by the primary path.

A comprehensive overview of work related to SPPRC is outsidethe scope of this article,
but we will brie
y discuss some recent results. For further details on mathematical models and
solution methods we refer the reader to the survey of Irnich and Desaulniers [19]. Dynamic
programming based methods denotedlabeling algorithms are to date the most dominant
approach to solving the SPPRC. However, recently Carlyle etal. [7] present a Lagrangian
relaxation based method. The approach is applicable for problems with no negative weight
cycles and shows good results when few resources are considered. However, due to the nature
of the non-constant extension function on the arc weights inour reformulation this approach
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is not directly applicable; also we consider a large number of resources which may limit the
e�ect of the Lagrangian relaxation.

Dumitrescu and Boland [12] present an improved preprocessing for the SPPRC (with
no negative cost cycles) and embed it into a labeling algorithm. They present resource
lower bound calculations using Lagrangian relaxation, hence solving a shortest path problems.
Again this approach is not applicable in our case due to the arc weight extension function in
our reformulation. Furthermore, this approach have very limited use when only considering
binary resources, which is indeed the case for our reformulation, since the resource bounds
are already very tight. Feillet et al. [13] address the ESPPRC and propose to consider
unreachable nodes instead of visited nodes with the binary resources. The unreachability of a
node is determined based on limits on other resources. In ourcontext this would correspond
to deciding if a failure scenario cannot be triggered. However, this is di�cult to decide without
actually visiting the arcs of the scenario, since triggering a scenario does not directly depend
on other resources but on the topology of the graph. Therefore the unreachability concept
cannot readily be used in our case.

A very successful labeling algorithm by Righini and Salani [27] showed how a signi�cant
speedup can be gained by using a bi-directional approach. That is, based on a monotone
resource (e.g., the number of nodes on the path) a breaking point is chosen (e.g., when half
the nodes have been visited) and the labeling algorithm is run from both sides. By splicing
paths starting at the origin node o with a reverse path coming from the destination node
d one can construct a full path. For this method to work all extension functions must be
reversible which unfortunately is not the case for our objective function. Boland et al. [5]
and Righini and Salani [28] independently proposed to relaxthe state-space of the labeling
algorithm such that only a subset of resources are considered to begin with. Any violated
resource is then added iteratively until a feasible path hasbeen found. By construction of the
graph and the de�nition of the objective function used in our reformulation, it is doubtful that
this approach would perform satisfactory since relaxing resources would yield zero weight arcs
in the associated backup path, making it necessary to add resources until all feasible backup
paths are covered.

In a labeling algorithm the labels represent partial paths that are extended (using the
extension functions) in all feasible directions from the origin node o. Each label L (a vector
with R+1 components) stores the cost of the partial pathTcost(L ) and the current value Tr (L )
of each resourcer 2 R. To avoid enumerating all feasible paths inG0, only Pareto-optimal
labels (i.e., labels that are not proved to be dominated by other labels) are kept during the
execution of the algorithm. When using non-decreasing extension functions (which is the case
for the reformulation of QCDPP), the label dominance criterion can be stated as follows.

Proposition 1 ([9]) Let L and L 0 be two labels representing partial paths ending at the same
node. LabelL dominates labelL 0 (which can be discarded) if

Tcost(L ) � Tcost(L 0)

Tr (L ) � Tr (L 0) 8r 2 R:

When equality holds for all label components, one of the two labels must be kept. Figure 5
summarizes the concept of a labeling algorithm. The initialstate is represented by the label
L o at the starting node. This label is enqueued on a priority queue Q that keeps track of all
unprocessed labels. The algorithm runs until all labels have been processed. In each iteration
the next label L from Q is dequeued. The set of nodes (FEASIBLE EXTENSION(L)) that
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Initialize label L o

ENQUEUE( Q; L o)
while Q is not empty

L := DEQUEUE( Q)
for each nodei 2 FEASIBLE EXTENSION( L)

L i := EXTEND LABEL( L; i )
if i = d

then ENQUEUE( S; L i )
else ENQUEUE( Q; L i )

REMOVE DOMINATED( Q)
return S

Figure 5: Pseudo-code for labeling algorithm.

are feasible extensions of the partial path represented byL , with regard to connectivity and
resource limits, is determined. L is extended to these nodes using the resource extension
functions (implemented in EXTEND LABEL( L; i )) to create the new label L i for node i . If
the extended labelL i is extended to the end noded it is stored as a solution in the queueS
otherwise L i is enqueued onQ for future processing. LastQ is cleaned for dominated labels
so only Pareto-optimal labels remain.

Next, we consider the transformation of the QCDPP stated as (4)-(11) into a SPPRC
Recall the graph G = ( V; A) for the QCDPP where a minimum cost primary and backup
path pair must be found from ok 2 V to dk 2 V over all k 2 K . Let V 0 = f i0 : i 2 Vg be a
copy of all nodes inV and let A0 = f (j 0; i0) : ( i; j ) 2 A; i 0; j 0 2 V 0g be a reversed version of
all arcs in A connecting the nodes inV 0, and let A00

k = f (dk ; d0
k ) : dk 2 A; d0

k 2 A0g be the arc
connecting the two node and arc sets for demand pairk. The transformed graph for the kth
demand pair is then G0

k = ( V [ V 0; A [ A0[ A00
k ) where a primary path will be sought in the

�rst part of the graph with nodes V , then by the arc (dk ; d0
k ) the search is switched to the

other part of the graph consisting of the nodesV 0 where a reverse backup path is found.G0
k

is illustrated on Figure 6. For each failure situation s 2 S it must be ensured that no arcs
from Fs is used on the backup path if any of the arcs inFs was used on the primary path. A
binary resource is added for each failure situations 2 S. Hence, the set of resources have size
jSj. Let a label L consist of 1 + jSj components,Tcost(L ) to store the cost of the path and
Ts(L ) for s 2 S to store the bit value of the failure situation resources. Ts(L ) will be set to
one if the failure scenarios is triggered on the primary path, and resource limits are enforced
on the arcs when extending labels. The upper bound for resource s 2 S when extending a
label on arca0 are given as 0 fora0 2 A0^ a 2 Fs and 1 otherwise. That is, a labelL cannot be
extended on arc (i0; j 0) 2 A0 with ( j; i ) 2 Fs for s 2 S on the backup path if arc a 2 Fs is used
on the primary path, i.e., the resource valueTs(L ) = 1 and the upper bound for s on (i0; j 0)
is 0. Hence, in Figure 5 the end node ofa is not in the set FEASIBLE EXTENSION( L).
Recall that the cost of the backup path depends on the arcs used on the primary path and
that � s

a � 0 and � k � 0. The extension along an arca of a label L (implemented in EXTEND

122



Optimal Routing with Failure Independent Path Protection

Backup path

Primary pathok

o0
k

dk

d0
k

Figure 6: The transformed graph for thekth demand pair. The backup path part of the graph
is a reversion of the primary path part, i.e., the path found is a forward directed primary
path and a reversed backup path.

LABEL( L; i )) proceeds as follows to create a new labelL 0:

Tcost(L 0) = Tcost(L ) +

8
<

:

P
s2 S � s

a a 2 AP
s2 S:Ts (L )=1 � s

(j;i ) a = ( i0; j 0) 2 A0

� � k a 2 A00
k

Ts(L 0) =
�

1 a 2 Fs

maxf Ts(L ); 0g otherwise
s 2 S

Both extension functions are non-decreasing, hence the dominance criterion of Proposition 1
can be applied in the labeling algorithm. For the kth pricing problem; a path represented by
label L ending in o0

k have the cost:

ck
reduced = � � k +

primary path cost
z }| {X

a2 A(L )

X

s2 S

� s
a +

backup path cost
z }| {X

a=( i 0;j 0)2 A 0(L )

X

s2 S:Ts (L )=1

� s
(j;i ) (12)

whereA(L) and A0(L ) are the set of arcs used inA and A0 respectively. Minimizing expression
(12) is equivalent to the objective function stated in (4) and the path found by the labeling
algorithm can trivially be split into a primary and a backup p ath.
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Initialize � k , � s
a

k = 1
do

k0 := k
do

SOLVE QCDPP( k, � k , � s
a)

k := k + 1
while cp;k

reduced � 0 and k0 6= k
Update set of path pairs
SOLVE FIPP with new set of path pairs
Update � k , � s

a
while k0 6= k

Figure 7: Column Generation algorithm.

3.5 Column Generation Algorithm

Given the LP model in Section 3 we can now apply column generation to solve the model,
where the subproblem described in Section 3.2 is either solved using a MIP solver or the
labeling algorithm described in Section 3.4. Below we brie
y describe the column generation
algorithm (Figure 7).

In the column generation algorithm in Figure 7 we �rst initia lize � k and � s
a with arti�cial

values: � k =
P

a2 A ca and � s
a = ca

jSj (where S is the set of failure situations). This means that
it is always pro�table to include a path pair of primary and ba ckup paths for each demand
k. After entering the main loop, promising path pairs are found based on the current values
of � k and � s

a. The resulting paths are then added to the set of path pairs and the master
problem is solved with the new set of path pairs. This processcontinues until no negative
reduced-cost path pair for any demand can be found.

4 Results

In this section the e�ciency of the FIPP protection method is tested on 8 di�erent networks.
Basic network data for the 8 networks is given in Table 2. We have chosen to use the simple
demand matrix D kl = 1 for each pair of nodes.

In Table 3 and Table 4 we compare the computation times when the QCDPP subproblem
is solved using the SPPRC labeling algorithm and a standard MIP solver, respectively.

It can be seen from Table 3 and Table 4 that the SPPRC labeling algorithm is signi�cantly
faster on all tested networks. Furthermore, two of the networks, Norway and Ta1, cannot be
solved using the MIP solver due to excessive memory consumption.

Given the column generation algorithm, we are now able to calculate the optimal protec-
tion capacity required for relaxed FIPP protection (Table 5). We �nd the results in Table 5
interesting because it shows how e�cient the relaxed FIPP method is. The FIPP method use
at most 8% extra network capacity compared to the theoretical lower bound achieved using
Complete Rerouting [30] and on average only 4% extra networkcapacity. We acknowledge
that this is only part of the story and that the moment the dema nds are required to be integer,
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Network Nodes Edges Avg. Node No.
Degree Demands

Cost239 [3] 11 26 4.73 55
Europe 13 21 3.23 78
Newyork [29] 16 49 6.12 120
Ta1 [29] 24 51 4.25 276
FranceSND [29] 25 45 3.60 300
Norway [29] 27 51 3.77 351
USA [10] 28 45 3.21 378
Cost266 [29] 37 57 3.08 666

Table 2: Tested networks and their characteristics.

Network Rows Columns Iter Time
Initial Final PerIt PerDem Total CG CGPct

Cost239 [3] 705 81 1451 42.81 0.78 32 11 1 4.56
Europe [29] 498 99 470 46.38 0.59 8 1 1 36.36
Newyork [29] 2472 169 5292 47.44 0.40 108 2438 1875 76.94
Ta1 [29] 2826 327 4013 43.88 0.16 84 17612 17385 98.71
FranceSND [29] 2280 345 2944 57.76 0.19 45 235 191 81.29
Norway [29] 2901 402 3704 58.96 0.17 56 1177 967 82.22
USA [10] 2358 423 3076 60.30 0.16 44 156 77 49.65
Cost266 [29] 3858 723 6516 62.29 0.09 93 2050 1051 51.29

Table 3: SPPRC labeling algorithm results. Rows: Number of rows in LP. Initial: Initial
number of master problem columns. Final: Final number of master problem columns. PerIt:
Number of columns added per iteration. PerDem: Number of columns added per iteration
per demand. Iter: Number of column generation iterations. Total: Total running time in
seconds. CG: Total column generation running time in seconds. CGPct: Column generation
(label) solve time as percentage of total time.

i.e., that for each demand the entire communication 
ow is routed on the same primary path
and the same backup path, the ROBB is going to increase.

5 Future Research

The mathematical model we on which we base our results is by choice constructed to be as
simple as possible. A number of additional model features can be incorporated into the model
and some of these may certainly change the above conclusions. In this section we will brie
y
describe the two model re�nements which we regard as the mostimportant.

Firstly, in the current model we consider the demands as a volume of communication � k

to be established between two nodes in the network. In the fractional FIPP problem this
volume may be divided between a number of path pairs and this is probably not desirable for
the communication customers. Instead, eachcustomer should be o�ered one path pair with
a certain volume of tra�c | corresponding to the original FIP P problem. For the model
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Network Rows Columns Iter Time
Initial Final PerIt PerDem Total CG CGPct

Cost239 [3] 705 81 677 1.00 0.02 597 154 145 93.77
Europe [29] 498 99 307 1.00 0.01 209 31 31 98.36
Newyork [29] 2472 169 2328 1.00 0.01 2160 6491 5943 91.56
Ta1 [29] 2826 - - - - - - - -
FranceSND [29] 2280 345 1408 1.00 0.00 1064 9434 9356 99.17
Norway [29] 2901 - - - - - - - -
USA [10] 2358 423 1532 1.00 0.00 1110 2406 2304 95.77
Cost266 [29] 3858 - - - - - - - -

Table 4: MIP results. Rows: Number of rows in LP. Initial: Ini tial number of master problem
columns. Final: Final number of master problem columns. PerIt: Number of columns
added per iteration. PerDem: Number of columns added per iteration per demand. Iter:
Number of column generation iterations. Total: Total runni ng time in seconds. CG: Total
column generation running time in seconds. CGPct: Column generation (MIP) solve time as
percentage of total time.

Network NP capacity CR RROB FIPP RROB Di�erence
Cost239 86 0.13 0.19 0.06
Europe 158 0.57 0.65 0.08
Newyork 412 0.19 0.24 0.05
Ta1 733 0.76 0.78 0.02
FranceSND 9825 0.66 0.67 0.01
Norway 61 0.59 0.61 0.02
USA 1273 0.50 0.55 0.05
Cost266 14587 0.62 0.64 0.02
Avg. 0.50 0.54 0.04

Table 5: FIPP protection method comparison. NP capacity: Non-Protected required network
capacity. CR RROB: Complete Rerouting [30] required network capacity relative to NP
capacity. FIPP RROB: FIPP required network capacity relati ve to NP capacity. Di�erence:
Absolute di�erence between RROB for CR and FIPP.

presented in Section 3, this results in more variables, and furthermore, these variables have to
be binary variables. Hence, to solve this model to optimality, a branch-and-price optimization
algorithm is necessary.

Secondly, in the current model there is no bound on the capacity � a of an arc a 2 A. In
real-life applications, capacities are acquired inmodular amounts and economies of scale can
be modeled. Modular capacities can be included into the model by changing the right hand
side of constraint (3) to a sum of integer variables, as shownin the modi�ed constraint (13)
below:

X

k2 K

X

� 2 Pk (a)

� k
� +

X

k2 K

X

� 2 Pk (a;s)

� k
� �

X

m

Cm � � a;m 8 s 2 S; a 2 A n Fs

Here the capacity variables � a;m 2 Z + correspond to di�erent types of connections, each
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possessing a capacityCm . The objective function is then modi�ed to include di�erent p rices
for each type of technology. The price pr. capacity unit re
ect the economies of scale.

6 Conclusion

In this paper we presented an LP model for the fractional Failure Independent Path Protection
(FIPP) optimization problem. The LP model was solved using column generation. We
analyzed the subproblem, proved it to be stronglyNP -hard and devised a labeling algorithm
for solving the subproblem more e�ciently. Finally, we eval uated the capacity e�ciency of
the FIPP method on a number of network instances. The resultsindicate that the FIPP
method appears to be a very e�cient protection method | on ave rage only requiring 4%
more network capacity than complete rerouting, the absolute lower bound for single link
failure protection.
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Conclusion

Bj�rn Petersen
DTU Management Engineering, Technical University of Denmark

1 Summing Up

The main focus of this thesis is on shortest path problems andhow to solve them in the context
of column and cut generation algorithms. It has been investigated how to solve various forms
of resource constrained shortest path problems. The emphasis has been on di�cult versions
of this problem, namely with the presence of negative weightcycles and costs not directly
mappable to the edge weights. These problems appear in a column generation context when
handling e�ects of cutting planes derived from the master problem formulation.

It has been shown theoretically and experimentally how to apply the general purpose
mixed integer programming (MIP) cutting planes known as Chv�atal-Gomory cuts of rank 1
to the master problem formulation of a Dantzig-Wolfe decomposition of the Vehicle Routing
Problem with Time Windows (VRPTW). Furthermore, it has been shown how to incorporate
this into a dynamic programming algorithm for the subproblem. Investigations of how cutting
planes impact the subproblems complexity, the quality of the lower bounds for the master
problem, and the overall running time of Branch-Cut-and-Price (BCP) algorithms have been
performed.

It has been shown how to solve the Elementary Shortest Path Problem with Capacity
Constrains (ESPPCC) by the use of a Branch-and-Cut algorithm. It has also been shown how
alternative reformulations of the Elementary Shortest Path Problem with Resource Constrains
(ESPPRC), the Capacitated Vehicle Routing Problem (CVRP), and the VRPTW can be
obtained through the use of Partial Paths, so that the di�cul t part of problems is targeted
and movement of complexity between master and pricing problems is facilitated. Finally, an
example of how to utilize resource constrained shortest paths in a telecommunication context
has been presented.

Experimental results are reported for the VRPTW, the CVRP, t he ESPPCC, the ESP-
PRC, and the problem of �nding Optimal Routing with Failure I ndependent Path Protection.

In Chapter 3 and Chapter 4 it has been shown how the Ch�vatal-Gomory cuts of rank 1 can
be applied to a decomposition model of the VRPTW. In the former chapter, it was shown how
a small subset of the Ch�vatal-Gomory cuts of rank 1, denotedsubset-row inequalities, can
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be applied to the Set Partitioning master problem, and how to incorporate their dual costs
into the pricing problem (the ESPPRC) with the use of additio nal resources. At the time of
publication this algorithm was the most successful exact solution method for the VRPTW.
In the latter chapter, these results were extended to include all Chv�atal-Gomory cuts of rank
1. However, a slightly more complicated dominance criterion made the pricing problem a bit
harder to solve. Running times could not be improved compared to the former approach, but
on all problem instances successfully considered it was possible to close the integrality gap
completely in the root node.

In Chapter 5 a Branch-and-Cut algorithm for solving the (ESPPCC) was introduced. A
compact mathematical model and valid inequalities developed for the ESPPCC were presented
as were experimental results on benchmark instances from the literature and on a new set
of hard instances. Chapter 6 presented a new decomposition algorithm for Vehicle Routing
Problems based on the concept of partial paths where the routes are found by combining
smaller sub-routes. Chapter 7 showed in a real world example, namely Optimal Routing with
Failure Independent Path Protection, how resource constrained shortest paths problems are
useful in a completely di�erent context.

2 Concluding Remark

Considering the successful work with the subset-row inequalities on the VRPTW and the less
successful work with the Chv�atal-Gomory rank 1 cuts on the VRPTW, it can be concluded
that you need to be careful when choosing which cutting planes to include for a given problem.
Do not get disencouraged by making subproblems harder, but do not overdo it. It appears
that the pricing problem of the decomposed problem should behard to solve before applying
the cutting planes for the master problem. Most likely, the best results would be achieved if
the pricing problem is strongly NP -hard to begin with. Also, for the master problem based
cutting planes to be e�ective it is preferable to have a large integrality gap. Otherwise a few
quick branches could just as easy close it.

For some kinds of ESPPRC, e.g., the ESPPCC, it appears that labeling algorithms are
clearly outperformed by Branch-and-Cut based algorithms.It must be remarked, though, that
labeling algorithms sometimes are used in a context where �nding several \good" solutions
are desired. Labeling algorithms are superb at this but it isnot a property that the Branch-
and-Cut based algorithms excel at.

Reformulating with partial paths make it possible to balance the running time of the
pricing problem against the tightness of the lower bound. It has been shown in theory that
both weaker and stronger root bounds can be obtained compared to models with full paths.

Labeling based algorithms can be parallelized with one thread per node of the graph on
which the paths are de�ned. Due to the overhead of handling multiple threads the parallelized
code works best when instances are hard. A general frameworkcan be used for di�erent
problems solely by changing the functions that de�ne extensions, dominance, and search
structures.

3 Future Research

There are many di�erent ways of dividing into partial paths. S triving for a strong bound in
the master problem and for an easy pricing problem are con
icting goals. To �nd the right

134



Conclusion

division whereby obtaining a good compromise between both goals demands testing many
alternatives or possessing lots of luck. Implementation ofa column generation algorithm
requires some coding and testing both of which are time consuming.

The transportation problems faced by many companies can in general terms be stated
as transporting an amount of commodities between a number oflocations by some means
of transportation. There are typically restrictions associated with the use of di�erent vehi-
cles, e.g., capacity or availability. Furthermore, there may be restrictions on handling the
commodities such as speci�c times for sending and receivingshipments. When optimizing
the solution process of a transportation problem, typical objectives are to minimize overall
travel cost or time. These problems are basically containedin CVRP and VRPTW. An often
overlooked factor in current solution methods is the important concept of uncertainty, both
during transportation and in demand and availability of commodities. These stochastic el-
ements are much less studied than their deterministic counterparts. A future research goal
could be to investigate how to handle these stochastic events.
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Summery in Danish

Bj�rn Petersen
DTU Management Engineering, Technical University of Denmark

1 Resum�e

Det prim�re fokus for denne ph.d.-afhandling har v�ret p�a k orteste vej problemer og hvorledes
de l�ses i forbindelse med kolonnegenereringsalgoritmer.Det er blevet unders�gt hvordan di-
verse former for resourcebegr�nsede korteste vej problemer kan blive l�st. V�gten er blevet
lagt p�a sv�re udgaver af problemet; mere speci�kt n�ar kred se med negativ v�gt og omkost-
ninger, der ikke kan afspejles direkte p�a kanterne, har v�r et tilstedev�rende. Disse problemer
viser sig i kolonnegenereringssammenh�nge, n�ar de duale omkostninger fra snitplan i master-
problemet skal behandles.

Det er blevet vist teoretisk s�avel som eksperimentelt, hvorledes generelle mixed integer
programming (MIP) snitplan af typen Chv�atal-Gomory rank 1 kan anvendes p�a master-
problem formuleringen af en Dantzig-Wolfe dekomponering af ruteplanl�gningsproblemet
med tidsvinduer (VRPTW). Endvidere er det blevet vist, p�a h vilken vis dette kan indar-
bejdes i en dynamisk programmerings algoritme til l�sning af delproblemerne. Unders�gelser
af hvordan snitplan in
uerer delproblemernes kompleksitet, kvaliteten af de nedre gr�nser i
master-problemet og den overordnede k�retid for Branch-Cut-and-Price (BCP) algoritmer er
blevet udf�rt.

Det er blevet vist, hvordan det simple kortestevejproblem med kapacitetsbegr�nsninger
(ESPPCC) kan l�ses vha. en Branch-and-Cut algoritme. Det er ligeledes blevet vist hvor-
dan forskellige reformuleringer af det simple kortestevejproblem med ressourcebegr�nsninger
(ESPPRC), det kapacitetsbegr�nsede ruteplanl�gningspro blem (CVRP) og VRPTW kan
opn�as ved at benytte delveje, s�aledes at den sv�re del af pr oblemer er ber�rt og 
ytning af
kompleksitet mellem master- og delproblem er muliggjort. Til slut er et eksempel p�a hvorledes
resourcebegr�nsede kortestevejproblemer kan blive benyttet i forbindelse med telekommu-
nikation blevet pr�senteret.

Eksperimentelle resusultater er blevet rapporteret for VRPTW, CVRP, ESPPCC, ESP-
PRCog problemet med at �nde en optimal rutning med Failure In dependent Path Protection.

I kapital 3 og kapitel 4 er det blevet vist, hvordan snitplan af typen Chv�atal-Gomory rank
1 kan blive anvendt p�a en delkomponeringsmodel af VRPTW. I d et f�rste af disse kapitler
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blev det vist, hvordan en lille delm�ngde af disse snitplan kaldet subset-row uligheder kan
blive benyttet p�a set-partitioning master-problemet, og hvordan deres duale omkostninger
bliver h�andteret vha. ekstra ressourcer i delproblemet { et ESPPRC. Denne algoritme var
da den blev publiseret den mest succesfulde eksakte l�sningsmetode for VRPTW. I det an-
det af kapitlerne er disse resultater blevet udvidet til at inkludere alle snitplan af typen
Chv�atal-Gomory rank 1. Et lidt mere kompliceret dominansk riterie gjorde dog delproblemet
en smule vanskeligere at l�se. K�retider kunne ikke forbedres sammenlignet med den f�rste
fremgangsm�ade, men for alle probleminstanser, der blev betragtet med succes, var det muligt
at lukke heltalsgabet fuldst�ndigt i rodknuden.

I kapitel 5 blev en Branch-and-Cut algoritme til l�sning af E SPPCC introduceret. En
kompakt model af og lovlige uligheder til ESPPCC blev pr�senteret, ligesom eksperimentelle
resultater p�a testinstanser fra litteraturen og et nyt s�t sv�re instanser blev det. Kapi-
tel 6 pr�senterede en ny dekomponeringsalgoritme til ruteplanl�gningsproblemer baseret p�a
delvejs-konceptet, hvor ruterne er fundet ved at kombineremindre delruter. Kapitel 7 viste
med et eksempel fra den virkelige verden (optimal rutning med Failure Independent Path
Protection), hvordan resourcebegr�nsede kortestevejproblemer er brugbare i anderledes sam-
menh�nge.
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The Simultaneous Vehicle Schedul-
ing and Passenger Service Problem
Conditionally

Hanne L. Petersen
DTU Transport, Technical University of Denmark

Allan Larsen
DTU Transport, Technical University of Denmark

Oli B.G. Madsen
DTU Transport, Technical University of Denmark

Bj�rn Petersen
DTU Transport, Technical University of Denmark

Stefan R�pke
DTU Transport, Technical University of Denmark

Abstract

Passengers using public transport systems often experience waiting times when trans-
ferring between two scheduled services. In this paper we proposea planning approach
which seeks to obtain a favourable trade-o� between the two contrasting objectives pas-
senger service and operating cost by modifying the timetable. The planning approach
is referred to as the Simultaneous Vehicle Scheduling and PassengerService Problem
(SVSPSP). The SVSPSP is modelled as an integer programming problem, and solved us-
ing a large neighborhood search (LNS) metaheuristic. The proposed framework is tested
on data inspired by the express-bus network in the Greater Copenhagen Area. The re-
sults are encouraging and indicate a potential decrease of passenger waiting times in the
network of 10{20%, with the vehicle scheduling costs remaining una�ected.

In revision.
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1 Introduction

In every larger public transport system massive amounts of time are wasted due to waiting
time when transferring between di�erent parts of the journey. For the Greater Copenhagen
area it has been estimated that the time lost on an average weekday by passengers waiting for
connecting buses or trains approaches 65,000 hours (based on 400,000 daily transfers with an
average of 10 minutes transfer waiting time.1 Hence, generating timetables which optimise
for temporal correspondences has an enormous socio-economic potential. Clearly, this could
be achieved through an increase in the frequency of the tripso�ered in the timetable, however
this would require an unacceptable increase in operating costs.

The traditional sequential framework for planning of public transport has been excel-
lently described by Desaulniers and Hickman [8] and is sketched in Figure 1. Given the route
network, the frequencies are determined to ensure demand coverage and to comply with polit-
ically determined service levels, under practical constraints such as 
eet size. The timetabling
process then determines the exact timings for all trips while respecting the previously deter-
mined frequencies/headways. Both of these �rst phases are concerned with maximising some
measure of passenger service, and are carried out by the public transport service provider,
who typically works by appointment by the local authorities . The timetabling phase may
take schedule synchronisation and transfer times into account.

O
pe

ra
to

r
pr

ov
id

er
S

er
vi

ce

Vehicle Scheduling

Timetabling

Frequency setting

Crew pairing

Crew rostering

Figure 1: Traditional sequential planning approach

Once the timetable has been established, the resource scheduling starts. During this phase
the �rst problem to be solved is the scheduling of the physical resources necessary to carry
out the trips in the timetable, i.e. the vehicles. The purpose of the vehicle scheduling is to be
able to execute the timetable at the lowest possible cost. The costs considered in this phase
include empty mileage performed by the vehicles, both in connection to the depot, and in the
form of deadheading, i.e. transport between the end point of one trip and the starting point
of another. Once the vehicle schedules have been established, the crew pairing and rostering
phases are carried out. The last three phases are all carriedout by the public transport
operator, who is appointed by the service provider to operate a set of trips, and they all have
the purpose of operating the requested timetable at the lowest possible cost.

Today, e�cient systems for generating near-optimal vehicle schedules exist within all

1cf. http://www.dtu.dk/centre/modelcenter/TU/Standard %20Tabeller/
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modes of transport. However, these systems treat the timetable as �xed input, meaning
that potential savings in operating costs from moving a set of trips in the timetable are lost.
Only very limited research has been done on models that address the problem of minimising
the operating costs by modifying the timetable. Furthermore, research is scarce on models
that focus on minimisation of the waiting time during transf er.

In this paper we introduce the Simultaneous Vehicle Scheduling and Passenger Service
Problem (SVSPSP) which addresses the multiple objective planning problem of improving
timetables such that they remain economically satisfactory for the operator, and at the same
time o�er high-quality service to the passengers by reducingthe unproductive time spent on
waiting during transfers. Please note that whenever we refer to waiting time throughout this
paper we are solely referring to the waiting time associatedwith transfers, and not the waiting
time of passengers entering the system. The SVSPSP framework is sketched in Figure 2, and
integrates the planning processes of timetabling and vehicle scheduling.

SVSPSP

Vehicle Scheduling

Timetabling

Frequency setting

Crew pairing

Crew rostering

Figure 2: The role of the SVSPSP shown in relation to the traditional sequential planning
approach.

Its main input is the original timetable and estimates of passenger demand in the network.
The natural problem owner of the SVSPSP is the public transport service provider, as this is
the authorithy which on the one hand is committed to provide a high-quality timetable to the
customers (in terms of e.g. minimum waiting times) and on theother hand holds the respon-
sibility of ensuring that the o�ered timetable is feasible fr om an operating costs perspective.
By integration of the vehicle scheduling phase, which previously belonged to the operator,
the service provider can obtain a better negotiating position towards the operator, since the
operating costs have already been considered during the optimisation of the timetables.

The contributions of this paper are fourfold: 1) we formally introduce a new interesting
problem, motivated by a real-life case, 2) we make a realistic data set available, that can
be used for future studies, 3) we propose a heuristic solution method that is able to handle
data sets of realistic size, 4) we show that substantial reductions in passenger waiting time
are possible using the proposed methodology. The paper is organised as follows: Section 2
reviews the literature on the multiple depot vehicle scheduling problem as well as work on
minimising passenger transfer times. In section 3 we formulate the SVSPSP as an integer
programming model. Section 4 discusses how the proposed problem can be solved by the large
neighborhood search metaheuristic. Section 5 introduces the data set used in this study which
is based on the bus network of the Greater Copenhagen area, and in Section 6 we discuss
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the results obtained. Finally, we provide our concluding remarks and suggest directions for
further research in Section 7.

2 Literature review

Our approach for the integrated vehicle scheduling and timetabling problem is based on the
multiple depot vehicle scheduling problem(MDVSP). Desrosiers et al. [9] provide an excellent
introduction to the problem and survey the literature prior to 1995. A more recent, but short
literature survey is presented by Pepin et al. [23] who also presents an interesting comparison
of heuristic approaches for the problem. Section 4.1 in Desaulniers and Hickman [8] also
contains a recent survey. Some of the currently best exact methods for the MDVSP are
proposed by Hadjar et al. [12] and L•obel [20]. We are aware oftwopapers that extend vehicle
scheduling problems to handle parts of the timetabling process. The paper by van den Heuvel
et al. [28] studies the integration of timetabling and multi depot vehicle scheduling with the
aim of reducing costs (reducing the number of vehicles) while ignoring passenger waiting times.
On the timetabling level the approach allows the trip starti ng times for each line to be shifted
in time to allow greater 
exibility in the vehicle schedulin g part. The paper presents integer
programming models as well as a local search algorithm that solves a network 
ow problem
in each local search iteration. Guihaire and Hao [11] also integrate vehicle scheduling and
timetable synchronisation in their optimisation problem. They consider several terms in their
objective: number of vehicles required, number and qualityof transfer possibilities and the
so-called headway evenness. The second term aims at minimising passenger inconvenience.
The last term attempts to make arrivals of vehicles, servinga particular line, occur with a
regular frequency. The three terms are weighted together. In terms of the vehicle scheduling
problem, the paper considers a single depot setup while our approach handles the multiple
depot case. The problem studied in this paper is probably theone that resembles our problem
the most.

Several papers focus on optimising timetables in order to minimise passenger waiting
times, without explicitly considering the impact such changes have on the physical resource
requirements (e.g. more buses may be needed to carry out the modi�ed plan). Examples of
such approaches are Jansen and Pedersen [13] who formulate the problem as a mathematical
model and propose simulated annealing and tabu search algorithms to solve the problem (see
also Pedersen [21]); Ceder et al. [5] who synchronise bus timetables by maximising the number
of times two buses arrive at the same time at any node in the network; Klemt and Stemme [15],
Bookbinder and D�esilets [4] and Daduna and Vo� [7] who synchronise timetables by solving
a quadratic semi-assignment problem. Worth mentioning is also the paper by Chakroborty
et al. [6], which studies timetable synchronisation and \optimal 
eet size" using a genetic
algorithm heuristic. They do not study the vehicle scheduling aspect of the problem, instead
the term \optimal 
eet size" refers to the fact that the numbe r of departures on a speci�c
line is a variable, decided by the proposed model.

As explained in the introduction, SVSPSP integrates the timetabling and vehicle schedul-
ing phases. The integrated problem has not been widely studied in the literature but some
papers on the topic do exist. One approach for handling the integrated problem has been the
so-calledperiodic event scheduling problem(PESP). The PESP is mainly used for timetabling
but has been extended to handle some aspects of vehicle scheduling as well. The PESP model
was proposed by Sera�ni and Ukovich [26]. It is a general framework for modelling opti-
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misation problems with a periodic nature. Liebchen and M•ohring [18] show how the PESP
and extensions can be used to handle many aspects of railway timetabling. One of these is to
minimise the changeover time for passengers and another is the minimisation of the number of
vehicles needed to perform the timetable. The complexity ofthe vehicle minimisation depends
on whether trains are allowed to switch line when they reach their endpoint. Contrary to our
approach the paper does not model the situation where vehicles can perform deadheading in
order to switch terminal (this does not seem practical when the vehicles are trains running
on tracks, but can be useful for buses). The material in Liebchen and M•ohring [18] builds on
the work of Liebchen and Peeters [19] which focuses on vehicle minimisation, but arrives at
a model with a quadratic objective function. Other recent works on the PESP and railway
timetabling include Liebchen and M•ohring [17], Peeters [22], and Kroon et al. [16].

Wong et al. [29] studies theMass Transit Railway in Hong Kong that contains 6 train lines.
They minimise the overall passenger waiting time in a non-periodic fashion. The number of
vehicles needed to carry out the plan is determined in advance and is kept constant. In this
way it is ensured that the proposed timetable does not becometoo expensive to carry out,
while optimising customer satisfaction. The authors present a MIP model and solve it using
a heuristic that incorporates a standard MIP solver as an important component. Fleurent
et al. [10] describe an optimisation system and an interactive tool for minimising passenger
waiting time while keeping vehicle costs under control. Thesuggested approach is tested on
a case from the city of Montreal, Canada, and the results indicate that the passenger waiting
time can be improved while keeping the vehicle count constant. The paper provides little
detail about the optimisation algorithm used to obtain these results.

We can conclude that the work on integrating time tabling and vehicle scheduling is rather
limited and that Guihaire and Hao [11] is the paper that presents a problem that is most
similar to the SVSPSP. The SVSPSP model is, regarding some aspects, more ambitious than
the model studied by Guihaire and Hao [11] as it considers a multi-depot setting which is not
the case in the aforementioned paper.

3 The SVSPSP: modelling

In a classical multi-depot vehicle scheduling problem (MDVSP) one has to cover a set of trips
with a set of vehicles (based at several depots) while minimising costs. A trip has a start
and end location, as well as a departure and arrival time. In abus scheduling setting a trip
corresponds to the movement from the start to the end of a bus line. A line is a collection
of trips that have the same start and end locations but di�erent departure and arrival times.
A line also contains trips going in the opposite direction. The MDVSP can be modelled as
follows (see Desrosiers et al. [9]): letN = f 1; : : : ; ng denote the set of trips andK the set of
depots. With each depotk 2 K we associate a graphGk = ( V k ; Ak ) where the set of nodes
is de�ned as V k = N [ f n + kg with n + k being the node representing thekth depot. The
set of arcsAk is a subset of the setV k � V k , with all infeasible arcs removed. An arc is
infeasible if it forms an impossible connection between twotrips; typically this is caused by
timing constraints. For each depot k 2 K and each arc (i; j ) 2 Ak we de�ne an arc costck

ij

and we are given an upper boundvk on the number of vehicles located atk. Using a binary
variable xk

ij for all k 2 K; (i; j ) 2 Ak , having value 1 if and only if a vehicle from depotk
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travels from node i to j we can write an integer multi-commodity 
ow model as follows:

min
X

k2 K

X

(i;j )2 A k

ck
ij xk

ij (1)

subject to
X

k2 K

X

j 2 V k

xk
ij = 1 i 2 N (2)

X

j 2 N

xk
n+ k;j � vk k 2 K (3)

X

i 2 V k

xk
ij �

X

i 2 V k

xk
ji = 0 k 2 K; j 2 V k (4)

xk
ij 2 f 0; 1g k 2 K; (i; j ) 2 Ak (5)

The objective (1) minimises the total cost. The arc costsck
ij can be set such that the total

cost re
ects a �xed cost per vehicle and deadheading costs. Constraints (2) ensure that all
trips are served, constraints (3) ensure that we do not use more than the available number of
vehicles and, constraints (4) are 
ow conservation constraints.

The SVSPSP generalises the MDVSP as follows: in the SVSPSP wegroup trips into
so called metatrips. The set of metatrips, 
, forms a partitioning of the set N , that is,
[ M 2 
 M = N and 8M 1; M 2 2 
 ; M 1 6= M 2 : M 1 \ M 2 = ; . Furthermore, we relax the
condition that every trip must be covered. Instead we require that exactly one trip from
each metatrip must be covered. In the context of this paper, we assume that each metatrip
corresponds to a trip from the original timetable, and the (sub)trips belonging to the metatrip
represent copies of the original trip, with alternative departure times. Thus, the requirement
that each metatrip is covered corresponds to the MDVSP-requirement that each trip is covered
(2). The idea behind this, in relation to our goal of increasing passenger service, is that
selecting alternative departure times may reduce waiting times and thereby improve the
passenger service level.

We will now introduce some useful concepts that will be used in our treatment of the
SVSPSP. Trips in the SVSPSP model can beincompatible for various reasons, as we shall
see later. This is captured by a set � � 2N containing sets of mutually incompatible trips.
Thus, if � 2 � then any pair i; j 2 � is incompatible and cannot be used together in a feasible
solution. For the SVSPSP we maintain the de�nition of a line that is known from the MDVSP;
a line L is a sequence ofstops to be visited in a given order. A line can be travelled in both
directions, and we use the term d-line (directed line) for a line in a particular direction. Each
metatrip, and the trips contained in it, belongs to exactly one d-line. Therefore we can view
a d-line L as a subset of the set of metatrips:L � 
. For every bus line a number a stops are
de�ned. The stops are the locations where the bus stops to pick up and unload passengers.
Several bus lines may share one stop and a stop can provide connection to other modes of
timetabled transportation like trains or ferries. Any tran sfer of passengers takes place at a
stop. We are only interested in stops where transfers can take place, hence, when mentioning
stops in the rest of this paper we assume a stop with at least one transfer opportunity.

Figure 3 shows an example of trips and metatrips. The nodesf 1; : : : ; 12g represent trips,
and two metatrips f 2; : : : ; 6g and f 7; : : : ; 11g are shown. The time of day is shown along the
top of the �gure. Trips 4 and 9, marked with grey, are the two or iginal trips, from which the
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metatrips are constructed. The remaining trips in each metatrip are constructed by creating
duplicates of the original trip, spread evenly in the available time interval. The nodes 1 and
12 belong to other metatrips, not illustrated in the �gure. A ll trips shown in the �gure belong
to the same d-line.

The usage of incompatible trips to impose passenger serviceis apparent: trips belonging
to the same d-line and departing within a short time interval should be incompatible, for
example trip 6 and 7 on Figure 3 could be incompatible becausethey depart within 4 minutes.
Similarly, two consecutive departures on a d-line should not be too far apart. Therefore it
would make sense to make trip 2 incompatible with trip 11. If departures at regular intervals
are required on a bus line for a speci�c period of the day or theentire day this could also be
modelled using incompatible trips. If we desire departuresevery 20 minutes in the example
on Figure 3 we must make trip 2 incompatible with trips 8, 9, 10, and 11 (by adding the set
f 2; 8; 9; 10; 11g to �), trip 3 should be incompatible with trips 7, 9, 10, and 11 , and so on.

metatrip 1 metatrip 2

54321 6 7 8 9 10 11 12
9.509.409.309.20

Figure 3: Example of trips and metatrips.

Using the notation from the MDVSP we can now present a mathematical model for a
simple version of the SVSPSP, denoted SVSPSP0.

min
X

k2 K

X

(i;j )2 A k

ck
ij xk

ij (6)

subject to
X

i 2 M

X

k2 K

X

j 2 V k

xk
ij = 1 M 2 
 (7)

X

i 2 �

X

k2 K

X

j 2 V k

xk
ij � 1 � 2 � (8)

X

j 2 N

xk
n+ k;j � vk k 2 K (9)

X

i 2 V k

xk
ij �

X

i 2 V k

xk
ji = 0 k 2 K; j 2 V k (10)

xk
ij 2 f 0; 1g k 2 K; (i; j ) 2 Ak (11)

Constraints (9) and (10) are identical to (3) and (4) in the or iginal MDVSP formulation.
Constraints (7) ensure that exactly one trip from each metatrip is selected and constraints
(8) ensure that no incompatible trips are selected at the same time.

In order to discuss how passenger service can be taken into account in the SVSPSP0 we
need to de�ne exactly how we measure passenger service. The area we focus on in relation
to passenger service is waiting time during transfers. We �rst introduce the central concept
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transfer opportunity. A transfer opportunity is a triple ( s; M; L ). Here s is the stop where the
transfer takes place,M is a metatrip that stops at s, and L is a connecting line that exchanges
passengers withM at s. For each transfer opportunity we assume that an estimateD s

ML of
the number of passengers disembarking metatripM and transferring to line L at stop s, as
well as an estimateE s

ML of the number of passengers embarking metatripM transferring from
line L at stop s are available. It is assumed that all passengers disembarking a metatrip to
transfer to line L take the earliest possible departure on lineL and all passengers embarking
a metatrip M come from the latest possible arrival on lineL . For the SVSPSP0, L is a line
external to the model, but we will later generalise it to include those lines that are rescheduled
by the model.

To improve passenger service we desire to minimise the totalnumber of passenger minutes
wasted by waiting for a connection, at the same time as we wantto minimise the cost of serving
all trips. This results in two goals that are weighted together in the cost coe�cients of the
objective function. The SVSPSP0 model can accommodate a part of the waiting times that
we desire to include in the model, namely a penalty for waiting times related to lines that
are external to the model, such as already timetabled train departures: for each trip i in N
we �nd the transfer opportunities ( s; M; L ) of the metatrip M that i belongs to. As stated
above, L is an external line with �xed departures and arrivals, therefore we can a priori �nd
the arrival and departure on line L that are used by passengers embarking and disembarking
trip i at stop s and we can calculate the associated waiting times. The two waiting times are
multiplied by the passenger estimatesE s

SM and D s
SM and summed to give the total number

of minutes waited for the particular trip and transfer oppor tunity. By summing over all
the transfer opportunities that the trip is involved in we ob tain the total number of waiting
minutes incurred by the trip. This number, weighted in a suitable way, is added to the cost
of all arcs leaving the node corresponding to the trip.

The SVSPSP0 model cannot take the transfer of passengers from bus to bus into account
if both buses are rescheduled by the model. We therefore introduce the model SVSPSP, that
generalises SVSPSP0 to accommodate this. The overall idea is to introduce two newsets of
binary variables ys

ij and zs
ij that indicate if transfers between trip i and j are taking place at

stop s. For each transfer opportunity (s; M; L ) involving a d-line L which is timetabled by the
model we create a number of variablesys

ij wherei 2 M , j 2 [ M 02 L M 0. Each variable indicates
if the transfer opportunity of passengers disembarking metatrip M to transfer to d-line L is
realised by transferring from trip i to j . Similarly, for the same transfer opportunity, we
create a number of variableszs

ij where j 2 M , i 2 [ M 02 L M 0. These variables indicate if the
transfer opportunity of passengers embarkingM , coming from L is realised by transferring
from trip i to j . We assign a cost �cs

ij > 0 for eachys
ij variable and a costĉs

ij > 0 for eachzs
ij

variable. The cost is based on the time between arrival and departure on the two trips and
the number of passengers expected to take advantage of the transfer opportunity.

Consider the following example: the bus lines 200 and 300 both visit Lyngby Station.
Assume that a trip for line 200 northbound (200-N) has been chosen by the model such that
the bus arrives at Lyngby station at 9:29. A number of the passengers on board the bus
wish to disembark the bus to transfer to line 300 heading north (300-N). Their waiting time
depends on the departure time of the next 300-N, which is alsodecided by the model. Figure 4
shows this situation. The chosen trip for bus 200-N (trip a) is shown at the top of the �gure
along with alternative 200-N arrivals and nine trips belonging to line 300-N are shown on the
bottom. Passengers from tripa cannot transfer to bus 300-N on the departure times marked
with grey circles: departure 4 is impossible because it departs before bus 200-N arrives, while
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9.30 9.40 9.50

4 5 6 7 8 9 10 11 12

a b c d e f

Bus 300-N

Bus 200-N

Figure 4: Example of a bus-to-bus transfer.

departure 5 departs one minute later than trip a arrives and there is not enough time for the
transfer (passengers have to walk). The other departures are all feasible transfers. Note that
trips 7 to 11 constitute a metatrip, so exactly one of these trips must be selected. This means
that no passenger from trip a heading for line 300-N would transfer to trip 12 because an
earlier, feasible departure will exist in the plan. On the other hand, if trip 12 is selected by the
model and trip a is the latest selected bus from 200-N that allows a transfer to trip 12 then
embarking passengers on trip 12 arriving from 200-N would perform the transfer. Since both
embarking and disembarking passengers are considered, both y and z variables are necessary.
The y variables handle passengersdisembarking a speci�c trip to the �rst possible trip on
the speci�ed d-line. The z variables handle passengersembarking a speci�c trip from the last
possible trip on the speci�ed d-line.

Let S be the set of all stops that are visited by more than one bus line. We introduce a
graph Ĝs = ( V̂ s; Âs) for each stop s 2 S. The set of vertices V̂ s is the set of all trips that
visit stop s and the set of arcs is de�ned as

Âs =
n

(i; j ) : i; j 2 V̂ s; passengers can transfer from tripi to trip j at stop s
o

:

For example, if s is Lyngby station as shown in Figure 4 we would have that

f (a;6); (a;7); (a;8); (a; 9); (a; 10); (a;11); (a; 12)g � Âs

but f (b;1); (b;2)g \ Âs = ; . The variables ys
ij and zs

ij are de�ned for every s 2 S and every

arc (i; j ) 2 Âs. We can use Figure 4 to show the meaning of they variables. If, for example,
trips b and 7 are chosen and none of the tripsf 3; 4; 5; 6g are chosen thenys

b;7 = 1 and ys
b;j = 0

for j 2 f 3; 4; 5; 6; 8; 9; 10g. If both trip 3 and 7 were chosen then we would haveys
b;3 = 1 and

ys
b;7 = 0 because all passengers disembarkingb, bound for 300-N, would transfer to trip 3.

For a trip i 2 N and a stop s on its line we de�ne t(i; s) to be the departure time of trip
i at stop s. For a trip i we de�ne dl(i ) to be the d-line that the trip belongs to. For a stop s
and an arc (i; j ) 2 Âs we de�ne

� (i; j; s ) = f j 0 2 [ M 02 dl(j )M
0 : (i; j 0) 2 Âs; t(j 0) < t (j )g;

that is, � (i; j; s ) is the set of trips j 0 from the same d-line asj that are earlier than j but that
still are feasible transfer destinations from trip i . Similarly we de�ne

� (i; j; s ) = f i0 2 [ M 02 dl(i )M
0 : (i0; j ) 2 Âs; t(i ) < t (i0)g;

which is the set of trips i0 from the same d-line asi that are later than i but where a transfer to
trip j still is feasible. We can now present an extended model that also handles the bus-to-bus
transfers:

min
X

k2 K

X

(i;j )2 A k

ck
ij xk

ij +
X

s2 S

X

(i;j )2 Â s

�cs
ij ys

ij +
X

s2 S

X

(i;j )2 Â s

ĉs
ij zs

ij (12)
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subject to
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k2 K
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xk
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ij s 2 S;(i; j ) 2 Âs (18)

xk
ij 2 f 0; 1g k 2 K; (i; j ) 2 Ak (19)

ys
ij 2 f 0; 1g s 2 S;(i; j ) 2 Âs (20)

zs
ij 2 f 0; 1g s 2 S;(i; j ) 2 Âs (21)

Two changes have been performed compared to model SVSPSP0: a) two terms have been
added to the objective function (12) to model the cost of passengers waiting during transfers
between two buses that are both re-timetabled by the model, and b) inequalities (17) and
(18) have been added to ensure that theys

ij and zs
ij variables are set correctly. For example,

ys
ij is set to 1 by (17) when both trip i and trip j are used (the �rst two sums on the left

hand side) and when none of the feasible transfer destinations earlier than j are in use (the
last sum on the left hand side). The constraints only enforcea lower bound on ys

ij but the
minimisation in the objective and assumption that �cs

ij is positive ensure that the y variables
take the lowest possible value. Constraints (18) are similar to (17), but work on z rather than
y variables.

The mathematical model presented in (6){(11) has been implemented in CPLEX, but
CPLEX was not able to solve instances with the dimensions considered in this paper. No
attempts have been made to solve the model presented in (12){(21) with a general purpose
solver, since the number of variables and constraints used in the advanced model is even
larger than in the model presented in (6){(11). However, by presenting the models here,
they have served as an instrument to give a precise de�nitionof the problem to be studied.
Using techniques like reformulation or cut or column generation it might be possible to solve
realistically sized instances using the mathematical models | in particular, model (6){(11)
lends itself to a column based solution approach. However, we have worked in a di�erent
direction, and in the following section we shall present a metaheuristic for solving the problem.
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4 Solution method

The solution method we propose for solving the SVSPSP is based on the large neighbor-
hood search (LNS) metaheuristic. The LNS was proposed by Shaw [27]. As many other
metaheuristics, the LNS is based on the idea of �nding improving solutions in the neighbor-
hood of an existing solution. What sets the LNS apart from other metaheuristics is that the
neighborhood searched (or sampled) in the LNS is huge.

The term LNS is often confused with the termvery large scale neighborhood search(VLSN)
de�ned in Ahuja et al. [1]. While the LNS is a heuristic framework, VLSN is the family of
heuristics that searches neighborhoods whose sizes grow exponentially as a function of the
problem size, or neighborhoods that simply are too large to be searched explicitly in practice,
according to Ahuja et al. [1]. The LNS is one example of a VLSN heuristic.

We are aware of one application of LNS to the MDVSP, this approach is described in Pepin
et al. [23]. That LNS implementation is more complex than ours as it uses column generation
and branch and bound to solve restricted instances of the MDVSP. The computational results
reported in Pepin et al. [23] show that the LNS is competitiveagainst 4 other heuristics. LNS
has also been successful in solving the related vehicle routing problem with time windows.
See for example Bent and van Hentenryck [3] and Pisinger and Ropke [25].

4.1 Large neighborhood search

A LNS heuristic moves from the current solution to a new, hopefully better, solution by �rst
destroying the current solution and then repairing the destroyed solution. To illustrate this,
consider the traveling salesman problem (TSP). In the TSP weare given n cities and a cost
matrix that speci�es the cost of traveling between each pairof cities. The goal of the TSP is
to construct a minimum cost cycle that visits all cities exactly once (see e.g. Applegate et al.
[2]). A destroy method for the TSP could be to remove 10% of thecities in the current tour
at random (shortcutting the tour where cities are removed). The repair method could insert
the removed cities again using a cheapest insertion principle (see e.g. J•unger et al. [14]).

The LNS heuristic is outlined on Algorithm 1. In the pseudo-code we use the symbols
x for the current solution, x � for the best solution observed during the search andx0 for a
temporary solution. The operator d(�) is the destroy method. When applied to a solution
x it returns a partially destroyed solution. The operator r (�) is the repair method. It can
be applied to a partially destroyed solution and returns a normal solution. The expression
r (d(x)) therefore returns a solution created by �rst destroying x and then rebuilding it.

The LNS heuristic takes an initial solution as input and makes it the current and best
known solutions in lines 1 and 2. Lines 4 to 10 form the main body of the heuristic. In line
4 the current solution is �rst destroyed and then repaired, resulting in a new solution x0. In
line 5 the new solution is evaluated to see if it should replace the current solution, this is done
using the function accept which is described in Section 4.2.3 below. In lines 8 to 10 thebest
known solution is updated if necessary. Line 11 checks the stopping criterion which in our
implementation simply amounts to checking if tmax seconds have elapsed.

4.2 Large neighborhood search applied to the SVSPSP

This section describes how the LNS heuristic has been tailored to solve the SVSPSP. In
particular, we describe the implemented destroy and repairmethods and the acceptance
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Algorithm 1 Large Neighborhood Search
1: input: a feasible solution x;
2: x � = x;
3: repeat
4: x0 = r (d(x));
5: if accept(x0; x) then
6: x = x0;
7: end if
8: if f (x0) < f (x � ) then
9: x � = x0;

10: end if
11: until stop criterion is met
12: return x �

criterion.

4.2.1 Destroy methods

Destroy methods for the SVSPSP remove trips from the currentsolution. Every time a
destroy method is invoked the number of trips to remove is selected randomly in the interval
[5; 30]. Two simple destroy methods for the SVSPSP have been implemented. The �rst
method simply remove trips at random, which is a good method for diversifying the search.

The second method is based on therelatednessprinciple proposed by Shaw [27]. Here we
assign a relatedness measureR(i; j ) to each pair of trips (i; j ). A high relatedness measure
indicates that the two trips are highly related. The relatedness of two tripsi and j are de�ned
as

R(i; j ) = 30 � 1s( i )= s( j ) + 30 � 1e( i )= e( j ) + 20 � 1s( i )= e( j ) + 20 � 1e( i )= s( j ) � j t(i ) � t(j )j

wheres(i ) and e(i ) are the start and end locations of trip i respectively, t(i ) is the start time
of trip i (start time in the current solution). The notation 1expr is used to represent the
indicator function which evaluates to one if expr evaluates to true and zero otherwise. The
measure de�nes two trips to be related if they start around the same time and if the share
start and/or end locations. The measure is used to remove trips as follows. An initial seed
trip is selected at random and added to a set of removed tripsS. For each trip i still in the
solution we calculate the relatedness

v(i; S ) = max
j 2 S

f R(i; j )g

The trips still in the solution are sorted according a non-increasingv(i; S ) in a sequence
T, a random number p in the interval [0 ; 1) is drawn and the trip at position bjT jp5c in T is
selected. This selection rule favours trips with highv(i; S ) value. The selected trip is added
to the set of removed trips, andv(i; S ) is recalculated after adding a trip to S. We continue
to add trips to S, until we have reached the target number of removed trips.

The two destroy methods are mixed in the LNS heuristic. Before removing a trip from
the solution it is decided which destroy method that should be used to select the trip. With
probability 0.15 the �rst method (random) is used and with pr obability 0.85 the second
method (relatedness) is used.
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The trips that have been removed from the solution are stillactive in the sense that they
will be used in the trip incompatibility check de�ned by cons traints (8) and (14). That is
when adding a trip to a solution in the repair step below, we check if it is compatible with
the trips in the solution and the trips removed in the previous destroy operation. A trip i
is made inactive when another trip, belonging to the same metatrip as i , is inserted into the
solution.

4.2.2 Repair methods

The repair method for the SVSPSP reinserts the trips that were removed from the solution
by the destroy method. The repair method uses a randomised greedy heuristic. For each
unassigned metatrip S the heuristic calculates an insertion costf (S) given the current so-
lution. When inserting a metatrip S we have a choice of which tripi 2 S that should be
inserted. With probability � we insert the same trip that was used in the solution before
destruction and with probability 1 � � we insert a random trip from S. The chosen trip
should be compatible with all active trips. Such a trip exists because we are sure that the
trip from the pre-destruction solution is compatible with a ll trips. The requirement ensures
that we never get to a situation where one or more metatrips cannot be inserted because of
the the compatibility constraints (8) and (14).

Given the choice of trip i , we de�ne the cost f (S) as the cost of inserting trip i at the
best possible position in the current solution multiplied by a random factor that is meant to
diversify the insertion procedure. More precisely the costis de�ned as:

f (S) =

(
minr 2 R f c(i; r )g � (1 + rand( � �; � )) if min r 2 R c(i; r ) 6= 1

c(i; ; ) otherwise

wherec(i; r ) is the cost of inserting trip i in route r at the best possible position,R is the set
of routes in the current solution, c(i; ; ) is the cost of serving the trip using a new vehicle from
the best possible depot,� is a parameter and rand(� �; � ) is a function that returns a random
number in the interval [ � �; � ]. The parameter � controls the amount of randomisation applied
by the insertion procedure. The heuristic chooses to insertthe metatrip S with lowest cost.
It does this by inserting the trip i that was used as a representative forS and inserts this at
its best possible position. This continues until all metatrips have been inserted. With to the
assumption that vk = j
 j it is always possible to insert a metatrip | we will always be a ble
to serve it using a new vehicle.

4.2.3 Acceptance criterion

The acceptance criterion used in our implementation of the LNS heuristic is the one used in
simulated annealing metaheuristics: The function accept(x0; x) used in line 6 of Algorithm
1 accepts the new solutionx0 if it is at least as good as the current solution x, that is,
f (x0) � f (x). If f (x0) > f (x) then the solution is accepted with probability

e
f ( x ) � f ( x 0)

T :

The parameter T is called the temperature and controls the acceptance probability: a high
temperature makes it more likely that worse solutions are accepted. Normally the temperature
is reduced in every iteration using the formulaTnew = �T old where 0< � < 1 is a parameter
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Algorithm 2 Heuristic for generating an initial solution
1: while there are non-served metatrips leftdo
2: Select a random stations with unserved metatrips;
3: Select earliest non-served metatripS starting from s;
4: Start a new route r serving S. Use a vehicle from the depot nearest tos;
5: repeat
6: Let s0 be the station where router is ending;
7: if r can be extended with a non-served metatrip starting ins0 then
8: Select earliest non-served metatripS0 starting in s0 that can extend r . Add S0 to

r ;
9: else

10: End route r by returning to the depot;
11: end if
12: until r has returned to the depot;
13: end while ;

that is set relative to desired start and end temperatures and desired number of iterations.
Because we use elapsed time as stopping criterion we calculate the current temperature by
the formula

T(t) = Ts �
�

Te

Ts

� t
t max

here t is the elapsed time since the start of the heuristic,Ts is the starting temperature and
Te is the end temperature. Because of the acceptance criterionthe LNS heuristic can be seen
as a simulated annealing heuristic with a complex neighborhood de�nition.

4.2.4 Starting solution

A starting solution is necessary because the LNS heuristic improves an existing solution. It is
constructed using the greedy heuristic outlined in Algorithm 2. The generation heuristic does
not consider time shifting, instead it only considers insertion of the original trip from each
metatrip. Therefore, when writing earliest metatrip in Algorithm 2 we refer to the metatrip
whose original trip is the earliest. The heuristic constructs vehicle routes one at a time and
attempts to create routes where little time is wasted in between trips. Lines 2{12 deal with
the construction of a single route for a vehicle. Lines 2{4 select the �rst trip on the route and
the depot which should provide the vehicle for the route. Lines 5{12 add trips to the partial
route. The selection of which trip to add is based on the terminal where the partial route is
ending at the moment. The algorithm adds the �rst trip that le aves that terminal or closes
the route if the route cannot be extended with a trip starting in the current terminal.

5 Data

The data set that has been developed for the SVSPSP during thepreparation of this paper
has been described in further detail in a technical report byPetersen et al. [24], and in this
section we will give a brief description of the background and the resulting data set. The
data set can be obtained from http://www.transport.dtu.dk /SVSPSP/.
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The local train network in the Greater Copenhagen area roughly has the form of a fan
or the �ngers of a hand, as shown in Figure 5. A network of express bus lines complements
the train lines across and in parallel, as can be seen in Figure 6. The data set that has been
developed for the SVSPSP is based on this structure, where the radial train lines are operated
on a �xed timetable, and the timetables for the bus lines (of which most are circular) are
adjusted according to this.

Figure 5: The local train network of Copenhagen

A data set for the SVSPSP consists of several parts: 1) adistance matrix, containing all
distances between depots and line end-points, 2)�xed time tables of all �xed-schedule train
connections, 3)number of transferring passengersfor each transfer opportunity, 4) an initial
scheduleused to determine the available set of trips, 5)costs of di�erent activities, and other
parameters such as turnaround times, passenger transfer times, etc.

Among these elements the distances and �xed time tables are generally relatively easy to
obtain. Furthermore the initial schedule, in the form of the current bus schedule, is required
to provide information regarding frequencies and service level, which will be maintained by
the new solution. Given a suitable generation strategy, theset of potential trips can be
generated based on these time tables.The current schedule can also be used to generate an
initial feasible (VSP) solution for the heuristics.

The problem objectives of operating cost and passenger waiting time have been combined
by expressing both in monetary units. The various costs required for calculating the total
cost of a solution have been estimated for the data set, in particular the cost of passenger
waiting time has been estimated based on the recommended value of travel time by the Danish
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Figure 6: The S-bus network; trains are shown as thin lines, compare Figure 5
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Ministry of Transport.
What then remains to be estimated is the number of passengersand their transfer patterns.

This transfer information will allow us to calculate the number of (dis)embarking passengers
using each available transfer opportunity, for any arrival or departure of a bus at a station.

For this project these data have been obtained by a two-stageprocess: First we estimated
the number of (dis)embarking passengers, as a function of the station, bus line and time of
day, and then we estimated the percentage of (dis)embarkingpassengers that sould perform
each possible transfer.

The number of (dis)embarking passengers at each station is calculated as f t � f l � f s � n
where f t is a time factor, f l is a line factor, f s is a station factor, and n is a random number
evenly distributed in the interval [32 ; 48]. The values ofn is chosen to roughly re
ect the
capacity of a vehicle, and the introduction of randomness increases the variation of data, to
make them more realistic.

The distribution of transferring passengers between available connections has been esti-
mated based on knowledge of the network, and considering thedirection of trains (towards
the town centre or away from it). A random element has been added to provide a better
spread of the obtained values. Connections have been speci�ed either for a particular train
line or as e.g. "the �rst departure going into town". For mode lling purposes this could be
obtained by adding arti�cial train lines.

Metatrips are created from trips in the original timetable. Let Ti be the departure time of a
trip in the original timetable, belonging to a particular d- line L . We create an interval [T s

i ; Te
i ]

around Ti and distribute � trips in this interval to form a metatrip. Assume that � is an uneven
number. We express the start and end of the interval as follows T s

i = Ti � � �
i and Te

i = Ti + � +
i .

The symbols � �
i and � +

i are expressed in terms terms of the departure timesTi � 1 and Ti +1 of
the previous and next, respectively, trip on L as follows: � �

i = bTi � Ti � 1 � 1
2 c; � +

i = bTi +1 � Ti
2 c.

This construction ensures that the intervals around the trips on each d-line are disjoint. The
set of departure times constructed are

�
Ti �

2j
�

� �
i : j = 1 : : :

j �
2

k�
[ f Ti g [

�
Ti +

2j
�

� +
i : j = 1 : : :

j �
2

k�

with the time expressions rounded to the nearest integer to ensure that departures occur at
integer valued times. If the trips in the original timetable are close then we may end up with
fewer than � departure times because some departures get mapped to the same integer due
to the round-o�. In that case we only create as many trips as we have departure times for.
In our test we used � = 5. Figure 7 shows an example of how the trips of a metatrip are
distributed.

9.309.15 9.45

30+2/5*7 30+4/5*730-2/5*730-4/5*7

Figure 7: Example of the distribution of trips in metatrips

The only incompatibilities used in this project are found by multiplying the current interval
between two trips by a factor to determine lower and upper bounds allowed for the same
interval. This factor has been set to 0.5 for the lower bound and 1.5 for the upper bound.
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Instances of three di�erent sizes have been considered for this project. These instances
have been constructed by considering a meaningful subset ofthe actual operated bus routes,
i.e. a subset that in itself constitutes a realistic problem. This means that the routes selected
for the smaller subset have characteristics that may di�er from the routes added in the larger
subsets. Thus the smaller problem consists of the most central lines, and the lines that are
added in the larger sets are more rural, and/or have fewer intersections with the train network.

The properties of the three di�erent instances will be summarised below:

3 lines. 538 trips. All lines are circular lines with 5{6 intersections with the train network, but
only few interconnections between the buses. Many passengers. Subset of

5 lines. 792 trips. All lines are circular lines with 4{6 intersections with the train network, and
only few interconnections between the buses. Some lines arepassenger intensive. Subset
of

8 lines. 1400 trips. Combination of circular and radial lines. The radial lines only have 2{3
connections to trains, but more connections to other buses.Most lines are passenger
intensive.

6 Computational experiments

To evaluate the quality and usefulness of the algorithm, we have performed a series of tests
to examine its behaviour with di�erent instance sizes and settings, which will be presented
in this section. The tests have been performed on an Intel Pentium 4, 2.8 GHz, with 2GB
RAM, running Windows XP.

The current vehicle schedules used for the data set were not available, so these had to
be constructed initially. This has been done by using the implemented LNS as a regular
VSP solver, i.e. by not allowing any time shifts. The generated solutions have been used as
initial solutions when solving the SVSPSP, and also as reference solutions representing current
practive, when evaluating the quality of the obtained �nal solutions. As we know that the
actual current schedules are not created with dedicated software, this should produce reference
solutions that are not worse than the currently used solution. For each instance a running
time of 24 hours was allowed for the construction of the reference solution.

Table 1 shows the results from running the implemented LNS algorithm on instances
of di�erent sizes with di�erent running times. For each run we r eport the cost reduction
compared to the initial solution, the number of vehicles used, the reduction of empty mileage
costs (i.e. a negative value indicates that the empty cost has increased), the reduction of
total passenger waiting time, the percentage of trips that have been time shifted, the average
amount of time that each trip is shifted, and the percentage of trips that are regular. A
regular/memorable trip is a trip for which the gap to the preceding tr ip on the same line
is a multiple of 5. This makes the schedule easier to remember, and is thus an advantage
to the passengers. For the current schedule the percentage of regular trips is around 72%
for the largest instance, and 83{84% for the others. However, memorability has not been an
objective of the implemented algorithm.

The table shows that good results can be obtained, and that a considerable reduction
of passenger waiting time is possible. The reduced waiting times lead to an increase in the
amount of empty travel, however the total operating cost still shows improvement of around
3% for the smaller instances, and 1{2% for the 8 line instances.
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3 lines

total avg.
cost veh. empty time shifts shift reg.

1h 2.9% 0.0% � 14.2% 16.5% 74.2% 2.19 39.7%
6h 3.1% 0.0% � 13.0% 17.4% 73.4% 2.22 43.2%
24h 3.3% 0.0% � 8.9% 18.1% 73.8% 2.11 48.1%

5 lines

total avg.
cost veh. empty time shifts shift reg.

1h 2.8% 0.0% � 10:1% 19.8% 77.0% 2.58 39.8%
6h 3.1% 0.0% � 9:2% 21.8% 79.3% 2.68 43.4%
24h 3.2% 0.0% � 7:8% 22.5% 78.2% 2.61 40.5%

8 lines

total avg.
cost veh. empty time shifts shift reg.

1h 1.1% 0.0% � 7.8% 9.5% 64.2% 1.88 30.4%
6h 1.6% 0.0% � 6.4% 13.3% 76.6% 2.38 31.4%
24h 2.0% 0.0% � 7.1% 16.4% 76.4% 2.39 36.0%

Table 1: Solution improvements for di�erent problem sizes
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Alternative small instances

As stated previously the di�erent tested instances di�er not only in size, but also in some
characteristics regarding the type of lines that are used. Thus the variation in cost and time
reduction obtained for the di�erent instances may well depend just as much on the change
in these characteristics as on the actual size of the problems. The tests of Table 1 have been
repeated on two additional small instances that have been created with a mix of lines more
similar to those of the largest instance. These instances represent subproblems that would
most likely not be considered in real-life, but can hopefully demonstrate the behaviour on
smaller instances without being a�ected by the di�erent characteristics of the problem. Each
instance consists of two circular lines (of which one is passenger intensive) and one radial line.
The results for these two instances can be found in Table 2, and indicate that it is di�cult to
compare the properties of instance just by looking at simpleproperties of the included lines.
The results also indicate that the achievable cost improvement does indeed depend on the
choice of lines to include in the problem.

total avg.
cost veh. empty time shifts shift reg.

1h 1.3% 0.0% � 7.2% 12.2% 73.2% 2.0 29.8%
6h 1.6% 0.0% � 7.7% 14.7% 76.4% 2.1 31.4%

1h 2.9% 0.0% � 8.6% 20.4% 79.4% 2.8 39.2%
6h 3.1% 0.0% � 5.6% 21.3% 76.5% 2.8 45.0%

Table 2: Solution improvements for more \realistic" small instances

Random variation of the instances

The network structure and the existing time tables are �xed, so in order to produce a series
of di�erent data sets/problem instances that still re
ect th e real world, the only adjustable
parameter has been the random element of the spread of the passengers over di�erent available
connections. This has been done for the medium-sized instances (5 lines), using running times
of 1 and 6 hours, and the results can be found in Table 3.

total avg.
cost veh. empty time shifts shift reg.

1h 2.8% 0.0% � 10.5% 19.7% 78.8% 2.7 37.3%
2.2% 0.0% � 6.4% 15.4% 75.5% 2.5 39.3%
2.8% 0.0% � 11.8% 20.1% 77.8% 2.7 34.5%
2.7% 0.0% � 11.6% 19.7% 76.8% 2.7 39.6%

6h 3.2% 0.0% � 6.2% 21.8% 76.4% 2.6 39.9%
2.6% 0.0% � 4.8% 17.8% 77.1% 2.7 43.1%
3.1% 0.0% � 9.0% 21.8% 78.3% 2.6 43.1%
3.2% 0.0% � 5.4% 21.8% 76.4% 2.5 39.5%

Table 3: Solution results with modi�ed transfer distributi ons

160



The Simultaneous Vehicle Scheduling and Passenger ServiceProblem

These results show that the actual distribution of the passengers to some extent in
uences
the size of the reductions that can be obtained, but also thatthe improvements are consistently
around 2.6% for the shorter running times, and around 3% for the 6 hour running times.

7 Conclusion

We have introduced a new problem that integrates the timetabling and vehicle scheduling
phases in public transportation planning. It does so by simultaneously considering resource
costs and passenger waiting time at transfers. The problem has been de�ned formally and a
metaheuristic based on the LNS principle has been designed and tested. The metaheuristic
has been tested on a data set based on a subset of the buses serving the Greater Copenhagen
area. The results obtained are encouraging: for the full data set we have observed that a
16% reduction of passenger transfer waiting times are possible. This reduction was possible
without using more buses to provide the service, but an increase in the amount of deadheading
was necessary. We consider the increase in deadheading negligible compared to the total cost
involved in operating a public transport system and when considering the increased passenger
service obtained.

A topic for future research is how to make the timetables produced by the heuristic easier
for the passengers to memorise. This could be achieved either by adding a term penalising
solutions with low memorability to the objective function o r ensuring that blocks of subsequent
departures have �xed headway.
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Abstract

The Multi-Commodity k-splittable Maximum Flow Problem consists of routing as
much 
ow as possible through a capacitated network such that each commodity uses at
most k paths and the capacities are satis�ed. The problem has previously been solved
to optimality through branch-and-price. In this paper we propose two exact solution
methods both based on an alternative decomposition. The two methods di�er in their
branching strategy. The �rst method, which branches on forbidden edge sequences, shows
some performance di�culty due to large search trees. The secondmethod, which branches
on forbidden and forced edge sequences, demonstrates much better performance. The lat-
ter also outperforms a leading exact solution method from the literature. Furthermore, a
heuristic algorithm is presented. The heuristic is fast and yields goodsolution values.

Keywords: Multi-Commodity 
ow, k-splittable, Dantzig-Wolfe decomposition, br anch-
and-price.

1 Introduction

The Multi-Commodity k-splittable Maximum Flow Problem (MC kMFP) consists of maxi-
mizing the amount of routed 
ow through a capacitated network such that each commodity
uses at mostk paths and the capacities are satis�ed. The MCkMFP appears in the trans-
portation sector when a number of commodities must be routedusing only a limited number
of transportation units, and in telecommunication for limi ting the number of used network
connections.

In revision.
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The Multi-Commodity k-splittable Flow Problem (MC kFP) was presented by Baier et al.
[1], who solved the Maximum Budget-Constrained Single- andMulti-Commodity k-splittab-
le Flow Problems using approximation algorithms. The authors proved that the Maximum
Single-Commodity k-splittable Flow Problem is NP -hard in the strong sense for directed
graphs. Finally, they noted that for k � j E j, a k-splittable ( s; t) 
ow problem degenerates to
an ordinary (s; t) 
ow problem.

Koch et al. [7] proved that the MCkMFP is NP -hard in the strong sense for directed as
well as undirected graphs, and showed that whenP 6= NP , the best possible approximation
factor is 5

6 . Koch et al. [6] considered the MCkMFP as a two-stage problem, where the �rst
stage consists of the decision on thek paths (routing) and the second of the amount of 
ow
on the paths (packing). If k is a constant then it su�ces to consider a polynomial number of
packing alternatives, which can be constructed in polynomial time. If k is part of the input,
they proposed an approximation algorithm having approximation factor (1 � � ), � > 0.

Tru�ot and Duhamel [8] used branch-and-price to solve the Single-Commodity k-splittable
Maximum Flow Problem (SCkMFP). A 3-index edge-path model was presented to which a
branch-and-price algorithm was applied. The pricing problem for the column generation is
a shortest path problem solvable in polynomial time. Tru�ot e t al. [9] have applied their
3-index branch-and-price algorithm to the MCkMFP.

Gamst et al. [5] used branch-and-price to solve the Minimum Cost Multi-Commodity k-
splittable Flow Problem (MCMC kFP). They applied the algorithm of Tru�ot et al. [9] to
the MCMC kFP. Furthermore, they proposed a new branch-and-price algorithm based on a
2-index model. The latter showed very good performance and outperformed the existing
branch-and-price algorithm.

The MCkMFP can be represented by a directed graphG = ( V; E), where V is the set of
vertices and E the set of edges. A positive capacityue is associated with every edgee 2 E.
Edge capacities are positive since any edgee 2 E with non-positive capacity can be removed
from the graph. The set of commodities is denotedL and each commodityl 2 L has a source
sl 2 E and a destination t l 2 E. The maximal number of routes each commodity may use is
denoted k.

In this paper three exact solution methods are applied to theMCkMFP and compared.
The 3-index branch-and-price algorithm (3BP) by Tru�ot et al . [9] is extended with a heuristic
proposed by Gamst et al. [5] to reach feasible solutions faster. The extended 3BP is compared
to two algorithms based on a 2-index branch-and-price approach applied to the MCkMFP by
Gamst et al. [5]. The two algorithms for the MCkMFP di�er in their branching scheme. The
�rst algorithm (2BP) uses a branching strategy from the lite rature where certain subpaths
are forbidden, and the second algorithm (2BP') uses a new branching strategy where the use
of certain paths is either forced or forbidden and where branch cuts are added to the master
problem.

The main contribution of this paper is to apply the 2BP algori thm to the MC kMFP and
especially to introduce the new branching scheme and the branch cuts of the 2BP' algorithm.
Furthermore, a heuristic use of the 2BP and 2BP' algorithms is presented, denoted 2HEUR.

The paper is organized as follows. First, we summarize and combine exact methods from
the literature on MC kMFP into an overall 3-index branch-and-price algorithm in Section 2.
The 2BP algorithm is presented in Section 3, which is followed by the 2BP' algorithm in
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Section 4. All algorithms are tested and compared in Section5. Section 6 concludes the
paper.

2 The 3-index branch-and-price algorithm (3BP)

Tru�ot et al. [9] solved the MC kMFP by applying Dantzig-Wolfe decomposition Dantzig
and Wolfe [4]. We denote their branch-and-price algorithm 3BP. The pricing problem �nds
the h'th path of commodity l and the master problem merges paths into an overall feasible
solution. In the master problem, the variable xhl

p � 0 denotes the amount of 
ow on path p
for the h'th path of commodity l and the binary variable yhl

p denotes whether or not pathp
is used as theh'th path for commodity l . The 3BP problem is:

max
X

l2 L

kX

h=1

X

p2 P l

xhl
p

s.t.
X

l2 L

kX

h=1

X

p2 P l

� p
exhl

p � ue 8e 2 E (1)

xhl
p � upyhl

p � 0 8l 2 L; h 2 f 1; : : : ; kg ; 8p 2 P l (2)
X

p2 P l

yhl
p � 1 8l 2 L; h 2 f 1; : : : ; kg (3)

xhl
p � 0 8l 2 L; h 2 f 1; : : : ; kg ; 8p 2 P l

yhl
p 2 f 0; 1g 8l 2 L; h 2 f 1; : : : ; kg ; 8p 2 P l

The objective function maximizes the total amount of routed 
ow. The set P l contains paths
p for commodity l . In capacity constraints (1), � p

e indicates whether or not edgee is used
by path p. The constant up denotes the capacity constraint on pathp, which is de�ned as
up = min f ue j e 2 pg. Hence, constraints (2) force the decision variableyhl

p to be set if there
is 
ow on the corresponding path xhl

p . Constraints (3) ensure that at most one path is used
as the h'th path of a commodity l . The path index h 2 f 1; : : : ; kg causes symmetry in the
solution space, hence a symmetry-breaking constraint is added to the formulation:

X

p2 P l

xh+1 l
p �

X

p2 P l

xhl
p � 0 8h 2 f 1; : : : ; k � 1g; 8l 2 L (4)

The constraint eliminates some symmetry, but does not prevent symmetric solutions where
paths carry the same amount of 
ow. The 3-index model is LP-relaxed by setting 0 � yhl

p � 1
and then the model is simpli�ed by substituting xhl

p =up for yhl
p , which is feasible according to

constraints (2) and (3) and to the fact that up > 0. Constraints (2) and the bounds on the
yhl

p variables are removed from the formulation and constraints(3) are rewritten as:

X

p2 P

xhl
p

up
� 1 8l 2 L; h 2 f 1; : : : ; kg (5)

Gamst et al. [5] applied the 3BP algorithm to The Minimum Cost k-splittable Flow
Problem and argued that the path index h 2 f 1; : : : ; kg still causes symmetry in the solution
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space as well as a large number of columns in the master problem. They improved the
3BP algorithm by including a heuristic, which merges certain fractional columns such that a
feasible solution was possibly reached. Speci�cally, one of the following two situations may
occur:

1. For a commodity, several identical paths are used but withdi�erent values of h

2. More than one path is used for a single value ofh for a commodity

In the �rst case, the paths are merged into one single path. Inthe second case, each path is
assigned a unique value ofh, if possible.

Adding this heuristic to the 3-index branch-and-price algorithm gives us the �nal 3BP
algorithm. We do not expect the heuristic to solve all symmetry problems caused by the path
index, hence a branch-and-price algorithm (2BP) without the path index for The Minimum
Cost k-splittable Flow Problem by Gamst et al. [5] is investigated. In the following sections
we show that the 2BP algorithm can be applied to the MCkMFP, and we present a branch-
and-price algorithm (2BP') based on the same master problemas in the 2BP algorithm, but
with a di�erent branching strategy.

3 The 2-index branch-and-price algorithm (2BP)

Applying Dantzig-Wolfe decomposition to the edge-based model without using the h-index
gives a pricing problem, which generates a path for each commodity, and a master problem,
which merges the paths into an overall feasible solution. Let x l

p � 0 denote the amount of

ow on path p for commodity l and let yl

p 2 f 0; 1g denote whether or not path p is used by
commodity l . The master problem is:

max
X

l2 L

X

p2 P l

x l
p

s.t.
X

l2 L

X

p2 P l

� p
ex l

p � ue 8e 2 E (6)

x l
p � upyl

p � 0 8l 2 L; 8p 2 P l (7)
X

p2 P l

yl
p � k 8l 2 L (8)

x l
p � 0 8l 2 L; 8p 2 P l

yl
p 2 f 0; 1g 8l 2 L; 8p 2 P l

The objective function maximizes the total amount of routed 
ow. Constraints (6) ensure
edge capacities are never violated and constraints (7) force the decision variables to take on
value 1, whenever the amount of 
ow on the corresponding pathis positive. Constraints (8)
limit the number of used paths for commodity l to at most k.

By LP-relaxing the binary variables yl
p to 0 � yl

p � 1 the model is turned into an LP-
model. Setting yl

p = x l
p=up satis�es constraints (7) and (8) and simpli�es the formulat ion

to only consisting of one type of variable. Constraints (7) are now redundant and can be
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removed from the formulation. The relaxed master problem becomes:

max
X

l2 L

X

p2 P l

x l
p (9)

s.t.
X

l2 L

X

p2 P l

� p
ex l

p � ue 8e 2 E (10)

X

p2 P l

x l
p

up
� k 8l 2 L (11)

x l
p � 0 8l 2 L; 8p 2 P l (12)

3.1 Pricing problem

Let � � 0 and � � 0 be the dual variables for constraints (10) and (11). The reduced cost
for a path p 2 P l for a commodity l 2 L is:

cl
P = 1 �

X

e2 E

� p
e � e �

� l

up
(13)

The pricing problems generate columns with positive reduced cost for each commodity l .
Now, � l is a constant whenl is �xed so �nding a column with positive reduced cost (if any
exists) is equivalent to solving the shortest path problem:

X

e2 E

� p
e � e � 1 �

� l

up
; 8l 2 L; 8p 2 P l

The path capacity up is not known until the path has been generated. Hence, we set �xed
bounds onup. We know that the capacity can be set to at most jE j di�erent values (one for
each di�erent ue : e 2 E), hence the pricing problems can be solved by considering atmost
jE j shortest path problems. The pricing problems can now be de�ned as solving the shortest
path problem de�ned on costs � � 0 for edges with ue � up for each di�erent ue : e 2 E.
This can be done in polynomial time by using, e.g., Dijkstra's algorithm.

3.2 Branching scheme { forbidding edge sequences

The branching scheme consists of forbidding edge sequences. Let the divergence vertex for a
commodity be de�ned as the �rst vertex with one incoming path and several outgoing paths.
If the number of paths emanating from the divergence vertex for some commodityl is greater
than k then branching can be applied. For each emanating pathp we �nd the �rst edges of
p, which make p di�erent from the remaining emanating paths. This is denoted the unique
edge sequence forp. Each unique edge sequence is forbidden in a branching child. If more
than k + 1 paths emanate from the divergence vertex, then we let somebranching children
consist of more than one unique edge sequence such that the number of branching children
is always equal tok + 1. The reason for this is to reduce the width of the search tree. It is
legal to let a branching child forbid several unique edge sequences, because all combinations
of k paths from the emanating paths are available in at least one other branching child.

An illustration of the branching strategy is seen in Figure 1. A graph with four vertices
is given and a commodity with sources and destination t is to be routed using at most
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two paths. In the current solution three paths are used: p1 = f e1; e4; e5g; p2 = f e1; e3; e5g,
and p3 = f e2; e3; e5g. Assume that the optimal solution consists of path p1 and p3. Now
k + 1 subpaths are found: f e1; e3g, f e1; e4g and f e2g. The optimal solution is found in the
branching child, which forbids the use of edge sequencef e1; e3g.

h h h hs t

e2

e1

e4

e3

e5

Figure 1: A graph used to illustrate the branching scheme. The graph consists of four vertices,
the source vertex is denoteds, and the destination vertex t. Edges aree1; e2; e3; e4, and e5.

The branching scheme changes the pricing problem. When solving the shortest path
problem we need to ensure that we do not use the forbidden edgesequences. The shortest
path problem with forbidden paths is a polynomial problem and can be solved by applying a
shortest path algorithm to an extended graph, see Villeneuve and Desaulniers [10].

4 A new 2-index branch-and-price algorithm (2BP')

The 2BP' algorithm only di�ers from the 2BP algorithm in the br anching scheme. The master
problem (9){(12) is the same and the reduced cost is given by (13).

4.1 Branching

This branching scheme resembles the branching strategy of Cook et al. [3] and is based on the
idea of forbidding or forcing the use of a certain pathp0 for a �xed commodity l 2 L . This
corresponds to settingyl

p0 = 0 or yl
p0 = 1, respectively, in the non-relaxed master problem. In

the remainder of this section a �xed commodity l 2 L is assumed.

The e�ect of the branching scheme on the non-relaxed master problem, speci�cally con-
straint (8) is considered: X

p2 P

yl
p � k

In both the case that yl
p0 = 0 or yl

p0 = 1 the variable can be left out of the constraint. If
yl

p0 = 1 then the constraint is rewritten as

X

p2 P nf p0g

yl
p � k � 1

Now, the e�ect of the branching scheme on the relaxed master problem, speci�cally con-
straint (11) is considered:

X

p2 P l

x l
p

up
� k
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When path p0 is forbidden for commodity l then x l
p0 = 0. When use of path p0 is forced then

we setx l
p0 > 0 and constraint (11) is rewritten as

X

p2 P l nf p0g

x l
p

up
� k � 1 (14)

This is stronger than the original constraint when x l
p0 < u p0, hence the bound of the branching

child is strengthened in this case.
The number of branching children varies according to the current fractional solution.

Assume that the current solution consists ofk + �; � > 0 paths for commodity l . If a path
in the current solution carries as much 
ow as possible, i.e., x l

p = up, then forcing the use of
path p has no e�ect because (14) is not violated.

Since the current fractional solution is a feasible solution to the relaxed master problem
constraints (11) are satis�ed. Hence, at least� + 1 paths have x l

p < u p (otherwise the sum
P

p2 P x l
p=up would exceedk). An optimal solution may consist of paths not part of the

current fractional solution. Thus, we cannot generate� +1 branching children, where the use
of exactly one path is forced in each child. Rather,� + 2 children should be generated: Each
of the �rst � + 1 branching children forces the use of exactly one pathp with x l

p < u p, and
the last branching child forbids the use of all � + 1 paths.

The �rst � + 1 children cause symmetry in the solution space; several solutions in one
branching child can also be found in the other children, especially when several of the� + 1
paths are part of the solutions. The �rst � + 1 children are thus changed into forcing and
forbidding the use of certain paths. Consider the� + 1 = 3 branching children b1, b2, and b3,
forcing the use of path p1, p2, and p3, respectively. Child b1 is unaltered and forces the use
of p1. Child b2 forces the use ofp2 and forbids the use ofp1. In this way, the solution using
p1 and p2 is only available in the subtree ofb1. Similarly, child b3 forces the use ofp3 and
forbids the use ofp1 and p2.

In practice we would rather add a cut than rewrite constraints (11) when the use of a path
is forced. Recall inequality (14) when forcing the use of path p0. This inequality is denoted
the branch cut. Let ! bl � 0 be the dual of branch cut b for commodity l . The resulting
reduced cost for pathp 2 P l for commodity l 2 L is

cl
p = 1 �

X

e2 E

� e
p� e �

� l

up
�

X

b2 B

� b
p! bl

up
(15)

The extra dual cost ! bl is subtracted from the reduced costs for all new paths for commodity
l ; this is similar to how � l is handled. Hence, the branch cut does not a�ect edge weights or
path properties in the graph of the pricing problem. The pricing problem must, however, be
able to avoid using forbidden paths as before.

5 Computational results

A computational evaluation is performed on a dual 2.66GHz Intel R
 XeonR
 X5355 machine
with 16 GB of RAM. Note that CPU times in the following stem fro m using one core only.

We have tested three algorithms; the 3BP extended with a heuristic to reach feasible
solutions faster, the 2BP, and the 2BP'. We implemented all three algorithms using the
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Name jV j j E j j L j

Random5-35 5 35 1
Random10-45 10 45 1
Random15-60 15 60 1
Random20-140 20 140 1

tg10-2 12 40 1
tg20-2 22 80 1
tg40-1 42 154 1
tg40-5 42 154 1
tg80-1 82 322 1
tg100-2 102 400 1

Random10-40 10 40 3
Random11-42 11 42 11
Random20-80 20 80 20
Random22-56 22 56 22

Table 1: Sizes of test instances. First column denotes the instance name, then follows the
number of vertices, the number of edges, and �nally the number of commodities.

framework of COIN [2] with ILOG CPLEX 10.2as LP-solver. Computations concerning the
selection of branching candidates and branching children are handled by COIN.

The three solution methods are tested on benchmark instances from the literature Tru�ot
and Duhamel [8]: The Randominstances are randomly generated and thetg instances are
generated by the Transit Grid generator1 using topologies from transportation networks. See
Table 1 for details.

Two di�erent types of tests have been performed. First the three exact algorithms are
computationally evaluated on the proposed instances and results are compared. Then we
examine if the 3BP and either of the 2BP and 2BP' algorithms give good heuristic solutions
by terminating each test run once the root node has been computed (when omitting branching
the 2BP and the 2BP' algorithms are identical).

5.1 Optimal approach

The three algorithms are computationally evaluated on the proposed instances. Results for
the single-commodity Randominstances are summarized in Table 2 and results for the single-
commodity tg instances are summarized in Table 3. The multi-commodity instances are all
of the Randomtype and results are summarized in Table 4.

In the tables the �rst column holds the name of the problem instance, the second column
holds the value ofk and the third column holds the optimal value. Then follows the size and
depth of the search tree, the number of generated variables,the gap in percent between the
upper and lower bound, and the time in seconds spent on solving the instance for the 3BP,
the 2BP, and the 2BP' algorithms, respectively. If a test run is marked with \-" then it has
run out of memory. If the gap is also marked with \-" then no lower bound was found. The
total number of times each algorithm has best performance, is found at the bottom of each
table. Also, for each instance the best performance is written in bold .

The 2BP algorithm performs much better than the 3BP algorithm for the Minimum Cost
MCkFP Gamst et al. [5]; however, this is generally not the case for the MC kMFP. Although

1http://www.informatik.uni-trier.de/ ~naeher/Professur/research/generators/maxflow/tg/ind ex.
html
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3BP 2BP 2BP'

Problem k z* size depth vars gap time size depth vars gap time s ize depth vars gap time

Random5-35 1 66 1 0 5 0.00% 0.00 1 0 5 0.00% 0.00 1 0 5 0.00% 0.00
2 128 1 0 14 0.00% 0.00 1 0 7 0.00% 0.00 1 0 7 0.00% 0.00
3 182 1 0 27 0.00% 0.01 1 0 9 0.00% 0.00 1 0 9 0.00% 0.00
4 223 13 6 48 0.00% 0.01 1 0 12 0.00% 0.00 1 0 12 0.00% 0.00
5 262 19 9 60 0.00% 0.03 1 0 12 0.00% 0.00 1 0 12 0.00% 0.00
6 297 21 10 78 0.00% 0.03 1 0 14 0.00% 0.01 1 0 14 0.00% 0.00
7 326 67 12 98 0.00% 0.10 1 0 14 0.00% 0.00 1 0 14 0.00% 0.00
8 326 1 0 104 0.00% 0.00 1 0 11 0.00% 0.01 1 0 11 0.00% 0.00

Random10-45 1 73 1 0 6 0.00% 0.00 1 0 5 0.00% 0.00 1 0 5 0.00% 0.00
2 142 5 2 15 0.00% 0.01 4 1 9 0.00% 0.01 8 2 9 0.00% 0.01
3 209 9 3 33 0.00% 0.02 21 3 15 0.00% 0.03 20 3 12 0.00% 0.02
4 260 45 17 68 0.00% 0.08 411 12 24 0.00% 0.56 34 4 20 0.00% 0.03
5 306 369 22 102 0.00% 0.80 23599 18 34 0.00% 44.96 40 4 20 0.00% 0.07
6 345 973 26 137 0.00% 2.90 >427099 >26 39 2.36% - 135 6 26 0.00% 0.22
7 381 4281 36 219 0.00% 16.55 >354551 >22 46 -% - 313 8 34 0.00% 0.64
8 413 22985 43 265 0.00% 102.51 >431299 >29 46 2.93% - 606 9 40 0.00% 1.31
9 429 >110199 >58 380 6.43% - >388228 >26 60 -% - 2507 11 46 0.00% 5.97

10 451 >104999 >57 448 5.74% - >456699 >41 74 6.57% - 2355 12 46 0.00% 5.91

Random15-60 1 86 1 0 5 0.00% 0.00 1 0 6 0.00% 0.00 1 0 6 0.00% 0.00
2 163 1 0 16 0.00% 0.00 1 0 8 0.00% 0.00 1 0 8 0.00% 0.00
3 221 9 3 34 0.00% 0.02 41 6 15 0.00% 0.06 12 2 12 0.00% 0.02
4 248 111 10 70 0.00% 0.32 >100454 >26 50 -% - 111 6 20 0.00% 0.22
5 268 557 18 101 0.00% 551.83 >176599 >29 52 2.86% - 322 7 29 0.00% 0.76
6 287 419 21 135 0.00% 1.59 >277801 >31 45 2.74% - 354 9 30 0.00% 0.79
7 295 19097 35 194 0.00% 72.91 >387565 >23 49 -% - 836 10 27 0.00% 1.74
8 301 >88799 >47 231 2.90% - >413343 >33 55 2.90% - 4995 11 30 0.00% 11.32
9 306 >153099 >51 229 1.29% - >547079 >28 48 -% - 2263 11 19 0.00% 4.42

Random20-140 1 81 1 0 4 0.00% 0.00 1 0 5 0.00% 0.00 1 0 5 0.00% 0.00
2 158 1 0 14 0.00% 0.00 1 0 7 0.00% 0.00 1 0 7 0.00% 0.00
3 228 1 0 30 0.00% 0.02 1 0 11 0.00% 0.00 1 0 11 0.00% 0.00
4 253 9935 31 103 0.00% 75.25 >41444 >42 68 -% - 90 18 67 0.00% 1.04
5 274 >39999 >41 146 1.86% - >68299 >66 87 1.86% - 819 22 51 0.00% 12.65
6 294 >30199 >61 184 1.78% - >60299 >86 107 1.78% - >14106 >32 113 1.78% -
7 - >28999 >70 227 1.81% - >75894 >46 91 -% - >14299 >32 109 1.69% -
8 319 >30599 >80 267 1.91% - >94699 >101 120 1.91% - 4028 22 29 0.00% 52.95
9 325 >39599 >93 315 0.84% - >108990 >63 105 -% - 130 9 25 0.00% 0.32

10 327 2907 109 326 0.00% 19.15 >272685 >49 68 0.61% - 17 3 22 0.00% 0.02
11 327 1325 86 301 0.00% 8.75 49 3 22 0.00% 0.03 20 5 20 0.00% 0.03

Best 11 14 36

Table 2: Results from solving the single-commodityRandominstances exactly.
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3BP 2BP 2BP'

Problemk z* size depth vars gap time size depth vars gap time s ize depth vars gap time

tg10-2 1 389 1 0 5 0.00% 0.00 1 0 4 0.00% 0.00 1 0 4 0.00% 0.00
2 557 215 13 26 0.00% 0.21 355 14 10 0.00% 0.21 41 5 11 0.00% 0.04
3 716 553 19 58 0.00% 0.70 39505 20 28 0.00% 32.49 53 5 15 0.00% 0.06
4 815 83 17 52 0.00% 0.10 6 1 8 0.00% 0.00 5 1 8 0.00% 0.00
5 815 1 0 40 0.00% 0.00 1 0 8 0.00% 0.00 1 0 8 0.00% 0.00

tg20-2 1 385 1 0 4 0.00% 0.00 1 0 4 0.00% 0.00 1 0 4 0.00% 0.00
2 643 1 0 10 0.00% 0.00 1 0 6 0.00% 0.00 1 0 6 0.00% 0.00
3 832 5 2 33 0.00% 0.04 1 0 10 0.00% 0.00 1 0 10 0.00% 0.00
4 853 1 0 40 0.00% 0.01 1 0 10 0.00% 0.00 1 0 10 0.00% 0.00

tg40-1 1 517 1 0 5 0.00% 0.00 1 0 5 0.00% 0.01 1 0 5 0.00% 0.00
2 750 5 2 16 0.00% 0.07 4 1 10 0.00% 0.02 10 3 12 0.00% 0.07
3 908 >9999 >40 96 2.61% - >83282 >61 94 -% - 231 11 21 0.00% 3.32
4 994 >7799 >57 143 1.00% - >82770 >45 64 -% - 893 18 33 0.00% 25.15
5 1004 15 7 65 0.00% 0.09 703 27 20 0.00% 1.41 11 2 18 0.00% 0.03
6 1004 1 0 96 0.00% 0.03 29 3 13 0.00% 0.02 43 6 13 0.00% 0.07

tg40-5 1 487 1 0 8 0.00% 0.01 1 0 6 0.00% 0.00 1 0 6 0.00% 0.00
2 828 >20599 >46 80 4.11% - >64248 >45 57 5.70% - 144 9 23 0.00% 1.49
3 1062 >17299 >59 139 0.28% - >77103 >44 65 -% - 276 8 22 0.00% 4.20
4 1078 181 47 68 0.00% 0.61 >148934 >22 50 -% - 1520 21 22 0.00% 26.53
5 1078 3 1 90 0.00% 0.03 61 4 16 0.00% 0.04 76 20 16 0.00% 1.72

tg80-1 1 549 1 0 7 0.00% 0.04 1 0 6 0.00% 0.02 1 0 6 0.00% 0.02
2 984 1591 29 80 0.00% 65.22 2308 22 25 0.00% 59.16 288 11 39 0.00% 8.72
3 1411 >2199 >36 162 3.85% - >51476 >49 107 -% - 1914 10 38 0.00% 110.38

tg100-2 1 530 1 0 7 0.00% 0.07 1 0 6 0.00% 0.03 1 0 6 0.00% 0.02
2 1007 3 1 16 0.00% 0.20 1 0 8 0.00% 0.04 1 0 8 0.00% 0.04
3 1407 >1099 >31 115 0.39% - >29087 >60 113 -% - 229 6 51 0.00% 29.14
4 1768 >1499 >72 234 1.51% - >56256 >40 167 -% - 2118 9 82 0.00% 284.41

Best 7 12 23

Table 3: Results from solving thetg instances exactly.

3BP 2BP 2BP'

Problem k z* size depth vars gap time size depth vars gap time s ize depth vars gap time

Random10-40 1 110 5 2 18 0.00% 0.02 5 2 15 0.00% 0.00 4 1 14 0.00% 0.01
2 194 1 0 26 0.00% 0.00 34 5 21 0.00% 0.04 4 1 18 0.00% 0.01
3 258 183 18 80 0.00% 0.39 213 12 24 0.00% 0.18 50 6 23 0.00% 0.06
4 293 695 36 129 0.00% 2.23 2956 16 41 0.00% 4.25 112 7 32 0.00% 0.20
5 309 1989 30 176 0.00% 7.91 >253716 >25 56 1.24% 1.06 561 12 39 0.00% 1.06
6 318 15905 36 253 0.00% 73.84 >610006 >24 59 1.35% - 1294 13 60 0.00% 2.63
7 321 >153199 >56 286 0.01% - >335959 >26 54 -% - 26182 18 47 0.00% 57.10
8 323 113 37 299 0.00% 0.52 2008 14 37 0.00% 1.23 2051 15 36 0.00% 2.43
9 323 333 49 318 0.00% 1.38 11 1 32 0.00% 0.01 18 5 32 0.00% 0.02

Random11-42 1 291 5 2 29 0.00% 0.02 7 3 28 0.00% 0.01 7 2 27 0.00% 0.02
2 343 1 0 50 0.00% 0.01 7 2 27 0.00% 0.01 6 1 27 0.00% 0.01
3 344 1 0 75 0.00% 0.00 1 0 26 0.00% 0.00 1 0 26 0.00% 0.00
4 344 1 0 100 0.00% 0.00 1 0 26 0.00% 0.00 1 0 26 0.00% 0.00

Random20-80 1 347 7 3 55 0.00% 0.06 3 1 51 0.00% 0.02 7 2 53 0.00% 0.04
2 553 3 1 100 0.00% 0.03 4 1 50 0.00% 0.02 4 1 51 0.00% 0.01
3 584 1063 24 188 0.00% 6.14 57 7 59 0.00% 0.16 1020 16 62 0.00% 3.45
4 601 5599 33 277 0.00% 40.05 1041 10 60 0.00% 2.02 >81550 >548 601 2.01% -
5 617 13291 44 340 0.00% 117.96 4363 14 66 0.00% 7.35 49695 34 67 0.00% 198.61
6 621 >48999 >40 380 0.01% - 3998 11 63 0.00% 6.42 32552 29 58 0.00% 100.08
7 626 413 37 412 0.00% 3.48 17 2 57 0.00% 0.02 116 14 57 0.00% 0.22
8 626 1 0 440 0.00% 0.03 1 0 57 0.00% 0.01 1 0 57 0.00% 0.01

Random22-56 1 365 9 3 52 0.00% 0.02 7 3 42 0.00% 0.02 7 2 44 0.00% 0.02
2 389 11 4 81 0.00% 0.02 10 3 42 0.00% 0.02 9 3 42 0.00% 0.01
3 407 1 0 108 0.00% 0.01 1 0 41 0.00% 0.01 1 0 41 0.00% 0.01
4 407 1 0 144 0.00% 0.01 1 0 41 0.00% 0.00 1 0 41 0.00% 0.00

Best 7 17 14

Table 4: Results from solving the multi-commodity instances exactly.
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the number of times the algorithm has best performance is larger for the 2BP, the 3BP
algorithm is capable of solving more instances. The change of objective function has a great
impact on the problem; the algorithms always try to push as much 
ow through the network
as possible, thus potentially exploiting the somewhat weakly formulated bound on the number
of used paths. The formulation has less impact on the minimumcost problem because it may
not always be bene�cial to increase the number of used paths.The 2BP algorithm su�ers
from large search trees because of the existence of potentially many solutions using more
than k paths per commodity and because the branching scheme allowsmuch symmetry in the
branching children. The 2BP algorithm, however, performs somewhat better than the 3BP
for the multi-commodity Randominstances with respect to running times.

The 2BP' algorithm generally performs much better than 3BP algorithm. Exceptions
are tg40-5 , k = 4 and Random20-80, k = 5, which the 2BP' algorithm spends more time
on solving. Furthermore, 2BP' is unable �nd an optimal solut ion for Random20-80, k = 4.
For the far majority of test instances, however, the 2BP' algorithm is capable of �nding an
optimal solution in little time, even when the 3BP algorithm shows great di�culty. The
2BP' algorithm generally also generates smaller gaps for instances, which are not solved to
optimality. Reasons are that the search tree sizes are generally smaller for the 2BP', the
number of variables in the master problem is smaller, and much symmetry is eliminated
because of the lackingh-indices.

The 2BP' algorithm generally also performs much better than the 2BP algorithm. Ex-
ceptions areRandom20-80, k = 4 ; 5; and 6 where the 2BP has overall best performance. The
reason for the generally superior performance of the 2BP' algorithm is that the branching
scheme gives better bounds in the branching children: forcing the use of a path is much
stronger than forbidding a path. Also forbidding the use of all paths with positive 
ow is
stronger than forbidding a subset of the paths.

All three algorithms su�er from the same weakness in the formulation, speci�cally the
bounding of the number of used paths per commodity: constraints (3) for the 3BP and (11)
for the 2BP and the 2BP' algorithms. Because the objective isto maximize the total amount of

ow, the algorithms are very likely to exceed k paths per commodity whenever the mentioned
constraints are not tight. The constraints will rarely be ti ght, especially when several paths
share the same edges and the correspondingx l

p=up then can become much smaller than one.
The 2BP' reduces this problem to some extend with the branching cut (14).

5.2 Heuristic approach

The three exact algorithms presented can be used as heuristics by only computing the root
node and then returning the best feasible solution. The approach of only computing the root
node does not guarantee a polynomial running time, since an exponential number of columns
potentially needs to be added in the root. In practice, however, we expect low running times.

The heuristic usage of the 3BP algorithm is denoted 3HEUR. Because no branching occurs
the heuristic usage of the 2BP and the 2BP' algorithms is identical and is denoted 2HEUR.
Tru�ot and Duhamel [8] argue that the 3-index and 2-index formulations are equivalent, also
after LP-relaxation and elimination of the binary variable s. Even though the formulations
give the same bounds, we may not reach the same feasible solutions in the root node. Hence
we investigate the performance of 3HEUR and 2HEUR empirically.

The 2HEUR may give infeasible solutions where more thank paths are used for each
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commodity. In this case we try to move the 
ow between the paths in order to �nd a
feasible solution using at mostk paths for each commodity. For each commodity the approach
investigates all paths in the current fractional solution and greedily assigns 
ow to the path
having the highest capacity. The steps of the approach are:

1: for (each commodity) do
2: Sort all the paths in the current fractional solution according to decreasing capacity
3: for (each path in the sorted list, until 
ow is assigned to k paths) do
4: Assign as much 
ow as possible to the path
5: Subtract the assigned 
ow from the capacity of each edge on the path
6: end for
7: end for

Including this 
ow-moving approach in 2HEUR gives the �nal h euristic denoted 2HEUR'.
It is noted that including the 
ow-moving approach in the exa ct 2BP and 2BP' approaches
does not improve performance; see the tables athttp://www.diku.dk/ ~gamst/heuristic_
results.pdf for documentation.

All three heuristics 3HEUR, 2HEUR, and 2HEUR' are evaluated on the previously pro-
posed instances. Test results are summarized in tables 5, 6,and 7.

The �rst column of each table holds the name of the problem instance, the second column
holds the value of k, and the third column holds the optimal value. Then, follows for each
of the algorithms 3HEUR, 2HEUR, and 2HEUR'; the number of iterations, the gap between
the heuristic and the optimal value, and the time in seconds spent on solving the instance.
An entry marked with \-" indicates that no feasible solution was found. The average number
of iterations, gap, and time usage are given at the bottom of each table.

The results show that the 3HEUR algorithm often gives poor heuristic solutions with gaps
of up to 94%. For three multi-commodity Randominstances the 3BP algorithm is even unable
to �nd a feasible solution in the root node. The 2HEUR algorithm generally �nds much
better solution values than the 3HEUR algorithm. The 2HEUR' , however, shows superior
performance by solving the majority of the instances to optimality and with the largest gap
of those not solved being 20%. All heuristics have very low running times and terminate in
less than a second.
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3HEUR 2HEUR 2HEUR'

Problem k z* iter. gap time iter. gap time iter. gap time

Random5-35 1 66 5 0.00 0.00 3 0.00 0.00 3 0.00 0.01
2 128 7 0.00 0.00 5 0.00 0.00 5 0.00 0.00
3 182 8 0.00 0.00 7 0.00 0.00 7 0.00 0.00
4 223 12 16.60 0.00 10 0.00 0.00 10 0.00 0.00
5 262 12 54.96 0.00 10 0.00 0.00 10 0.00 0.00
6 297 13 80.37 0.00 12 0.00 0.00 12 0.00 0.00
7 326 14 54.29 0.00 12 0.00 0.00 12 0.00 0.00
8 326 13 0.00 0.01 11 0.00 0.00 11 0.00 0.00

Random10-45 1 73 6 0.00 0.00 4 0.00 0.00 4 0.00 0.00
2 142 7 12.68 0.00 6 12.68 0.00 6 0.00 0.00
3 209 10 22.00 0.01 10 15.31 0.00 10 0.00 0.00
4 260 13 65.38 0.01 13 18.08 0.00 13 0.00 0.00
5 306 15 75.82 0.01 17 46.73 0.00 17 0.00 0.00
6 345 17 73.91 0.02 19 43.48 0.00 19 0.00 0.00
7 381 23 76.38 0.02 21 47.77 0.00 21 8.40 0.01
8 413 24 78.21 0.02 23 48.18 0.00 23 6.78 0.01
9 429 30 79.02 0.04 30 37.06 0.00 30 1.40 0.00

10 451 35 80.04 0.05 38 36.59 0.01 38 0.00 0.01

Random15-60 1 86 5 0.00 0.00 6 0.00 0.00 6 0.00 0.00
2 163 8 0.00 0.01 8 0.00 0.00 8 0.00 0.00
3 221 10 55.24 0.01 11 85.52 0.00 11 16.74 0.00
4 248 13 87.50 0.01 18 56.04 0.01 18 10.01 0.00
5 268 16 57.49 0.02 20 51.49 0.00 20 5.97 0.00
6 287 18 93.38 0.02 22 50.52 0.01 22 6.62 0.00
7 295 20 85.05 0.02 23 46.44 0.01 23 13.90 0.00
8 301 19 59.47 0.01 21 46.84 0.00 21 17.94 0.00
9 306 18 60.13 0.01 18 39.87 0.00 18 19.93 0.00

Random20-140 1 81 4 0.00 0.00 4 0.00 0.00 4 0.00 0.00
2 158 7 0.00 0.02 6 0.00 0.00 6 0.00 0.00
3 228 10 0.00 0.02 10 0.00 0.00 10 0.00 0.00
4 253 12 82.48 0.03 13 0.00 0.00 13 0.00 0.01
5 274 16 84.69 0.04 16 1.46 0.01 16 0.00 0.01
6 294 18 84.69 0.04 24 69.05 0.01 24 3.40 0.01
9 325 22 86.15 0.04 24 44.92 0.01 24 0.31 0.01

10 327 21 86.24 0.01 19 3.67 0.00 19 3.67 0.00
11 327 20 86.24 0.01 19 0.61 0.00 19 0.61 0.00

Sum 14 49.40 0.01 15 22.29 <0.01 15 3.21 <0.01

Table 5: Results from solving the single-commodityRandominstances heuristically, where
each algorithm terminates after having evaluated the root node only.

3HEUR 2HEUR 2HEUR'

Problem k z* iter. gap time iter. gap time iter. gap time

tg10-2 1 389 5 0.00 0.00 4 0.00 0.00 4 0.00 0.00
2 557 6 0.00 0.00 6 0.00 0.00 6 0.00 0.00
3 716 9 0.00 0.00 10 15.22 0.00 10 0.00 0.00
4 815 8 0.00 0.00 8 15.83 0.01 8 0.00 0.00
5 815 8 0.00 0.00 8 0.00 0.00 8 0.00 0.00

tg20-2 1 385 4 0.00 0.00 4 0.00 0.00 4 0.00 0.00
2 643 5 0.00 0.00 6 0.00 0.00 6 0.00 0.00
3 832 11 18.03 0.00 10 0.01 0.00 10 0.00 0.01
4 853 10 0.00 0.01 10 0.00 0.00 10 0.00 0.00

tg40-1 1 517 5 0.00 0.01 5 0.00 0.01 5 0.00 0.01
2 750 7 72.13 0.01 9 61.33 0.01 9 0.00 0.01

tg40-5 1 487 8 0.00 0.00 6 0.00 0.00 6 0.00 0.01

tg80-1 1 549 7 0.00 0.04 6 0.00 0.02 6 0.00 0.02
2 984 11 52.74 0.14 14 14.63 0.06 14 0.00 0.06

tg100-2 1 530 7 0.00 0.07 6 0.00 0.02 6 0.00 0.02
2 1007 8 28.10 0.15 8 0.00 0.04 8 0.00 0.03

Sum 7 10.69 0.03 8 6.69 0.01 8 0.00 0.01

Table 6: Results from solving thetg instances heuristically, where each algorithm terminates
after having evaluated the root node only.
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3HEUR 2HEUR 2HEUR'

Problem k z* iter. gap time iter. gap time iter. gap time

Random10-40 1 110 6 31.82 0.00 5 20.00 0.01 5 17.27 0.00
2 194 6 0.00 0.00 9 60.82 0.00 9 0.00 0.00
3 258 11 80.62 0.01 11 69.38 0.00 11 6.59 0.00
4 293 14 66.21 0.02 15 36.52 0.01 15 7.17 0.01
5 309 16 67.96 0.02 19 34.95 0.00 19 8.41 0.01
6 318 21 68.89 0.03 25 33.02 0.00 25 5.97 0.01
7 321 17 84.42 0.02 21 24.61 0.00 21 1.56 0.01
8 323 21 84.52 0.01 20 22.29 0.00 20 4.34 0.00
9 323 20 84.52 0.01 21 9.29 0.00 21 0.00 0.00

Random11-42 1 291 6 6.19 0.01 6 6.19 0.00 6 0.00 0.01
2 343 4 0.00 0.00 5 19.53 0.00 5 4.08 0.00
3 344 4 0.00 0.00 5 0.00 0.01 5 0.00 0.00
4 344 4 0.00 0.00 5 0.00 0.00 5 0.00 0.00

Random20-80 1 347 6 25.36 0.01 6 16.14 0.01 6 0.00 0.01
2 553 7 35.80 0.02 7 15.91 0.01 7 0.00 0.01
3 584 9 - 0.02 9 7.53 0.00 9 0.00 0.01
4 601 12 - 0.03 12 7.65 0.01 12 0.00 0.01
5 617 14 - 0.04 16 4.05 0.02 16 2.27 0.00
6 621 12 58.29 0.03 14 0.64 0.01 14 0.00 0.01
7 626 12 58.63 0.03 14 0.96 0.01 14 0.80 0.01
8 626 12 0.00 0.03 14 0.00 0.01 14 0.00 0.01

Random22-56 1 365 6 0.00 0.01 5 0.00 0.00 5 0.00 0.00
2 389 6 1.54 0.00 5 1.54 0.00 5 0.00 0.00
3 407 6 0.00 0.01 5 0.00 0.00 5 0.00 0.01
4 407 6 0.00 0.00 5 0.00 0.01 5 0.00 0.01

Sum � 9 34.31 0.01 11 15.64 <0.01 11 2.34 <0.01

Table 7: Results from solving the multi-commodity Randominstances heuristically, where
each algorithm terminates after having evaluated the root node only. � ) sum is only over the
instances where all heuristics found a feasible solution.

6 Conclusion

Two exact solution methods for the MCkMFP problem have been introduced. They are both
based on Dantzig-Wolfe decomposition, where the master problem is a 2-index formulation
merging paths for commodities into an overall solution. The two methods di�er in their
branching schemes: the �rst method forbids subpaths (2BP), while the second forces or
forbids the use of certain paths (2BP'). The latter also addsbranching cuts to the master
problem.

The 2BP and 2BP' algorithms have been implemented and compared with a leading exact
algorithm from the literature denoted 3BP. Results showed that the 2BP' algorithm performs
signi�cantly better than the 2BP and the 3BP algorithms both with respect to the number of
solved instances and with respect to the time usage. The mainreason is that using the 2BP'
algorithm gives smaller search trees, reduces the number ofvariables in the master problem,
and eliminates some of the symmetry in the solution space.

Terminating the computations after having evaluated the root node transforms the 3BP
and the 2BP/2BP' algorithms into heuristics denoted 3HEUR and 2HEUR, respectively.
Because no branching occurs in this heuristic use, the 2BP and the 2BP' algorithms become
identical. Test results for this approach showed that the 3HEUR does not perform well,
with the majority of the solution values having gaps of up to 94%. The 2HEUR algorithm,
however, showed very promising performance when includinga 
ow-moving approach, which
transforms some fractional solutions into feasible solutions. In most cases optimal solutions
were found and the average solution gaps never exceeded 4%. Both heuristics terminate in
less than a second for all tested instances.

All algorithms su�er from weak formulations for bounding the number of used paths per
commodity. We believe that future work should concentrate on tightening these constraints.
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This could be done by somehow reformulating the problem or byadding cuts. We believe
that the focus should be on cuts violated in the edge-based model or the original master
problem. Future work could also concentrate on �nding better branching strategies for the
2-index formulation in order to further reduce the size of the search tree.
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Partial Path Column Generation for
the Elementary Shortest Path Prob-
lem with Resource Constraints
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Abstract
This paper introduces a decomposition of the Elementary ShortestPath Problem with

Resource Constraints (ESPPRC), where the path is composed of smaller sub paths. We
show computationals result by comparing di�erent approaches forthe decomposition and
compare the best of these with existing algorithms. We show that the algorithm for many
instances outperforms a bidirectional labeling algorithm.

Keywords: Elementary Shortest Path With Resource Constraints, Column Generation,
Dantzig-Wolfe, Vehicle Routing Problem

1 Introduction

A formal de�nition of the ESPPRC is as follows: Given a directed G(V; A) with node set
V = f 1; ::; jV jg, arc set A = V � V , a set of resourcesR each with a global upper bound
W r : r 2 R. Let cij be the cost for arc (i; j ) 2 A and wr

ij be the consumption of resource
r 2 R when traversing arc (i; j ) 2 A. A path p is feasible if the arcs traversed on the path
A(p) satis�es

P
(i;j )2 A(p) wr

ij � W r for all r 2 R. The objective is to �nd a feasible path p
with minimum cost

P
(i;j )2 A(P ) cij from a origin node o 2 V to a destination node d 2 V .

When negative cycles are allowed inG the ESPPRC can be shown to beNP -hard by
reduction from the longest path problem, Dror [5]. Beasley and Christo�des [2] gave a math-
ematical formulation of the problem where each node is considered a resource. Feillet et al.

Extended abstract, INOC 2009.
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[6] introduced a labeling algorithm. Righini and Salani [9] proposed a bi-directional labeling
and a Branch-and-Bound algorithm. Baldacci et al. [1] computed lower bounds on paths costs
and used these to speed up a bi-directional labeling algorithm.

The main application of the ESPPRC is as a pricing problem when solving the Vehicle
Routing Problem through Branch-Cut-and-Price. Chabrier [3] and Jepsen et al. [8] have
shown this successfully for the Vehicle Routing Problem with Time Windows (VRPTW) and
Baldacci et al. [1] recently for the Capacitated Vehicle Routing Problem (CVRP).

Labeling algorithms has so far been used very successfully for ESPPRC problems especially
when time windows are present. However, for problem instances where the time windows are
very large the state space becomes huge and labeling algorithms are no longer desirable.

Motivated by the bi-directional labeling algorithm by Righ ini and Salani [9] and the
fact that Branch-and-Cut has been used quite successfully to solve the ESPPRC when time
window like restrictions are not included (see Jepsen et al.[7]), we propose a Danzig-Wolfe
decomposition approach based on a model where small sub paths called partial paths are
concatenated to form the solution. Since each of the sub paths are elementary the SR-
inequalities for VRPTW introduced by Jepsen et al. [8] can beused to improve the lower
bound. Furthermore, valid inequalities for the ESPPRC can be used.

2 Bounded partial paths

The idea behind the following mathematical model and decomposition is that any feasible
path p can be seen as a sequence ofK = f 1; : : : ; jK jg partial paths pov1 ; pv1 v2 ; : : : ; pvk � 1d,
wherepij is a partial path from node i to node j . Each of the jK j partial paths can be seen as
a path through the original graph G. This leads to an alternative formulation of the ESPPRC
where G is replicated jK j times and arcs are added between the adjacent layers.

Let L r be the upper bound of resourcer 2 R on each partial path and let

wr
max = max

(i;j )2 A
wr

ij

be the maximal resource consumption ofr on a single arc. For a �xed number of partial paths
jK j the following relation ensures that all solutions can be obtained:

L r �
�

W r

jK j

�
+ wr

max � 1

Let � + (S) = f (i; j ) 2 A : i 2 Sg denote the set of outgoing arcs of node setS and let
� � (S) = f (i; j ) 2 A : j 2 Sg denote the set of ingoing arcs ofS. For notational purposes let
� (i ) be short for � (f ig) for i 2 V . The binary variable x ijk indicates if arc (i; j ) 2 A is used
in the k'th layer. The binary variable sik indicates if a partial path starts in node i 2 V in
layer k 2 K and the binary variable t ik indicates if a partial path ends in nodei 2 V in layer
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k. The mathematical model for ESPPRC can now be formulated as:

min
X

k2 K

X

(i;j )2 A

cij x ijk (1)

s.t.
X

(o;j )2 � + (o)

xoj 1 = 1 (2)

X

(i;d )2 � � (d)

x id jK j = 1 (3)

X

k2 K

X

(i;j )2 A

x ijk � 1 v 2 V n f o; dg (4)

X

k2 K

X

(i;j )2 A

wr
ij x ijk � W r r 2 R (5)

X

k2 K

X

(i;j )2 � + (S)

x ijk �
X

k2 K

X

(i;j )2 � + (s)

x ijk S � V; s 2 S (6)

X

i 2 V

sik = 1 k 2 K (7)

t i; (k� 1 mod jK j) = sik i 2 V; k 2 K (8)

sik +
X

(j;i )2 � � (i )

x j ik = t ik +
X

(i;j )2 � + (i )

x ijk i 2 V; k 2 K (9)

X

(i;j )2 � + (S)

x ijk �
X

(i;j )2 � + (s)

x ijk k 2 K; S � V; s 2 S (10)

X

(i;j )2 A

x ijk � L bound k 2 K (11)

x ijk 2 f 0; 1g (i; j ) 2 A; k 2 K (12)

t ik ; sik 2 f 0; 1g i 2 V; k 2 K (13)

The objective (1) is to minimize the total cost of the path. Constraints (2), (3), and (4)
ensure that no node is visited more than once and that the pathstarts at o and ends at
d. Constraints (5) are the resource bounds and constraints (6) are the generalized subtour
constraints (GSEC) which prevent cycles in a solution. Constraints (7) to (11) ensure that the
partial paths are elementary, connected, and do not violatethe reduced resource.bound2 R
is the resource chosen as the bounding resource.

In the following we will make a Danzig-Wolfe reformulation of the mathematical model,
where constraints (9) to (11) form K identical sub problems. Each subproblem consists of
�nding a shortest path p between two arbitrary nodes in the graph. Let � p

ij = 1 i� path p
uses arc (i; j ), let � p

i indicate if p starts in node i , let 
 p
i indicate i� p ends in nodei , let � p

indicate if partial path p is used, and letcp be the cost of using pathp. The master problem
then becomes:
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min
X

p2 P

cp� p (14)

s.t.
X

p2 P

X

(o;j )2 � + (o)

� p
oj � p = 1 (15)

X

p2 P

X

(i;d )2 � � (d)

� p
id � p = 1 (16)

X

p2 P

X

(i;j )2 A

� p
ij � p � 1 v 2 V n f o; dg (17)

X

p2 P

X

(i;j )2 � + (S)

� p
ij � p �

X

p2 P

X

(i;j )2 � + (s)

� p
ij � p S � V; s 2 S (18)

X

p2 P

X

(i;j )2 A

wr
ij � p

ij � p � W r r 2 R (19)

X

p2 P

� p = jK j (20)

X

p2 P


 p
i � p =

X

p2 P

� p
i � p i 2 V (21)

sik 2 f 0; 1g i 2 V; k 2 K (22)

� p 2 f 0; 1g p 2 P (23)

With the exception of constraint (20) the constraints follow directly from a standard Dantzig-
Wolfe reformulation. Constraint (20) substitutes the jK j constraints (7) and states that we
must choosejK j columns corresponding to one from each layer. The master model may be
too large to solve, therefore delayed column generation is used.

Let � be the duals of constraints (15), (16), and (17), let� be the duals of constrainta
(18), let � be the duals of constraints (19), and let� be the duals of (21). Using standard
Linear Programming theory the arc cost is set to:

ĉij = cij � � i �
X

r 2 R

wr
ij � r �

X

s2 S;S� V :( i;j )2 � + (S)

� s +
X

s2 S;S� V :( i;j )2 � + (s)

� s:

Let x ij be a binary variable that indicates if arc (i; j ) 2 A is used, the binary variable si

indicates if the path starts in node i 2 V and the binary variable t i indicates if the path ends
in node i 2 V . The mathematical model for the pricing problem then becomes:
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min
X

(i;j )2 A

ĉij x ij +
X

i 2 V

� i si �
X

i 2 V

� i t i (24)

X

i 2 V

si = 1 (25)

X

i 2 V

t i = 1 (26)

si +
X

(j;i )2 � � (i )

x j i = t i +
X

(i;j )2 � + (i )

x ij i 2 V (27)

X

(i;j )2 � + (S)

x ij �
X

(i;j )2 � + (s)

x ij S � V; s 2 S (28)

X

(i;j )2 A

x ij � L bound (29)

x ij 2 f 0; 1g (i; j ) 2 A (30)

si ; t i 2 f 0; 1g i 2 V (31)

A column has negative reduced cost if it is less than the dual variable of constraint (20).
To solve the pricing problem we reformulate it as an ESPPRC. This is done by substituting

the variables si and t i for i 2 V with arcs from a super source node �s and arcs to a super
target �t node. The new arcs are de�ned by arc set�A = f (�s; v) : v 2 Vg [ f (v; �t ) : v 2 Vg.
The pricing problem then becomes solving an ESPPRC with a single resource in the graph
�G(V [ �s [ �t; A [ �A) where the cost of the new arcs are given by

�cij =

8
<

:

ĉij 8(i; j ) 2 A
� j (�s; j ) 2 �A
� � i (i; �t ) 2 �A

The lower bound can be improved using valid inequalities forthe ESPPRC polytope and valid
inequalities for the master model such as the SR-inequalities by Jepsen et al. [8].

3 Implementation

The bidirectional labeling algorithm of Righini and Salani [9] have been implemented for
solving the pricing problem. The Branch-Cut-And-Price algorithm is implemented in the
BCP framwork from COIN [4]. CLP is used as LP solver and the GSECs are separate by
solving a minimum cut problem, see Wolsey [10] for details. The SR-inequalities are separated
using the algorithm proposed by Jepsen et al. [8], either the�rst or the last node on a partial
path is not considered part of the SR-cut. Branching is done on a single arc or all arcs out of
a node and is added as a cut in the master model. The constraints in the original space are:

X

k2 K

x ijk = 0 _
X

k2 K

x ijk = 1 ( i; j ) 2 A (32)

X

k2 K

X

(i;j )2 � + (i )

x ijk = 0 _
X

k2 K

X

(i;j )2 � + (i )

x ijk = 1 i 2 V (33)
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