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Chapter 1

Introduction

Bj rn Petersen
DTU Management Engineering, Technical University of Denmaik

1 Motivation

Operation Research (OR) is an interdisciplinary branch of gplied mathematics and formal

science that uses advanced analytical methods such as matatical modeling, statistical

analysis, and mathematical optimization to arrive at optimal or near-optimal solutions to

complex decision making problems. OR is often concerned witdetermining the maximum

(of prot, performance, or yield) or minimum (of loss, risk, or cost) of some real-world ob-
jective, and strives to support the decision making by provding a number of tools such as
mathematical modeling and mathematical programming. Mathematical modeling is used to
formulate problems in a concrete way using mathematical egations, whereas mathematical
programming covers solution methods for the mathematical érmulations. Even though this

approach by its nature often has an exponential running time it has still been very successful,
partially due to increased computing power but primarily due to algorithmic improvements.

Optimization refers to choosing the best element from a set foavailable alternatives.

OR is used in many dierent disciplines including transportation (vehicles, trains, air-
planes, ships), production, telecommunication, and nan®. In this thesis the focus is on
transportation and more concretely on vehicle routing and #ortest path problems. Vehicle
routing problems, speci cally the Capacitated Vehicle Routing Problem (CVRP) and the Ve-
hicle Routing Problem with Time Windows (VRPTW), are intere sting because they contain
the structure of what makes this type of problems hard to sole. This has historically made
CVRP and VRPTW the test ground for new techniques and developments for many other
problems.

Through a focus on shortest paths this thesis will mainly lodk at how to solve vehicle
routing problems when they get hard to solve. The di culty of these problems grows when
the solution space grows, e.g., VRPTW instances with looseitne windows and large capacities
where the possibility of long routes (measured in number of astomers) exists. Some instances
with these characteristics with as little as 100 customers annot be solved at present.
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Chapter 1

1.1 Mathematical Modeling and Programming

Mathematical modeling is de ned by a set of variables, used ¢ represent decisions in a
problem, and a set of equations (or inequalities) denoted awstraints, used to limit the amount
of valid decisions. The constraints de ne the feasible soltion space of a problem, i.e., a
polytope in a multi-dimensional space that contains all vald solutions to the problem. The
objective is a function of the variables that points to the sdution(s) in the feasible solution
space where the objective function reaches the global optiom.

When the variables are continuous and the constraints and tle objective function are
linear, the problem is called a linear program (LP). If integrality is imposed on the variables,
it is denoted an integer program (IP), and if both types of variables exist, a mixed integer
program (MIP) is obtained. In this thesis, problems of the two latter kinds are sought solved,
and in that process these problems are relaxed into LP problas.

Many problems can be formulated as (M)IPs and various solutbn methods have received
a lot of attention during the years. The di erent solution met hods can roughly be divided
into three categories:

Exact algorithms nd solutions that are proven optimal, i.e., no other solution exists
with a better objective function value.

Heuristics give no guaranty for the quality of the solution value. They can be useful in
cases where running time is an issue and it is not imperativelat an optimal solution
is found.

Approximation algorithms have bounds on how much their solution can di er from the
optimal solution.

Due to the P = NP issues exact solution methods mostly have exponential ruring time.

Nonetheless, the study of exact methods often give insightnto the problem behavior that

may otherwise be hard to obtain. Furthermore, the improvements of exact methods have
pushed the boundaries for what can be solved in reasonablentie. Even though heuristic
solution methods can speed up exact solution methods the fois in this thesis is solely on
exact algorithms.

1.2 Exact Methods

Many exact methods are based on the Branch-and-Bound paradim, where a relaxation of the
problem is used in each node of the branch tree, i.e., an enlged solution space is considered.
If the gap between the lower (LB) and upper bounds (UB) for some node is non-positive
it is possible to fathom the sub-tree rooted in that node. Assiming a minimizing objective
function, one way of calculating a lower bound is by solving he LP relaxation of the (M)IP
de ning the problem, i.e., the enlarged solution space allws for integer variables taking on
continuous values.

Raising the LB or lowering the UB will make the gap smaller. Sill assuming a minimizing
objective function, a well studied way to raise the lower bound is by the use of cutting planes.
Cutting planes are inequalities that cut o some of the current fractional solution, i.e., the
non-integer solution obtained by the LP relaxation. For the raised LB to be a valid LB the
inequalities may not cut o any feasible solutions. When inrporating cutting planes into
the Branch-and-Bound paradigm a Branch-and-Cut algorithm is obtained.
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Some problem formulations may have special structure, i.ethere are variable sets where
some constraints are non-overlapping, or a sub-set of constints is in itself a problem with an
e ective solution algorithm. In these cases it is possible toapply Dantzig-Wolfe decomposition
to divide the problem into smaller subproblems that have thér solutions combined in a master
problem, see Dantzig and Wolfe [2]. This approach is known asolumn generation. If the
subproblems are solved iteratively (until the master problem objective value cannot improve
further) it is called delayed column generation. When incoporating decomposition into the
Branch-and-Bound paradigm a Branch-and-Price algorithm & obtained. The subproblems
are often problem specic, e.g., shortest path problems wtih is the focus of this thesis.

It is possible to combine cutting planes with column generaion. This is denoted Branch-
Cut-and-Price. However, adding cuts is not as straight forvard as in the Branch-and-Cut
algorithms. The cuts can be divided into two categories:

Cuts expressed in the original formulation.
Cuts expressed in the master problem formulation.

The rst alternative can be thought of as having the cuts part of the model before decom-
position and thereby handling them as any other constraint n the model would be handled.
This will in most cases mean that there are some changes in theosts associated with the
subproblem but no structural changes, i.e., the same spedigurpose algorithm can be used
without changes to solve the subproblems.

The second alternative may have complicating repercussianfor the subproblems, since
cuts on master variables do not necessarily map back to the aginal model, and thus the
special structure of the subproblems. The altered subprol@ms may contain non-linear ob-
jective functions and it may be necessary to add additional ariables. This may change the
complexity of the subproblems and can result in much higher omputational e orts being
needed. This case is less studied both theoretically and egpimentally and is in the context
of shortest paths the main focus of this thesis.

2 Goals

The focus of this thesis is on shortest path problems and howa solve them in the context
of column and cut generation algorithms, i.e., with negative weights and extra complicating
issues to handle costs not directly mappable to the edge wdigs. The main goals can be
summarized as:

Investigate how to solve shortest path problems in the presece of negative cycles and
resource constraints.

In a column generation context to investigate how to handle eects of cutting planes
derived from the master problem formulation.

Investigate the impact of the cutting planes on the subprobems complexity, on the
quality of the lower bounds for the master problem, and the oerall running time of the
Branch-Cut-and-Price algorithm.

Explore alternative reformulations to target dicult part of problems.
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Shortest path problems are present many places, both on itswen and as subproblems. Accord-
ing to Dror [3] solving the elementary shortest path problemon a graph containing negative
cost cycles is stronglyNP -hard.

Many problems decompose into a set partitioning master prokem and some kind of short-
est path problem. Cuts valid for the problem before the decormposition are often directly
applicable to the decomposed model. This is in contradictia to cuts valid for the set par-
titioning problem which often require some extra handling in the shortest path subproblem.
Very e cient cuts are known for the set partitioning polytop e including some of the general
purpose cut family known as Chwatal-Gomory cuts.

Cuts valid for the set partition polytope are incorporated into the existing subproblem
algorithms by modifying these special purpose algorithms. The increased complexity (and
thereby potentially increased running times) of the subprdlems is a trade-o with the quality
of the lower bound obtained in the master problem. The runnirg time saved by exploring
fewer branch nodes due to the improved lower bound is hopeflyl overshadowing the increased
e ort put in solving the subproblems.

Solving the shortest path problems is often the bottleneck & decomposition algorithms,
especially for hard instances. Alternative decompaositios target this behavior by moving some
of the complexity from the pricing stage to the master problem.

3 Contribution

The main contributions of the thesis, summarized in the poiris below, is to show

how to nd resource constrained shortest paths by the use of &ranch-and-Cut algo-
rithm.

how alternative reformulations can be obtained through the use of Partial Paths, so
that movement of complexity between master and pricing probdlem is facilitated.

theoretically and experimentally how to apply the Chwatal -Gomory cuts of rank 1 known
from Branch-and-Cut algorithms for general MIPs to the vehicle routing problem with

time windows. Furthermore, to show how to incorporate this into a dynamic program-
ming algorithm for the subproblem. The approach appears vey successful and it is
possible to solve several previously unsolved instancesofin the benchmarks of Solomon

[7].

A more detailed description of the contributions of each chater can be found in the following
reading guide in Section 4.

4 Reading Guide

This thesis is divided into four parts. The rst part consist s of this introductory chapter and
a chapter on solving Resource Contrained Shortest Paths Pidems by Labeling Algorithm.
The second part is the main contribution consisting of the mat relevant papers produced.
The third part sums up the thesis. Finally, the fourth part ac ts as an appendix and presents
contributions that are not within the primary scope of the th esis, but have been performed
during the Ph.D. course.



Introduction

In the following is a chapter-wise guide for reading this theis.

Chapter 2: Resource Contrained Shortest Paths Problems Soldeby a Labeling Algorithm

The chapter presents a general labeling algorithm for solvig various resource constrained
shortest path problems. A parallelized version of the algathm is introduced and some brief
computational results are presented. When labeling algothms are applied throughout this

thesis this is the algorithm used.

4.1 Part Il: Shortest Paths and Vehicle Routing

This part concerns the main topic of the thesis.

Chapter 3: Subset-Row Inequalities Applied to the Vehicle Rding Problem with Time Win-

dows The paper presents how a subset of the Chwatal-Gomory cutsmay be applied to the
master problem of a decomposition of the vehicle routing prblem with time windows. It

is shown how each cut in the master problem increases the corgxity of the subproblem

and how this is handled in a dynamic programming algorithm. Experimental results were
carried out on the Solomon instances and it was possible solse several previously unsolved
instances by this new approach. Furthermore, experiments lsowed that the cuts improved
the lower bounds to an extent that signi cantly reduced the size of the branch tree. The
paper is co-authored with Mads Jepsen, Simon Spoorendonk,nd David Pisinger and has
been published in the journal Operation Research, see Jepset al. [5].

Chapter 4: Chwatal-Gomory Rank 1 Cuts used in a Dantzig-Wolfe composition of the Vehi-

cle Routing Problem with Time Windows This paper is an extension of the work described in
Jepsen et al. [5], and shows how any Chatal-Gomory rank 1 cuttan be applied to the vehicle
routing problem with time windows. Experimental results show that it was possible to solve

even more instances without branching. However, the cut segration times were substantial.

The work is co-authored with David Pisinger and Simon Spooradonk and has been published
as a chapter in a book on recent advances within vehicle routig problems, see the chapter
by Petersen et al. [6] in the book edited by Golden et al. [4].

Chapter 5: Branch-and-Cut Algorithm for the Elementary Shortest Path Problem with a Ca-
pacity Constraint. Elementary shortest path problems with resource constraits occur as a
subproblem in many decompositions. This paper presents a vg e cient Branch-and-Cut
algorithm that regards a single capacity constraint. This is joint work with Mads Jepsen and
Simon Spoorendonk. The paper has been submitted for publid¢en.

Chapter 6: Partial Path Column Generation for the Vehicle Rouing Problem. This presents
a column generation algorithm for the Capacitated Vehicle Routing Problem (CVRP) and
the Vehicle Routing Problem with Time Windows (VRPTW). This is joint work with Mads
Jepsen and David Pisinger. The paper has been submitted foryblication.

Chapter 7: Optimal Routing with Failure Independent Path Protection. This paper presents
a practical application of nding shortest paths in the tele communication industry. The
problem consists of nding a collection of paths in a teleconmunication network that covers
a given bandwidth demand and follows a certain backup policy Experimental results show

7



Chapter 1

that the implemented backup strategy gives signi cant bandwidth savings. The paper is co-
authored with Thomas K. Stidsen, Simon Spoorendonk, MartinZachariasen, and Kasper B.
Rasmussen and has been published in the journal Networks, seStidsen et al. [8].

4.2 Part Ill: Conclusion

This part of the thesis concludes and summarizes on the worknesented in Part |l.

Chapter 8: Conclusion This chapter contains the concluding remarks and discussh of po-
tential directions for future research.

Chapter 9: Summary in Danish This chapter contains a Danish summary of the thesis.

4.3 Part IV: Other Contributions

This part of the thesis presents contributions that are not within the primary scope of the
thesis, but have been performed during the Ph.D. course.

Chapter 10: The Simultaneous Vehicle Scheduling and Passemg8ervice Problem Passen-

gers using public transport systems often experience waitig times when transferring between

two scheduled services. This paper propose a planning appaoh which seeks to obtain a
favorable trade-o between the two contrasting objectives passenger service and operating
cost, by modifying the timetable. The planning approach is referred to as the Simultaneous
Vehicle Scheduling and Passenger Service Problem (SVSPSH)he paper is co-authored with

Hanne L. Petersen, Allan Larsen, Oli. B. G. Madsen, and Stefa R pke, and has been sub-

mitted for publication.

Chapter 11: The Multi-Commodity k-splittable Maximum Flow Problem The Multi-Commodity
k-splittable Maximum Flow Problem consists of routing as mud ow as possible through a
capacitated network so that each commodity uses at mosk paths and the capacities are
satis ed. The problem is solved to optimality through Branch-and-Price. This is joint work
with Mette Gamst. The paper has been submitted for publication.

Chapter 12: Partial Path Column Generation for the Elementary Shortest Path Problem with
Resource Constraints As just noted previously, elementary shortest path problans with re-
source constraints occur as a subproblem in many decompogins. This paper introduces a
decomposition of the Elementary Shortest Path Problem with Resource Constraints (ESP-
PRC), where the path is combined by smaller sub-paths. Comptational results by comparing
di erent approaches for the decompaosition and comparing thebest of these with existing al-
gorithms are shown. It is also shown that the algorithm for many instances outperforms a
bidirectional labeling algorithm. This is joint work with M ads Jepsen. The paper has been
published as an extended abstract at INOC 2009.

Chapter 13: Partial Path Column Generation for the Vehicle Rouing Problem with Time
Windows. This paper is related to the work described in Chapter 6 and pesents a column
generation algorithm for the Vehicle Routing Problem with Time Windows (VRPTW). The

traditionally elementary route-columns are relaxed into partial paths, i.e., not necessarily
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starting and ending in the depot. This way, the length of the partial path can be bounded
and a better control of the size of the solution space for the pcing problem can be obtained.
This is joint work with Mads Jepsen. The paper has been publibed as an extended abstract
at INOC 2009.

Chapter 14: The Vehicle Routing Problem Solved by Bounding anBnumeration of Partial
Paths. This paper is extended work of Chapter 6, and is inspired by wrk described by Bal-
dacci et al. [1] where columns with potentially negative rediced cost are enumerated after
good upper and lower bounds are found. This is joint work withMads Jepsen. The paper
has been published as an extended abstract at Tristan 2010.

Chapter 15: A solution approach to the ROADEF/EURO 2010 chalenge based on Benders
Decomposition The French operations research society, Recherche Ogetiannelle et d'Aide
a la Decision ROADEF, put forth a challenge to schedule and plan energy production in the
French energy sector. An approach based on Bender's Decomgition has been developed.
The paper is co-authored with Richard Lusby and Laurent F. Muller.
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Chapter 2

Resource Contrained Shortest Paths
Problems Solved by a Labeling Al-
gorithm

Bj rn Petersen
DTU Management Engineering, Technical University of Denmaik

1 Introduction

The Shortest Path Problem with Resource Constraints (SPPRQ can be stated as: Let
G(V;E) with nodes V and edgesE be a weighted directed graph, and letR be a set of
resources. For each edge 2 E and resourcer 2 R three parameters are given: A lower
limit ar(e) on the accumulation of resourcer when traversing edgee 2 E; An upper limit
by (e) on the accumulation of resourcer when traversing edgee 2 E; and an amount ¢, (€) of
resourcer consumed by traversing edges 2 E. In general ¢ (€) can be a function and can also
be dependent on other resources, e.gg (e;r1;r2) : ra;r> 2 R, but will for ease of notation
be denotedc; (€) throughout this chapter. The objective is to nd a minimum c ost path P,
i.e., minimize the cost resourcec, from a source nodeo 2 V to a destination noded 2 V,
where the accumulated resources oP satisfy the limits for all resourcesr 2 R. Without
loss of generality it is assumed that the limits must be satised at the start of each edge e,
i.e., beforec: (€) has been consumed. It is noted that equivalent upper and loer limits and
consumptions on the nodes can be \pushed" onto the edges, e,ghe outgoing edges of a
node.

The Shortest Path Problem with Resource Constraints andk-cycle Elimination (k-cyc-
SPPRC) can be stated as the SPPRC but with an additional constaint that the path is k-cycle
free. In k-cycle free paths, cycles of siz& or smaller are not allowed, i.e., paths containing

Problem with Resource Constraints (ESPPRC) can be stated asn SPPRC with an additional
constraint that path P is cycle free, i.e., no nodesr 2 V is in P more than once. This is
essentially the same as &-cyc-SPPRC with k = 1 . Relaxing the ESPPRC so that all nodes
do not have to be elementary gives rise to the Partial Elemerdiry Shortest Path Problem with
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Chapter 2

Resource Constraints (PESPPRC), where only a subses V of the nodes are not allowed
to be in the path more than once. Finally, the integration of k-cyc-SPPRC and PESPPRC
demands that the nodes inS V are not allowed to be in the path more than once at the
same time as none of the other node§ = VnS among themselves forms a cycle of sizk

wherev; 2 S*e S[; :0 i k 1are not allowed.

Dror [8] showed that the ESPPRC is strongly NP -hard, hence a relaxation of the ESPPRC
was used as the pricing problem in early BCP algorithms. The 8ortest Path Problem
with Resource Constraints (SPPRC), rst named so by Desrocters [6], can be solved in
pseudo-polynomial time, e.g., by use of labeling algorithra. Christo des et al. [4] denoted
the SPPRC solutions asg-routes when only a single capacity resource is present. Tariprove
lower bounds of the master problem Desrochers et al. [7] use2tcycle elimination which was
later extended by Irnich and Villeneuve [13] to k-cycle elimination (k-cyc-SPPRC), still with
pseudo-polynomial running time.

Beasley and Christo des [1] proposed to solve the ESPPRC usg Lagrangian relaxation.
However, recently labeling algorithms have become the mospopular approach to solve the
ESPPRC, see e.g., Dumitrescu [9] and Feillet et al. [10]. Whe solving the ESPPRC with a
labeling algorithm a binary resource for each node is added kich increases the complexity of
the algorithm compared to solving the SPPRC or thek-cyc-SPPRC. Righini and Salani [17]
developed a labeling algorithm using the idea of Dijkstra'sbi-directional shortest path algo-
rithm that expands both forward from the source node o and backward from the destination
node d and connects paths in the middle, thereby potentially reduéng the running time of
the algorithm. Furthermore, Righini and Salani [16] and Boland et al. [2] proposed to solve
ESPPRC by use of a decremental state space algorithm that iteatively solves a SPPRC by
applying resources forcing nodes to be visited at most onceRecently Chabrier [3], Danna and
Le Pape [5], and Salani [18] successfully solved several preusly unsolved instances of the
VRPTW from the benchmarks of Solomon [19] using a labeling aorithm for the ESPPRC.

The chapter is outlined as follows: In Section 2 a quick intrauction to the concepts of
labeling algorithms as well as a description of how they are gplied to general shortest paths
are given. Section 3 describes how to make the search for shest paths bidirectional and
a proof of correctness is presented. Section 4 introduces aaallel labeling algorithm. In
Section 5 brief computational results are shown. Finally, £ction 6 contains some concluding
remarks.

2 Labeling Algorithm

Several articles covering the basics of solving shortest pfa problems by use of labeling al-
gorithms already exist, so it is beyond the scope of this chaer to go into these details.
However, a short introduction to settle the notation will be given. For a detailed description
see e.g. Irnich [12].

The central part of the algorithm is the use of labels which r@resent partial paths rooted
at node o. Each label has associated a set of attributes:

A node to which it belongsv 2 V

A pointer to the label of the parent node p

12



Resource Contrained Shortest Paths Problems Solved by a La#ing Algorithm

The accumulated consumption of each resource 2 R (including the cost resourcec)

An ordered set of lastk 1 visited nodes S

Thus, a label L with v(L) = v represents a partial path from nodeo to node v and all the
accumulated resources along the path. We will usé (L) to refer to attribute f of a label. E.g.
r(L) refers to the accumulated consumption of resource in label L. The parent p(L) of label
L is the label L, that was extended to createlL. L is recursively used to nd the path P(L)
that label L represents.V (P (L)) (or shorthand V(L)) is the multiset of the predecessors and
E(P(L)) (or shorthand E(L)) are the edges onP. The attributes r and are not strictly
necessary and are only present for notational and computatinal reasons, they can always be
computed by following the chain of parent labelsL ,; L 1;:::; Lo back to the starting node o.

In the following it is assumed that all resources are boundedstrongly from above, and
weakly from below, i.e., if the current resource accumulatin is below the lower limit on a
given edgee, it is allowed to Il up the resource to the lower limit, e.g., waiting for a time
window to open. This means that two consecutive labelsL, and L, related by an edge
e=(u;v), i.e., Ly is extended and created.,, wherev(L,) = u and v(Ly) = v, must satisfy

r(bv) h(e 8r2R 1)
r(Ly) =maxfr(Ly)+ c(e);ar(e)g 8r2R (2)
Ve w 8w 2 (Ly) 3

Here (1) demands thatL, satis es the upper limit of resource r corresponding to edgee =
(u; v), while (2) states that resourcer at label L, corresponds to the resource consumption at
label L, plus the amount consumed by traversing edges, respecting the lower limit on edge
e and (3) ensures no cycles of size smaller thak.

The concept of labeling algorithms is to iteratively extend labels (according to (1){(3)) in
the following way, until there are no more labels left. When alabel has been extended it, is
considered treated:

Labeling (G;o;d)
1 L = First-Label( 0)
2 PQ.enqueue( Linit )
3 while PQE6 ;
Remove-Dominated (P Q)
L = PQ.dequeue()
for each nodev 2 Extendables (L) [/ Nodes to whichL can be extended
Ly = Extend-Label( L;v)
if v(Ly)=d
Store-Solution(  Ly;sol)
10 else PQ.enqueue( Ly)
11 return sol

©O© 0o ~NO O b

Line 1 makes the rst label which is then put in a queue in line 2 Lines 4{10 loop as long
as there are untreated labels left. A label is selected in lia 5 which is then extended in line
7. If the new label represents a path fromo to d, it is stored in line 9. Otherwise it is put in
the queue for later treatment.

From the pseudocode it is clear that without Remove-Dominated in line 4 this results
in a complete enumeration of all feasible paths.

13



Chapter 2

2.1 Dominance

The goal of dominance is to reduce the number of labels that @ created during the execution
of the labeling algorithm, since it is not desirable to exterd labels that are not part of
an optimal solution. Unfortunately, it is not known in advan ce which labels span optimal
solutions, but it might be possible to decide for some labelghat they are not part of any
optimal solution. If just any optimal solution is sought, do minance is to reduce the number
of labels extended and still be able to nd an optimal solution. A label is thus said to be
dominated if its removal during the run of the algorithm does not remove all optimal solution.

In the following it is assumed that all the extension functions c; (€) are non-decreasing. A
non-decreasing functionc; (€) has the following property:

De nition 1. A function f is non-decreasing i :
x y) f(x) f(y) 8xy

In relation to dominance it is necessary to consider extenshs of labels. For this reason
three de nitions are presented (slightly modi ed from Irni ch and Villeneuve [13]):

De nition 2.  The set of all feasible paths from labelL to node u considering the resource
consumption of labelL is de ned asF (L;u).

De nition 3.  The set of all feasible paths from labelL to node u considering the k-cycle
elimination and the partial elementarity is de ned to be S(L;u).

De nition 4.  All feasible extensions of labelL is de ned as:
E(L)= F(L;t)\S (L;t)
With De nition 4 as a building block the following de nition of domination is now given:

De nition 5. A set of labelsL; dominates labelL; if:

v(Li) = v(L;) 8Li2L; (4)

C(Li) CLJ‘) 8L 2L; (5)

E(L;) E(L1) (6)
Li2L;

In other words, the paths corresponding to labels inL; and the path L; should end at
the same nodev(L;) = v(L;) 2 V : 8L; 2 Lj, each path corresponding to some label; 2 L ;
should cost no more than the path corresponding to label j, and nally any feasible extension
of L; is also a feasible extension of somigj 2 L ;.

De nition 5 implies that if L; is dominated then any path P(L;; ) consisting of L; con-
catenated with a feasible extension 2 E(L;) is not a unique optimal solution, since at least
one other labellL; 2 L; can also be concatenated with and make a pathP(L;; ) that is as
least as cheap, because(L)+ cc(;r (Li)) c(Lj)+ cc(;r(L;j)) due to De nition 1, that is:

8 ZE(LJ') 9L 2L : 2E(Li) ™ c(L)) C(Lj)
)8 2E(Lj) 9Lij2L; : 2E(Li) ™ c(P(Li; )) c(P(Lj; )
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Each node in the set of elementary nodes, i.e., the nodes that can only be visited once,
can be modeled using a binary resource. Feillet et al. [10] ggested to consider the set of
nodes inS that cannot be reached from a labelL; and compare the set with the unreachable
nodes of a labeL; in order to determine if some extensions are impossible. Oniother words:
update the node resources in an eager fashion instead of a {aZr'he following de nition is a
generalization of Feillet et al. [10][De nition 3].

De nition 6.  Given a start nodeo 2 V and a label L with v(L) = u, a nodev 2 V is
consideredunreachableif v has already been visited on the path fromo to u, i.e., v2 V(L)
or if a resource window is violated, e.g.:

9r 2R r(L)+ “r(u;v) >br(v)

where ", (u; v) is a lower bound on the consumption of resource on all feasible paths fromu
to v. The node resourcesare then given as:v(L) = 1 indicates that node v 2 V is unreachable
from nodev(L) 2 V, and v(L) = 0 otherwise.

In the following E( (L)) (or shorthand E(L)) will be the set of all feasible extensions for
label L only considering the k-cycle elimination constraint, and is equivalent to the corcept
of Hole-Setsas de ned by Irnich [12].

To determine if (6) holds can be quite cumbersome, as the stightforward de nition
suggests that we calculate all extensions of the involved tzels. Therefore a su cient criteria
for (6) is sought which can be computed faster. If labelL; has consumed less resources than
label L;j, then no resources are limiting the possibilities of extenthg L; compared to Lj,
hence the following proposition can be used as a restrictedevsion of the dominance criteria
in De nition 5.

Proposition 1 (Su cient condition) . A set of labelsL; dominates labelL; if:

v(Li) = v(Lj) 8Li2L; (7

F(Li) r Lj) 8r2R;8L;2L; (8)

E(L;) E(Li) 9)
Li2L;

and node resources are set according to De nition 6.

Proof. We check De nition 5. Equation (4) follows directly from (7) and (5) follows from
(8) with r = ¢, i.e., the cost resource. The remaining concern is if (6) hds for L; and L;.
The proof is by contradiction. Assume @at (7), (8), and (9) are satis ed but that (6) is not

satis ed. Then an extension 2 E(Lj)n | ., . E(Li) must exist which is feasible forL; but
not for any L; 2 L. Let LY denote the label that is obtained with v(L") = v, after L; has

the nodes on , and let v, be the rst node on preventing the extension of allLM 2L 1,
There are only three conditions where this can happen for ecL! *2L" 1

1) vp(L! H=1

2) or2R;  r(LM Y+ I (vh 1;vh) > b (h)
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3) 6Z(Li)
SinceL; can be extended with , the equivalent conditions for LJ-h Lare:
1) va(L] H=0
2) r(LP H+ e (vh tive) b(h);  8r2R
3) 2E(L))

Since all resources are consumed according to De nition 1 on until v, ; for all Lj 2 L;
and Lj, the above conditions contradict that (7) and (8) ar%satis ed. Moreover, 2 E(L;j)
and GZ%Li) contradict that (9) is satis ed. Hence, E(Lj)n | , . E(Li)= ;, which implies
E(L;) L,2L; E(Li), and (6) holds. That is, De nition 5 holds and L; dominatesL;. O

Using Proposition 1 as a dominance criteria is a restrictionof the dominance criteria of
De nition 5 since only a subset of labels satisfying (7), (8) and (9) satis es (4), (5), and (6).
It is noted that Condition (8) can be tightened by being lazy with r(L;) and eager withr(L;).
Furthermore, if k 1 Condition (9) is automatically satis ed so jL;j = 1.

Decreasing extension-functions can always be handled by ef equality on the a ected
resources, but can be tightened if a lower and an upper boundni known, see Reinhardt
and Pisinger [15] for further details. Being more aggressi& in Remove-Dominated , i.e.,
removing non-dominated labels, yields a heuristic solutia but with likely improved running
time.

3 Bidirectional Search

The concept of bidirectionality is to look for the shortest path from node o to node d by
nding paths from o to "the middle' and ‘reverse paths' fromd to "the middle’. The paths
meeting in "the middle' are then spliced together, and therby a shortest path is obtained.
"The middle' is de ned by the consumption of a monotone resotce r mono, i-€., Cr oo 1S €ither
non-negative or non-positive. Furthermore, it is requiredthat all cycles de ned by ¢, are
non-zero.

The reason for doing this for ESPPRC is to halve the exponentl factor in the worst case
number of labels, e.g.,0(V!2¥) can be reduced toO(%!2V=2) by selectingrmono as the number
of visited nodes. Fork-cyc-SPPRC and pure SPPRC the theoretical worst case numbeof
labels is not a ected but a better practical running time is hoped for. For PESPPRC the
worst case number of labels is dependent on the number of noglén S and will be somewhere
in between that of SPPRC and ESPPRC.

The bidirectional algorithm consists of the following three parts:

Find (part of) the shortest forward path going from o towards d at the same time as
nding (part of) the shortest backward ‘reverse path' going fromd towards o.

Combine a forward label L and backward label L with v(L;) = v(Lp) to obtain a
path P(L¢;Lp).

Stop at the "middle’, e.g., stop when the consumption of resarcer nono in a label reaches
Xstop, Where minay (&rpen, (V) Xstop  MaXv2v (Brpone (V).
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Forward and Backward Paths

The algorithm from Section 2 can be reversed by starting witha label Ly in node d with
the consumption of each resource set to the upper bound(L) = b (d) for all r 2 R. Then
go towards nodeo and treat extensions and dominance equivalently { this of carse is only
possible if an inverse of the extension function exists. Thalgorithm from Section 2 will be
referred to as the forward algorithm and the reversed counterpart will be referred to as the
backward algorithm Using equivalent argumentation as for the forward algorithm it is clear
that the backward algorithm also yields optimal solutions to the problems.

The bidirectional algorithm works by running a forward algorithm together with a back-
ward algorithm keeping two sets of labels: The forward labed LT and the backward labels
Lb. The following pseudocode shows how the bidirectional algdhm works.

BiDirectional-Labeling (G;o;d

1 L, = First-Label-Forward( 0)
2 Lg = First-Label-Backward( d)
3 PQ:.enqueue( Lo)

4 PQp.enqueue( Lg)

5 while PQ; 6 ; or PQy6 ;
6

7

8

9

if PQs.size() <PQy.size()
Remove-Dominated (P Qs)
L = P Qs .dequeue()

else Remove-Dominated (P Qy)

10 L = PQyp.dequeue()

11 for each nodev 2 Extendables( L)

12 Ly = Extend-Label( L;v)

13 P Q.enqueue( Ly)

14 for each labelL 2 Spliceable (L)
15 path = Splice (Ly;L)

16 Store-Solution(  path; sol)

17 return sol

As before, after the initial labels are created and enqueuethe algorithm loops until no labels
are left untreated. The functions in the pseudocode have kneledge about the direction
(forward or backward) and behave accordingly. Line 6 lets tke two directions grow in parallel.

Disregarding the stopping criterion, it is clear that the algorithm will nd at least two
optimal paths. One is found going forward and one is found gaoig backwards. These two
paths may be identical.

Splicing the Paths

At any time during the execution of the algorithm above there are two sets of labels. : L 2
LT ~ v(L)=vandLb:L2LP~ v(L)= v belonging to each nodes 2 V. Consider a label
L 2 Lf, and a labelLy 2 L\?. If the sub-path Ly is in the extensionLy 2 E(L¢) of L¢, the
two labels can be combined to form a feasible solutiorP, this is denoted splicing. Since a
path may use several nodes, a given patP may be the product of several di erent splicings,
e.g., one for each of thgPj nodes inP.
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For obvious reasons it is desirable only to get unique pathsso when searching for a path
P, two labelsL; 2 LY and Lp2 L2 in P with v(L;) = v(Lp) are only spliced whenv(L;) = v
is a unique nodev 2 V(P) on P. One way to nd this unique node v to splice at was proposed
by Righini and Salani [17] and is de ned as the noder 2 V(P) whereL; and L are as close
as possible to having the same consumption ofhono. A tie is broken arbitrarily, e.g., L
takes priority.

Consequently, we propose another way to nd the unique nodev. If more than half the
upper limit

_ maxy2v (h’mono (V))
Xstop = >

of resourcermono is consumed on pathP, one edge {(j ) 2 E(P) either crossesxsiop, Or ends
at Xstop, Choosing nodej as the splicing point for P will be unique. If the consumption of
'mono(P)  Xstop, Choosing the rst (or the last) node of P as splicing point will be unique.

Stop at the Middle

It is clear that if rmono(P) > X stop then at least one sub-path from the forward algorithm or
one sub-path from the backward algorithm has to contain the elge (;j ) 2 E(P) that crosses
the “middle'. Furthermore, at least one of them has to contan the rst (or last) edge.

From the description of splicing nodes above, it is clear thathere is no reason, for the
algorithm without the responsibility of crossing, to extend a label if a consumption of more
than Xstop Will be obtained. For the algorithm with the responsibility of crossing, there is no
reason to extend a label further when a consumption oksp is obtained. Therefore, both
algorithms can be stopped early and an optimal pathP is still found.

Proposition 2. The bidirectional algorithm returns an optimal solution for any value of
Xstop-

Proof. Without loss of generality assume that the forward algorithm crossesstop if 'mono (P) >
Xstop, the last node is chosen for splicing if mono (P)  Xstop, and the optimal path P is unique.
Let P =vy! ! vy, let Ll tv(Li) = vi; 8v; 2 V(P) be the labels representingP for the
forward algorithm, and let L‘b : v(Lib) = vj; 8v; 2 V(P) be the labels representingP for the
backward algorithm.

The proof is by contradiction. Assume that the optimal path P is not found. This can
only happen in three cases:

1) For some nodev; 2 V(P) neither L} nor L} is created.
2) For some nodev; 2 V(P) neither L} nor Lib exist after domination.
3) There is no nodev; 2 V(P) where both L} and Lib exist after domination.

It will now be shown that none of the three cases can happen.

Since both the forward and the backward algorithm nd P, for ‘Case 1' to happen the
stopping criteria must have stopped both of them before node; was reached. This means
that rmono (L) > Xstop @nd rmono(L})  Xstop thus Lt 2 E(L}) which contradicts that P is
feasible.
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For "Case 2'to happen at least one oltif and L‘b must have been deleted during domination,
which is in contradiction with De nition 5 or that P is unique and optimal.

"Case 3' can be divided into two cases: one whemgnono (P)  Xstop @and another where
F'mono (P) > X stop- If rmono (P)  Xstop, then the splicing must be done atv,,. L clearly exists,
soL{ must be absent. This can only happen wherrmono(LP 1) > X stop Which contradicts
that rmono(P)  Xstop- If Fmono(P) > X stop, then there must be a nodev; 2 V(P) where L‘b
cannot be extended more due tdmono(L‘b) Mmono (&(Vi 1;Vi)) = _rmono(Lib l) Xstop- Since
L does not exist, fmono (L} ) > X stop. This means that rmono (Lt ') > Xstop  mono (L}, 1)

implying L} Y2 E(L! 1) which contradicts that P is feasible. O
f b

Since any value ofxstp Yyields an optimal solution, Xsiop can be adjusted to balance the
amount of labels created by the forward and the backward algathms respectively. As long
asXswpp MIN(P Qp) the value of Xsop can be raised.

4 Parallel Labeling Algorithm

The algorithm just described is a so-calledpushing algorithm because labels are extended
from a node to neighbouring nodes. A slightly di erent variant is a pulling algorithm where
labels are extendedto a node from neighbouring nodes. Pulling nodes have a slightldi er-
ent structure that facilitates parallelization. Going fro m a label pushing to a label pulling
approach only takes a little rearranging of the pseudo-codand a priority queue for each node.

Parallel-Labeling (G;0;d)

1 PQg.enqueue(First-Label(  0))
2 while 9v2 V :PQ, 6 ;
3 for each nodei 2 V

4 for each nodeg 2 V

5 Li = PQ;j.getSome()

6 for eachL 2 L; : Extendable (L;i)
7 L; = Extend-Label( L;i)

8 if v(Lij)=d

9 Store-Solution(  Lj;sol)
10 else PQ*™ .enqueue( L;)

11 Remove-Dominated (P Q\*™)

12 for each nodei 2 V

13 P Q;.deleteSome()

14 P Q;.add( PQ*™)

15 return sol

As long as there is an untreated label left, each node tries t@ull in labels, which have not
consumed too much ofr none, from neighbouring nodes. The consumption check is perfored
in the getSome() function in line 5. Domination is performed in line 11 after the new labels
are created. When all nodes are nished pulling in labels, tle priority queues are updated in
lines 13{14.

Since only local data are changed for each node2 V in the lines 3{11, they can be run
in parallel.
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5 Computational Results

A bidirectional parallelized label-pulling algorithm has been implemented in C++ with GCC
[11] as compiler. POSIX thread [14] is used as means of obtaig concurrency. Binary
min_heaps have been used for priority queues.

Only brief computational results are shown here, since the arallel bi-directional labeling
algorithm presented in this chapter is used in the followingchapters and the performance
is documented there. The computational evaluation has beemerformed on a dual 2.66GHz
Intel ® Xeon® X5355 machine with 16 GB of RAM. Table 1 shows the running times and
speedup for two di erent kinds of ESPPRC.

Instance T1 T, Speedup T4 Speedup Tg Speedup
A-n61-k9 3.05 2.19 139 1.80 1.69 171 1.78
A-n69-k9 6.48 4.83 1.34 381 1.70 3.36 1.93
B-n50-k8 7.61 5.32 143 4.47 1.70 4.09 1.86
C203.100 4.96 3.75 132 344 144 3.27 1.52
R112.100 2.84 1.95 1.46 1.66 1.71 1.35 2.10
R203.100 551 3.75 147 3.14 1.75 2.60 2.12
R204.50 163.06 138.58 1.18 95.29 1.71 75.74 2.15
R206.100 14.13 8.72 1.62 6.71 2.11 5.30 2.67
R210.100 15.16 9.65 157 7.68 1.97 6.37 2.38
RC203.100 13.80 9.46 146 8.01 1.72 7.38 1.87
RC206.100 1.18 0.89 1.33 0.84 140 0.71 1.66
RC207.100 8.34 5.27 158 4.09 204 3.35 2.49
Average 1.43 1.75 2.04

Table 1: ESPPRC solved by parallel bi-directional labeling algorithm. The A* and B* in-
stances have a single load resource, whereas the C*, R*, andCR have a load as well as a
time resource. T; is the time in seconds when run ori cores. Speedupis the relative speedup
from one toi cores.

It can be concluded that some speedup is present. It can alsoebconcluded that more
cores give larger speedup. The speedup is not linear in the mber of cores, which can be
explained by limited memory bus speed. An average speedup ohore than two must be
considered satisfactory.

6 Concluding Remarks

A general labeling algorithm for solving various resource anstrained shortest path problems
has been presented. A parallel version was introduced and ste computational results were
presented that showed that a speedup is experienced when raimg on multiple cores.
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Abstract

This paper presents a branch-and-cut-and-price algorithm for he vehicle routing prob-
lem with time windows. The standard Dantzig-Wolfe decomposition of the arc ow for-
mulation leads to a set partitioning problem as the master problem andan elementary
shortest path problem with resource constraints as the pricing poblem. We introduce
the subset-row inequalities, which are Chvatal-Gomory rank-1 cus based on a subset of
the constraints in the master problem. Applying a subset-row inequality in the master
problem increases the complexity of the label-setting algorithm usedo solve the pricing
problem since an additional resource is added for each inequality. Weropose a modi-
ed dominance criterion that makes it possible to dominate more labelsby exploiting the
step-like structure of the objective function of the pricing problem. Computational ex-
periments have been performed on the Solomon benchmarks whewnee were able to close
several instances. The results show that applying subset-row irgialities in the master
problem signi cantly improves the lower bound, and in many cases maks it possible to
prove optimality in the root node.
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1 Introduction

The vehicle routing problem with time windows (VRPTW) can be described as follows: A set
of customers, each with a demand, needs to be serviced by a nber of vehicles all starting
and ending at a central depot. Each customer must be visited>actly once within a given time
window, and the capacity of the vehicles must not be exceededThe objective is to service
all customers traveling the least possible distance. In thé paper we consider a homogenous
eet, i.e., all vehicles are identical.

The standard Dantzig-Wolfe decomposition of the arc ow formulation of the VRPTW
is to split the problem into a master problem (a set partitioning problem) and a pricing
problem (an elementary shortest path problem with resourceconstraints (ESPPRC), where
capacity and time are the constrained resources). A restried master problem can be solved
with delayed column generation and embedded in a branch-anthound framework to ensure
integrality. Applying cutting planes either in the master or the pricing problem leads to a
branch-and-cut-and-price algorithm (BCP).

Kohl et al. [23] implemented a successful BCP algorithm for he VRPTW by applying
subtour elimination constraints and two-path cuts. Cook and Rich [8] generalized the two-
path cuts to the k-path cuts. Common for these BCP algorithms is that all applied cuts
are valid inequalities for the VRPTW, i.e., the original arc ow formulation, and contain
a structure making it possible to handle values of the dual vaiables in the pricing problem
without increasing the complexity of the problem. Fukasawaet al. [17] refer to this as arobust
approach in their paper, where a range of valid inequalitiedor the capacitated vehicle routing
problem are used in a BCP algorithm. The topic of column geneation and BCP algorithms
has been surveyed by Barnhart et al. [1] and E%bbecke and Desrosiers [27].

Dror [13] showed that the ESPPRC is strongly N P -hard, hence a relaxation of the ESP-
PRC was used as a pricing problem in earlier BCP approaches faghe VRPTW. The relaxed
pricing problem where non-elementary paths are allowed is ehoted the shortest path prob-
lem with resource constraints (SPPRC) and can be solved in psudo-polynomial time using
a label-setting algorithm, which was initially done by Desrochers [11]. To improve lower
bounds of the master problem, Desrochers et al. [12] used 3xde elimination, which was later
extended by Irnich and Villeneuve [20] to k-cycle elimination (k-cyc-SPPRC) where cycles
containing k or less nodes are not permitted.

Beasley and Christo des [2] proposed to solve the ESPPRC usg Lagrangian relaxation.
However, recently label-setting algorithms have become th most popular approach to solve
the ESPPRC; see e.g. Dumitrescu [14] and Feillet et al. [16].When solving the ESPPRC
with a label-setting algorithm a binary resource for each nale is added, which increases the
complexity of the algorithm compared to solving the SPPRC orthe k-cyc-SPPRC. Righini
and Salani [32] developed a label-setting algorithm usinghe idea of Dijkstra's bi-directio-
nal shortest path algorithm that expands both forward and backward from the depot and
connects routes in the middle, thereby potentially reducirg the running time of the algorithm.
Furthermore Righini and Salani [32] and Boland et al. [3] prgposed a decremental state space
algorithm that iteratively solves a SPPRC by applying resources that force nodes to be visited
at most once. Recently Chabrier [5], Danna and Le Pape [9], ahSalani [33] successfully solved
several previously unsolved instances of the VRPTW from thebenchmarks of Solomon [34]
using a label-setting algorithm for the ESPPRC.

In this paper, we extend the BCP framework to include valid inequalities for the master
problem, more speci cally by applying the subset-row (SR) hequalities to the set partitioning
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master problem. Nemhauser and Park [28] developed a similaBCP algorithm for the edge
coloring problem, but to our knowledge no such algorithms fo the VRPTW have been pre-

sented. Applying the SR inequalities leads to an increasedamnplexity of the pricing problem

since each inequality is represented by an additional resaae. To improve the performance of
the label-setting algorithm, we introduce a modi ed dominance criterion that handles the re-
duced cost calculation in a reasonable way. Moreover, the SRequalities potentially provide

better lower bounds and smaller branch trees.

The paper is organized as follows: In Section 2 we give an owgew of the Dantzig-Wolfe
decomposition of the VRPTW and describe how to calculate thereduced cost of columns
when column generation is used. In Section 3 we introduce th8R inequalities and show that
the separation problem isNP -complete. In Section 4 we review the basics of a label-setiy
algorithm for solving the ESPPRC and show how to handle the mdli ed pricing problem
in the same label-setting algorithm. For details regardinglabel-setting algorithms (including
bi-directionality) we refer to Desaulniers et al. [10], Irnich and Desaulniers [19], Irnich [18],
Righini and Salani [31]. An algorithmic outline and computational results, using the Solomon
benchmark instances, are presented in Section 5. Section ®mcludes the paper.

2 Decomposition

Let C be the set of customers, let the set of nodes b¥ = C [f o;dYy wherefog denotes the
depot at the start of the routes and f 0% denotes the depot at the end; and letE = f(i;j ) :

i;j 2 V;i6 jgbe the edges between the nodes. Ldf be the set of vehicles withjK j

unbounded, each vehicle having capacityD, and let di be the demand of customeii 2 C and
do = deo = 0. Let a be the beginning andb be the end of the time window for nodei 2 V.
Let s; be the service time fori 2 V and let tj; be the time vehiclek 2 K visits nodei 2 V,
if k visits i. Let ¢j be the travel cost on edge ij ) 2 E and let x;x be a variable indicating
whether vehiclek 2 K traverses edgeifj ) 2 E. Lastlet j = ¢; + s; > 0 be the travel time
on edge (;j ) 2 E plus the service time of customeri. The three-index ow model (Toth and

Vigo [36]) for the VRPTW is:

X X
min Gij Xijk 1)
k)gK (is §E
S.t. Xijk =1 8i2C (2)
k2KX(i;j )2 * (i) X
Xijk = Xijk = 1 8k 2 K (3)
(is § *(0) (i:j))(Z (09
Xjik Xjk =0 8i2C; 8k2K (4)
(J&)Z O] ()2 * ()
dixjk D k2K (5)
(i )2E
a tk b 8i2V; 82K (6)
Xik (tik + i)tk 8(;j)2 E; 8k2K (7)
Xik 210;1g 8(i;j) 2 E; 8k2 K (8)
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Here (2) ensures that every customer 2 C is visited, while (3) ensures that each route starts
and ends in the depot. Constraint (4) maintains ow conservation, while (5) ensures that the
capacity of each vehicle is not exceeded. Constraints (6),7) ensure that the time windows
are satis ed. Note that (7) together with the assumption that j > 0 for all (i;j) 2 E
eliminates sub-tours. The last constraints de ne the doman of the arc ow variables. Note
that a zero-cost edgexqq between the start and end depot must be present for all vehids
for (3) to hold if not all vehicles are used.

The standard Dantzig-Wolfe decomposition of the VRPTW, seee.g. Desrochers et al.
[12], leads to the following master problem:

X X
min Cij iip p (9)
g(ZP (i B%E
P2P (i;j)2 * (i)
p2f0;1g 8p2P (11)

where P is the set of all feasible routes, the binary constant jj, is one if and only if edge
(i;j) is used by routep 2 P, and the binary variable , indicates whether route p is used.
The master problem can be recognized as a set partitioning blem, and the LP relaxation
may be solved using delayed column generation. Let 2 R be the dual variables of (10) and
let o =0. Then the reduced cost of a routep is:
X X X
Cp = Cj ip i iip = (G ) ip (12)
(i )2E (i )2E (i )2E
The pricing problem becomes an ESPPRC where the cost of eachdge isT; = ¢ i
for all edges (;j) 2 E. When applying cuts during column generation we will distinguish
between valid inequalities for the VRPTW constraints (2)-(8) and valid inequalities for the
set partitioning constraints (10)-(11).
Consider a valid inequality for the VRPTW constraints (2){( 8) in terms of the arc ow
variables x: X X
ij Xijk 0 (13)
k2K (i )2E

When decomposed into the master problem, inequality (13) igeformulated as:

X X
i ip p O (14)
p2P (i;j )2E
Let 0 be the dual variable of (14). The reduced cost of a colummp is then
X X X
G = Gij ijp i ip i iip
(i:i()ZE (i )2E (i )2E
= (G 5 i) p (15)
(i )2E
Compared to (12) an additional coe cient j Is subtracted from the cost of edge i(j )

and the complexity of the pricing problem remains unchangedf we use the edge costg; =
G ij -
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Now, consider adding a valid inequality for the set partitioning master problem (10){(11)
that cannot be written as a linear combination of the arc ow variables:

X
PP 0 (16)
p2P
Let 0 be the dual variable of (16). The reduced cost of a colummp is:
p— X p—
G =T p= Cj ijp p 17)
(i )2E
In addition to the reduced cost computed for a columnp in (15) the cost p must be

considered. To re ect the possible extra cost |, it may be necessary to modify the pricing
problem by adding constraints or variables, thereby increaing its complexity.

3 Subset-Row Inequalities

The set of valid inequalities for the set packing problem is asubset of the set of valid inequali-
ties for the set partitioning problem since the latter problem is a special case of rst-mentioned.
Two well-known valid inequalities for the set packing problem are the cliqgue and the odd-hole
inequalities, where the rst is known to be facet-de ning for the set partitioning problem
(Nemhauser and Wolsey [29]).

Since the master problem is a set partitioning problem, it waild be obvious to go in this
direction when looking for valid inequalities for the maste problem. Consider the separation
of a clique or an odd-hole inequality. The undirected con ia graph GYP;E9 is de ned as
follows: Each column is a vertex inG®and the edge set is given as:

8 9
< X X =
E°= (p;9): ip =17 ig =1;12C; p;q2 P; p6 q
' (i )2 * () (ii)2 * () ’
That is, an edge is present if the two columng and g have coe cient one in the same row. In
a VRPTW context it reads: Two routes are con icting if they ar e visiting the same customer.
A clique in G°leads to the valid clique inequality:
X
p 1 (18)
p2|5

whereP P are the columns corresponding to the vertices of a clique iG° A cycle visiting
an odd number of verticesP in G°leads to the valid odd-hole inequality:
$ %
X 1]

P 2
p2|5

(19)

where P P are the columns corresponding to the vertices visited on thecycle in G°
However, when column generation is applied, it is not obvios how to re ect the reduced cost
of (18) or (19) in the pricing problem since there is no specic knowledge of the columns of
the master problem when solving the pricing problem.
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Example 1
SR inequalities derived from the con ict graph of a set packng problem. In the LP-solution
to A 1 all variables are%, which results in two violated SR inequalities:

With jSj = 3 and k = 2 due to variables 1, 5, and 3 giving the set of rows S =
fro;ra;rag

With n =5 and k = 2 due to variables 1, 2, 3, 4, and 5 giving the set of rows
S=1ryirsrars;reg

1 2 3 4 5 M g

ri 1 1 1

ro 1 1 1

rs 1 1 1 F4 &

ra 1 1 1

Is 1 1 1 5 u 3
re 1 1 1

e I's

Set packing problemA 1. 4

Corresponding con ict graph.

Inspired by the above inequalities (18) and (19) we introdue the subset-row inequalities
(SR inequalities). These inequalities are speci cally lirked to the rows (rather than the
columns) of the set packing problem, hence making it possikl to identify the coe cient of a
column in an SR inequality.

De nition 1.  Consider the set packing structure

X=f 2BPI:A 1g (20)
with the set of rowsM and columnsP, and ajM|j j Pj binary coe cient matrix A. The SR
inequality is de ned as: $ %

1%, IS] (1)
k k
p2P i2S

whereS M andO<k | Sj.

Example 1 illustrates some SR inequalities derived from theson ict graph of a set packing
problem. =

Given a columnp 2 P we need to have ,,5 ip Kk to get a non-zero coe cient of

p in qgl). For the master problem of VRPTW the coe cient matrix can be translated as

ip = ()2 +¢) ip» 1€, ip IS the sum of all the outgoing edges of a customeir. Hence,
$ %
1 X 1 X X
K P = T iip
i2s i2S (i )2 * (i)

which is only 1 or larger whenk or more customers ofS are visited on route p.
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Proposition 1. The SR inequalities (21) are valid for the Set Packing structureX .

Proof. The proof follows directly from Chavtal-Gg;nory's procedure to construct valid in-
equalities (Wolsey [37]). Scale thgSj inequalities p2p ipp 1 foreachrowi 2 S M
from (20) with £ 0 and add them:

X 11X - iSj
k LS
p2P  i2S
Flooring on left side and right side leads to (21). O

P

Observe that, Wpenlghe coecient & ,,5 ip evaluates to 0 or 1 for allp 2 P and
the right hand side ‘% = 1 then the set of SR inequalities (21) is a subset of the clige
inequalities (18).

From De nition 1 it is clear that the SR inequalities are Chva tal-Gomory rank-1 cuts, see
Chvatal [6]. Eisenbrand [15] has shown that the separation pblem is NP -complete for general
Chvatal-Gomory rank-1 cuts. However, in some special casgsolynomial time separation is
possible, e.g. the maximally violated modk cuts for a xed k by Caprara et al. [4]. Since the
SR inequalities are another special case, the separation giblem will be investigated further.

3.1 Separation of Subset-Row Inequalities

The separation problem of SR inequalities is de ned as follvs: Given the current LP-solution

where < 1forall p2 P, and let n be the size ofS. For some xed valuesn and k where
1<k n, nd the most violated SR inequality. Using the binary varia ble x; to denote
whetheri 2 S this can be stated as:

$ % .
X T q1X ° ik
max K d@pXiop (22)
%P i2M
s.t. Xj=n (23)
i2M
x; 2 0;1g 8i2M (24)
The corresponding decision problem SR-DECISION asks whetr
$ %
X T X °
p2P i2M

is feasible subject to (23) and (24), where 1 c<n andc2 Z. Since we may multiply (25)
by any coe cient % > 0, the coe cient bounds p < landc<n can be softened to

1
p< = c<l (26)

This leads to the following proposition:

Proposition 2. The separation problem SR-DECISION isNP -complete.
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Example 2
[llustration of the transformation 3CNF-SAT to SR-DECISIO N. Given the 3CNF-SAT ex-
pression

=(X1_1 X1_: X2) M (Xa_X2_ Xa)™ (X1 _: X3_" Xa)

the matrix A = (a;) becomes

1 0 m|m+1 ::: > m+n|{m+n+1
Ci i Cpy X1 il Xn
1 X1 1 1
2 X1l 1 1 1
X2 1 1
D X2 1 1
X3 1 1
D X3 1 1
X4 1 1
2n D Xa 1 1
2n+1 1
2n+2 1 1 1 1 1 1 1 1
2n+3 1 1 1 1 1 1 1 1

while we setk =3, p=1for p2 P andc=8.

Proof. We will show the statement by reduction from 3-conjunctive normal form satis ability

(3CNF-SAT). Given an expression written in three-conjunctive normal form, the 3CNF-

SAT problem asks whether there is an assignment of binary vales to the variables such that
evaluates to true. An expression is in three-conjunctive namal form when it consists of

a collection of disjunctive clausesCi;:::;Cy of literals, where a literal is a variable x; or a
negated variable: Xj, and each clause contains exactly three literals.
Let x1;:::;X, be the set of variables which occurs in the clause. We transform the

The rows 1 :::;2n of matrix A corresponds to literalsxy;: X1;X2;: X2;:::;Xn;: Xn, While
columnsj =1;:::;m correspond to clause<s;:::;Cn, and columnsj = m+1;:::;m+n
correspond to variablesx1;:::;Xn.

We now de ne matrix A as follows: Forj = 1;:::;m let a5 = 1i the corresponding
literal appears in clauseC;. For j =1;:::;n let a;j+m = 11 the corresponding literal is
Xj or:Xxj. Forj = m+ n+1let g =0. The last three rows of A are de ned as follows:
Forj =1;:::;m+ nlet agp+1;; =0, while agn+y:m+nes =1 FOr j =1;::5;m+ n+1let

An+2;j = ax+3;j = 1. Finally we set k=3, p=1forall p2 P andc= m+ n+1. Note
that all coe cients are within the bounds (26) for su ciently large. An example of the
transformation is illustrated in Example 2.
With the chosen constants, the SR-DECISION problem (25) reas
$ %
X 11X .
3 Aip Xi m+n+1= jPj
p2P T i2M
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which is satis ed if and only if

X
apXj 3 8p2P
i2M

As the last three rows of A always must be chosen, it is equivalent to

)gn
apx; 1 8p=1;:::;;m+n
i=1

evaluates to true in the 3CNF-SAT instance. In the correspording SR-DECISION
problem choose rowi if and only if the corresponding literal is true in . Since exactly
n literals are true, we will in this way choosen rows. Since at least one literal is true
in each clause, and each column;1::;m corresponds to a clause iPA we will get a
contribution of at least one in each of these columns. Morear, since exactly one ok;
and: x; istruein  we will get a contribution of exactly one in columnm+1;:::;m+n.
Hence, the corresponding SR-DECISION problem is true.

(i) Assume on the other hand that SR-DECISION is true. Let P® P be the set of rows
corresponding to the solution. By assumptionjPY = n. First we notice that exactly
one of the rows corresponding to the literalsx;j and : X; is chosen. This follows from

and each row covers exactly one column. For each literal in let x; or : X; be true if
the corresponding row was chosen in SR-DECISION. Each varlae will be well-de ned
due to the above argument. Moreover, since the row® ®must cover at least oneay; = 1

Since the reduction is polynomial, and SR-DECISION obvioudy is in NP, we have proved
the statement. O

Example 3 shows that typical separation problems of SR ineqalities actually possess the
properties assumed in theNP -completeness proof.

4 Label-Setting Algorithm

When solving the pricing problem, it is noted that nding a ro ute with negative reduced
cost corresponds to nding a negative cost path starting andending at the depot, i.e., an
ESPPRC. Our ESPPRC algorithm is based on standard label seihg techniques presented
by e.g. Beasley and Christo des [2], Dumitrescu [14], Feilkt et al. [16], Chabrier [5], Danna
and Le Pape [9]; hence in the following we mainly focus on thea@minance criterion used for
handling the modi cations stemming from the SR inequalities of the master problem.

The ESPPRC can be formally de ned as: Given a weighted direcéd graph G(V; E) with
nodesV and edgesE, and a set of resource®R. For each edge ij ) 2 E and resourcer 2 R
three parameters are given: A lower limit a;(i;j ) on the accumulation of resourcer when
traversing edge (;j) 2 E; an upper limit b (i;j ) on the accumulation of resourcer when
traversing edge (;j ) 2 E; and nally an amount ¢ (i;j ) of resourcer consumed by traversing
edge ;j) 2 E. The objective is to nd a minimum cost path p from a source nodeo 2 V to
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Example 3
To illustrate that the bounds (26) indeed are realistic consder the casek = 3. Choose
= m*n*l \where = ”Tz or = ”—31 depending on which of the expressions that evaluates

to an integral value. The right hand side of (25) evaluates to

1
c - =(mMm+n+1) — =
( ) m+n+1

where an integral value of gives ik

The value of gives

1
-=1 — 1 8p2 P
P m+n+1 P

Hence all bounds are valid according to the separation prolem (22)-(24).

a target nodeo®2 V, where the accumulated resources gf satisfy the limits for all resources
r 2 R. Without loss of generality, we assume that the limits must be satis ed at the start of
each edgeifj), i.e., beforec (i;j ) has been consumed.

Remark that equivalent upper and lower limits and consumptions on the nodes can be
\pushed" onto the edges, e.g., the ingoing edges of the node.

For the pricing problem of the VRPTW, the resources are demaml d, time t, a binary
visit-counter for each customerv 2 C and reduced costc. Note that also the reduced cost is
considered a resource. When considering the pricing probte of the VRPTW, the consump-
tions and upper and lower limits of the resources at each edgg;j ) in ESPPRC are:

aq(i;j ) =0, by(i;j)=D dj, c(ij)=d 8(i;j) 2 E
a(i;j)=a, h(;j)=h, a(izj) = 8(;j)2 E
av(i;j) =0, by(i;j) =1, a(;j)=1 8v2V:iv=j 8(;j)2E
ay(i;j) =0, b(i;j) =1, ov(izj) = 8v2V:ve6j 8(i;j)2E
ac(i;j)= 1, hk(i;j)=1, Ce(isj ) = G 8(;j)2E

In the label-setting algorithm labels at node v represent partial paths from o to v. The
following attributes for a label L are considered:

V(L) The current end-node of the partial path represented byL.
t(L) The sum of the reduced cost along pathL.
r(L) The accumulated consumption of resource 2 R along path L.

A feasible extension 2 E(L) of a label L is a partial path starting in a node v(L) 2 V
and ending in the target noded® that does not violate any resources when concatenated with
the partial path represented by L.

In the following it is assumed that all resources are boundedtrongly from above, and
weakly from below. This means that if the current resource acumulation of a label is below
the lower limit on a given edge, it is allowed to Il up the resource to the lower limit, e.g.,
waiting for a time window to open. This means that two consective labels L, and L, related
by an edge (;Vv), i.e., L, is extended and created.,, wherev(L,) = uand v(L,) = v, must
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satisfy

r(Ly) b(u;v); 8r2R (27)
r(Ly) =maxfr(Ly)+ ¢ (u;Vv);ar(u;Vv)g; 8r2R (28)

Here (27) demands that each labelL, satis es the upper limit b (u;v) of resourcer cor-
responding to edge (;Vv), while (28) states that resourcer at label L, corresponds to the
resource consumption at labellL, plus the amount consumed by traversing edgel(;Vv), re-
specting the lower limit a; (u; v) on edge (; V).

A simple enumeration algorithm could be used to produce all hese labels, but to limit
the number of labels considered, dominance rules are intraged to fathom labels which do
not lead to an optimal solution.

De nition 2. A label L; dominates labell; if

v(Li) = V(L) (29)
o(Li) c(L;) (30)
E(Lj) E (Li) (31)

In other words, the paths corresponding to labels.; and L; should end at the same node
V(Li) = v(L;) 2 V, the path corresponding to labelL; should cost no more than the path
corresponding to labellj, and nally any feasible extension ofL; is also a feasible extension
of Lj.

Feillet et al. [16] suggested to consider the set of nodes thaannot be reached from a
label L; and compare the set with the unreachable nodes of a labél; in order to determine
if some extensions are impossible. Or in other words: updatthe node resources in an eager
fashion instead of a lazy. The following de nition is a genealization of De nition 3 in Feillet
et al. [16].

De nition 3.  Given a start nodeo 2 V, a labelL, and a nodeu 2 V wherev(L) = u a node
v 2 V is considered unreachableif v has already been visited on the path frono to u or if a
resource window is violated, e.g.:

9r 2 R r(L)+ “r(u;v) >b(v)

where ", (u; V) is a lower bound on the consumption of resource on all feasible paths fromu
to v. The node resourcesre then given as:v(L) = 1 indicates that nodev 2 V is unreachable
from node v(L) 2 V, and v(L) =0 otherwise.

Determining if (31) holds can be quite cumbersome because ¢hstraightforward de nition
demands that we calculate all extensions of the two labels. Merefore, a su cient criterion
for (31) is sought that can be computed faster. If labelL; has consumed less resources than
label L then no resources are limiting the possibilities of extendig L; compared toLj, hence
the following proposition can be used as a relaxed version d@he dominance criterion.

Proposition 3. Desaulniers et al. [10] If all resource extension functions are non-decreasing,
then labelL; dominates labell ; if:

v(Li) = v(Lj) (32)
o(Li)  TL) (33)
r(bi) r(L) 8r2R (34)
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Using Proposition 3 as a dominance criterion is a relaxationof the dominance criterion
of De nition 2 since only a subset of labels satisfying (29),(30) and (31) satis es inequalities
(32), (33) and (34).

4.1 Solving the Modi ed Pricing Problem

Consider some valid SR inequality of the form (21),

$ %
X 1 X iSj
Ko™ P X
p2P i2S
whereS M and O<k | Sj. Let 0 be the corresponding dual variable when solving

the master problem to LP-optimality. From (17) the reduced cost of a column in the VRPTW
master problem is:

$P P % X $P P %
_ i2Ss ()2 *@) ip  _ i2S ()2 *(@) i
= K = Gi i K (35)
(i )2E

We analyze how this additional cost can be handled in the lablesetting algorithm for ESP-
PRC.

Let V(L) be the nodes visited on the partial path of labelL. The cost of a labelL can
then be expressed as:

SV V(L)
Kk

A new resourcem can be used to compute the coe cient of penalty for label L, i.e.,
m(L) = jS\ V(L)j, the number of customers involved in the cut. Note that the cansumption
of resourcem is 1 for each e.g. outgoing edge of the involved customers. Ehefore the
usual dominance criterion of Proposition 3 can be used. Not¢hat in case L; dominatesL,
¢(Li) ©o(Lj)and m(Lij) m(Lj)so€&lL;) &L;)since > 0. Hence the penalty term
must only be considered on the last edge to the target node toanpute the reduced costc(L)
of path L. However, further labels can be eliminated by exploiting the structure of (36).
For a label L let

&(L) = oL) (36)

T(L)= jS\ V(L)j modk

be the number of visits made toS since the last penalty was paid for visitingk nodes inS.
Recall E(L) as the set of feasible extensions from the labdl to the target node o® and note
that when label L; dominates labell;, their common extensions areE(L ;) due to (31). The
following cost dominance criterion is obtained for a singleSR inequality:

Proposition 4. If T(L;j) T (Lj), v(Li)= v(Lj), &Li) ¢€(Lj), andr(L;) r(L;)8r 2R,
then labelL; dominates labelL ;.

Proof. Consider any common extension 2 E(L;). SinceT (L;j) T (L;) the relation between
the number of future penalties for the two labels when concatnated with is:
IS\ j+ T(Li) JS\ j+ T(Lj)
k k
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This leads to the following relation between the costs:

e(Li+ )="(Li)+ () JS\J+T(L')

oL+ )=+ ST
Hence labell; dominates labell; . O
Proposition 5. If T(Lj) > T(L;j), V(Li) = v(L;), &(L;) &(Lj), andr(Li) r(Lj)8r2

R, then labelL; dominates labell; .

Proof. Consider any common extension 2 E(L;). SinceT (L;) > T(L;) the relation between
the number of future penalties for the two labels when concagnated with is:
S\ j+ T(Ly) jS\ j+ T(L;)
k k

(37)

Since 0 T (Lj) < T(L;j) Kk itis clear that the left hand side of (37) is at most one unit
larger than the right hand side, i.e., labelL; will pay the penalty at most one more time than
label L;j. Hence,

IS\ j+ T(Li) JS\ j+T(L))

_— 1

k k

That is, the additional cost of extending L; with is at most more than extending L;
with . This leads to the following relation between the costs:

&L+ ) =a(L)+ () JS\J+T(L')
sy o+ SUIETERD
IS\ j+ T(L;
I SR A AL
= ’t;(LJ + )
Hence labell; dominates labell ;. O

Observe that if T(Lj)+ jS\ j<k forall 2E(L;), itis not possible to visit S enough
times to trigger a penalty, i.e., the temporary penalty to th e cost ofL; can be disregarded.
In case of several SR inequalities, the new dominance critiem is as follows:

Proposition 6. Let Q= fq: ¢< 0"Tq(Li) > Ty4(Lj)g. Then labelL; dominates labell; if:

v(Li) = )Y(Lj) (38)

¢(Li) a €Lj) (39)
a2Q

r(bi) r(Lj) 8r2R (40)

Proof. The validity of (39) follows directly from Propositions 4 and 5. The validity of (38)
and (40) follows from Proposition 3. O
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5 Computational Results

The BCP algorithm has been implemented using the BCP framewtk and the open source
linear programming solver CLP, both parts of the framework COIN [7]. All tests are run on
an Intel R Pentium r 4 3.0 GHz PC with 4 GB of memory.

The benchmarks of Solomon [34] follow a naming convention obTm.n The distribution
Dcan be R, C and RC, where the C instances have a clustered distution of customers,
the R instances have a random distribution of customers, andhe RC instances are a mix of
clustered and randomly distributed customers. The time wirdow T is either 1 or 2, where
instances of type 1 have tighter time windows than instance®f type 2. The instance number
is given by mand the number of customers is given byn.

The outline of the BCP algorithm presented in this paper is asfollows:

Step 1. Choose an unprocessed branch node. If the lower bound is abmthe upper bound,
then fathom branch node.

Step 2. Solve the LP master problem.

Step 3. Solve the pricing problem heuristically. If columns with negative reduced cost
have been found, then add them to the master problem and go b#&cto Step 2.

Step 4. Solve the pricing problem to optimality. Update the lower bound. If the lower
bound is above the upper bound, then fathom the branch node. flsome new columns have
been found, then add them to the master problem and go to Step .2

Step 5. Separate SR inequalities. If any violated cuts are found, ten add them to the
master problem and go to Step 2.

Step 6. If the LP solution is fractional then branch and add the children to the set of
unprocessed branch nodes. Mark the current node as procesisand go to Step 1.

We allow a maximum of 400 variables and 50 cuts to be generateth each of steps 3, 4,
and 5 respectively. The pricing-problem heuristic is basedn the label-setting algorithm but
a simpler heuristic dominance criterion is used. If a label; dominatesL; on cost, demand
and time it is regarded as dominated andL; is discarded. That is, no concern is taken to
the node resources. The separation of SR inequalities is done with aomplete enumeration
of all inequalities with jSj =3 and k = 2. Let B be the set of basic variables in the current
LP solution and C be the set of customers, then the separation can be done i®(jCj3jBj).
Preliminary tests showed that SR inequalities with di erent values ofn and k seldom appeared
in the VRPTW instances, hence no separation of these inequdles was done.

The branch tree is explored with a best-bound search strateg i.e., the node with the
lowest lower bound is chosen rst, breaking ties based on th&P result of the strong branching.
We have adapted the branching rule used by Fukasawa et al. [17 For a subset of customers
S C the number of vehicles to visit that set is either two or greatr than or equal to four,

ie. N N
(Xijk + Xjik) =2
k2K (i )2 * (S)

and X X

(Xik + Xjk) 4
k2K (ij )2 *(S)
We are using the cut library of Lysgaard [25] to separate canidlate sets for branching, which
is an implementation of the heuristic methods described in lysgaard et al. [26].
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Author(s) CPU SpecINT SpecCFP  Normalized

Irnich and Villeneuve [20] P3 600 MHz 295 204 0.23
Chabirier [5] P4 1.5 GHz 526 606 0.52
Jepsen et al. [this paper] P4 3.0 GHz 1099 1077 1.00

Table 1: Comparison of computer speed. Based on CPU2000 benchmarksrbm SPEC [35]. ( ) benchmarks
are given for P3 650 MHz since no benchmarks were available fo P3 600. The normalized value is an average
of SpecINT and SpecCFP.

5.1 Running Times

To give a fair comparison between running times of our algothm and the two most recent
algorithms presented by Irnich and Villeneuve [20] and Chabier [5], the CPU speed is taken
into account. This is done according to the CPU2000 benchmés reported by The Standard
Performance Evaluation Corporation SPEC [35]. Table 1 givs the integer and oating point
benchmark scores and a normalized value, e.g. our computatns were carried out on a
computer approximately twice as fast as that of Chabrier.

A comparison of running times is shown in Table 2. To save spacwe only report results
on what we consider hard instances, i.e., the Solomon insta®es that were closed by either
Irnich and Villeneuve [20] or Chabrier [5] and by us.

Our algorithm outperforms those of Irnich and Villeneuve and Chabrier for 17 out of 22
instances. Seven of these instances were solved without ai8R inequalities. In these cases,
the faster running times were probably due to the bi-directional label-setting algorithm.

With the introduction of SR inequalities our algorithm becomes competitive with the
algorithm based on solvingk-cyc-SPPRC (e.g. instances R104.100, RC104.100, RC107010
RC108.100, and R211.50) and clearly outperforms the ESPPR®ased algorithm on the harder
instances (e.g., instances R210.50, RC202.100, RC205.1Gfhd RC208.25). In some cases
when solving the C1 and C2 instances the BCP algorithm tails oleading to slow solution
times or no solution at all. However, this must be seen in theight of a simple implementation
and no use of other cutting planes than the SR inequalities.

5.2 Comparing Lower Bounds in the Root Node

Table 3 reports the lower bounds obtained in the root node of he master problem with and
without SR inequalities and with best bounds obtained by Irnich and Villeneuve [20] using
k-cyc-SPPRC. Again we only report results on what we considetthe hard instances from
Table 2 plus the instances closed by us.

As seen, the lower bounds obtained with SR inequalities aremproved quite signi cantly
for most of the instances. Moreover, in most cases the probtes are solved without branching.
Out of the 32 instances considered, the gap was closed in th@ot node in 8 instances due
to the ESPPRC and in an additional 16 instances due to the SR iequalities. However, one
needs to take into account that the running time of solving the root node is increased due to
the increased di culty of the pricing problems.
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Irnich and Villeneuve [20]

Chabrier [5]

Jepsen et al.
[this paper]

Instance Time (s) Time (s) Time (s) Speedup

R104.100 268106.0 - 32343.9 1.9 / -
RC104.100 986809.0 - 65806.8 34 |/ -
RC107.100 42770.7 - 153.8 64.0 / -
RC108.100 71263.0 - 3365.0 49 |/ -
R203.50 217.1 3320.9 50.8 1.0 / 34.0
R204.25 123.1 171.6 7.5 38 / 11.9
R205.50 585.7 531.0 15.5 86 / 17.8
R206.50 22455.3 4656.1 190.9 271 |/ 12.7
R208.25 321.9 741.5 2.9 255 /[ 133.0
R209.50 142.4 195.4 16.6 20 / 6.1
R210.50 11551.4 65638.6 332.7 80 / 102.6
R211.50 21323.0 - 10543.8 05 / -
RC202.50 241.6 13.0 10.7 52 |/ 0.6
RC202.100 124018.0 19636.5 312.6 91.2 |/ 32.7
RC203.25 1876.0 51 0.7 6164 |/ 3.8
RC203.50 54229.2 4481.5 190.9 65.3 / 12.2
RC204.25 - 13.0 2.0 - 34
RC205.50 52.6 10.6 5.9 21 |/ 0.9
RC205.100 13295.9 15151.7 221.2 13.8 / 35.6
RC206.50 469.1 9.4 8.2 132 / 0.6
RC207.50 - 71.1 215 - 1.7
RC208.25 - 33785.3 78.4 - | 2241

Table 2: Comparison of running time. Speedup is calculated based on the normalized values in Table 1 and
are versus Irnich and Villeneuve and Chabrier respectively. Results with ( ) are based on an algorithm without
the SR inequalities. Results in boldface indicate the fastest algorithm after normalization. (-) in dicates that
no running times were provided by the author(s) or that the in stance was not solved.
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Irnich and Villeneuve [20] Jepsen et al. [this paper]
Instance uB k LB LB(1) LB(2)
R104.100 9715 3 955.8 956.9 971.3
R108.100 9321 4 913.9 913.6 932.1
R112.100 9486 3 925.9 926.8 946.7
RC104.100 1132.3 3 1114.4 1101.9 1129.9
RC106.100 1372.7 4 1343.1 1318.8 1367.3
RC107.100 1207.8 4 1195.4 1183.4 1207.8
RC108.100 11142 3 1100.5 1073.5 1114.2
R202.100 10296 O 933.5 1022.3 1027.3
R203.50 605.3 4 598.6 598.6 605.3
R203.100 8708 2 847.1 867.0 870.8
R204.25 355.0 4 349.1 350.5 355.0
R205.50 690.1 4 682.8 682.9 690.1
R206.50 6324 4 621.3 626.4 632.4
R207.50 5755 4 557.4 564.1 575.5
R208.25 3282 4 327.1 328.2 328.2
R209.50 600.6 4 599.9 599.9 600.6
R209.100 8548 3 834.4 841.5 854.4
R210.50 645.6 4 633.1 636.1 645.3
R211.50 5355 4 526.0 528.7 535.5
RC202.50 613.6 4 604.5 613.6 613.6
RC202.100 1092.3 3 1055.0 1088.1 1092.3
RC203.25 3269 4 297.7 326.9 326.9
RC203.50 5553 4 530.0 555.3 555.3
RC203.100 9237 O 693.7 922.6 923.7
RC204.25 299.7 4 266.3 299.7 299.7
RC205.50 630.2 4 630.2 630.2 630.2
RC205.100 11540 3 1130.5 1147.7 1154.0
RC206.50 610.0 4 597.1 610.0 610.0
RC206.100 10511 3 1017.0 1038.6 1051.1
RC207.50 5586 4 504.9 558.6 558.6
RC208.25 269.1 4 238.3 269.1 269.1
RC208.50 476.7 3 422.3 472.3 476.7

Table 3: Comparison of root lower bounds. LB by Irnich and Villeneuve is the best lower bound obtained with
k-cyc-SPPRC and valid inequalities, LB(1) is with ESPPRC and LB(2) is with ESPPRC and SR inequalities.

Lower bounds in boldface indicate lower bounds equal to the upper bound. Instances in boldface are the
Solomon instances closed by us.
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25 customers 50 customers 100 customers

Class No. Prev. Jepsen et al. Prev. Jepsen et al. Prev  Jepsen teal.

[this paper] [this paper] [this paper]
R1 12 12 12 12 12 10 12
C1 9 9 9 9 9 9 9
RC1 8 8 8 8 8 8 8
R2 11 11 11 9 9 1 4
c2 8 8 8 8 7 8 7
RC2 8 8 8 8 7 3 5
Summary 56 56 56 55 52 39 45

Table 4: Summary of solved Solomon instances. No. is the number of ingances in that class, and for 25, 50
and 100 customers the two columns refers to the number of instances previously solved to optimality and the
number of instances solved to optimality by us.

Instance UB LB Vehicles Tree LP Time oot (S) Timevar (S) Timerp (S) Time (s)
R108.100 932.1 932.1 10 1 132 5911.71 5796.04 77.36 5911.74
R112.100 948.6 946.7 10 9 351 55573.68  199907.03 1598.63 &0294
R202.100 1029.6 1027.3 8 13 514 97451 730.04 4810.47 82&2.3
R203.100 870.8 870.8 6 1 447 54187.15 48474.45 3973.42 542187
R207.50 5755 5755 3 1 107 34406.92 34282.47 118.69  344@6.9
R209.100 854.8 8544 5 3 337 31547.45 74779.58 2978.42 78360
RC203.100  923.7 923.7 5 1 402 14917.18 13873.53 1025.65 1436
RC206.100 1051.1 1051.1 7 1 179 339.63 159.33 171.34 339.69

Table 5: Instances closed by Jepsen et al. [this paper].UB is the optimal solution found by us, LB is lower
bound at the root node, Vehicles is the number of vehicles in the solution, Tree is the number of branch nodes,
LP is the number of LP iterations, Time.q IS the time solving the root node, Timey, is time spent solving
the pricing problem, Timep is the time spent solving LP problems, and Time is the total time.

5.3 Closed Solomon Instances

Table 4 gives an overview of how many instances were solvedrfeach class of the Solomon
instances. We were able to close 8 previously unsolved instaes. We did not succeed to solve
four previously solved instances (R204.50, C204.50, C2040, and RC204.50).

Information on all solved Solomon instances can be found in dbles 6{8 in Appendix A.
Furthermore Table 5 provides detailed information of the instances closed in this paper. The
solutions can be found in Tables 9{16 in Appendix B.

6 Concluding Remarks
The introduction of the SR inequalities signi cantly impro ved the results of the BCP al-

gorithm. This made it possible to solve 8 previously unsolvd instances from the Solomon
benchmarks.
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Except for four cases (R204.50, C204.50 and C204.100 solveith k-cyc-SPPRC by Irnich
and Villeneuve [20] and RC204.50 solved by Danna and Le Pap®]) our BCP algorithm is
competitive and in most cases superior to earlier algorithns within this eld. With minor
modi cations in the de nition of the con ict graph the SR ine qualities can be applied to the
k-cyc-SPPRC algorithm using the same cost-modi ed dominane criterion as described in this
paper. Preliminary results by Jepsen et al. [21] have shownhat the lower bounds obtained
in a BCP algorithm for VRPTW using the k-cyc-SPPRC algorithm and SR inequalities are
almost as good as those obtained using the approach presedtén this paper. This seems
to be a promising direction of research in order to solve larg VRPTW instances, since the
ESPPRC algorithm is considerably slower than thek-cyc-SPPRC algorithm when the number
of customers increases.

Moreover, we note that the SR inequalities can be applied to ay set packing problem.
That is, they can be used in BCP algorithms for other problemswith a set packing problem
master problem. One only needs to consider how the dual varldes of the SR inequalities
are handled in the pricing problems, however this is not necssarily trivial and must be
investigated for the individual pricing problems.

Adding SR inequalities to the master problem means that the picing problem becomes a
shortest path problem with non-additive non-decreasing castraints or objective function. By
modifying the dominance criterion, we have shown that this s tractable in a label-setting al-
gorithm. A further discussion of shortest path problems with various non-additive constraints
can be found in Pisinger and Reinhardt [30]. The developmenbf algorithms which e ciently
handle non-additive constraints is important to increase the number of valid inequalities which
can be handled.

A Results on Solomon Instances

This appendix contains detailed information about solved ®lomon instances. The rst col-
umn of the tables is the instance name, then three columns fothe branch-and-cut-and-price
algorithm with ESPPRC and with ESPPRC and SR-inequalities follow. The columns are the
lower bound in the root node, the number of branch tree nodes rad the total running time.
A (-) means that the instance was not solved. The last two colinns are the optimal upper
bound and a reference to the authors who were the rst to solvethat instance, disregarding
Desrochers et al. [12] who solved many of the instances with di erent calculation of the
travel times making it hard to compare with later solutions. The author legend is:

C: Chabrier [5]

CR: Cook and Rich [8]

DLP: Danna and Le Pape [9]
IV: Irnich and Villeneuve [20]

JPSP: Jepsen et al. [this paper]
KDMSS: Kohl et al. [23]

KLM: Kallehauge et al. [22]
L: Larsen [24]
S: Salani [33]
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with ESPPRC with ESPPRC and SR

Instance LB Tree Time (s) LB Tree Time (s) uB Ref.
R101 617.1 1 0.02 617.1 1 0.02 6171 KDMSS
R102 546.4 3 0.13 547.1 1 0.09 547.1 KDMSS
R103 454.6 1 0.11 454.6 1 0.11 4546 KDMSS
R104 416.9 1 0.12 416.9 1 0.12 416.9 KDMSS
R105 530.5 1 0.02 530.5 1 0.02 5305 KDMSS
R106 457.3 5 0.29 465.4 1 0.10 465.4 KDMSS
R107 424.3 1 0.12 424.3 1 0.12 4243 KDMSS
R108 396.9 3 0.31 397.3 1 0.24 397.3 KDMSS
R109 441.3 1 0.06 441.3 1 0.06 441.3 KDMSS
R110 438.4 17 1.16 4441 3 0.29 4441 KDMSS
R111 427.3 3 0.23 428.8 1 0.13 428.8 KDMSS
R112 387.1 13 1.19 393.0 1 0.52 393.0 KDMSS
C101 191.3 1 0.13 191.3 1 0.13 191.3 KDMSS
C102 190.3 1 0.53 190.3 1 0.53 190.3 KDMSS
C103 190.3 1 0.80 190.3 1 0.80 190.3 KDMSS
C104 186.9 1 3.29 186.9 1 3.29 186.9 KDMSS
C105 191.3 1 0.17 191.3 1 0.17 1913 KDMSS
C106 191.3 1 0.14 191.3 1 0.14 191.3 KDMSS
c107 191.3 1 0.20 191.3 1 0.20 191.3 KDMSS
C108 191.3 1 0.37 191.3 1 0.37 1913 KDMSS
C109 191.3 1 0.62 191.3 1 0.62 1913 KDMSS
RC101 406.7 5 0.20 461.1 1 0.09 461.1 KDMSS
RC102 351.8 1 0.05 351.8 1 0.05 351.8 KDMSS
RC103 332.8 1 0.19 332.8 1 0.19 332.8 KDMSS
RC104 306.6 1 0.52 306.6 1 0.52 306.6 KDMSS
RC105 411.3 1 0.06 411.3 1 0.06 4113 KDMSS
RC106 345.5 1 0.10 345.5 1 0.10 3455 KDMSS
RC107 298.3 1 0.29 298.3 1 0.29 298.3 KDMSS
RC108 294.5 1 0.67 294.5 1 0.67 2945 KDMSS
R201 460.1 3 0.44 463.3 1 0.27 463.3 CR+KLM
R202 410.5 1 0.61 410.5 1 0.61 4105 CR+KLM
R203 391.4 1 0.80 391.4 1 0.80 391.4 CR+KLM
R204 350.5 19 18.40 355.0 1 751 355.0 IV+C
R205 390.6 3 1.62 393.0 1 1.06 393.0 CR+KLM
R206 373.6 3 1.67 374.4 1 0.93 3744 CR+KLM
R207 360.1 5 4.03 361.6 1 1.39 361.6 KLM
R208 328.2 1 2.87 328.2 1 2.87 328.2 IV+C
R209 364.1 9 4.99 370.7 1 2.26 370.7 KLM
R210 404.2 3 1.52 404.6 1 1.04 404.6 CR+KLM
R211 341.4 29 38.17 350.9 1 22.62 350.9 KLM
Cc201 214.7 1 0.84 214.7 1 0.84 2147 CR+L
C202 214.7 1 3.00 214.7 1 3.00 2147 CR+L
C203 214.7 1 3.02 214.7 1 3.02 2147 CR+L
C204 213.1 1 7.00 213.1 1 7.00 2131 CR+KLM
C205 214.7 1 1.10 214.7 1 1.10 2147 CR+L
C206 214.7 1 1.75 214.7 1 1.75 214.7 CR+L
Cc207 214.5 1 2.70 214.5 1 2.70 2145 CR+L
C208 214.5 1 1.85 214.5 1 1.85 2145 CR+L
RC201 360.2 1 0.25 360.2 1 0.25 360.2 CR+L
RC202 338.0 1 0.58 338.0 1 0.58 338.0 CR+KLM
RC203 326.9 1 0.72 326.9 1 0.72 326.9 IV+C
RC204 299.7 1 1.95 299.7 1 1.95 299.7 C
RC205 338.0 1 0.62 338.0 1 0.62 338.0 L+KLM
RC206 324.0 1 0.87 324.0 1 0.87 324.0 KLM
RC207 298.3 1 0.88 298.3 1 0.88 298.3 KLM
RC208 269.1 1 78.42 269.1 1 78.42 269.1 C

Table 6: Instances with 25 customers.
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with ESPPRC with ESPPRC and SR

Instance LB Tree Time (s) LB Tree Time (s) UB Ref.
R101 1043.4 3 0.14 1044.0 1 0.09 1044.0 KDMSS
R102 909.0 1 0.27 909.0 1 0.27 909.0 KDMSS
R103 769.3 13 4.98 772.9 1 2.02 772.9 KDMSS
R104 619.1 21 33.29 625.4 1 6.73 625.4 KDMSS
R105 892.2 29 2.78 893.7 5 1.15 899.3 KDMSS
R106 791.4 5 1.41 793.0 1 0.83 793.0 KDMSS
R107 707.3 11 5.56 711.1 1 4.76 711.1 KDMSS
R108 594.7 789 1723.29 607.4 23 1601.68 617.7 CR+KLM
R109 775.4 7 20.11 783.3 7 11.54 786.8 KDMSS
R110 695.1 9 3.38 697.0 1 1.46 697.0 KDMSS
R111 696.3 41 19.21 707.2 1 3.67 707.2 CR+KLM
R112 614.9 165 169.26 630.2 1 35.67 630.2 CR+KLM
C101 362.4 1 0.47 362.4 1 0.47 362.4 KDMSS
C102 361.4 1 1.59 361.4 1 1.59 361.4 KDMSS
C103 361.4 1 6.06 361.4 1 6.06 361.4 KDMSS
C104 358.0 1 1564.88 358.0 1 1564.88 358.0 KDMSS
C105 362.4 1 0.49 362.4 1 0.49 362.4 KDMSS
C106 362.4 1 0.69 362.4 1 0.69 362.4 KDMSS
c107 362.4 1 0.97 362.4 1 0.97 362.4 KDMSS
C108 362.4 1 1.55 362.4 1 1.55 362.4 KDMSS
C109 362.4 1 3.62 362.4 1 3.62 362.4 KDMSS
RC101 850.1 39 5.60 944.0 1 2.12 944.0 KDMSS
RC102 721.9 127 60.41 822.5 1 8.68 822.5 KDMSS
RC103 645.3 9 8.56 710.9 1 40.05 710.9 KDMSS
RC104 545.8 1 5.71 545.8 1 5.71 545.8 KDMSS
RC105 761.6 21 7.22 855.3 1 4.31 855.3 KDMSS
RC106 664.5 11 3.35 723.2 1 3.88 723.2 KDMSS
RC107 603.6 7 4.60 642.7 1 4.49 642.7 KDMSS
RC108 541.2 5 15.88 594.8 5 260.95 598.1 KDMSS
R201 791.9 1 4.97 791.9 1 4.97 791.9 CR+KLM
R202 698.5 1 9.88 698.5 1 9.88 698.5 CR+KLM
R203 598.6 25 355.99 605.3 1 50.80 605.3 IV+C
R204 - - 506.4 \Y
R205 682.9 35 118.12 690.1 1 15.45 690.1 IV+C
R206 626.4 47 288.00 632.4 1 190.86 632.4 IV+C
R207 564.1 141  15400.44 575.5 1 34406.96 575.5 JPSP
R208 - - - -
R209 599.9 3 24.45 600.6 1 16.63 600.6 IV+C
R210 636.1 49 332.70 645.3 3 18545.61 645.6 IV+C
R211 528.7 31 44644.89 535.5 1 10543.81 535.5 IV+DLP
C201 360.2 1 42.07 360.2 1 42.07 360.2 CR+L
C202 360.2 1 67.05 360.2 1 67.05 360.2 CR+KLM
C203 359.8 1 214.88 359.8 1 214.88 359.8 CR+KLM
C204 - - 350.1 KLM
C205 359.8 1 64.18 359.8 1 64.18 359.8 CR+KLM
C206 359.8 1 38.91 359.8 1 38.91 359.8 CR+KLM
Cc207 359.6 1 72.81 359.6 1 72.81 359.6 CR+KLM
C208 350.5 1 55.79 350.5 1 55.79 350.5 CR+KLM
RC201 684.8 1 3.00 684.8 1 3.00 684.8 L+KLM
RC202 613.6 1 10.69 613.6 1 10.69 613.6 IV+C
RC203 555.3 1 190.88 555.3 1 190.88 555.3 IV+C
RC204 - - 442.2 DLP
RC205 630.2 1 5.88 630.2 1 5.88 630.2 IV+C
RC206 610.0 1 8.17 610.0 1 8.17 610.0 IV+C
RC207 558.6 1 21.53 558.6 1 21.53 558.6 C
RC208 - 476.7 1 1639.40 476.7 S

Table 7: Instances with 50 customers.
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with ESPPRC with ESPPRC and SR

Instance LB Tree Time (s) LB Tree Time (s) uB Ref.
R101 1631.2 57 20.08 1634.0 3 1.87 1637.7 KDMSS
R102 1466.6 1 4.39 1466.6 1 439 1466.6 KDMSS
R103 1206.8 19 55.78 1208.7 1 23.85 1208.7 CR+L
R104 - 971.3 3 32343.92 971.5 [\
R105 1346.2 113 126.96 1355.2 5 43.12 1355.3 KDMSS
R106 1227.0 147 511.07 1234.6 1 75.42 1234.6 CR+KLM
R107 - 1064.3 3 1310.30 1064.6 CR+KLM
R108 - 932.1 1 5911.74 932.1 JPSP
R109 - 1144.1 19 1432.41 1146.9 CR+KLM
R110 - 1068.0 3 1068.31 1068.0 CR+KLM
R111 - 1045.9 39 83931.48 1048.7 CR+KLM
R112 - 946.7 9 202803.94 948.6 JPSP
C101 827.3 1 3.02 827.3 1 3.02 827.3 KDMSS
C102 827.3 1 12.92 827.3 1 12.92 827.3 KDMSS
C103 826.3 1 33.89 826.3 1 33.89 826.3 KDMSS
C104 822.9 1 4113.09 822.9 1 4113.09 822.9 KDMSS
C105 827.3 1 5.34 827.3 1 5.34 827.3 KDMSS
C106 827.3 1 7.15 827.3 1 7.15 827.3 KDMSS
c107 827.3 1 6.55 827.3 1 6.55 827.3 KDMSS
C108 827.3 1 14.46 827.3 1 14.46 827.3 KDMSS
C109 827.3 1 20.53 827.3 1 20.53 827.3 KDMSS
RC101 1584.1 59 56.62 1619.8 1 12.39 1619.8 KDMSS
RC102 - 1457.4 1 76.69 1457.4 CR+KLM
RC103 - 1257.7 3 2705.78 1258.0 CR+KLM
RC104 - 1129.9 7 65806.79 1132.3 \Y]
RC105 1472.0 191 309.83 1513.7 1 26.73 1513.7 KDMSS
RC106 - 1367.3 37 15891.55 1372.7 S
RC107 - 1207.8 1 153.80 1207.8 \
RC108 - 1114.2 1 3365.00 1114.2 v
R201 - 1143.2 1 139.03 1143.2 KLM
R202 - 1027.3 13 8282.38 1029.6 JPSP
R203 - 870.8 1 54187.40 870.8 JPSP
R204 - - - -
R205 - - - -
R206 - - - -
R207 - - - -
R208 - - - -
R209 - 854.8 3 78560.47 854.8 JPSP
R210 - - - -
R211 - - - -
C201 589.1 1 203.34 589.1 1 203.34 589.1 CR+KLM
C202 589.1 1 3483.15 589.1 1 3483.15 589.1 CR+KLM
C203 588.7 1 13070.71 588.7 1 13070.71 588.7 KLM
C204 - - 588.1 \Y
C205 586.4 1 416.56 586.4 1 416.56 586.4 CR+KLM
C206 586.0 1 594.92 586.0 1 594.92 586.0 CR+KLM
Cc207 585.8 1 1240.97 585.8 1 1240.97 585.8 CR+KLM
C208 585.8 1 555.27 585.8 1 555.27 585.8 KLM
RC201 - 1261.7 3 229.27 1261.8 KLM
RC202 - 1092.3 1 312.57 1092.3 IV+C
RC203 922.6 11  34063.95 923.7 1 14917.36 923.7 JPSP
RC204 - - - -
RC205 - 1154.0 1 221.24 1154.0 IV+C
RC206 - 1051.1 1 339.69 1051.1 JPSP
RC207 - - - -
RC208 - - - -

Table 8: Instances with 100 customers.
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B Solutions of Closed Solomon Instances

Cost  Route Cost  Route
8.8 53 78.1 6, 94, 95, 87, 42, 43, 15, 57, 58
119.2 70, 30, 20, 66, 65, 71, 35, 34, 78, 77, 28 115.8 2, 41, 22, 75, 56, 23, 67, 39, 25, 55, 54
105.4 92, 98, 91, 44, 14, 38, 86, 16, 61, 85,100, 37 117.4 28, 76, 79, 78, 34, 35, 71, 65, 66, 20, 1
84.1 2,57, 15, 43, 42, 87, 97, 95, 94, 13, 58 128.2 31, 62, 19, 11, 63, 64, 49, 36, 47, 48
106.5 73, 22, 41, 23, 67, 39, 56, 75, 74, 72, 21, 40 62.8 53,40, 21, 73, 74,72, 4, 26
114.6 52, 88, 62, 19, 11, 64, 63, 90, 32, 10, 31 98.0 52,88, 7, 82, 8, 46, 45, 17, 84, 5, 89
78.4 6,96, 59, 99, 93, 5, 84, 17, 45, 83, 60, 89 76.4 12, 80, 68, 24, 29, 3, 77, 50
107.3 26, 12, 80, 68, 29, 24, 55, 4, 25, 54 100.5 61, 16, 86, 38, 14, 44, 91,100, 37, 59, 96
93.2 27,69, 76, 3, 79, 9, 51, 81, 33, 50, 1 67.6 18, 83, 60, 99, 93, 85, 98, 92, 97, 13
114.6 18, 7, 82, 8, 46, 36, 49, 47, 48 103.8 27, 69, 33, 81, 9, 51, 30, 32, 90, 10, 70
932.1 10 9486 10
Table 9: Solution of R108.100. The left column is Table 10: Solution of R112.100.

the cost of the routes and the total cost. The right
column is a comma separated list indicating the cus-
tomers visited on the routes in the order of visit and
the total number of routes.

Cost  Route

8.8 53

93.6 52, 62, 63, 90, 10, 32, 70

177.2 83, 45, 82, 48, 47, 36, 19, 11, 64, 49, 46, 17, 5, 60, 89
223.8 50, 33, 65, 71, 29, 76, 3, 79, 78, 81, 9, 51, 20, 66, 35, 38, 77
140.2 27, 69, 1, 30, 31, 88, 7, 18, 8, 84, 86, 91,100, 37, 98, &N, 94
67.1 40, 73, 41, 22, 74, 2, 58
148.9 28, 26, 21, 72, 75, 39, 67, 23, 56, 4, 54, 55, 25, 24, 80, 12
170.0 95, 92, 42, 15, 14, 38, 44, 16, 61, 85, 99, 96, 6, 87, 57,,48/, 13

1029.6 8

Table 11: Solution of R202.100.

Cost  Route

24.2 53, 40, 58
1421 27,69, 1,76, 3,79, 78, 81, 9, 66, 71, 35, 34, 29, 68, 778 2
187.3 89, 18, 45, 46, 36, 47, 48, 19, 11, 62, 88, 7, 82, 8, 83, 60, 84, 17, 61, 91,100, 37, 98, 93, 59, 94
183.3 95, 92, 97, 42, 15, 43, 14, 44, 38, 86, 16, 85, 99, 96, 6,,87, 41, 22, 74, 73, 2, 13
190.3 50, 33, 51, 71, 65, 20, 30, 32, 90, 63, 64, 49, 10, 70, 312 5
143.6 26, 21, 72, 75, 39, 67, 23, 56, 4, 55, 25, 54, 24, 80, 12

870.8 6

Table 12: Solution of R203.100.
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Cost Route

2025 27,31,7, 48, 47, 36, 46, 45, 8, 18, 6, 37, 44, 14, 38, 167,15, 13
130.5 2,42, 43, 15, 23, 39, 22, 41, 21, 40
2425 28,12, 3, 33, 50, 1, 30, 11, 49, 19, 10, 32, 20, 9, 35, 34,224, 25, 4, 26

5755 3

Table 13: Solution of R207.50.

Cost Route

146.8 52,7, 82, 83, 18, 6, 94, 13, 87, 57, 15, 43, 42, 97, 92, 300, 91, 93, 96

198.7 95, 99, 59, 98, 85, 5, 84, 61, 16, 44, 14, 38, 86, 17, 45,45, 36, 49, 48, 60, 89

205.9 27,69, 31, 88, 62, 47, 19, 11, 64, 63, 90, 30, 51, 71, 9,,833, 79, 3, 77, 68, 80, 24, 54, 26
157.6 28, 12, 76, 29, 78, 34, 35, 65, 66, 20, 32, 10, 70, 1, 50

145.8 40, 2, 73, 21, 72, 75, 23, 67, 39, 25, 55, 4, 56, 74, 22, 438, 53

8548 5

Table 14: Solution of R209.100.

Cost Route

139.4 81, 54, 72, 37, 36, 39, 42, 44, 41, 38, 40, 35, 43, 61, 68

172.8 90, 65, 83, 64, 85, 63, 89, 76, 23, 21, 48, 18, 19, 49, 274),51, 84, 56, 66

2414 69, 98, 88, 53, 82, 99, 52, 86, 87, 9, 10, 47, 17, 13, 74,,997, 75, 58, 77, 25, 24, 57
211.0 1, 3,5, 45,60, 12, 11, 15, 16, 14, 78, 73, 79, 7, 6, 8, 46, 3, 55,100, 70

159.1 91, 92, 95, 62, 33, 32, 30, 27, 26, 28, 29, 31, 34, 50, 674,93, 71, 96, 80

923.7 5

Table 15: Solution of RC203.100.

Cost Route

8.4 90
186.6 81, 94, 67, 84, 85, 51, 76, 89, 48, 25, 77, 58, 74
168.6 92, 71, 72, 42, 39, 38, 36, 40, 44, 43, 41, 37, 35, 54, 9% 9
180.9 65, 83, 64, 95, 62, 63, 33, 30, 31, 29, 27, 28, 26, 32, 34),%6, 91, 80
189.6 61, 2,45,5,8,7,79, 73, 78, 53, 88, 6, 46, 4, 3, 1,100, ,768
1209 82, 99, 52, 86, 57, 23, 21, 18, 19, 49, 20, 22, 24, 66
196.1 69, 98, 12, 14, 47, 16, 15, 11, 59, 75, 97, 87, 9, 13, 10,,160, 55

10511 7

Table 16: Solution of RC206.100.
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Chatal-Gomory Rank-1 Cuts used
In a Dantzig-Wolfe Decomposition
of the Vehicle Routing Problem with
Time Windows

Bj rn Petersen
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Abstract

This chapter shows how Chwatal-Gomory (CG) rank-1 cuts can be used in a branch-
and-cut-and-price algorithm for the vehicle routing problem with time windows (VRPTW).
Using Dantzig-Wolfe decomposition we split the problem into a set partitioning problem

as master problem and an elementary shortest path problem with resource constraints as
pricing problem. To strengthen the formulation we derive general CG rank-1 cuts based
on the master problem formulation. Adding these cuts to the master problem means that
an additional resource is added to the pricing problem for each cut. This increases the
complexity of the label algorithm used to solve the pricing problem since normal dom-
inance tests become weak when many resources are present and hence most labels are
incomparable. To overcome this problem we present a number of improved dominance
tests exploiting the step-like structure of the objective function of the pricing problem.
Computational experiments are reported on the Solomon test instances showing that the
addition of CG rank-1 cuts improves the lower bounds signi cantly and makes it possible
to solve a majority of the instances in the root node of the branch-and-bound tree. This
indicates that CG rank-1 cuts may be essential for solving future large-scale VRPTW

Published in the book The Vehicle Routing Problem: Latest Advances and New Challenges 2008
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problems where we cannot expect that the branching process will close the gap between
lower and upper bounds in reasonable time.

Keywords: Vehicle routing problem with time windows, Dantzig-Wolfe decomposition,
Chvatal-Gomory rank-1 cuts.

1 Introduction

In the vehicle routing problem with time windows (VRPTW) we are given a set of customers
with an associated demand and a number of identical vehicles. The task is to nd a set
of minimum-length routes starting and ending at a central depot such that each customer is
visited exactly once within a given time window, and the capacity of each vehicle is respected.

The standard Dantzig-Wolfe decomposition of the arc ow formulation of the VRPTW
is to split the problem into a master problem (a set partitioning problem with a convexity
constraint, stating that all customers should be visited with a limited number of vehicles) and
a pricing problem (an elementary shortest path problem with resource constraints (ESPPRC),
where capacity and time are the constrained resources). Delayed column generation may be
used to solve the LP-relaxed master problem, which can be used as lower bound in a branch-
and-bound algorithm to reach integrality. Applying cutting planes either in the master or the
pricing problem leads to a branch-and-cut-and-price algorithm (BCP).

BCP algorithms have been frequently used to solve the VRPTW, e.g., Kohl et al. [25],
Cook and Rich [6], Larsen [26], Kallehauge et al. [24], Irnich and Villeneuve [22], Chabrier
[4], Danna and Le Pape [7], Salani [31]. In all cases the valid inequalities have been based
on the original arc ow formulation of the VRPTW, i.e., the inequalities added are valid
for both the original arc formulation and the master problem. Fukasawa et al. [16] refer
to this as a robust approach. Recently Jepsen et al. [23] showed how the subset row (SR)
inequalities, which are valid inequalities for the set partitioning problem, successfully can be
applied to VRPTW in a column generation context. In their computational results they report
solving 8 out of 18 previously unsolved instances from the set of benchmarks by Solomon
[33]. In a following paper Desaulniers et al. [9] added fast pricing heuristics and improved
cutting policies for the SR inequalities to obtain even better results by closing an additional
5 instances. The latter approaches are denotedhon-robust according to the classi cation
by Fukasawa et al. [16], since the complexity of the pricing problem is increased when SR
inequalities are added to the master problem.

Jepsen et al. [23] showed that the separation of SR inequalities ISP -hard and that the
inequalities can be recognized as a subset of the Chwatal-Gomory (CG) rank-1 cuts. A simple
enumeration algorithm was used to separate the SR inequalities for sets of rows of size three,
and even for such small sets the computational results were very good as mentioned above.
Not surprisingly the separation of CG rank-1 cuts is also known to beNP -hard, see Eisenbrand
[13]. Fischetti and Lodi [15] used the CG rank-1 cuts as cutting planes in an integer problem
and showed how the separation can be formulated as a mixed integer problem. They obtained
lower bounds when optimizing over the rst Chwatal closure, i.e., adding violated CG rank-1
cuts, and were the rst to report an optimal solution to one instance from MIPLIB 3.0 by
Bixby et al. [1]. These results motivate the incorporation of the CG rank-1 cuts in a BCP
algorithm.

The pricing problem of the Dantzig-Wolfe decomposition of VRPTW, i.e., the ESPPRC,
was shown to beNP -hard by Dror [11]. Commonly the ESPPRC has been solved with labeling
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algorithms, see Dumitrescu [12], Feillet et al. [14], Righini and Salani [29, 30], Boland et al.
[2]. Due to the diculty of the ESPPRC most earlier approaches solved relaxations of the
ESPPRC, see Desrochers et al. [10], Irnich and Villeneuve [22]. For a general introduction to
resource constrained shortest path problems, see Desaulniers et al. [8], Irnich and Desaulniers
[21], Irnich [20]. Jepsen et al. [23] provides an introduction of the SR inequalities and how
their application in the master problem leads to an additional resource per inequality in the
pricing problem. Furthermore, it is shown how the dominance criteria of the label algorithm
can be improved.

In this chapter we extend the work by Jepsen et al. [23] to include general CG rank-1
cuts for the Set Partitioning master problem. Each cut results in a new resource constraint
in the ESPPRC pricing problem. As the resource extension functions are non-decreasing any
dynamic programming algorithm for the ESPPRC can be used to solve the resulting problem.
However, the addition of new resources means that more labels become incomparable when
using a traditional dominance test, and hence the number of labels in the dynamic program-
ming explodes. To overcome this problem we exploit the fact that in the pricing problem
it is su cient to nd a cost-minimal solution, and not all Pareto-optimal solutions. Due to
this fact we may temporarily replace each label with a number of equivalent labels such that
resources become comparable in the dominance test. This approach considerably decreases
the number of labels generated in the dynamic programming algorithm. As demonstrated in
the computational results we can in this way solve the ESPPRC pricing problem even when
several hundreds of CG rank-1 cuts have been added, and hence several hundreds of resources
are to be dealt with in the label algorithm.

The chapter is organized as follows: In Section 2 we give an overview of the Dantzig-Wolfe
decomposition of the VRPTW and describe how to calculate the reduced cost of columns when
delayed column generation is used. For completeness we review the CG rank-1 cuts and their
separation, as described by Fischetti and Lodi [15], in Section 3. Furthermore, we clarify
how to use these techniques in a VRPTW context. In Section 4 the improved dominance
criteria of the label algorithm are described. An algorithmic outline, implementation details,
and computational results using the Solomon benchmark instances are presented in Section
5. Section 6 provides some concluding remarks.

2 Decomposition

Let C be the set of customers, and let the set of nodes bé = C[f o; oog where o denotes the
depot at the start of the routes and o denotes the depot at the end. Each customei 2 C
has a demandd; while we setd, = dyo = 0. Each nodei 2 V has an associated service; and
a time windows [a;; b] in which it should be visited.

Let E=1f(i;j):i;j 2V; i6 jgbe the set of arcs between the nodes. The set of vehicles
K is su ciently large, e.g., jKj = V, such that the convexity constraint is not binding, and
each vehicle has capacityD. If vehicle k 2 K service nodei 2 V then the variable tj, denotes
the arrival time of the vehicle. Let ¢j be the travel cost on arc (;j ) 2 E and let x;x be the
variable indicating whether vehicle k 2 K traverses arc (;j ) 2 E. The overall travel time j;
on arc (i;j ) 2 E depends on the travel time of the arc and the service times; at customeri.
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The 3-index ow model (Toth and Vigo [34]) for the VRPTW becomes:

XX
min Cij Xijk Q)
k)%K (ii B%E
s.t. Xjjk =1 8i2C (2)
kZKX(i;J' )2 * (i) X
Xijk = Xijk = 1 8k 2 K (3)
(ii 3% * (o) (i;j))(Z (09
Xijik Xjk =0 8i2C; 8k2K (4)
(1:582 (1) ()2 * (i)
dixjk D k 2 K (5)
(it )2E
a tk b 8i2V; 82K (6)
Xik (tik + i)tk 8(i;j)2 E; 8k2K (7)
Xik 210;1g 8(i;j)2 E; 8k2 K (8)

Constraints (2) ensure that every customeri 2 C is visited, and (3) ensures that each route
starts and ends in the depot. Constraint set (4) ensure ow conservation for each vehicle
k. Note that a zero-cost arcxygx between the start and end depot must be present for all
vehicles to allow an empty tour in case not all vehicles are needed. The constraint set (5)
ensures that the capacity of each vehicle is not exceeded and constraint sets (6) and (7) ensure
that the time window constraints are satis ed. Note that (7) together with the assumption
that j > O for all (i;j ) 2 E eliminates all sub-tours. The last constraint de ne the domain
of the arc ow variables.

The standard Dantzig-Wolfe decomposition of the VRPTW, see e.g. Desrochers et al.
[10], leads to the following master problem:

X X
min Cj ip p (9)
§(2P (isj B%E
P2P (i )2 * (i)
p2f0;1g 8p2 P (12)

where P is the set of all feasible routes, the binary constant jj, is one if and only if arc
(i;J ) is used by route p 2 P, and the binary variable , indicates whether route p is used.
The master problem is a set partitioning problem and the LP relaxation can be solved using
delayed column generation, i.e., consider aestricted master problem containing a subset of
the columns P and generate additional columns as needed. For the remainder of this chapter
the master problem will refer to the the restricted problem. Let ; 2 R forall i 2 C be the
dual values of (10) and let o =0. Then the reduced cost of a routep is:

X X X
G = Gi ip iip = G ) i (12)
(i )2E (i )2E (i )2E
The pricing problem is an ESPPRC where the cost of each arc igj = j for all arcs

(i;j)2E.
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Valid inequalities based on the VRPTW constraints (2)-(8), i.e.,
X X
i Xijk 0 (13)
k2K (i )2E

are handled as follows (Note that jj can be dependent on a vehicl& but then di erent pricing
problems must be considered). Let be the dual values of (13), then an additional j for
all arcs (i;j ) 2 E has to be subtracted from the reduced cost of a route, i.e., by subtracting
the dual value from the arc cost in the the pricing problem, i.e.,C; = ¢ i ij -

Consider adding a valid inequality for the set partitioning master problem (10){(11) that
cannot be written as a linear combination of the arc ow variables, i.e.,

X
pp 0 (14)
p2P
Let 0 be the dual values of (14), then an additional | has to be subtracted when
calculating the reduced cost of the column, i.e, the new reduced cost i,™= T, p- TO

handle the cost p it is necessary to modify the pricing problem by adding constraints or
variables, thereby increasing its complexity.

3 Chwatal-Gomory Rank-1 Cuts

CG cuts are well known valid inequalities for integer programming problems, see Gomory
[17], Chvatal [5]. However, in a BCP context these cuts have been given little attention.
Except for the recent papers by Jepsen et al. [23], Desaulniers et al. [9] only an early attempt
by Nemhauser and Park [28] has been found where general mixed-integer cuts for the master
problem is applied. Nemhauser and Park [28] solved the pricing problem as a MIP by adding
additional variables and constraints to take the dual values of the applied cuts into account.
As noted in Jepsen et al. [23], the SR inequalities are a subset of the CG cuts, and since the
SR inequalities were successfully used for VRPTW an obvious extension is to include a larger
set of the CG cuts into the BCP framework. Hence, in the following the focus will be on the
CG rank-1 cuts and their separation starting with the general case as described by Fischetti
and Lodi [15]. Next we specify the form of CG rank-1 cuts for the master problem of the
VRPTW and formulate the separation problem based the presented theory. Last we brie 'y
discuss the interpretation of the SR inequalities with regards to the CG cuts.

Consider an IP problem:

minfc : A b; 0, 22"g

whereAisam n matrix, N =1;:::;n is the set of indices of variables, andM =1;:::;m
is the set of indices of constraints. The two polyhedra

Pp=f 2R":A b; Og

Pp =convf 2Z":A b; 0g = conv(Pp \ Z")
describe the solution space of the linear relaxationP p and the convex hull of the integer
solutions in P_p . It is assumed that all coe cients of A and b are integer. A CG cut is a

valid inequality for P;p given as:
buAc b ubc
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whereu 0 is called the CG multiplier vector. The inequality is said to have rank-1 with
respect toA b and 0. Higher rank cuts are obtained by considering systems that also
contain lower rank CG cuts, e.g., a rank-2 cut is based oA b and 0 and some rank-1
cuts. Note that given the above assumptions on the integrality ofA and b, undominated CG

The rst Chwatal closure of P p is de ned as the polyhedron:
Pr=f 0:A bbuAc bubcu 08u2R"g

Clearly P;p P1  P.p but even more interesting is it, that P1 Pp i Pjp 6 Pp. The
better approximation of P\p is obtained, since it is possible to use a CG cut to cut 0 a
fractional vertex 2 P p corresponding to the basisB by choosing multipliers u equal to
the ith row of B ! wherei is the row associated with any fractional part of , see Gomory
[17, 18].

The separation problem is stated by Fischetti and Lodi [15] as:

Denition 1.  Given a point 2 P.p. The CG separation problem consists of nding a CG
cut that is violated by ,i.e., nd u 0 for u2 R" such thatbuAc > bubc, or prove that
no suchu exist.

Eisenbrand [13] showed that the separation problem i&NP -hard and computational results
performed by Fischetti and Lodi [15] indicate that separation times can be cumbersome.
Given a fractional solution 2 P.p the maximally violated CG cut 0, Where
= buAc and o = bubc for some CG multipliersu 0 for u 2 R" can be found by solving
the following MIP:

max 0 (15)
j UAJ‘ 8j 2N (16)
o>ub 1 @7

u O 8i2M (18)
i2Zz 8] 2 N [f Og (29)

Note that only basis variables with non-zero values can contribute to the violation of the
CG rank-1 cut. Hence, all zero valued variables can be left out of the formulation and their
coe cients can be calculated after the CG multipliers are identi ed. This reduces the size of
the MIP problem in both the number of variables and constraints.

Furthermore Fischetti and Lodi [15] suggest to reformulate the problem in order to obtain
a stronger formulation and numerical stability. Based on the fact that the CG multipliers of
undominated cuts are less than 1, bounding them from above provides a stronger formulation.
However, later observations showed that the MIP heuristics performed much better without
these bounds. To obtain numerical stability a slack variablef; 2 [0;1 ] (e.g., =0:01)is
introduced for each coe cient ;.

Equivalent solutions to the separation problem can result in CG rank-1 cuts of di erent
strength with respect to Pp . A strong cut tends to be sparse, i.e., the number of non-zero
entries is small. In order to obtain stronger and sparser cuts the objective function is modi ed
by adding a small penalty w; (e.g., w; = 0:0001) for the selection of a multiplier u;.
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Let N( ) is the set of non-zero basis variables. This leads to the following formulation
of the separation problem:

X X
max i 0 Wi Uj (20)
j2N( ) i2M
fj = UAj j 8j 2 N( ) (21)
fo=ub 0 (22)
0o f; 1 8j 2 N( )[f Og (23)
uy O 8i2M (24)
i2Z 8 2N( )[f Og (25)

The model (20)-(25) can be modi ed to handle systems as\ band A = bby modifying
the bounds of the CG multipliers, i.e., removing (24) and letting u be a free variables is a
way to handle equations.

For VRPTW the the CG rank-1 cuts are based on the master problem constraints (10).
The set partitioning constraints give rise to cuts with CG multipliers u 2 RICl, since they
are equalities. However, since the CG cuts will be used in a column generation context two
equally sparse cuts at separation time might not be equally sparse after column generation.
This is especially the case for CG rank-1 cuts with negative multipliers in a minimization
problem, where cuts tend to become very dense when columns price into the master problem.
Hence, we restrict ourselves to consider CG rank-1 cuts with non-negative multipliers for the
VRPTW.

The CG rank-1 cuts for the VRPTW with respect to the master problem (9)-(11) and
with non-negative CG multipliers are given as:

X gX X X
Ui ip~ p i (26)

p2P i2C  (ij)2 * (i) i2C

Given a fractional solution  for the master problem (9)-(11) the most violated CG cut
of rank-1 can be found by solving the following MIP:

X X
max P p 0 Wi Uj 27)

p2P( )X i2C

fp= ipUi p 8p2 P( ) (28)
Si<'J' )2 (i)

fo= U o (29)
i2C

0 f, 1 8p2 P( )[f Og (30)

0 u 8i2C (31)

2z 8p2 P( )[f Og (32)

Again it is possible to reduce the number of variables by only considering the non-zero basis
variables.
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From Jepsen et al. [23] we recall the SR inequalities for the VRPTW based on the master

problem (9)-(11):
X § X X z
1 ; isi (33)

Kk Ijp p
p2P i2S (ij)2 * (i)

whereS C and O<k | Sj. This is equivalent to the set of CG rank-1 cuts wherejSj of
the CG multipliers are equal to % and the rest are equal to 0, i.e., a very sparse CG multiplier
vector. A SR cut can also be interpreted as a modk cut proposed by Caprara et al. [3]. The
mod-k cuts are CG rank-1 cuts with multipliers in the set f0; %; i %g, i,e., aSRcutisa
mod-k cut with |jSj multipliers equal to % and the rest are equal to 0. Extending the SR cut
to allow a row (customer) to be present multiple times in S, i.e., let S be a multiset, leads to
an SR cut with maximal |Sj multipliers in the set f0; %; il %g. That is, the CG multiplier
of a row is raised by% for each time it is present in S. This is indeed also a modk cut.

4 Label Algorithm

Finding a route with negative reduced cost in the pricing problem corresponds to nding
a negative reduced cost path starting and ending at the depot, i.e., an ESPPRC. In the
following sections we formally describe the ESPPRC and show how the pricing problem can
be solved when new resources are introduced as a consequence of adding CG cuts.

4.1 The Pricing Problem

Assuming that no cuts have been added, the ESPPRC can be formally de ned as: Given a
weighted directed graph G(V; E) with nodes V and arcsE, and a set of resourcedR. For
each arc {;j ) 2 E and resourcer 2 R three parameters are given: A lower limita;(i;j ) on
the accumulation of resourcer when traversing arc (i;j ) 2 E; an upper limit b (i;j ) on the
accumulation of resourcer when traversing arc (;j ) 2 E; and nally an amount ¢ (i;j ) of
resourcer consumed by traversing arc {;j ) 2 E. The objective is to nd a minimum cost
path p from a source nodeo 2 V to a target node 0°2 V, where the accumulated resources
of p satisfy the limits for all resourcesr 2 R. Without loss of generality we assume that the
limits must be satis ed at the end of each arc (;j ), i.e., after ¢ (i;j ) has been consumed.

If the nodes have associated some resource consumptions and some upper and lower limits
on the accumulated resources are present, these can be expressed by equivalent resource
constraints on the arcs (e.g. the incoming arcs of the node).

For the pricing problem of VRPTW the resources are loadd, time t, and a binary visit-
counter for each customerv 2 C. When considering the pricing problem of VRPTW, the
consumptions and upper and lower limits of the resources at each ard;{ ) in ESPPRC are:

aq(i;j)=0, y(i;j)=D dj, cy(isj)=d 8(i;j) 2 E
a(i;j)=a, b(j)=h, c(isj)= i 8(i;j)2E
av(i;j)=0, by(i;j)=1, o(i;j)=1 8v2V:iv=j 8(i;j)2E
av(i;j)=0, by(i;j)=1, c(i;j)=0 8v2V:ve | 8(;j)2E

In the label algorithm labels at node v represent partial paths from o to v. The following
attributes for a label L are considered:
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v(L) The current end-node of the partial path represented byL.
¢(L) The sum of the reduced cost along pathL.
r(L) The accumulated consumption of resource 2 R along path L.

A feasible extension 2 E(L) of a labelL is a partial path starting in node v(L) 2 V and
ending in the target node o® without violating any resource constraints when concatenated
with the partial path represented by L.

In the following it is assumed that all resources are bounded strongly from above, and
weakly from below. This means that if the current resource accumulation of a label is below
the lower limit on a given arc, it is allowed to Il up the resource to the lower limit, i.e.,
waiting for a time window to open. This means that two consecutive labels., and L related
by an arc (u;v), i.e., L is extended and created.,, wherev(L,) = u and v(L,) = v, must
satisfy

r(Ly) b (u;v); 8r2R (34)
r(Ly) =maxfr(Ly)+ ¢ (u;v);ar(u;v)g; 8r2R (35)

Here (34) demands that each labelL, satis es the upper limit b (u;v) of resourcer corre-
sponding to arc (u;Vv), while (35) states that resourcer of L, corresponds to the resource
consumption at label L, plus the amount consumed by traversing arc (; v), respecting the
lower limit a; (u; Vv) on arc (u;v). Other authors refer to (35) as aresource extension function
see e.g. Desaulniers et al. [8].

A simple enumeration algorithm could be used to produce all these labels, but to limit
the number of labels considered, dominance rules are introduced to fathom labels which do
not lead to an optimal solution.

De nition 2. A label L; dominates label L; if

v(Li) = (L)) (36)
oL)  oL)) (37)
E(Lj) E (L) (38)

In other words, the paths corresponding to labelsL; and L; should end at the same node
V(Li) = v(L;) 2 V, the path corresponding to labelL; should cost no more than the path
corresponding to labellj, and nally any feasible extension ofL; is also a feasible extension
of L;. Notice that we are only interested in one cost-minimal path and not all pareto-optimal
paths, hence our dominance rule is tighter than the one used in e.g. Desaulniers et al.
[8], Irnich and Desaulniers [21].

Feillet et al. [14] suggested to consider the set of nodes that cannot be reached from a
label L and compare the set with the unreachable nodes of a labél; in order to determine if
some extensions are impossible and thereby potentially dominate where else not possible, since
Void(Li)  Vod(Lj) ) Vrew(Li)  Vnew(Lj) but Vhew(Li)  Vnew(Lj) 6) Voia(Li)  Voia(Lj).

Or in other words: update the node resources in an eager fashion instead of a lazy one. The
following de nition is a generalization of Feillet et al. [14][De nition 3].

De nition 3.  Given a start nodeo 2 V, a labelL, and a nodeu 2 V wherev(L) = u a node
v 2 V is considered unreachableif v has already been visited on the path frone to u or if a
resource window is violated, i.e.:

9 2R r(L)+ “r(u;v) >b(v)

61



Chapter 4

where ", (u; V) is a lower bound on the consumption of resource on all feasible paths fromu
to v. The node resourcesre then given as:v(L) = 1 indicates that nodev 2 V is unreachable
from node v(L) 2 V, and v(L) =0 otherwise.

To determine if (38) holds can be quite cumbersome, as the straightforward de nition
demands that we calculate all extensions of the two labels. Therefore a su cient criterion for
(38) to hold is sought which can be computed faster. If labelL; has consumed less resources
than label L then no resources are limiting the possibilities of extending.; compared tolLj,
hence the following proposition can be used as a relaxed version of the dominance criteria.

Proposition 4. Desaulniers et al. [8] If all resource extension functions are non-decreasing,
then labelL; dominates labell ; if:

v(Li) = V(L) (39)
c(Li) c(L)) (40)
r(bi) r(Lj) 8r2R (41)

Using Proposition 4 as a dominance criteria is a relaxation of the dominance criteria of
De nition 2 since only a subset of labels satisfying (36), (37), and (38) satis es inequalities
(39), (40), and (41).

4.2 Solving the Pricing Problem with New Resources
Recall that a CG rank-1 cut (26) for the VRPTW master problem (9){(11) is:

$ %
X §x X z X
Ui ip> p Ui
p2P i2C  (ij)2 * (i) i2C
Let 0 be the corresponding dual variable when solving the master problem to LP-

optimality. The reduced cost of column p in the VRPTW master problem is:

EX X Z X §X X z

| p I jp
i2C ()2 * (i) (ii)2E i2C  (i)2 * (i)
We analyze how this additional cost can be handled in the label algorithm for ESPPRC.

Let V(L) = fi 2 V :i(L) = 1g be the nodes visited on the partial path of labelL. The
reduced cost ofL can then be expressed as:

Px
&L) = o(L) u (42)

i2V (L)

A new rgsourcem can be used to compute the coe cient of penalty for label L, i.e.,
m(L) = iy Ui, is the un oored amount involved in the cut. Note that the consumption
of resourcem is u; for each outgoing (incoming) arc of the customers 2 C. Even though
the update of resourcechis de ned by a decreasing function, the usual dominance criteria
of Proposition 4 can still be used, because in cask; dominates L, T(Lj) ¢(L;) and
m(Li) m(L;) so¢&L;) ¢L;j)since > 0. Note that the resource ¢*can be ignored
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during the label algorithm and only be considered at the last arc to the target node to
compute the reduced costc(L) of path L from t(L) and m(L).

Since all resource extension functions (includingn(L)) are non-decreasing we can apply
the label algorithm described in the previous section to solve the ESPPRC, using the domi-
nance rule from Proposition 4 for the extended set of resources. However, as further cuts are
added and hence more resources are to be compared in (41) the dominance rule is satis ed
very rare. In order to overcome this problem, we note the following property of constraint
(42)

e&(L) = t(L) bm(L)c=t(L)+ k bm(L) kc (43)

for any integerk. Hence a label ¢fL);r(L); m(L)) is equivalent to a label (¢(L) k;r (L);m(L)
k), meaning that we can make resources comparable in (41) at the cost of modifying(L) in
(40) and vice versa. This is the main idea in Proposition 5, 6 and 7 to be presented.

For a label L let 0 1

X
T(L)= @ uiA mod 1
i2V (L)
Be the amount involved in the cut since the last penalty was paid, i.e., the fractional part of
i2v (L) Ui- Recall E(L) as the set of feasible extensions from the labél to the target node

o’ and note that when label L; dominates labelLj, their common extensions areE(L;) due
to (38). The following cost dominance criteria are obtained for a single CG rank-1 cut:

Proposition 5. If T(L;) T (Lj), v(Li) = v(L;), &Li) ¢&L;),andr(Li) r(L;) 8r 2R,
then labelL; dominates labell ;.

Proof. Consider any common extension 2 E(L;). SinceT(Lj) T (L;) the relation between
the number of future penalties for the two labels when concatenated with is:
$X % $X %
ui + T(Li) ui + T(Lj)
i2 i2

This leads to the following relation between the costs:

$X %
eLi+ )="eLi)+ () ui + T(Lj)
3, 'Z o
e(Lj)+ () ui+ T(Lj) =%(L;+ )
i2
Hence, labellL; dominates labell; . O
Proposition 6. If T(L;) > T(Lj), v(Li) = V(Lj), e(Ly) C(Lj), and r(L;) I’(Lj) 8r 2

R, then labelL; dominates labellL;.

Proof. Consider any common extension 2 E(L;). SinceT (L) > T (L;) the relation between
the number of future penalties for the two labels when concatenated with is:

$ % $ %
X X
ui + T(Ly) ui+T(Lj) (44)

i2 i2
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Since 0 T (Lj) < T(Lj) < 1itis clear that the left hand side of (44) is at most one unit
larger than the right hand side, i.e., labelL; will pay the penalty at most one more time than

label L;. Hence, $ o
() $ %
X X
Ui+T(Li) 1 Ui+T(Lj)
i2 i2
That is, the additional cost of extending L; with is at most more than extending L
with . This leads to the following relation between the costs:

$X %
eéLi+ ) =%(Li)+ () ui + T(Li)
i2 %
$ X e !
=%(Li) +T() up+ T(Li) 1
$ 2 %

X
&Li)+ () ui + T(Lj)
i2
=L+ )
Hence labell; dominates labell;. O

=]
Observe thatif T(Li)+ ;, ui < 1forall 2E(L;), itis not possible to trigger a penalty,
i.e., the temporary penalty to the cost of L; can be disregarded.

In case of several CG rank-1 cuts, the new dominance criteria are as follows:

Proposition 7. Let Q= fq: < 0"Tq(Li) > Ty(Lj)g. Then labelL; dominates labell; if:

v(Li) = >Y('—j) (45)

e(Li) q CLj) (46)
q2Q

r(bi) r(L) 8r2R 47

Proof. The validity of (46) follows directly from Propositions 5 and 6. The validity of (45)
and (47) follows from Proposition 4. O

5 Experimental Results

The experimental study is intended to show how much it is possible to strengthen the lower
bound by adding CG rank-1 cuts, while still being able to solve the corresponding pricing
problem in reasonable time. The SR inequalities have already proved their worth, see Jepsen
et al. [23], Desaulniers et al. [9], but in both cases only sets of rows with size 3 were included,
i.e., CG rank-1 cuts with precisely 3 non-zero entries in the CG multiplier vector. Hence, it is
expected that the introduction of a separation routine for denser CG multiplier vectors could
improve the lower bounds further. Using the exact separation routine for the CG rank-1 cuts
is expected to be time consuming, but for test purposes it is interesting to see how well the
column generation reacts to these cuts and also how much the lower bounds are improved.
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5.1 Settings

The test instances are the well known benchmarks introduced by Solomon [33]. The bench-
marks are divided into two series, both of which are again divided into a C (customers are
grouped in larger clusters), an R (customers are distributed randomly), and an RC (a mix of
the two previous) series. Of the 56 instances with 100 customers ve instances are unsolved
at the time of writing. Furthermore, 16 of the solved instances have not yet been solved in
the root node of the branch-and-bound tree. We will only consider the R and RC instances,
since all C instances can be solved in the root node without cutting planes, see Jepsen et al.
[23], Desaulniers et al. [9].

The experiments were performed on a Pentium 4 3.0 GHz with 1 GB RAM. The basic BCP
algorithm was developed with the framework COIN, see Lougee-Heimer [27]. The exact MIP-
based CG rank-1 separation procedure is a slight modi ed version of a procedure provided
by Hunsaker [19]. The MIPs were solved using CPLEX 9.1 with a maximal running time of
3600 seconds.

An exact separation procedure for a limited set of the SR inequalities have been devel-
oped exploiting the SSE2 vector-processing instructions intended for multimedia oating-
point purposes which are present in all x86 processors since the introduction of Pentium 4
in 2001. The separation routine is arpexact enumeration of SR inequalities with multipliers
u 2F0; %% g fori 2 C where ,cui = R,and0O<k<n j Cjandk andn are
integer, i.e., modk cuts with restriction on the sum of the multipliers.

Our implementation of the brute-force evaluation of all sub-multisets of rows of sizen,
can evaluate the SR inequalities (33) in constant time for each sub-multiset using the vector-
processing capabilities. This makes it possible to separate all violated cuts in timgSj"=n!
when jPj 16, where S is the set of rows andP is the set of basis columns. Still, the
complexity is so high that we cannot expect to separate inequalities with more than seven
non-zero coe cients in reasonably time.

Note that our implementation of the BCP algorithm is not competitive with the recent
implementation by Desaulniers et al. [9]. Also it is slower than the one used in Jepsen et al.
[23] due to the implementation of the more general dominance criteria in the label algorithm.
However, the point of our experiments is to study the quality of the lower bounds, i.e., the
number of branch nodes, compared to the increase in computational time of the pricing
problem by adding various cuts. These conclusions hold for all implementations based on the
same decomposition.

5.2 Lower Bounds

Table 1 and 2 show the lower bounds obtained in the root node when di erent cutting policies
are applied.
The cutting policies are:

\no" No cutting planes

\n=3" SR cuts with n=3 and k=2

\n 5" Like option n=3 and with n=5and k=2;3
\n 7" Like option n 5andwithn=7and k=2;3;4
\CG1" General CG rank-1 cuts

A maximum of 50 cuts violating more than 0:0001 are added in each iteration. No time
limit was imposed, but the space limit of 1 GB RAM prevented some instances to run to
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Table 1: Lower bound comparison for the 1-series.

Instance no n=3 n 5 n 7 CG1 UB
R101 1631.2 1634.0 1636.3 1636.31637.7 1637.7
R102 1466.6 1466.6 1466.6 1466.6 1466.6 1466.6
R103 1206.8 1208.7 1208.7 1208.7 1208.7 1208.7
R104 956.9 971.3 9715 971.5 971.5 971.5
R105 1346.2 1355.2 1355.3 1355.3 1355.3 1355.3
R106 1227.0 1234.6 1234.6 1234.6 1234.6 1234.6
R107 1053.3 1064.3 1064.6 1064.6 1064.6 1064.6
R108 913.6 932.1 932.1 932.1 932.1 932.1
R109 1134.3 1144.1 1146.71146.9 1146.9 1146.9
R110 1055.6 1068.0 1068.0 1068.0 1068.0 1068.0
R111 1034.8 1045.9 1047.3 - -1048.7
R112 926.8 943.5 - - - 948.6

RC101 1584.1 1619.8 1619.8 1619.8 1619.8 1619.8
RC102 1406.3 1457.4 1457.4 1457.4 14574 14574
RC103 1225.6  1257.7 1258.0 1258.0 1258.0 1258.0
RC104 1101.9 1129.9 - - - 1132.3
RC105 1472.0 1513.7 1513.7 1513.7 1513.7 1513.7
RC106 1318.8 1367.3  1371.91372.7 13727 1372.7
RC107 1183.4 1207.8 1207.8 1207.8 1207.8 1207.8
RC108 1073.5 1114.2 1114.2 11142 11142 11142

completion.

Upper bounds in the \UB" column are optimal values or best known upper bounds.
Entries in tables marked with an asterisk are from Danna and Le Pape [7], entries marked
with a double-asterisk  are from Desaulniers et al. [9], and entries marked with a triple-
asterisk  are from Jepsen et al. [23]. A dash indicates that our implementation failed due
to memory limitation. Entries in bold face indicate optimal integer solution.

Of the 28 solved instances one instance (R102) was solved without adding any cuts. The
lower bounds for all remaining instances were considerably improved by addingrl = 3" cuts
resulting in integer solutions for 15 of the 27 remaining (17 out of 33 when considering the
results of Desaulniers et al. [9]). When adding h 5" cuts improvements were present in
all but one instance (RC201) resulting in further ve integer solutions of the 10 remaining
instances that could be solved with this approach. Of the remaining four instances solved
with\ n 7" cuts, two showed no improvement and two resulted in integer solutions. The last
two instances were solved to integrality when applying CG rank-1 cuts. Hence, we succeeded
in closing the gap between the upper and lower bound for all the instances that we were able
to solve within the memory limit.

Tables 1 and 2 also show that the SR inequalities provide almost as good lower bounds as
general CG rank-1 cuts. For \n = 7" the SR inequalities become time consuming to separate,
and hence in practical applications one should connetonh=3"or\ n 5",

Table 3 presents an overview of problems solved in the root node as reported in this chapter
or by Jepsen et al. [23] or Desaulniers et al. [9]. Column \solved" refers to the number of
instances solved to optimality at the time of writing and \total" refers to the total number
of instances. Results from the C-series are included for completeness.

As already noted, adding SR inequalities and CG rank-1 cuts greatly strengthens the

66



Chwatal-Gomory Rank-1 Cuts used in a Dantzig-Wolfe Decomposition of the Vehicle...

Table 2: Lower bound comparison for the 2-series.

Instance no n=3 n 5 n 7 CG1 UB
R201 1140.3 1143.2 1143.2 1143.2 1143.2 1143.2

R202 1022.3 1027.3 1029.6 1029.6 1029.6 1029.6

R203 867.0 870.8 870.8 870.8 870.8 870.8

R204 - - - - - 731.3
R205 939.0 - - - - 949.8
R206 866.9 875.9 - - - 875.9
R207 790.7 794.0 - - - 794.0
R208 - - - - - 701.2
R209 841.5 854.8 - - - 854.8
R210 889.4 - - - - 900.5
R211 - - - - - 746.7

RC201 1256.0 1261.7 1261.7 1261.71261.8 1261.8
RC202 1088.1 1092.3 1092.3 1092.3 1092.3 1092.3
RC203 922.6 923.7 923.7 923.7 923.7  923.7
RC204 - - - - - 783.5
RC205 1147.7 1154.0 1154.0 1154.0 1154.0 1154.0
RC206 1038.6 1051.1 1051.1 1051.1 1051.1 1051.1
RC207 947.4 - - - - 962.9
RC208 - - - - - 776.5

Table 3: Summary of instances solved in the root node.

Instance no n=3 n 5 n 7 CG1 solved total

C1 9 9 9 9 9 9 9
Cc2 8 8 8 8 8 8 8
R1 1 5 8 9 10 12 12
R2 0 4 5 5 5 8 11
RC1 0 5 6 7 7 8 8
RC2 0 4 4 4 5 6 8
All 18 35 40 42 44 51 56

lower bounds. Of the 56 instances 35 were previously reported solved in the root node by
Jepsen et al. [23], Desaulniers et al. [9]. With our additional cutting planes we were able
to solve an additional nine instances in the root node of the remaining 16 previously solved
instances. Note that all the instances we were able to solve were solved in the root node.
The remaining seven instances, which have previously been solved wittm\= 3", could not
be solved with the current implementation due to hardware limitations. Hence, there exists
12 Solomon instances (seven solved with branching and ve unsolved) where CG rank-1 cuts
could potentially improve the lower bound in the root node.

5.3 Running Times of the Pricing Problem

Table 4 and 5 contain the results obtained when solving the instances to optimality using
di erent cutting planes. In column \CPU" we report the CPU-time in seconds for solving the
last pricing problem, while column \cuts" gives the number of cuts applied. Column \BB"
indicates the number of branch-and-bound nodes considered. As before, a dash in the tables
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indicates that a memory insu ciency had occurred. Entries marked with a double-asterisk
are from Desaulniers et al. [9].

Table 4. Running time for pricing problem and number of branch-and-bound nodes for the
1-series.? Data log- les were lost during machine upgrade.

no n=3 n 5 CcGl

Instance CPU BB CPU cuts BB CPU cuts BB CPU cuts BB
R101 0.1 11 0.1 2 3 0.1 4 3 0.1 15 1
R102 0.2 1 0.2 0 1 0.2 0 1 0.2 0 1
R103 0.4 15 1.3 33 1 1.3 33 1 1.3 33 1
R104 5.8 - 910.5 328 3 - -1 - - 1
R105 0.1 55 0.2 52 3 0.2 56 1 0.2 56 1
R106 0.5 147 48 114 1 4.8 114 1 48 114 1
R107 2.2 - 46.1 224 3 78.4 242 1 78.4 242 1
R108 13.0 - 2448 192 1 2448 192 1 2448 192 1
R109 0.3 - 1.6 127 17 8.7 374 3 10.0 367 1
R110 1.1 - 26.0 269 1 26.0 269 1 26.0 269 1
R111 15 - 36.6 175 39 293.7 379 - - - -
R112 35.9 - - -9 - - - - - -
RC101 0.1 59 0.2 69 1 0.2 69 1 0.2 69 1
RC102 0.3 - 1.4 140 1 1.4 140 1 1.4 140 1
RC103 1.2 - 42.8 276 3 49.1 290 1 49.1 290 1
RC104 15.6 - 569.2 237 7 - - - - - -
RC105 0.2 191 0.5 73 1 0.5 73 1 0.5 73 1
RC106 0.3 - 35 250 37 16.5 543 5 21.6 572 1
RC107 1.4 - 4.3 85 1 4.3 85 1 4.3 85 1
RC108 9.7 - 86.7 175 1 86.7 175 1 86.7 175 1

The tables show that adding \n

5" cuts and \CGL1" cuts is relatively cheap with respect

to the running time of the pricing problem, while decreasing the number of branch-and-bound
nodes signi cantly e.g., in instances R109, RC106, and R202.

If we had access to \ideal" heuristics for the pricing problem (with low running time and
high solution quality) we would only need to solve one pricing problem to optimality in each
branch-and-bound node. The running time of the overall algorithm would then be dictated
by the running time for optimally solving the pricing (CPU) and the number of branch-and-
bound nodes (BB). With the exception of R202 (where massive paging occurred due to lack
of memory) the lower bound on the running time \BB CPU" is not increasing when n
grows and \CGL1" cuts are applied. This shows, that good heuristics for the pricing problem
can make the addition of SR and CG-1 cuts attractive for the overall running time.

6 Concluding Remarks

We have demonstrated that it is possible to apply general CG rank-1 cuts derived from the
master problem formulation in a BCP algorithm for VRPTW. As each cut results in the
introduction of a new resource in the pricing problem it was necessary to develop new, tighter
dominance rules for use in the pricing algorithm.

Our computational experiments indicate that the addition of CG rank-1 cuts leads to
signi cantly improved lower bounds. In our tests the cuts made it possible to close the gap
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Table 5: Running time for pricing problem and number of branch-and-bound nodes for the
2-series.

no n=3 n 5 CG1
Instance CPU BB CPU cuts BB CPU cuts BB CPU cuts BB
R201 0.2 - 0.4 15 1 0.4 15 1 0.4 15 1
R202 2.9 - 3.0 24 13 419.6 132 1 419.6 132 1
R203 83.2 - 505.6 35 1 505.6 35 1 505.6 35 1
R204 - - - - - - - - - - -
R205 1.5 - - 345 9 - - - - - -
R206 131.7 - - 171 1 - - - - - -
R207 - - - 24 1 - - - - - -
R208 - - - - - - - - - - -
R209 6.5 - - 248 3 - - - - - -
R210 - - - 266 5 - - - - - -
R211 - - - - - - - - - - -
RC201 0.2 - 0.3 25 3 0.3 25 3 0.3 29 1
RC202 0.6 - 1.7 26 1 1.7 26 1 1.7 26 1
RC203 58.8 11 185.2 15 1 185.2 15 1 185.2 15 1
RC204 - - - - - - - - - - -
RC205 1.0 - 1.8 21 1 1.8 21 1 1.8 21 1
RC206 1.7 - 4.6 23 1 4.6 23 1 4.6 23 1
RC207 - - - 210 5 - - - - - -
RC208 - - - - - - - - - - -

between the upper and lower bounds in the root node of the branch-and-bound tree for 44
of the 51 currently solvable instances from Solomon's test library. This is an additional 9 in-
stances compared to previous results. The increased complexity of the pricing problem caused
by CG rank-1 cuts do a ect the running time of the pricing problems but not signi cantly.

This indicates that CG rank-1 inequalities may be essential when solving larger instances
to optimality, as one cannot expect that the branching process will close the gap between the
upper and lower bound in reasonable time. Note that one should also take into account the
additional time spent in each branch node since the number of LP iterations increases when
valid inequalities are added. As for classical branch-and-cut algorithms it will always be a
question when to add cuts and when to start branching.

Another important note is the separation time of the CG rank-1 cuts which can indeed
be very time consuming. Also the current MIP-based heuristics only nds a limited number
of violated cuts as the main e ort is put in cut violation quality not violated cut quantity.

We suggest that MIP-based heuristics which focus on nding numerous violated CG rank-1
cuts could improve the performance of the BCP algorithm. Fortunately the SR inequalities
generally give rise to almost as tight lower bounds as general CG rank-1 cuts, while being
easier to handle in the pricing problem (due to integer modulo operations, see Jepsen et al.
[23]). For n = 7 the separation of SR inequalities takes almost one hour, making them too
expensive to separate. Fom 5 the inequalities can be separated in a couple of minutes.
So until more e cient separation methods have been developed, one should only apply SR
inequalities forn 5.

During our experiments we noticed that speci c values of the CG multipliers u occurred
more frequently than others. For instance, multiplier vectors u 2 f 0; gl occurred very
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frequently, showing that it is promising to investigate these inequalities further (note that
the SR inequalities for a givenn with k = 2 are a subset of these inequalities). Knowing the
structure of promising CG rank-1 inequalities will make it possible to develop fast, specialized
separation heuristics and better handling of these speci ¢ inequalities in the pricing problem.
Adapting the separation algorithm by Caprara et al. [3] for maximally violated mod-k cuts
in the master problem could be an interesting direction of research.

References

[1] R. E. Bixby, S. Ceria, C. M. McZeal, and M. W. P Savelsbergh. An updated mixed
integer programming library: MIPLIB 3.0. Optima, 58:12{15, 1998.

[2] N. Boland, J. Dethridge, and I. Dumitrescu. Accelerated label setting algorithms for the
elementary resource constrained shortest path problemOperation Research Letters 34
(1):58{68, 2006. doi: 10.1016/j.0rl.2004.11.011.

[3] A. Caprara, M. Fischetti, and A. N. Letchford. @ On the separation of maxi-
mally violated mod-k cuts. Mathematical Programming, 87(A):37{56, 1999. doi:
10.1007/s101079900107.

[4] A. Chabrier. Vehicle routing problem with elementary shortest path based col-
umn generation. Computers & Operations Research 33(10):2972{2990, 2006. doi:
10.1016/j.cor.2005.02.029.

[5] V. Chvatal. Edmonds polytopes and hierarchy of combinatorial problems. Discrete
Mathematics, 4(4):305{337, 1973. doi: 10.1016/0012-365X(73)90167-2.

[6] W. Cook and J. L. Rich. A parallel cutting plane algorithm for the vehicle routing
problem with time windows. Technical Report TR99-04, Computational and Applied
Mathematics, Rice University, Houston, Texas, USA, 1999.

[7]1 E. Danna and C. Le Pape. Branch-and-price heuristics: A case study on the vehicle
routing problem with time windows. In G. Desaulniers, J. Desrosiers, and M. M. Solomon,
editors, Column Generation, chapter 4, pages 99{129. Springer, 2005. doi: 10.1007/0-
387-25486-24.

[8] G. Desaulniers, J. Desrosiers, J. loachim, I. M. Solomon, F. Soumis, and D. Villeneuve. A
uni ed framework for deterministic time constrained vehicle routing and crew scheduling
problems. In T. G. Crainic and G. Laporte, editors, Fleet Management and Logistics
pages 57{93. Kluwer, 1998.

[9] G. Desaulniers, F. Lessard, and A. Hadjar. Tabu search, partial elementarity, and gen-
eralized k-path inequalities for the vehicle routing problem with time windows. Trans-
portation Science, 42(3):387{404, 2008. doi: 10.1287/trsc.1070.0223.

[10] M. Desrochers, J. Desrosiers, and M. Solomon. A new optimization algorithm for the
vehicle routing problem with time windows. Operations Research 40(2):342{354, 1992.
doi: 10.1287/opre.40.2.342.

70



Chwatal-Gomory Rank-1 Cuts used in a Dantzig-Wolfe Decomposition of the Vehicle...

[11] M. Dror. Note on the complexity of the shortest path models for column generation in
VRPTW. Operations Research 42(5):977{979, 1994. doi: 10.1287/opre.42.5.977.

[12] I. Dumitrescu. Constrained Path and Cycle ProblemsPhD thesis, Department of Math-
ematics and Statistics, University of Melbourne, Australia, 2002.

[13] F. Eisenbrand. Note - on the membership problem for the elementary closure of a
polyhedron. Combinatorica, 19(2):297{300, 1999. doi: 10.1007/s004930050057.

[14] D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen. An exact algorithm for the ele-
mentary shortest path problem with resource constraints: Application to some vehicle
routing problems. Networks 44(3):216{229, 2004. doi: 10.1002/net.v44:3.

[15] M. Fischetti and A. Lodi. Optimizing over the rst Chwatal closure.  Mathematical
Programming, 110(1):3{20, 2006. doi: 10.1007/s10107-006-0054-8.

[16] R. Fukasawa, H. Longo, J. Lysgaard, M. Poggi de Arag$o, M. Reis, E. Uchoa, and R.F.
Werneck. Robust branch-and-cut-and-price for the capacitated vehicle routing problem.
Mathematical Programming, 106(3):491{511, 2006. doi: 10.1007/s10107-005-0644-x.

[17] R.E. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin
of the AMS, 64:275{278, 1958. doi: 10.1090/S0002-9904-1958-10224-4.

[18] R.E. Gomory. An algorithm for integer solutions to linear programs. In R.L. Graves
and P. Wolfe, editors, Recent Advances in Mathematical Programming pages 269{302.
McGraw-Hill, New York, 1963.

[19] B. Hunsaker. Cg-rank. http://www.rosemaryroad.org/brady/cg-rank/index.html, 2005.

[20] S. Irnich. Resource extension functions: Properties, inversion, and generalization to
segments.OR Spectrum, 30(1):113{148, 2008. doi: 10.1007/s00291-007-0083-6.

[21] S. Irnich and G. Desaulniers. Shortest path problems with resource constraints. In
G. Desaulniers, Jacques Desrosiers, and M.M. Solomon, editor§olumn Generation,
chapter 2, pages 33{65. Springer, 2005. doi: 10.1007/0-387-2548622

[22] S. Irnich and D. Villeneuve. The shortest path problem with resource constraints and
k-cycle elimination for k 3. INFORMS Journal on Computing, 18:391{406, 2006. doi:
10.1287/ijoc.1040.0117.

[23] M. Jepsen, B. Petersen, S. Spoorendonk, and D. Pisinger. Subset-row inequalities applied
to the vehicle-routing problem with time windows. Operations Research 56(2):497{511,
2008. doi: 10.1287/0pre.1070.0449.

[24] B. Kallehauge, J. Larsen, and O.B.G. Madsen. Lagrangean duality and non-di erentiable
optimization applied on routing with time windows - experimental results. Technical Re-
port Internal report IMM-REP-2000-8, Department of Mathematical Modelling, Techni-
cal University of Denmark, Lyngby, Denmark, 2000.

[25] N. Kohl, J. Desrosiers, O. B. G. Madsen, M. M. Solomon, and F. Soumis. 2-path cuts for
the vehicle routing problem with time windows. Transportation Science, 33(1):101{116,
1999. doi: 10.1287/trsc.33.1.101.

71



Chapter 4

[26] J. Larsen. Parallelization of the vehicle routing problem with time windows PhD the-
sis, Department of Mathematical Modelling, Technical University of Denmark, Lyngby,
Denmark, 1999.

[27] Robin Lougee-Heimer. The Common Optimization INterface for Operations Research:
Promoting open-source software in the operations research communityiBM Journal of
Research and Developmentd7(1):57{66, 2003. doi: 10.1147/rd.471.0057.

[28] G. Nemhauser and S. Park. A polyhedral approach to edge coloringdperations Research
Letters, 10(6):315{322, 1991. doi: 10.1016/0167-6377(91)90003-8.

[29] G. Righini and M. Salani. Symmetry helps: bounded bi-directional dynamic program-
ming for the elementary shortest path problem with resource constraints. Discrete Op-
timization, 3(3):255{273, 2006. doi: 10.1016/j.disopt.2006.05.007.

[30] G. Righini and M. Salani. New dynamic programming algorithms for the resource con-
strained shortest path problem. Networks, 51(3):155{170., 2008. doi: 10.1002/net.20212.

[31] M. Salani. Branch-and-Price Algorithms for Vehicle Routing Problems PhD thesis,
Universitt Degli Studi Di Milano, Facola di Scienza Matematiche, Fisuche e Naturali
Dipartimento di Technologie dell'Informazione, Milano, Italy, 2005.

[32] A. Schrijver. On cutting planes. Annals of Discrete Mathematics 9:291{296, 1980. doi:
10.1016/S0167-5060(08)70085-2.

[33] M. M. Solomon. Algorithms for the vehicle routing and scheduling problem with time win-
dow constraints. Operations Research 35(2):234{265, 1987. doi. 10.1287/opre.35.2.254.

[34] P. Toth and D. Vigo. An overview of vehicle routing problems. In P. Toth and D. Vigo,
editors, The Vehicle Routing Problem chapter 1, pages 1{26. SIAM, 2002.

72



Chapter 5

A Branch-and-Cut Algorithm for
the Elementary Shortest Path Prob-
lem with Resource Constraints

Mads Jepsen
DIKU Department of Computer Science, University of Copenhagen

Bj rn Petersen
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Simon Spoorendonk
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Abstract

This paper introduces a branch-and-cut (BAC) algorithm for the elementary short-
est path problem with resource constraints (ESPPRC), which comnonly appears as a
subproblem in column generation based algorithms, e.g., in the classit®antzig-Wolfe
decomposition of the capacitated vehicle routing problem. Speci clly, we consider an
undirected graph with arbitrary edge costs (i.e., negative cost cyles may appear) and
with resources that are equally constrained at all nodes and arcsA mathematical model
and valid inequalities are presented, including a new family of valid inequlities denoted
the generalized capacity inequalities. Experimental tests are pedrmed on a set of gener-
ated instances with graphs of high edge density and a set of instaes from the literature.
Traditionally, labeling algorithms have been the dominant solution method for the ESP-
PRC, but experimental results show that the BAC algorithm is superior on all the tested
instances.

Keywords: Branch-and-cut algorithm, elementary shortest path problem with resource
constraints

In revision.
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1 Introduction

The elementary shortest path problem with resource constriants (ESPPRC) can informally be
stated as the problem of nding a shortest path between two nales in a graph where resources
are accumulated along the path, and where the amount of resoges are constrained.

In this paper, we consider the case where the graph is undireed and edge costs are
allowed to take on any value. Furthermore, we demand that thepath is simple such that no
nodes are visited more than once. The resources consideradthis paper are all bounded such
that the lower and upper bound of the amount of a resource thatare accumulated along the
path is equal for all nodes and edges. We assume, that the ras@e lower bounds are zero and
that the accumulations are monotone increasing and only pdormed at the nodes. This type
of globally constrainedresource compares to the vehicle capacity known from the caeitated
vehicle routing problem, where the resource accumulates agsitive value (demand) at each
node and the upper bound (capacity of the vehicle) may not be xceeded.

It is now possible to give a more formal statement of the ESPPI. Let G = (V;E) be
an undirected graph with nodesV and edgeskE. Let a cost c. be associated with each edge
e 2 E, let d be a positive resource accumulation associated to each node2 V for each
resourcer 2 R, and let Q" be the upper bound on the resource’. Then given a source node
s 2 V and a target nodet 2 V; nd a path between s and t with minimum cost satisfying
that the sum of the resourcer from at each of the visited nodes is not more thanQ" for all
r 2 R.

The ESPPRC de ned as above isNP -hard in the strong sense. This is easily veried
by reduction from the longest path problem. The de nition of the ESPPRC varies in the
literature, especially with regard to edge costs, resourcbounds, and resource accumulations.

Beasley and Christo des [7] presented a mathematical modelvery similar to the one used
in this paper) and performed experimental tests using a brash-and-bound algorithm based
on Lagrangian dual bounds. Dumitrescu and Boland [15] pres#ed a labeling algorithm that
was improved by preprocessing based on resource availalyli Carlyle et al. [10] proposed a
Lagrangian relaxation algorithm where paths with cost between the Lagrangian bound and
the current upper bound are found using thek-shortest path algorithm by Carlyle and Wood
[9]. Common for these approaches are that they all assume thdhe graph have no negative
cost cycles. This makes it easier to ensure simplicity of thepath, since it cannot pay o to
visit a node more than once. The ESPPRC in this form is weaklyNP -hard, and results of
the algorithms presented above are therefore not directly amparable to the results in this
paper.

Another common de nition is to consider resource bounds indvidually for each node (or
edge). In this case, it is often necessary to consider an urdicted graph, because the direction
of the path determines the correct resource accumulation at@ given node. Such resources
compare to the time in the vehicle routing problem with time windows, where the resource
(time) accumulates for each edge and the nodes must be visiewithin a resource window (a
time window de ned by a minimum and a maximum arrival time for a node). Such resources
are said to belocally constrained Dror [14] proved that the ESPPRC with a single globally
constrained resource and a single locally constrained restce isNP -hard in the strong sense.
Feillet et al. [16] presented a labeling algorithm where thesimplicity of the path is ensured with
the use of an additional globally constrained resource per ode. Chabrier [11] improved on
the labeling algorithm by applying various bounding procedures to avoid extending unwanted
paths. Righini and Salani [24] proposed a bi-directional laeling algorithm where paths are
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extended from both the source node and the target node until agiven middle of a monotone
increasing resource is reached, e.g., when half the time wasnsumed on the path. The patrtial
paths are then combined to construct a full path. Independetly, Boland et al. [8] and Righini
and Salani [25] proposed to extend the labeling algorithm byrelaxing the node resources and
adding them incrementally until the path is simple. In the former paper, this is referred to
as astate space augmentationalgorithm, and in the latter, it is denoted a decremental state
space relaxationalgorithm. Furthermore, Righini and Salani [25] propose touse the result of
the relaxed problem in a branch-and-bound algorithm.

The algorithms presented above are mainly labeling algortims. As mentioned in Beasley
and Christo des [7], even the algorithms based on Lagrangia relaxation make use of a dy-
namic programming algorithm if negative costs cycles are &wed. The strength of the la-
beling algorithms is, that the locally constrained resour@s are easily implemented, since the
paths are build piece by piece such that resource limits can é& checked at every step. In fact,
non-linear functions for accumulation of resources can bedndled easily, see e.g., Desaulniers
et al. [12]. Generally, labeling algorithms are assumed to @rform well on a sparse graphs
with tightly constrained resources, since this yields a vey reduced solution space to search,
i.e., few states in the dynamic programming table needs to beearched. However, when the
graph is dense and the resources are loosely constrained gtfabeling algorithms get closer to
a full enumeration of all paths.

Modeling of resources (accumulation and bounds) is limitedin branch-and-cut (BAC)
algorithms that are based on linear programming (which is the case in this paper). Glob-
ally constrained resources with positive accumulation canbe modeled as single knapsack
constraints (and remain simple to model with negative accuralation). Locally constrained
resources with positive accumulation can be modeled for a décted graph with the use of
the Miller-Tucker-Zemlin (MTZ) constraints, see Miller et al. [22]. This gives rise tojE]j
additional constraints and jV| variables per resource. Another modeling approach gives gé
to jV|j constraints and jEj variables per resource, see e.g., Ascheuer et al. [1, 2]. Adlient
approach is to relax the resource constraints and, in a cuttig plane fashion, make use of the
infeasible path inequalities which cuts of any path (or partial path) that violates a resource
bound. In Ascheuer et al. [2] a BAC algorithm for the traveling salesman problem with time
windows makes use of the three modeling approaches describabove. Results indicate that
the infeasible path inequalities are to be preferred.

When considering the ESPPRC as a subproblem in a column genation context, another
issue comes up. Recent branch-and-cut-and-price algoriths, see e.g., Jepsen et al. [20],
Petersen et al. [23], Desaulniers et al. [13], Spoorendonkd Desaulniers [27], Baldacci et al.
[5], make use of cutting planes where the dual values are notirbctly subtractable from the
edge costs, which has previously been the preferred apprdacsee e.g., Fukasawa et al. [18].
The subtraction of such dual values depend on the complete fgh and can be very cumbersome
to overcome in labeling algorithms. However, when followig the ideas in Spoorendonk et al.
[28] it is clari ed how to model the additional costs in the subproblem, whereupon the BAC
algorithm can be applied.

Results by Ascheuer et al. [2] for the traveling salesman prglem with time windows
indicate, that it is expensive (in running time) in a BAC algo rithm, to use either of the
modeling approaches for locally constrained resources,ei, the time windows. However,
when only globally constrained resources are considered,deem likely that a BAC algorithm
can be competitive with labeling algorithms. So, although bcally constrained resources can
be modeled in a BAC algorithm, it is not within the scope of this paper to investigate
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that approach. The reason for considering an undirected grph in this paper is mainly for
simplicity. The BAC algorithm can easily be extended to the directed case by doubling the
number of variables in the mathematical formulation. Neither of the separation routines are
a ected by this (except for the doubling of variables). the undirected graphs favors the

The main contribution of this paper is the introduction of a B AC algorithm for solv-
ing the ESPPRC. This includes a 2-index mathematical model ad a presentation of valid
inequalities with emphasis on the introduction of the genealized capacity inequalities. The
computational results indicate that the BAC algorithm is co mpetitive with labeling algorithms
when considering dense graphs, and even more so when the negmes are loosely constrained.

The paper is outlined as follows: Section 2 presents work on BC algorithms for problems
that are related to the ESPPRC and Section 3 contains a formalinteger programming model
of the ESPPRC. Section 4 describes the cutting planes used ithe BAC algorithm and
the computational results are found in Section 5. Section 6 blds concluding remarks and
suggestions for further research.

2 Related Work

Bauer et al. [6] suggested to solve the ESPPRC by a BAC algoritm, but to our knowledge

nothing further has been published in the literature, although several BAC algorithms exist
for problems related to the ESPPRC. Bauer et al. [6] considethe knapsack constrained circuit
problem (KCCP) where a minimal capacitated cycle in a graph & sought. This is equivalent
to the ESPPRC if one node is xed in the KCCP, since this node ca be spilt into a source and
a target node in the ESPPRC. A BAC algorithm was implemented to solve the KCCP where
the demand of the nodes was given with unit weights. This varant is denoted the cardinality

constraint circuit problem. The instances considered by Baer et al. [6] have positive edge
costs, but negative cost cycles would not a ect the algorithm

In the prize collecting traveling salesman problem (PCTSP) see e.g., Balas [3, 4], a prize
is collected at each visited node and a minimum amount of acanulated prizes must be
collected on the tour. That is, the edge costs are positive buthe prizes may yield an overall
negative solution value. The dierence with this variant of t he TSP and the ESPPRC is,
that in the PCTSP a minimum amount of prizes need to be colleced, which forces some of
the intermediate nodes to be visited. This is not the case fothe ESPPRC as de ned in this
paper.

In the orienteering problem, see e.g., Fischetti et al. [17]the pro t of visiting the nodes is
maximized and the length of the tour is bounded by a maximum legth. The only di erence
compared to the de nition of the ESPPRC of this paper is, that the resource accumulation
is on the edges instead of in the nodes. The instances considd by Fischetti et al. [17] have
positive edge costs, but again negative cost cycles would ha ect the algorithm.

3 Mathematical Models

This section presents a ow model for the ESPPRC in the undireted graph G. Recall
the resource demandd] for nodesi 2 V, and the resource upper boundQ" for resource
r 2 R. Let the binary variable X indicate the ow on edge e 2 E. When describing
the model some shorthand notation will be used. For a set of ndesS  V let the set
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of edges (S) = f(i;j):i2 S"j 2V nSg denote the edges betweers and V nS where
(i) is shorthand for (fig) when the node setS consists of a single nodd 2 V. Let
E(S)=f(i;j):i2 S”™j 2 Sgbe the set of edges between the nodes 8. Let the short-hand
notation X
x(T) = Xe

e2T
indicate the ow in the edge set T. Let the shorthand notation y; = i e2 (i) Xe=2 indicate
the ow in node i 2 V nfs;tg, and for a set of nodesS V let

X

y(S) = Yi
i2s

be the ow in that node set. The mathematical model of the ESPPRC is then:

X
min CeXe (1)
e2E
s.t.x( (s)=1 2)
x( (1) =1 3)
>§é (i) =2y i 2V nfs;tg )
dyi Q' r2R (5)
i2v
X(E(S))  Y¥(S) i i2S;S VijSj 2 (6)
Xe 210;1g e2 E 7)

The objective function (1) minimizes the overall edge cost. Constraints (2) and (3) ensure
that the source node and the target node are end points of the ath. Constraints (4) are the
Oow conservation constraints. Constraints (5) impose the resource constraints. Constraints
(6) impose connectivity and subtour elimination. Finally, constraints (7) de ne the domain
of the variables. Note, thaty; 2 f 0; 1g due to (2), (3), (6), and (7).

This model hasjEj+jV 2j variables and an exponential number of constraints due to (b
In a BAC algorithm, these constraints will be relaxed and se@rated when violated to ensure
feasibility. That is, when disregarding constraints (6) the model havejVj + jRj constraints.

4 Cutting Planes

This section presents the inequalities used in the BAC algdathm: The generalized subtour
elimination constraints (constraints (6) the mathematical model), the 0-1 knapsack cover
inequalities, and the generalized capacity inequalitiesdr the ESPPRC.

4.1 Generalized Subtour Elimination Constraints

These constraints are generalizations of the subtour elimmation constraints known from the
traveling salesman problem, which are also valid for ESPPRQn the form:

x(E(S) j S 1 8s V 8)
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Restricting the constants on the right-hand side to re ect the actual node ow provides a
tighter inequality, since v; 1foralli 2 V nfs;tg. The generalized subtour elimination
constraints can be written on either of the forms:

X(E(S))  ¥(S) Vi 8i2S;85 V 9)
X((S) 2y 8i 2 S;85 Vnfs;tg (10)

Separation of (9) and (10) can be done by solving a minimum cuproblem from each node
i 2 V nfs;tg to the target node t (or the source nodes) on the induced graph of the LP
solution (x?;y?) with edge weights we given as:

x? e2 Enf(s;t)g

We=" e =(s;t)

where M is a su ciently large constant to ensure that s and t are on the same side of the
cut, see Wolsey [30].

4.2 0-1 Knapsack Cover Inequalities

P
A 0-1 knapsack cover inequality for a set of node§ V where ,5df >Q' for somer 2 R
is given as:

y$§) j§ 1 (11)

The inequality states, that if a set of nodes violates the upgr bound on the resourcer, then
not all nodes in the set can be visited by the path. The 0-1 knapack cover inequality (11)

can be rewritten as
X

T i) 1 (12)
i2s
Given the LP soIH,tion (x ;y ), the separation problem becomes nding a covers, i.e, a set
S V satisfying ,5df >QF for somer 2 R such that
X
1 y)<1 (13)
i2s
in which case the corresponding 0-1 knapsack cover inequii (11) is violated. The most
violating (11) is identi ed by minimizing the left-hand sid e of (13) for allr 2 R, i.e., by

solving:
_ ( _ ( X X ) i .V.))
=min min (1 yi)zi:- diz>Q";z2f0;1g"!
i2S i2S
If 1, no cover that violates (11) exists. The separation problen consists ofjRj mini-

mization versions of the well known 0-1 knapsack problem, s Kellerer et al. [21], Wolsey
[30].

Jepsen and Spoorendonk [19] suggested to exploit the fact &, since y; 1 for all
i 2V nfs;t; g, the ow through a set of nodes S can be less than 2 in an LP solution. That
is, scaling the right-hand side of (11) with half the ow x( (S)) yields

v(S)  SGSi x( (S) (14
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When x( (S)) < 2, there are cases where the inequality (14) is violated andhte normal 0-1
knapsack cover inequality (11) is not. Jepsen and Spoorenad [19] suggested an enumeration
scheme to separate the inequalities. Their results indicatd, that (14) did improve the lower
bound in the root node, but had a negative e ect on the convergace of the BAC algorithm.
Therefore, this family of inequalities are not pursued further in this paper.

4.3 Generalized Capacity Inequalities

This subsection introduces a family of inequalities inspied by the fractional capacity in-
equalities of the capacitated vehicle routing problem (CVRP), see Toth and Vigo [29]. The
generalized capacity inequalities are given as:

X
%er( (8) di'yi S Vnfs;tgr 2R (15)
i2s
The inequalities ensure that a setS of nodes are visited according to their demand, e.g., if
2=3 of the resource is consumed irg, then the ow in and out of S should be at least 43.
An example of a violated (15) can be seen in Figure 4.3.
The validity of (15) is proved in the following proposition:

Proposition 1. The generalized capacity inequalities (15) are valid for te ESPPRC.

Proof. If y(S) =0 then x( (S)) = 0, therefore both the left-hand side and the right hand side
evaluate to 0. Ify(S) 1thenx( (S)) 2 and due to the resource constraint (5) for resource
r, the right-hand side can never evaluate to more thanQ" which will be the minimal value of
the left-hand side, i.e., in this case the resource constrat (5) for resource r dominates the
generalized capacity inequality. O

Given an LP solution (x?;y?) the separation problem of (15) is the problem of nding a
setS V nfs;tg for a resourcer 2 R such that

1 2 X ?
XS < dy]

i2S
1 ry? X dr ? X dr X dr
, EQX((S)) iyt i < i
i2S i2Vv i2Vv
1ary2 r ? X r X r
XN+ da e T d< d
i2S i2VnS i2Vv

Separating (15) for an be done by solvingRj(jVj 2) dierent minimum cut problems one
from each nodeh 2 V nfs;tg to the target node t for each resourcer 2 R. The problems
are solved as max ow problems using the same procedure as f@eparating (9) and (10).
The max ow problem for each h is solved on a directed graph induced from the LP solution
(x?;y?), i.e., edges are split into opposite directed arcs, and tharcs into h are disregarded.
The edge weightse; are given as:

8

3 %Qfx;-jj+djr i=h;j2Vnfh;tg
_ %erﬁ +d(1 y’) i2Vnfs;tg;j=t
Ty foxi'j’ i2Vnfh;tg, j 2V nfh;tg
M i=s;jj=1
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Consider the fractional solution given by
the graph to the right with dierent frac-
tional edge values indicated by the dotted

and dashed lines. The nodes are numbered

0;:::;5 where a path is sought from node 0 @ @ “2/3
to 0. For a single resource, the resource de- " ’

mands are given asd = f0;2;2;2;2;1g and - 1 l 13
the resource upper boundQ is 5. : 0

Consider a generalized capacity inequality ) @

(15) covering the node setS = f1; 2; 3g result- L N

ing in a fractional ow Xx?( (S)) = x§;+ X§3 = -
‘5‘ through the node set. The corresponding @ @
(15) is violated since

1, 10 X -
EQX ((9)= 3 diy;’ =
i2S

12
3

Figure 1: A violated generalized capacity inequality (15).

where M is a su ciently large constant to ensure that s and t are on the same side of the
cut. The induced graph is denser than the induced graph usedof separating (9) and (10),
therefore the separation of (15) is expected to be slower.

5 Computational Results

The experiments begin with an investigation of the impact of the parameter settings for
the cut generation of the generalized subtour elimination onstraints (9). Next, the impact
of the generalized capacity inequalities (15) are investigted. For the parameter test, we
consider 10 of the harder problems of the generated instanse This is followed by a lower
bound comparison on the generated instances using di erenteparation strategies. Last is
a comparison of the BAC algorithm and a labeling algorithm. We use a labeling algorithm,
that is implemented as described in Righini and Salani [24].For the known instances, the
comparison is made with the results obtained in Righini and @lani [25]. The mathematical
model for the ESPPRC presented in this paper contains an expential number of constraints,
S0 it is not possible to input it directly into a general purpose mixed integer solver such as
ILOG's CPLEX. However, it is possible to model the globally constrained resources in a
similar way as the locally constrained resources, e.g., wit the MTZ constraints. Such a
model can be plugged into CPLEX and solved directly, but prelminary results indicate that
this approach is always signi cantly slower than using the BAC algorithm proposed in this
paper.

All experiments are performed on a 2.66 GHz Intel(R) Xeon(R)X5355 machine with 8 GB
memory using CPLEX 10.2. The BAC algorithm is implemented usng callback functions for
the cut generation, which is available in the CPLEX callable library. The tests are performed
using the default CPLEX parameters. This includes the geneation of cuts for general mixed-
integer programs such as Chwatal-Gomory, mixed-integer ounding, and disjunctive cuts.
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Also, the 0-1 knapsack covers are included in the CPLEX defdt settings and preliminary
tests indicated, that the separation time nor the change in bwer bounds were much a ected
by the cuts. Therefore, we have not performed any further tets of the 0-1 knapsack covers
but rely on the CPLEX default settings.

5.1 The Benchmark Instances

A set of benchmarks derived from the CVRP instances (dividedin series A, B, E, G, M,
and P) available at http://www.branchandcut.org has been generated. Here, the source
and target nodes are chosen by splitting the node represemig the depot in two. To identify
su ciently hard instances of the ESPPRC, we have used the BAC algorithm for the ESPPRC
in a simple column generation algorithm for the CVRP, see e.g Baldacci et al. [5] for the
details on mathematical models. We have not included resulf for the CVRP, since it is not
in the scope of this paper. Note, that for all the generated irstances there is a valid upper
bound of 0, since they are constructed from a column generain algorithm. The instances
are named from the derived CVRP instances, which are given aketter indicating the series
followed by the number of nodes and vehicles (the latter is nbused for the ESPPRC). At
the end a number, indicating the nal iteration number of our column generation algorithm,
is added, e.g., the instance P-n50-k7-92 is from the P-seseand consists of 50 nodes (where
7 vehicles are used for the CVRP), and is from iteration 92. Tke ESPPRC instances are
gathered in the SPPRCLIB available at http://www.diku.dk/  ~spooren/spprclib.htm

Beside the generated instances, we consider the instancesad in Feillet et al. [16], Righini
and Salani [24, 25] with 100 nodes and a single globally consined resource (the capacity
resource). These instances are derived from the benchmarks Solomon [26] for the vehicle
routing problem with time windows, where the time constraints have been discarded. For
the ¢101, r101, and rc101, three di erent distributions of nades are chosen, and ten instances
have been created for each distribution, where the resourcleounds (capacity) range from 10
to 100 in steps of 10. We consider only instances with boundsf ®0 and above. Additionally,
we have extended the set of instances by setting bounds to 20600, 700, and 1000. A larger
resource bound results in loosely constrained instanceshat are expected to be harder to solve
to optimality. The instances are named according to the seis and a tenth of the capacity,
e.g., 10009 is from the c101 instance, with capacity 90.

5.2 Impact of the Parameters for the Generalized Subtour Eli mination
Constraints

The setting of the parameters for the generation of violatedgeneralized subtour elimination
constraints (6) can have a huge in uence on the computation ime of the BAC algorithm. A
low threshold on violation will result in good lower bounds and fewer branch nodes, but a
slower convergence in each node, while the opposite is truerfa high threshold. Also, the
number of violated cuts added in each iteration can in uencethe convergence and the time
spent when reoptimizing the LP-problem.

Figure 2 shows a plot with two axes given as the violation threshold and number of cuts
to add per iteration. The requirement of violation is ranging from 0.1 to 1 in steps of 0.1, and
the number of cuts to add is starting at 1 and then from 10 to 100in steps of 10. The vertical
axis indicates the average time spent. The time for each insince is scaled to the interval
]10; 1] where 1 is the maximum time given for all the parameter setings for that instance.

81



Chapter 5

Time

Figure 2: Parameter test for the generalized subtour elimination constrains (9). Above is a plot of
the average time given the violation threshold and the number of cus to add.

From Figure 2, it is observed that the best parameter settingappears to be to add 1 cut
per iteration with a violation of at least 0.4. This indicate s that the cut separation time is
insigni cant compared to solving the LPs.

5.3 Investigating the Generalized Capacity Inequalities

Note, that the generalized capacity inequalities (15) can sbstitute the generalized subtour

elimination constraints (9) in the model (1)-(7), since any infeasible integer solution will be
violated by some generalized capacity inequality. Howeverdue to the computational expen-
sive separation routine for constraints (15), a cut policy was chosen such that constraints
(15) are only separated (and possible added) whenever no Vaed constraints (9) are sepa-
rated (using the default parameters found above). Prelimirary tests indicated, that due to

a computational expensive separation routine for constraits (15), the cuts were not worth

the e ort. A slow separation was expected since the max- ow céculations are done on very
dense graphs compared to the very sparse graph used in the sgption of constraints (9).

However, we believe that constraints (15) may become usefuk.g., with the use of a faster
heuristic separation routine.

Figure 3 shows, as before, a plot of the violation thresholdnumber of cuts to add per
iteration, and average time. The time is calculated without the separation time of constraints
(15), and therefore only indicates if the convergence of th8AC is improved or not, when con-
straints (15) are added. Figure 3 indicates that a large vichtion threshold (  0:8) is preferred
for constraints (15) and that, the convergence of the BAC algrithm is faster when few of the
constraints (15) are added. Figure 4 substantiate this resli, as it can be seen that almost no
cuts are added with violation thresholds Q8 and higher. Although the generalized capacity
inequalities (15) are a theoretically interesting set of irequalities, our tests have shown that
in their current form and with the proposed exact separation routine, the inequalities do not
appear to be computationally competitive.
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Time

LI B B B B B B

Figure 3. Parameter test for the generalized capacity inequalities (15). Abwge is a plot of the average
time given the violation threshold and the number of cuts to add.

Avg. number of cuts

1 1 1 1 1 1 1
0 01 0.2 03 0.4 0.5 0.6 0.7 08 0.9 1
Violation threshold

Figure 4: Parameter test for the generalized capacity inequalities (15). Abwe is given the average
scaled number of generalized capacity inequalities added with di erenviolation thresholds when
solving the instances, i.e., with a violation threshold of 0.1 the number 6cuts are decreased by about
50 % compared to the setting with a violation threshold of 0.01.
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5.4 Lower Bound Comparison

Table 1 sums up the root lower bounds (root) and the number of lbanch nodes (nodes) for
three di erent cut separation parameter settings. A *-' entry in the branch node columns
indicates that the BAC algorithm timed out at 600 seconds. The three parameter settings
tested are:

GSEGs the BAC algorithm where at most 1 violated generalized sulbour elimination
constraint (9) with a minimum violation of 0.01 is added per iteration.

GClis the BAC algorithm with the GSE@arameter setting and when no violated (9)
are found then at most 1 violated generalized capacity ineqality (15) with a minimum
violation of 0.01 is added.

default is the BAC algorithm where at most 1 violated generalized sulour elimination
constraint (9) with a minimum violation of 0.4 is added per it eration.

The optimal solution is given in the rightmost column.

When comparing the parameter settingsGSEGnd GCI it is obvious that the general-
ized capacity inequalities (15) improve the lower bounds cosiderably. The average gap is
decreased by 63% when comparing the two settings, this inctles the instances that timed
out and potentially could have improved the lower bound further. Surprisingly, the number
of branch nodes does not decrease proportionally with the ze of the gap. That is, for the
instances that did not time out, the average gap is closed by 6% but with only 7% fewer
branch nodes. In several cases, the number of branch nodestaally increases considerably
(A-n63-k9-157, B-n45-k6-54, P-n50-k10-24, P-n55-k10-44 This indicates that (15) compli-
cates the branch decisions. The comparison of the setting&SEGnd default is more as
expected: A worse lower bound with thedefault setting leads to more branch nodes. How-
ever, the previous test for the generalized subtour elimingon (9) constraints showed, that
this setting was the fastest on average.

5.5 Comparison with a Labeling Algorithm

Table 2 shows the running time of the BAC algorithm (BAC time ( s)) with default parameters
compared to the running time of our implementation of a labelng algorithm (LA) (LA time
(s)) for the generated instances. The time limit was set to two hours and a timeout is indicated
with a '-' in the table. The rightmost column presents the speed up if both algorithms
nished. The BAC algorithm clearly outperforms the labelin g algorithm. That is, in all 45
instances. However, it is worth noting that when the solution is near 0 (which is and upper
bound for all instances since they are generated as pricingrpblems in a column generation
algorithm) then the labeling algorithm performs much better than on the instances that
contains much negativity. That is, the label algorithm is faster when there are less negativity
in the problem whereas the BAC algorithm appears to be more rbust. It should be noted
that the implementation of our labeling algorithm may be improved, but it is doubtful, that

it will be competitive with the BAC algorithm for the instanc es with a speed up of more than
100.
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GSEC GClI default

Name nodes root nodes root nodes root solution
A-n54-k7-149 231 -90877 - -41213 280 -109018 -12492
A-n60-k9-57 1641 -98206 - -64557 3071 -118437 -1000
A-n61-k9-80 205 -63534 92 -41032 462 -73397 -23549
A-n62-k8-99 133 -103839 - -47340 301 -122973 -35969
A-n63-k9-157 122 -63082 492 -38929 113 -78190 -24189
A-n63-k10-44 127 -76475 149 -51035 280 -80765 -32561
A-n64-k9-45 358 -92812 157 -65209 425 -104686 -50550
A-n65-k9-10 152 -93117 129 -58526 189 -103936 -42835
A-n69-k9-42 72 -56453 - -53299 179 -60410 -43290
A-n80-k10-14 84 -121510 45 -112483 120 -128508 -105283
B-n45-k6-54 277  -95588 497  -88761 502  -103214  -74278
B-n50-k8-40 166 -105497 - 41212 237 -128488  -12832
B-n52-k7-15 25 -85997 22 -79129 59  -90278 -74998
B-n57-k7-20 12 -876421 19  -876421 328  -882924  -867154
B-n66-k9-50 239 -81006 28 -38097 1195 -94120 -26520
B-n67-k10-26 184 -55180 178 -26808 343 -63086 -21924
B-n68-k9-65 150 -88375 - -55175 342 -99383 -31001
B-n78-k10-70 344 -91021 - -54330 480 -101516 -44333
E-n76-k7-44 117 -30127 115 -25885 338 -32038 -22214
E-n76-k10-72 239 -36569 164 -31404 138 -38613 -25241
E-n76-k14-102 3163 -28126 - -16153 3992 -31018 -1
E-n76-k15-40 3747 -25752 - -17526 4993 -28675 -1
E-n101-k8-291 48 -8296 - -7398 197 -9472 -4266
E-n101-k14-158 1468 -25748 - -22729 1350 -30882 -3590
G-n262-k25-316 669 -1434843 - -1434843 1510 -1434883 -142%35
M-n101-k10-97 40 -35323 37 -34758 76 -37825 -32628
M-n121-k7-260 89  -162680 - -161424 147  -164742  -160097
M-n151-k12-15 338 -87899 - -85488 822 -92880 -79996
M-n200-k16-143 6 -199411 4 -199411 118 -201772 -198792
M-n200-k17-12 4 -121506 1 -121210 7 -121506 -121210
P-n50-k7-92 950 -18594 1152 -12245 1319 -21516 -2
P-n50-k8-19 160 -89868 40 -89848 207 -90606 -83307
P-n50-k10-24 197 -19811 608 -11971 443 -21975 -2965
P-n51-k10-30 1028 -23812 - -18488 1588 -27061 -2
P-n55-k7-116 84 -27065 36 -22945 105 -28094 -17824
P-n55-k8-260 101 -18839 145 -11377 167 -22237 -3573
P-n55-k10-44 913 -21448 2197 -11798 1192 -25131 -1090
P-n55-k15-88 5971 -26723 - -20135 4781 -28128 -2
P-n60-k10-24 242 -26948 137 -21183 301 -29289 -15001
P-n60-k15-8 1495 -21889 1889 -13812 1507 -24674 -534
P-n65-k10-102 2390 -18923 - -10975 2532 -21424 -3
P-n70-k10-12 2 -72264 1 -70317 21 -73460 -70317
P-n76-k4-41 1 -88276 1 -88276 1 -88276 -88276
P-n76-k5-16 6 -108884 10 -108884 24 -108884 -107633
P-n101-k4-174 174 -19656 165 -19041 395 -19887 -17702

Table 1: Comparison of the number of branch nodes and lower bounds for th generated instances
using three di erent cut separation strategies.
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Name BAC time (s) LA time (s) speed up
A-n54-k7-149 6.96 1735.23 249.3
A-n60-k9-57 36.55 242.64 6.6
A-n61-k9-80 4.44 - 1
A-n62-k8-99 17.94 - 1
A-n63-k9-157 3.16 - 1
A-n63-k10-44 2.12 693.80 327.3
A-n64-k9-45 14.57 - 1
A-n65-k9-10 4.43 - 1
A-n69-k9-42 1.76 3246.72 1844.7
A-n80-k10-14 12.14 - 1
B-n45-k6-54 1.32 - 1
B-n50-k8-40 11.01 - 1
B-n52-k7-15 1.00 - 1
B-n57-k7-20 1.74 - 1
B-n66-k9-50 66.93 - 1
B-n67-k10-26 4.62 - 1
B-n68-k9-65 11.88 - 1
B-n78-k10-70 24.30 - 1
E-n76-k7-44 6.02 - 1
E-n76-k10-72 1.19 - 1
E-n76-k14-102 14.77 45.19 3.1
E-n76-k15-40 19.59 151.59 7.7
E-n101-k8-291 8.08 - 1
E-n101-k14-158 37.84 - 1
G-n262-k25-316 53.00 - 1
M-n101-k10-97 3.12 - 1
M-n121-k7-260 34.46 - 1
M-n151-k12-15 78.03 - 1
M-n200-k16-143 3.18 - 1
M-n200-k17-12 17.75 - 1
P-n50-k7-92 2.42 104.22 43.1
P-n50-k8-19 0.36 - 1
P-n50-k10-24 0.72 291 4.0
P-n51-k10-30 2.18 4.06 1.9
P-n55-k7-116 0.58 2275.07 3922.5
P-n55-k8-260 1.20 133.45 111.2
P-n55-k10-44 2.14 14.69 6.9
P-n55-k15-88 3.97 44.73 11.3
P-n60-k10-24 1.04 110.20 106.0
P-n60-k15-8 1.95 2.50 1.3
P-n65-k10-102 6.65 163.48 24.6
P-n70-k10-12 0.24 - 1
P-n76-k4-41 1.85 - 1
P-n76-k5-16 0.57 - 1
P-n101-k4-174 11.25 - 1
Best 45 0

Table 2: Time comparison of the BAC algorithm and the labeling algorithm.
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Name BAC time (s) DSSR time (s)

¢_100.06 0.36 0.21
¢-100.07 0.38 0.18
¢_100.08 0.53 1.34
¢-100-09 0.62 2.02
¢_100_10 1.14 7.68
¢.100.20 0.82 n.a.
¢_100.50 3.07 n.a.
¢_100_70 2.70 n.a.
¢-100.100 4.43 n.a.
r_100.06 0.75 34.64
r_100.07 0.85 143.63
r_100.08 1.35 281.62
r_100.09 1.04 1002.30
r-100.10 0.80 -
r_100_20 2.09 n.a.
r_100.50 26.96 n.a.
r_100_70 16.25 n.a.
r_100_100 1.76 n.a.
rc_100.06 0.23 0.35
rc_100.07 0.66 0.92
rc_100_08 0.90 1.77
rc_100.09 0.36 1.40
rc_-100.10 0.77 7.33
rc_100_20 1.08 n.a.
rc-100_50 4.10 n.a.
rc_100_70 4.17 n.a.
rc_100_100 6.47 n.a.
Best 28 (13) 2

Table 3: Time comparison of the BAC algorithm and the labeling algorithm (Righini and Salani [25]).

In Table 3 the BAC algorithm is compared to the results obtained with the decremental
state-space relaxation (DSSR) algorithm by Righini and Sahni [25] (recall from Section 1
that this a specialized labeling algorithm). The running times for the two algorithms are
given in the columns (BAC time (s)) and (DSSR time (s)). Since Righini and Salani [25]
performed their tests on a 1.6 GHz Intel (R) Pentium 4(R) with 512 MB memory, and an
exact time comparison with our machine is hard, so we have noincluded the speed up factor.
'-' indicates that the algorithm timed out after one hour, th e 'n.a.' entry indicates that no
result is available for that instance.

Although the DSSR algorithm is faster on two instances out ofthe 15 comparable cases, it
is only marginally better (even when taken their slower macline into account). There is a clear
tendency, that when the capacity increases (i.e., when the EPPRC becomes more loosely
constrained) the running times of the DSSR algorithm increae signi cantly. The running
times are also generally increasing for the BAC algorithm wien the capacity increases (except
for r_100.100), but not as drastically as for the DSSR algorithm. Resuls are not available
for the DSSR algorithm for the extended instances (with capaity from 200 and above), but
if the tendency from the smaller instances continues, thentie DSSR algorithm will probably
not be able to solve the larger instances within the time limt. The BAC algorithm is clearly
superior for the loosely constrained instances.
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6 Concluding Remarks

This paper introduces a BAC algorithm for solving the ESPPRC. The algorithm clearly
outperformed the labeling algorithms (our own implementation of the one describes in Righini
and Salani [24] as well as the one by Righini and Salani [25]pf the tested instances. Labeling
algorithms have been the preferred solution approach up urit now, but the experimental
results presented in this paper suggest otherwise. Furthenore, the generalized capacity
inequalities were introduced as a set of valid inequalitiesor the ESPPRC. It can be concluded
that the inequalities improve the lower bounds signi cantly. However, this comes at a cost
of complicating the branch decision, and leads to a large amot of additional branch nodes.
Also, the exact separation routine takes a considerable amot of time. This is due to solving a
max ow problem on an almost complete graph. That is, the genealized capacity inequalities
improve the lower bound, but lead to increased running times

Future research could include the adaption of more valid ingualities known from related
problems, e.g., two-matching inequalities, comb inequaties, and infeasible path inequalities.
Another interesting direction is the conditional cuts by Fi schetti et al. [17]. Such cuts resemble
a specialized branch rule, as they cut o some of the branch tee after solving a subproblem
that nds the optimal solution for the subtree. Another natu ral extension of the work pre-
sented in this paper is to extend the BAC algorithm to include locally constrained resources.
This would lead to a larger mathematical formulation and will most de nitely pose a serious
challenge for future research.
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Partial Path Column Generation for
the Vehicle Routing Problem
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Abstract

This paper presents a column generation algorithm for the Capacitged Vehicle Rout-
ing Problem (CVRP) and the Vehicle Routing Problem with Time Windows (V RPTW).
Traditionally, column generation models of the CVRP and VRPTW have consisted of
a Set Partitioning master problem with each column representing a rate. The use of
Elementary routes, where no customer is visited more than once,dve shown superior re-
sults for both CVRP and VRPTW. However, algorithms for solving the pricing problems
do not scale well when the number of feasible routes increases. Waggest to relax the
constraint that “each column is a route' into “each column is a part of he giant tour'; a
so-called partial path, i.e., not necessarily starting and ending in thedepot. This way, the
length of the partial path can be bounded and a better control ofthe size of the solution
space for the pricing problem can be obtained. It is shown that the IP-relaxed partial
path formulation gives a tighter bound than the LP-relaxation of a 2-index formulation,
and in some cases it is even tighter than the bound found by classicalecomposition into
routes.

Keywords: Vehicle Routing Problem, Column Generation, Elementary Shortest Rith
Problem with Resource Constraints
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1 Introduction

The Capacitated Vehicle Routing Problem (CVRP) can be described as follows: A set of
customersC having a demandd;, needs to be serviced by a number of vehicles all starting
and ending at a central depot. Each customer must be visited xactly once and the capacity
Q of the vehicles may not be exceeded. The objective is to sepg all customers traveling the
least possible distance. In this paper we consider a homogeous eet, i.e., all vehicles are
identical. The Vehicle Routing Problem with Time Windows (VRPTW) extends the CVRP
by imposing that each customer must be visited within a giventime window. We will use the
term VRP to denote Vehicle Routing Problems with time and/or capacity constraints.

The standard Dantzig-Wolfe decomposition of the arc ow formulation of the VRP is to
split the problem into a master problem formulated as a Set Patitioning Problem, and a pric-
ing problem formulated as an Elementary Shortest Path Probem with Resource Constraints
(ESPPRC), where capacity (and time) are the constrained resurces. A restricted master
problem can be solved with delayed column generation and engalded in a branch-and-bound
framework to ensure integrality. Applying cutting planes either in the master or the pricing
problem leads to a Branch-and-Cut-and-Price algorithm (BCP). Kohl et al. [24] implemented
a successful BCP algorithm for the VRPTW by applying sub-tour elimination constraints and
two-path cuts, Cook and Rich [10] generalized theéwo-path cuts to k-path cuts, and Fukasawa
et al. [19] applied a range of valid inequalities for the CVRPbased on the branch and cut
algorithm of Lysgaard et al. [25]. Common for these BCP algadithms is that all applied cuts
are valid inequalities for the VRPTW respectively the CVRP with regard to the original arc
ow formulation, and have a structure which makes it possible to handle values of the dual
variables in the pricing problem without increasing the conplexity of the problem. Fukasawa
et al. [19] refer to this as arobust approach in their paper. The topic of column generation
and BCP algorithms has been surveyed by Barnhart et al. [4] ad LA%bbecke and Desrosiers
[26]. Recently the BCP framework was extended to include vadl inequalities for the master
problem, more speci cally by applying the subset row (SR) inequalities to the Set Partitioning
master problem in Jepsen et al. [23] and later by applying Chatal-Gomory Rank-1 (CG1)
inequalities in Petersen et al. [28]. Desaulniers et al. []3solved several unsolved instances
by adding generalized k-Path inequlities and generated camns heuristically using a tabu
search and nally introduced a new algorithm to solve the pricing problem where partial
elementarity is used. Baldacci et al. [2] improved the lowerbound by adding strengthened
capacity inequalities and clique inequalities to an algorihm where columns with potentially
negative reduced cost are enumerated (after good upper andwer bounds are found).

Dror [16] showed that the ESPPRC, with time and capacity condraints, is strongly NP -
hard. Hence, a relaxation of the ESPPRC was used as the pric problem in earlier BCP
approaches for the VRPTW. The relaxed pricing problem wherenon-elementary paths are
allowed is denoted the Shortest Path Problem with Resource @nstraints (SPPRC) and can
be solved in pseudo-polynomial time by dynamic programmingusing for instance a labeling
algorithm, see Desrochers [14]. Considering a single captgcresource Christo des et al. [9]
suggested to remove 2-cycles from the paths. This was lateregeralized to the variant with
time windows by Desrochers et al. [15]. Irnich and Villeneue [22] extended the framework
further to k-cycle elimination (k-cyc-SPPRC), where cycles containingk or less nodes are
forbidden.

Beasley and Christo des [5] proposed to solve the ESPPRC usg Lagrangian relaxation.
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Figure 1: Giant-tour (left) and corresponding giant-tour split into partial paths (right), each
bounded by the capacity Q = 10.

However, labeling algorithms have recently become the mogpopular approach to solve the
ESPPRC, see e.g. Dumitrescu [17] and Feillet et al. [18]. Whesolving the ESPPRC with a
labeling algorithm, a binary resource for each node is addedncreasing the complexity of the
algorithm compared to the solution of the SPPRC or the k-cyc-SPPRC. Righini and Salani
[29] developed a labeling algorithm using the idea of Dijksia's bi-directional shortest path
algorithm that expands both forward and backward from the depot and connects routes in
the middle, thereby potentially reducing the running time of the algorithm. Furthermore,
Righini and Salani [30] and Boland et al. [6] proposed a decreental state space algorithm
that iteratively solves a SPPRC, by iteratively applying bi nary resources to force nodes to
be visited at most once. Recently Chabrier [7], Danna and Le Bpe [11], and Salani [31]
successfully solved several previously unsolved instareef the VRPTW from the benchmarks
of Solomon [32] using a labeling algorithm for the ESPPRC. Haever, these algorithms have
some weaknesses when dealing with very long (measured in thmimber of visited nodes)
paths, when resource constraints are not tight. Christo des and Eilon [8] introduced the
giant-tour representation in which all the routes are represented by one singlagiant tour, i.e.,
all the routes are concatenated into a single tour.

In this paper we propose a decomposition approach based on e¢hgeneration of partial
paths and the concatenation of these. The main idea is to lintithe solution space of the
pricing problem by bounding a resource, e.g., the number of mdes on a path or the capacity
on it. The master problem combines a known number of these bawded partial paths such
that all customers are visited. In this way we get a better corrole of the pricing problem. If
the original pricing problem is too di cult to solve for each vehicle, we may imposing a limit
on the nodes in a partial path. If the original pricing problem for each vehicle is easy, we can
choose looser bounds such that the partial paths get longerral lead to tighter bounds.

The paper is organized as follows: In Section 2 we describe Woto use the giant tour
formulation of VRP to obtain the partial path formulation. S ection 3 introduces a mathe-
matical model based on partial paths. Section 4 shows how thenodel is decomposed through
Dantzig-Wolfe decomposition, and describes how to calcuta the reduced cost of columns in
a delayed column generation framework. Section 5 describdsw to use the load resource to
divide the solution space. Section 6 concludes the paper digssing future work.
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2 Bounded Partial Paths

Given a graph G(V; A) with nodes V = C[f Og and arcsA, whereC is the set of customers,
and O is the depot. Moreover, we have a seR of resources which e.g. can be load and/or
time. Each resourcer 2 R has a resource windowd; ; f] that must be met upon arrival to
nodei 2 V, and a consumption ijf 0 for using arc (;j ) 2 A. A resource consumption at a
nodei 2 C is modeled by a resource consumption at edge;( ), and hence usually {,j =0 for
all j 2 C. A global capacity limit Q can be modeled by imposing a resource window Q@]
for the depot node 0.

The VRP can now be stated as: Find a set of routes starting and eding at the depot
node 0 satisfying all resource windows, such that the cost iminimized and all customersC
are visited.

A solution to the VRP will consist of a number of routes

0! i1 o iﬁl! 0;
0! gl il g G
ol it b ig 1 0

wheren is the number of vehicles, and; is the length of the j 'th route. A natural decompo-
sition of the VRP is to split the problem into these separate routes, where a master problem
ensures that all customers are visited once. We will call thé the classical decomposition.
However, using the classical decomposition, the number ofades in each individual route
may vary a lot, making it di cult to solve some of the subprobl ems.

Instead we consider the giant-tour representation by Chriso des and Eilon [8]

i1 i1 i 2 i 2 in in
O T I O T S0 R T T ST B N T BRI 1 BT N O I

A giant-tour (see Figure 1) is one long path visiting all customers once and the depot several
times. The consumption of resources 2 R is reset each time the depot node is encountered.
If we decompose the VRP into smaller segments of the giant-tar, we may to a larger extent
controle that the number of nodes visited in each partial pah is of similar length. In this
way we can balance the hardness of the subproblems (see Figut for an illustration).

The decompostion is done by imposing an upper limit on a resager®2 R, e.g., bounding
the path length in the number of nodes for each partial path, ¢ bounding the load. The
giant tour introduced in Figure 1 can be decomposed into a nurber of partial paths by
bounding a resource. In the following the number of visited astomers in C is considered to
be the bounding resource. Bounding the load resource is a bihore complicated and will be
addressed in Section 5.

Each segment represents a partial path of the giant-tour. Wth a bounded number of
customersL on each partial path, K partial paths are needed to ensure that all customers
are visited i.e.,L K j Cj. The partial paths can start and end in any node inV and it can
visit the depot several times. A partial path could for example be:

iz! ip! 0! ig! 0! iy

In the following we will make a graph representation for the poblem of nding the K

partial path of length at most L. This is done by replicating the graphK times and connecting
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the replications by special arcs. Each of the replicationss connected with arcs directed from
one replication to a following replication. This leads to a byered graph with K layers 1 :;; K
where there are no outgoing arcs of the nal layer. Each layerk 6 K is connected to the
subsequent layerk + 1. Each pair of subsequent layers are connected with the sebf arcs
leaving nodei in layer k 6 K and entering layer k + 1.

representing G for a partial path. Let GX be the sub graph of G® representing layerk with
node setVK = f(i;k) :i 2 Vg for all k 2 K and arc setAk = f(i;j;k ) : (i;j) 2 Ag for all
k2K.LetA =f(iji;k):(i;k) 2 VK~ (i;k +1) 2 V**1 Ak 2 Kg be the set of interconnecting
arcs, i.e., the arcs connecting a layek with the layer above k namely layer k + 1 for all k 2 K
and all nodesi 2 VS(Iayer K +1isde nedéo be layer 1 2 K and layer 0 is de ned to be layer
K 2K). Let V°= ~,, VK and let A°= ~ . AK[ A . Anillustration of G®can be seen in
Figure 2. Note, that arcs (i;i;k ) are not present in Ak and that arcs (i;j;k ) with i 6 j are
present in A , so all arcs (;j;k ) 2 A®can be uniquely indexed.

The resource consumption ijf of arcs (;j ) 2 AK is the same as in the original graphA,
hence we omit the indexk. The resource consumption of interconnecting arcsifj ) 2 A is
=0
ij '

Let L be the upper bound on the length of each partial path, and letjCj be the length
of the combined path (the giant-tour). Now, exactly K = djCj=Le partial paths are needed
to form the combined path, sincelL djCj=Le | Cj > L (djCj=Le 1). Once K has been
calculated, we can further reduce the path length toL = djCj=Ke.

With the length of a path de ned as the number of customers on t, the problem is now
to nd partial paths of length at most L in K layerswithL K j Cj>L (K 1), so that
each partial path p ending in nodei 2 V is met by another partial path p°starting in i. All
partial paths are combined while not visiting any customersmore than once and satisfying
all resource windows. A customeri 2 C is considered to be on a partial pathp if i is visited
on p and is not the end node ofp.

Layer: 1 2 . K

Figure 2: lllustration of G°with jCj =3, K =3, and L = 1. Full-drawn lines represent two
arcs; one in each direction. Dashed lines are the interconaéng arcs A .
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3 The Vehicle Routing Problem

We present two models for the VRP problem de ned in previous €ction. The 2-index model
is most compact, while the 3-index model is better suited fordecomposition.

2-index formulation of the VRP In the following let ¢; be the cost of arc (;j) 2 A,
Xjj be the binary variable indicating the use of arc (;j) 2 A, and Tijr (the resource stamp)
be the consumption of resourceg 2 R at the beginning of arc (i;j) 2 A. Let * (i) and (i)
be the set of outgoing respectively ingoing arcs of node 2 V. Combining the two index
model from Bard et al. [3] with the constraints ensuring the time windows for the ATSP by
Ascheuer et al. [1] a mathematical model can be formulated afollows:

X
min Cij Xij (l)
(i Y24
S.t. Xj =1 8i2C (2)
iy
(i 32 * () X
Xji = Xij 8i2V (3)
Gilg )2~
(T + i i) T 8r2R; 82C (4)
()2 () ()2 * (i)
aixij  Tf  Hxj 8r2R; 8(Gi;j)2A (5)
T, 0 8r2R; 8(i;j)2 A (6)
xj 2f0;1g 8(i;j) 2 A (7)

The objective (1) sums up the cost of the used arcs. Constrais (2) ensure that each customer
is visited exactly once, and (3) are the ow conservation costraints. Constraints (4) and (5)
ensure the resource windows are satis ed. It is assumed thathe bounds on the depot are
always satis ed. Note, that no sub-tours can be present sine only one resource stamp per
arc exists and the arc weights are positive for alli¢j ) 2 A:i 2 C.

For a one dimensional resource such dg,ad a stronger lower bound of the LP relaxation
can be obtained by replacing (4) to (6) with ()2 *(s) Xi r(S), wherer (S) is a minimum
number of vehicles needed to service the seb. All though this model can not be directly
solved it is possible to overcome this problem by only incluthg the constraints that are
violated. For more details on how to separate the constraintand calculate the value ofr(S)
the reader is refered to Toth and Vigo [33].
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3-index formulation of the VRP Let x}j be the variable indicating the use of arc
(i;j;k ) 2 A% Problem (1){(7) is rewritten to:
X X )
min Gj Xjj (8)
k2K (i;j )2A
X WY
s.t. X =1 8i2C 9)
k2K ()2 (1)
i1 8k2K; 82C (10)
()25 1 0 1
X X X X
@xk 1+ xKA = @K+ XK A 82V  (11)
k2K @20 a (ii)2 * (i)
xk 1+ X = xk + X 8k2K; 82V (12
N (j;ik)z (i) (i5)2 * ()
Xii = K (13)
k2K i2Vv
X X
XL 8k2K  (14)
i2C (i )2A
X X X X
T+ K T 8r2R; 812C (15
k2K (ji)2 (i) k2K (i;j)2 * (i)
X X
T+ K T 8r2R; 8k2K; 8i2C  (16)
G M o ()2 (0
al X TR oo xE 8r2R;8(G0j)2A (17)
k2K k2K k2K
ajxt T HxE 8r2R; 8k2K; 8(i;j)2 A  (18)
T 0 8r2R; 8k2K; 8(i;j)2 A (19
xii 20;1g 8k2K; 8(;j)2A (20

The objective (8) sums up the cost of the used arcs. Constrais (9) ensure that all cus-
tomers are visited exactly once, while the redundant constints (10) ensure that no customer
is visited more than once. Constraints (11) maintain ow conservation between the original
nodesV, and can be rewritten as

X X X X
Xt = X%}
k2K ()2 (i) k2K (i )2 * (i)
since i ok X b= i ok XK. Constraints (12) maintain ow conservation within a layer .
Constraint (13) ensures that K partial paths are selected and constraints (14) that the lergth
of the partial path in each layer is at most L. Constraints (15) connect the resource variables
on a global level and constraints (16) connect the resourceaviables within each single layer.
Note, that since constraints (15) and (16) are omitted for the depot, it is not constrained
by resources. Constraints (17) globally enforce the resoge windows and the redundant
constraints (18) enforce the resource windows within eachalyer.

8i2V
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4 Dantzig-Wolfe Decomposition

We use Dantzig-Wolfe decompostion of the 3-index formulatin of the VRP, de ned in (8){
(20) to reach the following master and a pricing problem. In the process of the decomposition
the K identical pricing problems are combined into a single priang problem.

4.1 Master Problem

Let , a binary variable indicating whether partial path p is used. We use Dantzig-Wolfe
decomposition where the constraints (9), (11), (13), (15),and (17) are kept in the master
problem. Since the vehicles are identical, we can aggregatever the sets AK getting the
following master problem (PP):

X
min ¢ p (21)
K" X
s.t. i p=1 8i2C (22)
p2B ()2 () |
p= p 82V (23)
8<2P:ep:i p2P:sP=i
p=K (24)
p2P 0 1
X X X _
@i+ R A TS 8r2R; 8i2C (25)
Gz () 2P (i5)2 * (i) B
al o T O i b 8r2R; 8(;j)2A (26)
p2P p2P
T, 0 8r2R; 8(i;j)2A (27)
p2f0;1g 8p2 P (28)

In this formulation, ﬁ’ is the number of times arc (;j ) 2 A is used on pathp 2 P and sP and
€P indicate the start respectively the end node of partial pathp 2 P. Constraints (22) ensure
that each customer is visited exactly once. Constraints (2Blink the partial paths together by
ow conservation. Constraint (24) is the convexity constraint ensuring that K partial paths

are selected. Constraints (25) and (26) enforce the resouecwindows.
Tightness of bounds: Before we turn our attention to the pricing problem we prove the
following theorems about the quality of the bounds obtainedby the decomposition.

Theorem 1. Let z.p be an LP-solution to (1){(7) and let zpp be an LP-solution to (21){(28)
then z.p  zpp for all instances of VRP.

Proof. z.p  zpp since all solutions to (21){(28) map to solutions to (1){(7), see Nemhauser
and Wolsey [27]. O

Theorem 2. Let zpp as before be an LP-solution to (21){(28), andzgp be the LP-solution to
the classical decomposition of VRP into an elementary routeor each vehicle. Then instances
exist wherezpp > zgp.
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Figure 3: Three customers with demand of 1 and vehicle capatyi Q = 2. Distances are
indicated on the edges. There are six feasible routed @; 1; 0g, f0; 2;0g, f0;3;0g, fO0;1;2; Og,
f0;1;3;0g, f0;2;3;00) having the costs (42;4;3;4;3). The LP solution is (0;0;0; 3; 3; 3
with objective zgp = 5. Using the partial path formulation with max path length L =3 and
K =1 we nd the optimal solution ( f0;1;3;0; 2; 0g) with objective zpp = 6.

Proof. An instance with zpp > zgp can be constructed with three customers each with a
demand of 1 and vehicle capacityQ = 2. Using a max path length of L =3, we nd zpp =6
while zgp = 5. (See Figure 3). O

4.2 Pricing Problem

The K pricing problems corresponding to the master problem (21){28) are de ned by con-
straints (10), (12), (14), (16), and (18) and can be formulatd as a single ESPPRC where the
depot is allowed to be visited more than once. Lets and e be a super source respectively a
super target node. Arcs 6;i) and (i;e) for all i 2 V are added toG with cost and resource
consumption 0.

X
min Cjj Xij (29)
(i )>%A
s.t. Xsi =1 (30)
(S:i))% *(s)
Xie =1 (31)
(i§()2 (e)
Xij 1 8i2C (32)
)2
(i g(A X
Xii = Xi 8i2V (33)
G2 () ()2 * ()
LG
i Xij L (34)
i 12A
W% X
(T + i) T 8r2R; 8 2C (35)
Gz () (i5)2 * ()
a{xij Tijr HXij 8r2R; 8(;j)2 A (36)
Xj 210;1g 8(i;j)2 A (37)

The objective (29) minimizes the reduced cost of a column inRP). Constraints (30) and (31)
ensure that the path starts in s respectively ends ine. Constraints (32) dictates that no node
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is visited more than once, thereby ensuring elementarity. ©nstraints (33) conserve the ow.
Constraint (34) ensures that the partial path does not use meoe than the allowed amount
L of the restricted resourcer® Constraints (35) and (36) ensure the resource windows are
satis ed for all customers. Note, since constraints (35) htd for i 2 U (excluding the depot),
a resource is only restricted by its lower limit aj for all r 2 R each time a path leaves the
depot.

Let (i 0:8i 2 C) bethe duals of (22) and ¢ =0, let be the duals of (23), let
0 be the dual of (24), let ( 0 :8i 2 C) be the duals of (25) and ¢ = 0, and let
I O0andt™ O be the dual of (26). The cost of the arcs in this ESPPRC are the given as:

P =)

<GP i prAL+ LrHTT 8(@j)2AN(CT(S)[  (9)
G =t 8(s;j)2 " (9)
’ i 8(i;e) 2 (e

The pricing problem is now an to nd an elementary shortest pah from s to e.

Solving the pricing problem: ESPPRCs can be solved by various labeling algorithms,
see e.g. Desaulniers et al. [12], Irnich [20], Irnich and DeasiIniers [21], and Righini and Salani
[29].

Branching: Integrality can be obtained by branching on the original variables, which can
be accomplished by cuts in the master problem (see Vanderbkd¢34]), e.g., letX; be the set
of partial paths that utilize arc (i;] ) then the branch rule xj =0 _ Xxj; =1 can be expressed
by the dichotomy: X X
p=0 p=1:
p2 Xiji p2 Xiji

5 Bounding the Load Resource

The giant tour introduced in Section 1 can be decomposed int@a number of partial paths by
bounding a resourcer®, e.g. the number of nodes, the time, or the load. In this sectin we
consider the latter. The load constraint is present in CVRP and VRPTW and is a special
type of resource constraints. IfQ is the maximal load of a vehicle andd; : i 2 C is the
demand of the costumers, then the accumulated demand on a ré& may not exceedQ. The
goal is that equation (34) is expressed on the form:
X
diXij L
(ij)2A

wherel is a given threshold value for the load resource. This will ptentially lead to an easier
pricing problem. For dynamic programming based algorithmsthe complexity is dependent
on the size ofL. In the length case we rounded up the expressiojCj=K to ensure feasibility.
In the following we will discuss a similar approach igr boundng on the load resource.

Let the total demand of the customers beD =, di. A lower bound on the number
of partial paths needed is:K = dD=Le. However, we cannot just split the giant tour into K
partial paths of capacity L since there is no guaranty that the optimal giant tour can be lit
into partial paths of equal capacity.
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Layer: 1 2 = K

Figure 4. Small subset of the connector arcs. Connector ardsom node 0 in layer 1 to nodes
in layer 2, and connector arcs from node 2 in layer 2 are shownsadashed lines. Not all
connector arcs are shown due to readability of the graph.

Let the largest demand be de ned asdmax = maxioc di, and assume thatlL  dmax. Then,
we need to allow up todmax 1 extra capacity in each partial path, to compensate for posibly
uneven splitting. This means that for a givenK we nd Ly, = dD=Ke+ (dnax 1) as the
upper bound on the resource consumption.

An alternative approach to increasing L to L, is to allow an additional edge exceeding
L to be selected in the pricing problem. This may complicate tte pricing problem, though.

The remainder of this section addresses alternative stratgies to avoid complicating the
pricing problem. One such alternative is to introduce the cacept of connector arcs. A
connector arc is a single arc between two nodes which combigawo partial paths. For each
layer k 2 K and original arc (i;j ) 2 A there is connector arc to the subsequent layer.

Figure 4 illustrates the idea of the connector arcs. The dasid lines from node 0 in layer 1
orientated towards layer 2 to nodei,; i, andig, illustrates the connectors out of node 0 in layer
1. Similar nodesi; in layer one will have connectors to nodes @5,i3 in layer 2, and likewise
for nodesi, and i3 in layer 1 has connectors to layer 2. In layer 2 the dashed lirefrom node
i» illustrates its connectors to layer 3. Similare all other nales in layer 2 has connectors to
layer 3. In layer 3 the dashed lines illustrates the nal set d connectors, which are the last
edges that can be used in the system and they therefor point tahe depot from all nodes.
The connector arcs plays the same role as the additional araithe pricing problem suggested
above. They make it possible to obtain a path which exceeds 1 by the demand of a single
customer. By allowing K connector arcs it is therefore possible to obtain a solutiorto the
problem where all theK layers include one additional node.

To model the connector arcs we introduce new variableyi'f for all (i;j) 2 A and for all
k 2 K. These variables substitute the variablesx}} by connecting every node k) 2 VX
in each layerk 2 K with the nodes (;k +1) 2 V1 : (i;j) 2 A in the subsequent layer.
Furthermore, constraints (11) are modi ed to:

X X X
X+ = xk+yk ;o o8i2v
k2K (jii)2 (i) ()2 ()

This ensures the global ow by taking the ow of the connector arcs into account. A similar
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substitution is made in constraint (12) and (13). The connedor arcs are also present in
the resource constraints where they are added to any sum bouing the resource variables.
Constraint (15) is therefore changed to:

X X X X

TjEk + Xj!(i + iji Tijrk; 8r2R;82C

k2K (ji)2 (i) k2K (i;j )2 * (i)

A similar addition is made for constraints (16), (17), and (18).

When the model is decomposed into thé& pricing problems each set of up toK connector
arcsyi : yi'J‘ (i) 2 Ajk 2K becomes a single connector arc connecting the paths ending i
nodei with the path starting in node j. Using the aggregated connector arcs constraints (23)
are substituted with:

X X X X _
pt Yji = yij + p 812V
p2P:eP=i i2 () i2 (i) p2P:sP=i

6 Conclusion and Future Work

A new decomposition model of the VRP has been presented withie ESPPRC as the pricing
problem. The model makes it possible to balance the runningitme of the pricing problem
against the tightness of the lower bound. Due to the aggregadn of the model, LP relaxed
bounds of (21){(28) are better than the direct model (1){(7). Since (21){(28) is a generaliza-
tion of the traditional Dantzig-Wolfe decomposition model with elementary routes as columns,
the LP relaxed bounds may be both weaker and stronger. It has éen shown that the bound
of the presented LP relaxation is sometimes better than thatof the classical decomposition
of VRP into an elementary route for each vehicle.

Future work: The quality of the bounds can be further improved by using speial purpose
cutting planes, which this paper has not focused on. Furthemore, e ective cuts such as
Subset Row-inequalities by Jepsen et al. [23] and Chwatalcomory Rank-1 cuts (see Petersen
et al. [28]) can be applied to the Set Partition master problenm to strengthen the bound.

More and better cuts have been added to the VRPTW Branch-and€ut algorithm used in
this paper for comparison, but all of these cuts could also bedded to this model obtaining
at least as good a bound.

Considering the approach of Baldacci et al. [2] where colummare enumerated dependent
on strong upper and lower bounds, it should be clear that the @rtial path approach should
contain fewer enumerated columns due to the smaller solutio space of the pricing problem.
Combining the relatively strong bound with the small solution space a powerful strategy
should be obtained.
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Abstract

Reliable communication has become crucial in today's information soctg. Modern
communication networks are required to deliver reliable communication to their cus-
tomers. Unfortunately, protection against network failures sign cantly hampers e cient
utilization of network investments, because the associated routig problems become much
harder. In this paper we present a rigorous mathematical analysiof one of the most
promising protection methods: Failure independent path protectim. We present an LP
model which is solved by column generation. The subproblem is proveto be strongly
NP -hard, but still solvable for medium sized networks through the useof specialized dy-
namic programming algorithms. This enables us to evaluate the perfonance of failure
independent path protection for 8 networks with up to 37 nodes am 57 links. The results
indicate that only between 3% and 8% extra network capacity is necgsary when com-
pared to the capacity required by complete rerouting (which is the dsolute lower bound
for single link failure protection).
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1 Introduction

Today's information society relies increasingly on advaned communication networks. This
has led to massive investments in increased communicationetwork capacity. In order to
utilize these investments the network operators performtra c engineering, i.e., they route
communication to maximize the utilization of the capital invested in the communication
network.

Most of the backbone networks which today carry long distane communication tra c use
path based routing, i.e., a communication connection betwen two points in the network is
established along one or more xed paths. Despite the huge sgess of the packet switched
Internet, path based routed network technology will continue to be the dominant technique
of backbone networks, because tra c engineering can be peofmed much more e ciently
than in packet switched networks. Examples of such path swithed network technologies are
SDH/SONET or DWDM networks or circuit switched network tech nologies like PSTN/ISDN.
Furthermore, the new Multi Path Label Switching (MPLS) [34] protocol enables packets to
be routed on xed paths.

The standard model of a path switched communication networkis a directed graph
G = (V;A) consisting of a set of nodesv and a set of arcsA. The nodes correspond to
telecommunication switches. The telecommunication switbhes route the communication sig-
nals through cables. We will assume that all cables enable Hirectional communication and
therefore we will model one cable using two arcs, one each wdetween the end nodes. We
assume that a static communication connection demand is gien which requires one-way com-
munication between an origin nodeox and a terminating node d¢ of volume | for a set of
demandsk 2 K. For each demandk we should construct a singleprimary (or working) path
from o to dy, and all the required volume of trac ¢ should be sent over this primary path
(i.e., tra c should be non-bifurcated).

Communication networks are increasingly required to bereliable. If we cannot trust our
messages to reach the receiver, the use of a communicationtwerk is limited. Communication
networks are prone to failures and many di erent types of failures can occur. Switches (nodes)
can lose power, experience software and hardware failurestc. Cables (arcs) can be cut by
entrepreneurs or by natural disasters. For simplicity, in this paper we will only consider single
cable failures, i.e., simultaneous failure of the two arcs Wich correspond to a cable. This is
a well-known and widely used simpli cation [15, 26].

Multiple cable failures can occur in networks, but are less pbable. Several cables can fail,
if, e.g., a switch fails or a single cable failure in a lower ngvork layer may result in multiple
failures in the upper layers. These kind of network errors ag of increasing importance but
they also make network protection signi cantly harder, e.g., the problem of nding failure
independent paths isNP -complete in the face of multiple cable failures [17].

When a cable fails, the network operator either has to repaithe cable orre-route the failed
paths around the failure. Because repairing a cable can takeonsiderable time, rerouting is
an interesting alternative. The main problem with reroutin g is that enough capacity needs to
be available on the remaining non-failed cables to enable reuting. Tra ¢ engineering which
takes into account the possibility of a cable failure become signi cantly more complex, but
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is again important in order to utilize network investments.

In this paper we assume that tra ¢ which is routed along one primary paths is rerouted
along the samebackup (or protection) path. Hence rerouted tra ¢ is non-bifurcat ed. The
cost function is simple: We assume that a linear cost ternt, for using capacity on arca has
to be paid. The required capacity of an arc is the maximum capaity required for all failure
situations (the network should be able to accommodate necaary rerouting). The total cost
of the network is the sum of costs over all arcs. It should be ned that in our model arcs
have no capacity bounds | in contrast to the well-known multi -commodity ow model [1].

In Figure 1(a) two paths are established, from node 2 to node Gnd from node 5 to
node 9, both with a volume of 1, that is, (01;d1; 1) =(2;6;1) and (02;d2; 2) =(5:;9;1). In
Figure 1(a) | and all the other gures in this paper | we have on ly drawn the bidirectional
cables, andnot the two corresponding arcs for each cable, in order not to coplicate the gures
unnecessarily. The necessary capacity of a cable correspimto the sum of the necessary arc
capacities for that cable. Given the paths chosen in Figure (&) an arc capacity of 1 is then
required on the arcs (24), (4;6), (5;7) and (7;9), resulting in a total required Non-Failure
(NF) network capacity of 4. In Figure 1(b) the cable between rode 5 and node 7 fails resulting
in the failure of arc (5;7) and arc (7;5). This results in a communication breakdown for the
path from node 5 to node 9.

(a) Two paths (b) A cable break

Figure 1: Path switched routing.

In order to protect communication against a cable failure, arerouting strategy needs to
be planned for each possible cable failure, i.e., a protecth method needs to be installed.
(Because rerouting methods protect against failures, we Mliuse rerouting methods and pro-
tection methods interchangeably.) The importance of netwak reliability and the importance
of minimizing network investments have resulted in a large mmber of rerouting methods. It is
beyond the scope of this paper to review these and we refer theader to [15] for a recent and
comprehensive survey. One of the promising methods ig-cycle protection. This is a clever
extension of the well-known ring protection scheme, which igni cantly improves the capac-
ity requirements necessary for protection [15, 31]. Furthemore, the use ofp-cycles enable
fast protection of communication, as provided by ring protection. Despite these promising
features, p-cycles have not (yet) achieved widespread application.

In this paper we will consider tra c engineering optimizati on methods for the Failure
Independent Path Protection (FIPP) method for path switche d networks. In this protection
method the backup path for a given demand is independent of tk failure related to the
primary path, i.e., independent of which of the cables in theprimary path have failed. This
protection method is also called Shared Backup Path Protedbn in [15] or Global Backup
Path Protection in [6].

The outline of the paper is as follows. In Section 2 we give a lef description of di erent
path protection methods. This leads us to focus on the FIPP méhod for which we give a
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mathematical model in Section 3. In the same section we alsorpsent a column generation
algorithm to solve a relaxed model and discuss the computatinal complexity of the sub-
problem. In Section 4 we then present and discuss the resultehen applying the column
generation algorithm to a number of test cases. In Section 5 & discuss possible extensions
and in Section 6 we draw some conclusions.

2 Path protection method

The classic path protection method employed in path switchel networks is 1+1 protection.
Figure 2(a) shows how the 1+1 protection method can be used tprotect the path connections
from Figure 1. In 1+1 protection, two cable disjoint paths (and hence arc disjoint paths) are
established and actively used. If an arc fails on one path, ta other path will survive and
enable the receiving node to restore communication by justwitching to the other incoming
signal. This method is simple, there are well-de ned standads, but the required network
capacity is always at least twice the required non-failure mtwork capacity. The total network
capacity required in the example in Figure 2(a), assuming tle same demands, is 10. Notice
in particular that a capacity of 2 is required on arc (5; 6).

—_—

2 4 6 8
L% 5/%9
—»

(a) 1+1 protection (b) FIPP

Figure 2: Capacity sharing illustrated.

2.1 Comparing path protection methods

We now de ne two measures: Restoration Over Build (ROB) network capacity and Relative
Restoration Over Build (RROB) network capacity.

ROB: The extra network capacity necessary to ensure protectioni.e., the network capacity
for both routing and protection minus the NF network capacity, assuming shortest path
routing. In the example from Figure 2(a), ROB =10 4 =6.

RROB: The relative extra network capacity necessary to ensure pnection, i.e., the ROB
network capacity divided by the NF network capacity. In the example from Figure 2(a),
RROB = % = 1:5, meaning that 1+1 protection in this case costs 150% extra
network capacity compared to the necessary non-failure netork capacity.

The FIPP method is a slight variation of 1+1 protection: Inst ead of actively sending data
packets on both paths, one path is designated the primary pdt and only when that path fails
will the data packets be sent along the backup path. In Figure2(b) the same two protected
connections as in Figure 2(a) are shown, but now there is a pmary path (full line) and a
backup path (dashed line) for each path. But the required netvork capacity has decreased.
The arc (5;6) now only needs a capacity of 1, because the backup paths aret being used
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at the same time. This concept is calledsharing and is possible because we only guarantee
protection against single cable failures and because the twprimary paths are cable disjoint.
For the FIPP method, the NF network capacity is again 4, but the ROB network capacity is
now 9, which leads to an RROB network capacity of 125.

In order to utilize the path protection methods tra ¢ engine ering has to be performed in
order to minimize the RROB network capacity. When working with 1+1 protection this is a
well-studied problem for which there exist polynomial-time algorithms [4, 33]. This isnot the
case for the FIPP method. Because of the possibility of shang the capacity for the backup
paths, the best choice of primary path and backup path for eabh end-to-end demand node
pair becomes interdependent.

A practical solution to the FIPP tra ¢ engineering problem i s studied in [23]. In order to
simplify the problem, the dependency between di erent protected communication connections
is ignored in [23]. Instead, the focus is on algorithms whictcan nd pairs of disjoint paths,
where the cost of backup paths is assumed to be some constardctor cheaper than the
primary paths. Because of the sharing possibility it is reasnable that the capacity costs
for each arc of the backup path are less than the capacity costfor each arc of the primary
path. Even this simpli ed problem is NP -hard [23] and a number of di erent heuristics are
suggested to nd good, though not optimal, solutions to the problem. This line of research
is continued in [22]. It should be emphasized that the cost mdel for backup paths used in
[22, 23] is approximate. We quantify the exact relationship between costs for primary and
backup paths in Section 3.1 and prove that the resulting optmization problem is strongly
NP -hard.

In [26] the full FIPP trac engineering problem is considered. A column generation
approach, similar to the approach in this paper, is consideed. The same mathematical
model for the column generation master problem is formulatd, but the subproblem is not
formulated. This means that if an optimal solution is required, the full set of disjoint paths
has to be pre-generated, and this is only feasible for smalletworks.

2.2 Dierent path protection methods

The Failure Independent Path Protection method is just one example of a path protection
scheme, and there are a number of other methods. The di erent ath protection methods
all use one primary path, but protect the primary path in dier ent ways. In Figure 3, which
is (partly) taken from [6], six path protection methods are presented. If the path protection
methods are only allowed to choose the backup path based on ¢hfailed cable, this list
is complete, but a number of additional variations exists, ®me of which are described in
Section 2.3.

Full Backup Path Protection (FBPP)

Theoretically FBPP [24], see Figure 3(a), is the most e cient path protection method. (This
method is not included in [6].) Given a primary path, each cable which can fail on the
primary path is protected by a unique backup path. There are ro limitations regarding these
backup paths, except they are, obviously, not allowed to useany of the two failed arcs in the
cable which they protect. This gives the highest possible edom in choosing the cheapest
protection paths and all the other path protection methods are more restrictive in the choice
of backup paths and hence more costly.
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Figure 3: Di erent path protection schemes.

Segment Backup Path Protection (SEBPP)

SEBPP, see Figure 3(b), protects segments (sets of cables) the primary path with the same
backup path. Hence several cables in the same segment areded to share backup paths.

Failure Independent Path Protection (FIPP)

FIPP, see Figure 3(c), limits the choice of backup path even drther, such that only one
backup path is allowed. This forces the backup path to be cal@d disjoint with the primary
path.

Local Backup Path Protection (LBPP)

LBPP [24], see Figure 3(d), performs a local protection, i.e the rerouting paths are required
to lead from one node of the failed cable to the other node of ta failed cable. This resembles
the classical span protection, but in this case di erent reraite paths may be chosen for each
connection.

Local Destination Rerouting (LDR)

LDR [2], see Figure 3(e), is a variation of local protection,where the connection paths are
rerouted directly to the end node of the connection. LDR pregrves the fast rerouting time
of Local Backup Path Protection, but is more e cient regardi ng ROB network capacity.
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Front Dynamic Backup Path Protection (FDBPP)

FDBPP, see Figure 3(f), is another variation of local protedion, where the connection path is
rerouted from the start node to the end node of the failed cabé¢. To the best of our knowledge
this type of protection has not been suggested anywhere elsand is only included to make
the list of path protection methods complete. We do not expet the FDBPP method to be

implemented anywhere.

2.3 Further variations

The description of the di erent path protection schemes is vey simpli ed and a number of
variations can be added. Here we brie y mention two of these.

Stub-release is a technique which can be applied to furtherower the required network
capacity. The idea is that in case of a failed cable, the unhaned parts of the primary path,
which are not in use any longer, are released and can be used forotection [25]. Stub-release
can improve the capacity e ciency of each method, with the exception of the Local Backup
Path Protection method, at the price of a more complicated protection scheme.

To speed up the recovery process, Hashkin protection can bepplied [16]. The idea is
to loop-back the communication signals at the switch just bdore the failed cable, to where
the backup path starts. Hashkin protection minimize packetloss, but requires more network
capacity and cannot be used in Local Backup Path Protection ad Local Dynamic Backup
Path Protection.

2.4 Motivation for FIPP

Out of the 6 di erent types of path protection described in Sedion 2.2, we only consider the
FIPP method in this paper.

FIPP is the only path protection method for which the protect ion action does not depend
on which cable actually fails | it is failure independent This makes FIPP the simplest of
the path protection methods. Furthermore, the complex switching schemes take place at the
start node of the connection path, which may be an advantageri future networks. It is not
the most capacity e cient path protection method. The most e cient method is FBPP, but
FBPP requires administration of a large number of backup pats. Furthermore, in Section 4
we demonstrate that the FIPP method is indeed avery e cient protection method, when
optimal routing of the primary path and the backup path is performed.

The main disadvantage with the FIPP method is the relatively long restoration time, i.e.,
the time it takes to restore communication. This is because bthe noti cation time { which
is the backward communication time between the node which oberves the failure and the
node from which the connection paths originates. We have ilistrated the noti cation time
by dotted arrows in Figure 3 for the path protection methods for which this is necessary. For
a more complete discussion of restoration time, we refer tog].

3 LP model and column generation approach
In this section we start by de ning the FIPP optimization pro blem formally. Then we present

an LP model for a relaxed version of the FIPP optimization problem, the so-calledfractional
FIPP optimization problem. The LP model has an exponential number of variables, and
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hence we solve it using column generation. In Section 3.1 weedcribe the associated pricing
problem (or subproblem). A MIP model for solving the subproblem is given in Section 3.2,
and in Section 3.3 we show that the subproblem is in fact strogly NP -hard. Finally, in
Section 3.4 we give a labeling algorithm for solving the subpblem, and summarize our
column generation algorithm in Section 3.5.

Given, as previously de ned, a directed graphG = (V; A) with nodes V and arcsA. For
each failure situation s 2 S we have a set of failed arcd~s A. There is a costc, for using
one unit of capacity of an arca. We further assume to know a static set of demand node pairs
for which protected connections using the FIPP method shou be established. A directed
connection between an origin nodeo, and a terminating node d¢ with a volume of  should
be established for each demané 2 K. The optimization objective is to minimize the cost of
the required capacity when applying the FIPP method to protect the established connections.
This means that for each demand agpair of directed failure disjoint paths needs to be found:
A primary path pP" and a backup path pP2, both connecting nodeoy to node di. Such a
pair of failure disjoint paths is denoted apath pair = (p"" ; pPa). The objective in the FIPP
problem is to nd a path pair for each demand k 2 K, such that the total cost of the capacity
required is minimized. Note that the capacity required by an arc is the maximum capacity
required taken over all failure situations.

Given these de nitions we are ready to present an LP model forthe fractional FIPP
optimization problem. In this problem we allow more than one path pair to accommodate
the ow required by a demand. Let Py be the set of path pairs that can satisfy demandk,
that is, the set of primary/backup paths that connect origin node o with terminating node
dx. Let Py(a) Py be the subset of path pairs for which theprimary path uses arca 2 A.
Similarly, let Px(a;s) Px be the set of path pairs for which theprimary path fails and the
backuppath uses arca 2 A nFs in failure situation s 2 S. Finally, let variable ¥ denote
the amount of communication ow through path pair 2 Py, and let variable 5 denote the
capacity required for arca 2 A.

FIPP
minimize:
X
Ca a (1)
a2A
subject to:
X
k « 8k2K 2)
2Py
X X . X X .
+ a 8s2S;a2AnFg 3)
k2K 2Py (a) k2K 2Py (a;s)
k; a2 R+

The objective function is given by (1) and it is the cost of the summed network capacity.
The demand constraint (2) ensures that enough capacity is dablished on the path pairs. The
capacity constraint (3) ensures that enough capacity is albcated to route the communication
on each arca in each failure situation s which does not disrupt the arc.
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The problem with this LP-model is that the number of path pair s grows exponentially
with the network size, and hence the complete model can only & solved for small network
sizes. Instead, we will use a column generation algorithm s that only a subset of the path
pairs is generated. The optimization subproblem to genera new path pairs with negative
reduced costs is given in Section 3.1, and in Section 3.5 thelumn generation algorithm is
given.

It is clear that the fractional FIPP optimization problem is a relaxation of the original
FIPP optimization problem which is NP -hard [32]. The hardness of the fractional FIPP
optimization problem on the other hand is still an open problem. The LP model can there-
fore be used for lower bounding in a branch-and-price algattim for the FIPP optimization
problem. The bound can however be weak, because the bound dfd relaxed FIPP model
is equivalent to the bound of the relaxed FBPP model, if the piimary paths consists of one
link. For primary paths of one link, each of the backup paths for the FBPP model can be
constructed by generating path pairs, i.e., the one hop prinary path and di erent backup
paths. For primary paths which are not one hop however, the réaxed FIPP model and the
relaxed FBPP model are not equivalent, because in the FIPP mdel the feasible backup paths
are more limited than the feasible backup paths for the FBPP nodel. In other words, it will
depend on the network and the communication demand how good bound the relaxed FIPP
model can deliver compared to the bound of the FBPP model.

3.1 Subproblem: Quadratic Cost Disjoint Path Problem

For the master problem for FIPP optimization problem let y 0, k 2 K, be the dual
variables associated with the (negated version of) constiat (2), and let ; 0,s 2 S,
a2 AnFg, be the dual variables associated with constraint (3). Our fask is to decide if there
exists a pair of primary and backup paths = (pP"; pP2) from some origin nodeoy to some

terminating node dx with negative reduced cost for somek 2 K .

The reduced cost of a pair of paths PP ; pP2°) is clgmputed as follows. The cost of an arc
a2 p’is g 5 whilethe costofanarca2 pP©is  gr wig: 5 Notethe asymmetry
in the de nition of arc costs in primary and secondary paths: For an arc on the primary path
the cost is the sum taken overall failure situations, while for an arc on the backup path the
sum is only taken over the failure situations that a ect an arc on the primary path. The total
reduced cost of pP"; p°2°) is now

primary path cost backup ,path cost
Z?Hf;—g Z¢ ij
a

+

[SN7 e

k *+
azppri s2S a2phac  s2S:Fg\ pPri 6 ;

The Quadratic Cost Disjoint Path Problem (QCDPP) is to compute a pair of paths =
(pP"'; p°2°) with minimum total cost. The name of the problem comes from the fact there
is a pairwise (or quadratic) dependence on the cost of the b&ap path as a function of the
primary path. Since the dual variables ; are non-negative, there clearly exists an optimal
solution where both the primary path p?" and the backup path p2° are simple. Hence in the
following we require that the paths p°"' and pP2¢ are simple and arc disjoint.
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3.2 MIP model for QCDPP

A primary path is de ned by the binary variables x, for all a 2 A and a backup path is
de ned by the binary variables y, for all a2 A. We de ne the sets * (i) as the arcs going
out of nodei 2 V and (i) as the set of arcs going into node 2 V. We again use the set of
failed arcsFs and de ne the cardinality of the set as jFgj, i.e., the number of arcs which fails
in situation s 2 S. The binary variables ug for all s 2 S detect whether the primary path is

interrupted by failure s and the binary variables vs for all s 2 S detect whether the backup
path is interrupted by failure s. Furthermore, the auxiliary variables z2 for all s2 S and all

a 2 A detect if the primary path is interrupted by failure s at the same time as the backup
path use arca.

QCDPP
minimize:
primary path cos backup ,path cos
Al e QR Sy il
CIr(educed = k + asl Xa * asl Zg (4)
a2A s2S a2A s2S
subject to:
8 .
X X <1 I = Ok
a2 + (i) a2 (i) 8 0 otherwise
X X <1 i = o
a2 * (i) a2 (i) -X 0 otherwise
jFsj Us Xa 8s2S @)
%P
JFs] Vs Ya 8s2S (8)
a2Fs
Us + Vs 1 8s2S 9)
28 Us+Ya 1 8s2S;a2A (10)
Xa;Ya;Us; Vs 2 f 0; 1g; z; 2 [0;1] (11)

The objective function (4) is the reduced costck,y,..q Of the two disjoint paths. The
rst double sum calculates the costs for the primary path. The second double sum then
calculates the cost for the backup paths. Notice that each ar a in the backup path only costs
5 in situation s if the primary path is disrupted in failure situation s. This is detected by
the variable z2. Finally the dual value ¢ from constraint (2) is subtracted to calculate the
corresponding reduced cost. Both the primary path variable x and the backup path variables
y are constrained to form paths by constraint (5) and (6), resgectively. The path disruption
variables, u for the primary path and v for the backup path, are set by constraint (7) and (8)
respectively. Variablesu and v are then used in constraint (9) to ensure failure disjointness of
the paths. In constraint (10) the auxiliary variable z2 is forced to the value 1 if the primary

116



Optimal Routing with Failure Independent Path Protection

path is disrupted in situation s and the backup path uses the arca. Finally the domains of
the variables are given by constraint (11).

We consider two variants of failure situations: In the single arc failure variant there is
one failure situation for each arc inA. In the single link failure variant there is one failure
situation for each pair of opposite arcs, i.e., when the coesponding undirected edge is broken.

In Section 3.3 it is proved that the sub-problem above isNP -hard. However, if instead
the primary paths were pre-calculated and the task was to ndthe best usage of the primary
paths, at the same time nding the best backup paths, the subproblem would be a simple
shortest path problem (with links of the primary path removed from the network).

3.3 NP -hardness of QCDPP

We now prove that QCDPP is strongly NP -hard for the single arc and single link failure
variants. First we present the proof for the single arc variant and then we indicate how this
leads to an NP -hardness proof for the single link variant. In the single ac variant the set
of failure situations S is identical to the set of arcsA. The decision version of QCDPP with
single arc failures is formally de ned as follows (where theconstant term in the objective
function of QCDPP is ignored).

INSTANCE: Directed graph G = (V;A), pairwise (integer and non-negative) costs ! for all
ordered pairs of arcs §;f) 2 A A, origin node o 2 V, terminating node d¢ 2 V and integer
C.

QUESTION: Does there exist a pair of simple arc disjoint paths = (pP" ; pPa°) from o to
dx in G such that X X X X
fot f Cc ?
a a :
a2pPi f2A a2 pbac f 2 ppri

We prove that this problem is NP -complete by reduction from 3-SATISFIABILITY (3SAT) [14].
It is obvious that the decision version of QCDPP is inNP, since given = (p”" ; pPa%) we can
compute the corresponding cost and compare it taC in polynomial time.

loss of generality that each variable appears in at least onelause.

Based on the 3SAT instance we create an instance of the QCDPP ith the structure
illustrated in Figure 4. The graph consists of two chains of acs { the so-called top chain and
the bottom chain. Two node disjoint paths from ox to dx must necessarily have the property
that one of the paths travels through the top chain while the ather travels through the bottom
chain. By assigning costs appropriately, we will force the pmary path to use the bottom
chain and the backup path to use the top chain.

We will rst assume that we seek two nodedisjoint paths from oy to di in this graph. Later
we describe how we can modify the graph so that the paths becoearc disjoint. Furthermore,
the graph that is shown is a directed multigraph, and later we also describe how this graph
can be transformed into an ordinary directed graph.

The arcs in the top chain are denotedvariable arcs, while the arcs in the bottom chain are
denoted clausearcs. For each clausa; 2 C we have 8 parallel arcs, one for each combination
of assignments for the three literals; these assignments ardenoted 000, 001, 010 etc. As
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Figure 4: Graph construction for NP -completeness proof.

an example, for the clause X1 _ X» _ x3) the assignment 011 means thatx; = 0, Xp =
and x3 = 0. Note that an assignment di erent from 000 corresponds to asatis ed clause.
Similarly, we have two variable arcs for each variablex;, one arc forx; = 0 and one arc for
Xj = 1.
We will now assign pairwise costs ! for all ordered pairs of arcs @;f) 2 A  A. We set
I =0 for all (a;f) 2 A A except fromthe following pairs:

For a clausearc a corresponding to the assignment 000 we havezf,l0 = 1 for one arbitrary
variable arc f © (say, the arc corresponding tox; = 0). Thispmeans that if the arc a is
used by a primary path from o, to di then the cost ofais ;,, f=1.

For a variable arc a and clause arcf , if the variable assignment given by arca doesnot

match the clause assignment given by aré , then =1 Asan example, the variable
arc a corresponding toxz = 1 has ! =1 for the arc f corresponding to the clause
(X1 _ X2 _ x3) with assignment 011. In Table 1 an extended example on how ats are

assigned for variable arcs is given.

Since we assume that each variable appears in at least one uke, each variable edgea
has cost at least 1 as a primary edge, since there will be at Ishone clause assignment
that does not match with the variable assignment given bya.

Finally, we set C = 0 in the QCDPP instance. Now we prove that we have YES-instarce
for QCDPP if and only if we have a YES-instance for 3SAT.

Consider a YES-instance for QCDPP, that is, an instance withzero cost. Such an instance
must have a primary path p*" following the clausearcs from oy to dy, since the variable arcs
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| Assignment[ x;=0 x1=1 Xx=0 x2=1 Xx3=0 x3=1 |
000 0 1 0 1 1 0
001 0 1 0 1 0 1
010 0 1 1 0 1 0
011 0 1 1 0 0 1
100 1 0 0 1 1 0
101 1 0 0 1 0 1
110 1 0 1 0 1 0
111 1 0 1 0 0 1

Table 1: Costs . associated with variable arcsa for clausef being equal to k1 _ X2 _ X3).

have positive costs as primary path arcs. Consequently, théackup path p°2° must follow
the variable arcs from o, to d,. Since the total cost of the solution = (pP";p°2°) is zero,
all arcs of the path p* correspond to clauses being satis ed (i.e., are dierent fron the
clause assignments 000 which have cost 1 as primary path ajcsAlso, since the total cost of
= (p"'; p"2°) is zero, the variable arcs followed byp°2® match the assignments in the clause

pP2¢ gives a satisfying assignment for the 3SAT-instance.

For the other direction, consider a YES-instance for 3SAT. B/ letting p°2¢ follow the
variable arcs in the QCDPP instance as given by a satisfying SAT-assignment, and letting
pP follow the clause arcs corresponding to the 3SAT-assignménwe obtain a solution to
QCDPP of total cost zero.

By splitting each node in the graph (apart from o, and dy) { that is, replacing the node
with an arc (u;v), and connecting all in-coming arcs tou and all out-going arcs tov { we
force the paths to beedgedisjoint. Furthermore, the multigraph can be transformed into an
ordinary directed graph G by replacing each arc in the multigraph by a sequence of two as,
and assigning pairwise costs appropriately. Thus we have th following:

Theorem 1 The decision version of QCDPP when reduced to singlarc failures is NP -
complete even when all pairwise costs are 0 or 1 (and only distt pairs of arcs can have
non-zero costs).

Consider the directed graph G resulting from the above construction. If, for each arc
in G, we add an arc in the opposite direction we obtain a graphG® where bidirectional
communication is feasible for each underlying link. Considr the single link failure variant
of QCDPP for the graph G° where the costs are assigned as in the construction aboveub
where the . costs are replaced with | costs (wherel corresponds to a link). Since the
primary and backup paths in G°should be simple, no backward arcs irG°will ever be used,
and therefore we obtain the following:

Theorem 2 The decision version of QCDPP when reduced to singldéink failures is NP -
complete even when all pairwise costs are 0 or 1 (and non-ovapping pairs of arcs and links
can have non-zero costs).
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3.4 Labeling algorithm for the QCDPP

The QCDPP can be formulated as a Shortest-Path Problem with Resource Constraints (SP-
PRC). The SPPRC is a common subproblem in many graph based ptdems when using a
column generation based algorithm, e.g., the Vehicle Routig Problem with Time Windows
[20, 21] and the Crew Pairing Problem [8]. In the following wewill shortly de ne the SPPRC,
discuss complexity issues and the application of recent dedopments within this area, and
describe the basic labeling algorithm. Last we will presenthe reformulation of the QCDPP
into an SPPRC.

The SPPRC can be stated as: Given a weighted directed graps®= (V2 A9 with nodes
VOand arcs A% and a set of resourceR. For each nodei 2 VC%and arc (i;j ) 2 A°there
is a weight of each resource 2 R that is determined by a (not necessarily linear but often
constant) function, as well as a lower and upper limit onr. For a sub-path in G°there is a
resource accumulation of resource 2 R when visiting nodei or traversing arc (i;j ), i.e., an
amount of resourcer is accumulated on the path. The total amount of r must respect the
lower and upper limits of r in when arriving at node i 2 V%or when using arc §;j ) 2 A. The
increase in resource consumption and cost of a path when extded along an arc is de ned by
a function, that are sometimes denotedresource extension functions see [18]. The objective
is to nd a minimum cost path from an origin node 02 V%to an destination noded 2 V°
where the resources satisfy the limits for all resources 2 R. In many cases it su ces to have
the limits of the resources only at the nodes; in these caseé limits on the edges can be
made non-binding.

The SPPRC is NP -hard in the weak sense when the number of resources is a coast
and can be solved with dynamic programming based labeling gbrithms in pseudo-polynomial
time. An extension of the SPPRC is the node elementary versio; the elementary shortest path
problem with resource constraints (ESPPRC) where paths musbe simple. The elementarity
constraint can be enforced with the use of a binary resourceof each node to indicate if the
node is visited on the path and solved as an SPPRC. The ESPPRCsi strongly NP -hard,
see [11]. However, ilG° does not contain negative weight cycles the additional resarces can
be disregarded since a least weight path that is simple will kvays exist, hence the problem
can be solved in pseudo-polynomial time. Although the refomulation (see details below)
of the QCDPP into a SPPRC leads to a graph with no negative weifpt cycles, the number
of resources amounts to one binary resource per failure scaio, i.e., one per two arcs in
G for the single link failure case in the QCDPP. That is, the number of resources in the
SPPRC depends on the input of the QCDPP, hence the complexityof the labeling algorithm
is exponential when regarding the reformulation of the QCDRP. Also, it is important to note
that the reformulation of the QCDPP into a SPPRC results in a non-constant extension
function where the weight of the arcs on the backup path deped on the failure scenarios that
are a ected by the primary path.

A comprehensive overview of work related to SPPRC is outsidehe scope of this article,
but we will brie y discuss some recent results. For further details on mathematical models and
solution methods we refer the reader to the survey of Irnich ad Desaulniers [19]. Dynamic
programming based methods denotedabeling algorithms are to date the most dominant
approach to solving the SPPRC. However, recently Carlyle etal. [7] present a Lagrangian
relaxation based method. The approach is applicable for prolems with no negative weight
cycles and shows good results when few resources are conside However, due to the nature
of the non-constant extension function on the arc weights inour reformulation this approach

120



Optimal Routing with Failure Independent Path Protection

is not directly applicable; also we consider a large number foresources which may limit the
e ect of the Lagrangian relaxation.

Dumitrescu and Boland [12] present an improved preprocessg for the SPPRC (with
no negative cost cycles) and embed it into a labeling algorim. They present resource
lower bound calculations using Lagrangian relaxation, hene solving a shortest path problems.
Again this approach is not applicable in our case due to the ar weight extension function in
our reformulation. Furthermore, this approach have very limited use when only considering
binary resources, which is indeed the case for our reformuti@n, since the resource bounds
are already very tight. Feillet et al. [13] address the ESPPRC and propose to consider
unreachable nodes instead of visited nodes with the binaryasources. The unreachability of a
node is determined based on limits on other resources. In owontext this would correspond
to deciding if a failure scenario cannot be triggered. Howeear, this is di cult to decide without
actually visiting the arcs of the scenario, since triggerirg a scenario does not directly depend
on other resources but on the topology of the graph. Therefar the unreachability concept
cannot readily be used in our case.

A very successful labeling algorithm by Righini and Salani 7] showed how a signi cant
speedup can be gained by using a bi-directional approach. Tt is, based on a monotone
resource (e.g., the number of nodes on the path) a breaking it is chosen (e.g., when half
the nodes have been visited) and the labeling algorithm is ro from both sides. By splicing
paths starting at the origin node o with a reverse path coming from the destination node
d one can construct a full path. For this method to work all extension functions must be
reversible which unfortunately is not the case for our objetive function. Boland et al. [5]
and Righini and Salani [28] independently proposed to relaxhe state-space of the labeling
algorithm such that only a subset of resources are considedeto begin with. Any violated
resource is then added iteratively until a feasible path haseen found. By construction of the
graph and the de nition of the objective function used in our reformulation, it is doubtful that
this approach would perform satisfactory since relaxing reources would yield zero weight arcs
in the associated backup path, making it necessary to add reasirces until all feasible backup
paths are covered.

In a labeling algorithm the labels represent partial paths that are extended (using the
extension functions) in all feasible directions from the oigin node o. Each labelL (a vector
with R+1 components) stores the cost of the partial pathT¢est(L) and the current value T, (L)
of each resourcer 2 R. To avoid enumerating all feasible paths inG° only Pareto-optimal
labels (i.e., labels that are not proved to be dominated by oher labels) are kept during the
execution of the algorithm. When using non-decreasing extesion functions (which is the case
for the reformulation of QCDPP), the label dominance criterion can be stated as follows.

Proposition 1 ([9]) Let L and L°be two labels representing partial paths ending at the same
node. LabelL dominates labelL° (which can be discarded) if

Tcost(l-) Tcost(l-()
Tr(L)  Te(LY 8rzR:

When equality holds for all label components, one of the two dbels must be kept. Figure 5
summarizes the concept of a labeling algorithm. The initialstate is represented by the label
L, at the starting node. This label is enqueued on a priority quele Q that keeps track of all
unprocessed labels. The algorithm runs until all labels hag been processed. In each iteration
the next label L from Q is dequeued. The set of nodes (FEASIBLE EXTENSION()) that
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Initialize label L,
ENQUEUE(Q; L)
while Q is not empty
L := DEQUEUE( Q)
for each nodei 2 FEASIBLE EXTENSION( L)
Li ;= EXTEND LABEL( L;i)
if i=d
then ENQUEUE(S;L;)
else ENQUEUE(Q;L;)
REMOVE DOMINATED( Q)
return S

Figure 5: Pseudo-code for labeling algorithm.

are feasible extensions of the partial path represented bi., with regard to connectivity and
resource limits, is determined. L is extended to these nodes using the resource extension
functions (implemented in EXTEND LABEL( L;i)) to create the new labelL; for nodei. If
the extended labell; is extended to the end noded it is stored as a solution in the queueS
otherwise L; is enqueued onQ for future processing. LastQ is cleaned for dominated labels
so only Pareto-optimal labels remain.

Next, we consider the transformation of the QCDPP stated as #)-(11) into a SPPRC
Recall the graph G = (V;A) for the QCDPP where a minimum cost primary and backup
path pair must be found from o, 2 V to dc 2 V over allk 2 K. Let V%= fi%:i 2 Vg be a
copy of all nodes inV and let A°= f(j%i9: (i;j) 2 A;i%j°2 V% be a reversed version of
all arcs in A connecting the nodes invV% and let A= f(dy;d?) : dk 2 A;dY 2 A9 be the arc
connecting the two node and arc sets for demand paik. The transformed graph for the kth
demand pair is thenG? = (V [ VGA[ A°[ A where a primary path will be sought in the
rst part of the graph with nodes V, then by the arc (dk;d) the search is switched to the
other part of the graph consisting of the nodesV °® where a reverse backup path is foundG(k’
is illustrated on Figure 6. For each failure situation s 2 S it must be ensured that no arcs
from F¢ is used on the backup path if any of the arcs inF5 was used on the primary path. A
binary resource is added for each failure situatiors 2 S. Hence, the set of resources have size
jSj. Let a label L consist of 1 +jSj components, Tcost(L) to store the cost of the path and
Ts(L) for s 2 S to store the bit value of the failure situation resources. Ts(L) will be set to
one if the failure scenarios is triggered on the primary path, and resource limits are enbrced
on the arcs when extending labels. The upper bound for resoae s 2 S when extending a
label on arcalare given as 0 fora®2 A% a 2 Fs and 1 otherwise. That is, a labellL cannot be
extended on arc {¢j9 2 A%with (j:i) 2 Fs for s2 S on the backup path if arca 2 Fs is used
on the primary path, i.e., the resource valueTs(L) = 1 and the upper bound for s on (i%j9
is 0. Hence, in Figure 5 the end node oh is not in the set FEASIBLE EXTENSION( L).
Recall that the cost of the backup path depends on the arcs uskon the primary path and
that 3 Oand ¢ 0. The extension along an ara of a labelL (implemented in EXTEND
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Primary path

Backup path

Figure 6: The transformed graph for thekth demand pair. The backup path part of the graph
is a reversion of the primary path part, i.e., the path found is a forward directed primary
path and a reversed backup path.

LABEL( L;i)) proceeds as follows to create a new label®

8 P s

< ps2s a a2 A _
Toost(L) = Teost(L) + . syt iy 2= (15192 A°

' K az2 A(k)o

1 a2 Fg

To(LY) = maxf Ts(L);0g otherwise $25

Both extension functions are non-decreasing, hence the ddmance criterion of Proposition 1
can be applied in the labeling algorithm. For the kth pricing problem; a path represented by
label L ending in of have the cost:

primary path co backup path cost
k Zabffax—?s[ Z—¢ 3 —¢ - {
Creduced = k a T (i) (12)
a2A(L) s2S a=(i%92A9L) s2S:Ts(L)=1

whereA(L) and AYL) are the set of arcs used irA and A%respectively. Minimizing expression
(12) is equivalent to the objective function stated in (4) and the path found by the labeling
algorithm can trivially be split into a primary and a backup p ath.
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Initialize ¢, 3

k=1
do
kO:= k
do
SOLVE QCDPP(k, «, 5)
k=k+1
while X 0and k°6 k

reduced

Update set of path pairs
SOLVE FIPP with new set of path pairs
Update ¢, 3

while k96 k

Figure 7: Column Generation algorithm.

3.5 Column Generation Algorithm

Given the LP model in Section 3 we can now apply column gener@in to solve the model,
where the subproblem described in Section 3.2 is either sad using a MIP solver or the
labeling algorithm described in Section 3.4. Below we briey describe the column generation
algorithm (Figure 7).

In the coltr!mn generation algorithm in Figure 7 we rstinitia lize  and 3 with arti cial
values: = ,apCaand 3= & (whereS is the set of failure situations). This means that
it is always pro table to include a path pair of primary and ba ckup paths for each demand
k. After entering the main loop, promising path pairs are found based on the current values
of x and 3. The resulting paths are then added to the set of path pairs ad the master
problem is solved with the new set of path pairs. This procesgontinues until no negative
reduced-cost path pair for any demand can be found.

4 Results

In this section the e ciency of the FIPP protection method is tested on 8 di erent networks.
Basic network data for the 8 networks is given in Table 2. We hae chosen to use the simple
demand matrix DX = 1 for each pair of nodes.

In Table 3 and Table 4 we compare the computation times when te QCDPP subproblem
is solved using the SPPRC labeling algorithm and a standard NP solver, respectively.

It can be seen from Table 3 and Table 4 that the SPPRC labeling iyorithm is signi cantly
faster on all tested networks. Furthermore, two of the netwaks, Norway and Tal, cannot be
solved using the MIP solver due to excessive memory consumiph.

Given the column generation algorithm, we are now able to calulate the optimal protec-
tion capacity required for relaxed FIPP protection (Table 5). We nd the results in Table 5
interesting because it shows how e cient the relaxed FIPP mehod is. The FIPP method use
at most 8% extra network capacity compared to the theoreticd lower bound achieved using
Complete Rerouting [30] and on average only 4% extra networlcapacity. We acknowledge
that this is only part of the story and that the moment the dema nds are required to be integer,
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Network Nodes Edges Avg. Node No

Degree Demands
Cost239 [3] 11 26 4.73 55
Europe 13 21 3.23 78
Newyork [29] 16 49 6.12 120
Tal [29] 24 51 4.25 276
FranceSND [29] 25 45 3.60 300
Norway [29] 27 51 3.77 351
USA [10] 28 45 3.21 378
Cost266 [29] 37 57 3.08 666

Table 2: Tested networks and their characteristics.

Network Rows Columns Iter Time
Initial Final Perlt PerDem Total CG CGPct
Cost239 [3] 705 81 1451 4281 0.78 32 11 1 4.56
Europe [29] 498 99 470 46.38 059 8 1 1 36.36
Newyork [29] 2472 169 5292 47.44 0.40 108 | 2438 1875 76.94
Tal [29] 2826 327 4013 43.88 0.16 84| 17612 17385 98.71
FranceSND [29]| 2280 345 2944 57.76 0.19 45 235 191 81.29
Norway [29] 2901 402 3704 58.96 0.17 56| 1177 967 82.22
USA [10] 2358 423 3076 60.30 0.16 44 156 77 49.65
Cost266 [29] 3858 723 6516 62.29 0.09 93| 2050 1051 51.29

Table 3: SPPRC labeling algorithm results. Rows: Number of ows in LP. Initial: Initial
number of master problem columns. Final: Final number of mager problem columns. Perlt:
Number of columns added per iteration. PerDem: Number of calmns added per iteration
per demand. Iter: Number of column generation iterations. Total: Total running time in
seconds. CG: Total column generation running time in seconsl CGPct: Column generation
(label) solve time as percentage of total time.

i.e., that for each demand the entire communication ow is routed on the same primary path
and the same backup path, the ROBB is going to increase.

5 Future Research

The mathematical model we on which we base our results is by dice constructed to be as
simple as possible. A number of additional model features e¢abe incorporated into the model
and some of these may certainly change the above conclusionk this section we will brie y
describe the two model re nements which we regard as the mosimportant.

Firstly, in the current model we consider the demands as a vaime of communication
to be established between two nodes in the network. In the fretional FIPP problem this
volume may be divided between a number of path pairs and thiss probably not desirable for
the communication customers. Instead, eacltustomer should be o ered one path pair with
a certain volume of tra c | corresponding to the original FIP P problem. For the model
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Network Rows Columns Iter Time

Initial Final Perlt PerDem Total CG CGPct
Cost239 [3] 705 81 677 1.00 0.02 597 154 145 93.77,
Europe [29] 498 99 307 1.00 0.01 209 31 31 98.36
Newyork [29] 2472 169 2328 1.00 0.01 2160| 6491 5943 91.54
Tal [29] 2826 - - - - - - - -
FranceSND [29]| 2280 345 1408 1.00 0.00 1064 | 9434 9356 99.17
Norway [29] 2901 - - - - - - - -
USA [10] 2358 423 1532 1.00 0.00 1110| 2406 2304 95.77
Cost266 [29] 3858 - - - - - - - -

Table 4. MIP results. Rows: Number of rows in LP. Initial: Ini tial number of master problem
columns. Final: Final number of master problem columns. Pelt: Number of columns
added per iteration. PerDem: Number of columns added per itetion per demand. lter:
Number of column generation iterations. Total: Total running time in seconds. CG: Total
column generation running time in seconds. CGPct: Column geeration (MIP) solve time as
percentage of total time.

Network NP capacity | CR RROB | FIPP RROB | Di erence
Cost239 86 0.13 0.19 0.06
Europe 158 0.57 0.65 0.08
Newyork 412 0.19 0.24 0.05
Tal 733 0.76 0.78 0.02
FranceSND 9825 0.66 0.67 0.01
Norway 61 0.59 0.61 0.02
USA 1273 0.50 0.55 0.05
Cost266 14587 0.62 0.64 0.02
Avg. 0.50 0.54 0.04

Table 5: FIPP protection method comparison. NP capacity: Nan-Protected required network
capacity. CR RROB: Complete Rerouting [30] required netwok capacity relative to NP
capacity. FIPP RROB: FIPP required network capacity relati ve to NP capacity. Di erence:
Absolute di erence between RROB for CR and FIPP.

presented in Section 3, this results in more variables, anduithermore, these variables have to
be binary variables. Hence, to solve this model to optimality, a branti-and-price optimization
algorithm is necessary.

Secondly, in the current model there is no bound on the capaty 5 of anarca2 A. In
real-life applications, capacities are acquired irmodular amounts and economies of scale can
be modeled. Modular capacities can be included into the modey changing the right hand
side of constraint (3) to a sum of integer variables, as showin the modi ed constraint (13)

below:
X X X X X
k4 K Cm am 8528S;a2AnF
k2K 2Py(a) k2K 2Py (a;s) m

Here the capacity variables om 2 Z* correspond to dierent types of connections, each
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possessing a capacityCr,. The objective function is then modi ed to include di erent p rices
for each type of technology. The price pr. capacity unit re ect the economies of scale.

6 Conclusion

In this paper we presented an LP model for the fractional Failre Independent Path Protection
(FIPP) optimization problem. The LP model was solved using olumn generation. We
analyzed the subproblem, proved it to be stronglyNP -hard and devised a labeling algorithm
for solving the subproblem more e ciently. Finally, we eval uated the capacity e ciency of

the FIPP method on a number of network instances. The resultsindicate that the FIPP

method appears to be a very e cient protection method | on ave rage only requiring 4%
more network capacity than complete rerouting, the absolue lower bound for single link
failure protection.
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Chapter 8

Conclusion

Bj rn Petersen
DTU Management Engineering, Technical University of Denmaik

1 Summing Up

The main focus of this thesis is on shortest path problems antiow to solve them in the context
of column and cut generation algorithms. It has been investjated how to solve various forms
of resource constrained shortest path problems. The empha&shas been on di cult versions
of this problem, namely with the presence of negative weighttycles and costs not directly
mappable to the edge weights. These problems appear in a cohn generation context when
handling e ects of cutting planes derived from the master prdolem formulation.

It has been shown theoretically and experimentally how to aply the general purpose
mixed integer programming (MIP) cutting planes known as Chatal-Gomory cuts of rank 1
to the master problem formulation of a Dantzig-Wolfe decomposition of the Vehicle Routing
Problem with Time Windows (VRPTW). Furthermore, it has been shown how to incorporate
this into a dynamic programming algorithm for the subproblem. Investigations of how cutting
planes impact the subproblems complexity, the quality of the lower bounds for the master
problem, and the overall running time of Branch-Cut-and-Price (BCP) algorithms have been
performed.

It has been shown how to solve the Elementary Shortest Path Rsblem with Capacity
Constrains (ESPPCC) by the use of a Branch-and-Cut algorittm. It has also been shown how
alternative reformulations of the Elementary Shortest Path Problem with Resource Constrains
(ESPPRCQC), the Capacitated Vehicle Routing Problem (CVRP), and the VRPTW can be
obtained through the use of Partial Paths, so that the dicul t part of problems is targeted
and movement of complexity between master and pricing prokl#ms is facilitated. Finally, an
example of how to utilize resource constrained shortest pdis in a telecommunication context
has been presented.

Experimental results are reported for the VRPTW, the CVRP, t he ESPPCC, the ESP-
PRC, and the problem of nding Optimal Routing with Failure | ndependent Path Protection.

In Chapter 3 and Chapter 4 it has been shown how the Chvatal-Gomory cuts of rank 1 can
be applied to a decomposition model of the VRPTW. In the forme chapter, it was shown how
a small subset of the Chvatal-Gomory cuts of rank 1, denotedsubset-row inequalities, can
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be applied to the Set Partitioning master problem, and how to incorporate their dual costs
into the pricing problem (the ESPPRC) with the use of additio nal resources. At the time of
publication this algorithm was the most successful exact slotion method for the VRPTW.
In the latter chapter, these results were extended to inclueé all Chwvatal-Gomory cuts of rank
1. However, a slightly more complicated dominance criteria made the pricing problem a bit
harder to solve. Running times could not be improved compare to the former approach, but
on all problem instances successfully considered it was pgible to close the integrality gap
completely in the root node.

In Chapter 5 a Branch-and-Cut algorithm for solving the (ESPPCC) was introduced. A
compact mathematical model and valid inequalities develogd for the ESPPCC were presented
as were experimental results on benchmark instances from thliterature and on a new set
of hard instances. Chapter 6 presented a new decompositiorgorithm for Vehicle Routing
Problems based on the concept of partial paths where the rows are found by combining
smaller sub-routes. Chapter 7 showed in a real world examp]enamely Optimal Routing with
Failure Independent Path Protection, how resource constrined shortest paths problems are
useful in a completely di erent context.

2 Concluding Remark

Considering the successful work with the subset-row inequgies on the VRPTW and the less

successful work with the Chwatal-Gomory rank 1 cuts on the VRPTW, it can be concluded

that you need to be careful when choosing which cutting plane to include for a given problem.
Do not get disencouraged by making subproblems harder, but @ not overdo it. It appears

that the pricing problem of the decomposed problem should bdnard to solve before applying
the cutting planes for the master problem. Most likely, the best results would be achieved if
the pricing problem is strongly NP -hard to begin with. Also, for the master problem based
cutting planes to be e ective it is preferable to have a large ntegrality gap. Otherwise a few

quick branches could just as easy close it.

For some kinds of ESPPRC, e.g., the ESPPCC, it appears that laeling algorithms are
clearly outperformed by Branch-and-Cut based algorithms. It must be remarked, though, that
labeling algorithms sometimes are used in a context where ding several \good" solutions
are desired. Labeling algorithms are superb at this but it isnot a property that the Branch-
and-Cut based algorithms excel at.

Reformulating with partial paths make it possible to balance the running time of the
pricing problem against the tightness of the lower bound. Ithas been shown in theory that
both weaker and stronger root bounds can be obtained compadeto models with full paths.

Labeling based algorithms can be parallelized with one thrad per node of the graph on
which the paths are de ned. Due to the overhead of handling mitiple threads the parallelized
code works best when instances are hard. A general framewordan be used for di erent
problems solely by changing the functions that de ne extengons, dominance, and search
structures.

3 Future Research

There are many di erent ways of dividing into partial paths. S triving for a strong bound in
the master problem and for an easy pricing problem are con iting goals. To nd the right
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division whereby obtaining a good compromise between both @als demands testing many
alternatives or possessing lots of luck. Implementation ofa column generation algorithm
requires some coding and testing both of which are time consuing.

The transportation problems faced by many companies can in gneral terms be stated
as transporting an amount of commodities between a number ofocations by some means
of transportation. There are typically restrictions assodated with the use of di erent vehi-
cles, e.g., capacity or availability. Furthermore, there may be restrictions on handling the
commodities such as speci c times for sending and receivinghipments. When optimizing
the solution process of a transportation problem, typical djectives are to minimize overall
travel cost or time. These problems are basically containedn CVRP and VRPTW. An often
overlooked factor in current solution methods is the important concept of uncertainty, both
during transportation and in demand and availability of commodities. These stochastic el-
ements are much less studied than their deterministic courgrparts. A future research goal
could be to investigate how to handle these stochastic evest
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Summery in Danish

Bj rn Petersen
DTU Management Engineering, Technical University of Denmaik

1 Resune

Det prim re fokus for denne ph.d.-afhandling har v ret pk  orteste vej problemer og hvorledes
de | ses i forbindelse med kolonnegenereringsalgoritmerDet er blevet unders gt hvordan di-
verse former for resourcebegr nsede korteste vej problemekan blive | st. V gten er blevet
lagt p sv re udgaver af problemet; mere speci kt ar kred se med negativ v gt og omkost-
ninger, der ikke kan afspejles direkte p kanterne, har v r et tilstedev rende. Disse problemer
viser sig i kolonnegenereringssammenh nge, ar de duale onkostninger fra snitplan i master-
problemet skal behandles.

Det er blevet vist teoretisk avel som eksperimentelt, hvorledes generelle mixed integer
programming (MIP) snitplan af typen Chwatal-Gomory rank 1 kan anvendes p master-
problem formuleringen af en Dantzig-Wolfe dekomponering & ruteplanl gningsproblemet
med tidsvinduer (VRPTW). Endvidere er det blevet vist, p h vilken vis dette kan indar-
bejdes i en dynamisk programmerings algoritme til | sning & delproblemerne. Unders gelser
af hvordan snitplan in uerer delproblemernes kompleksite, kvaliteten af de nedre gr nser i
master-problemet og den overordnede k retid for Branch-Cu-and-Price (BCP) algoritmer er
blevet udf rt.

Det er blevet vist, hvordan det simple kortestevejproblem ned kapacitetsbegr nsninger
(ESPPCC) kan | ses vha. en Branch-and-Cut algoritme. Det er ligeledes blevet vist hvor-
dan forskellige reformuleringer af det simple kortestevgjroblem med ressourcebegr nsninger
(ESPPRC), det kapacitetsbegr nsede ruteplanl gningspro blem (CVRP) og VRPTW kan
opas ved at benytte delveje, aledes at den svre del af pr oblemer er berrt og ytning af
kompleksitet mellem master- og delproblem er muliggjort. Til slut er et eksempel p hvorledes
resourcebegr nsede kortestevejproblemer kan blive benytet i forbindelse med telekommu-
nikation blevet pr senteret.

Eksperimentelle resusultater er blevet rapporteret for VRPTW, CVRP, ESPPCC, ESP-
PRCog problemet med at nde en optimal rutning med Failure Independent Path Protection.

| kapital 3 og kapitel 4 er det blevet vist, hvordan snitplan af typen Chwatal-Gomory rank
1 kan blive anvendt p en delkomponeringsmodel af VRPTW. | det frste af disse kapitler
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blev det vist, hvordan en lille delm ngde af disse snitplan kaldet subset-row uligheder kan
blive benyttet p set-partitioning master-problemet, og hvordan deres duale omkostninger
bliver Bndteret vha. ekstra ressourcer i delproblemet { et ESPPRC. Denne algoritme var
da den blev publiseret den mest succesfulde eksakte | snisgnetode for VRPTW. | det an-
det af kapitlerne er disse resultater blevet udvidet til at inkludere alle snitplan af typen
Chwatal-Gomory rank 1. Et lidt mere kompliceret dominansk riterie gjorde dog delproblemet
en smule vanskeligere at | se. K retider kunne ikke forbedres sammenlignet med den f rste
fremgangsmde, men for alle probleminstanser, der blev b&agtet med succes, var det muligt
at lukke heltalsgabet fuldst ndigt i rodknuden.

| kapitel 5 blev en Branch-and-Cut algoritme til | sning af E SPPCC introduceret. En
kompakt model af og lovlige uligheder til ESPPCC blev pr senteret, ligesom eksperimentelle
resultater p testinstanser fra litteraturen og et nyt st  svre instanser blev det. Kapi-
tel 6 pr senterede en ny dekomponeringsalgoritme til ruteplanl gningsproblemer baseret p
delvejs-konceptet, hvor ruterne er fundet ved at kombineremindre delruter. Kapitel 7 viste
med et eksempel fra den virkelige verden (optimal rutning md Failure Independent Path

Protection), hvordan resourcebegr nsede kortestevejprdlemer er brugbare i anderledes sam-
menh nge.
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The Simultaneous Vehicle Schedul-
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Abstract

Passengers using public transport systems often experience waig times when trans-
ferring between two scheduled services. In this paper we propose planning approach
which seeks to obtain a favourable trade-o between the two contasting objectives pas-
senger service and operating cost by modifying the timetable. The lanning approach
is referred to as the Simultaneous Vehicle Scheduling and Passeng8ervice Problem
(SVSPSP). The SVSPSP is modelled as an integer programming problenand solved us-
ing a large neighborhood search (LNS) metaheuristic. The proposkframework is tested
on data inspired by the express-bus network in the Greater Copeimagen Area. The re-
sults are encouraging and indicate a potential decrease of pasgsr waiting times in the
network of 10{20%, with the vehicle scheduling costs remaining unaected.

In revision.
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1 Introduction

In every larger public transport system massive amounts of itme are wasted due to waiting
time when transferring between di erent parts of the journey. For the Greater Copenhagen
area it has been estimated that the time lost on an average wéelay by passengers waiting for
connecting buses or trains approaches 65,000 hours (based 400,000 daily transfers with an
average of 10 minutes transfer waiting time! Hence, generating timetables which optimise
for temporal correspondences has an enormous socio-ecoriorpotential. Clearly, this could
be achieved through an increase in the frequency of the trips ered in the timetable, however
this would require an unacceptable increase in operating is.

The traditional sequential framework for planning of public transport has been excel-
lently described by Desaulniers and Hickman [8] and is sketed in Figure 1. Given the route
network, the frequencies are determined to ensure demand eerage and to comply with polit-
ically determined service levels, under practical constriats such as eet size. The timetabling
process then determines the exact timings for all trips whigé respecting the previously deter-
mined frequencies/headways. Both of these rst phases areancerned with maximising some
measure of passenger service, and are carried out by the pibltransport service provider,
who typically works by appointment by the local authorities. The timetabling phase may
take schedule synchronisation and transfer times into acamt.

[ Frequency setting]

|

[ Timetabling J

L

- - M
[ Vehicle Schedullng]

|

[ Crew pairing }

l

[ Crew rostering J

Service
provider

Operator

Figure 1: Traditional sequential planning approach

Once the timetable has been established, the resource schdithg starts. During this phase
the rst problem to be solved is the scheduling of the physicé resources necessary to carry
out the trips in the timetable, i.e. the vehicles. The purpose of the vehicle scheduling is to be
able to execute the timetable at the lowest possible cost. Tl costs considered in this phase
include empty mileage performed by the vehicles, both in conection to the depot, and in the
form of deadheading i.e. transport between the end point of one trip and the stating point
of another. Once the vehicle schedules have been establishehe crew pairing and rostering
phases are carried out. The last three phases are all carriedut by the public transport
operator, who is appointed by the service provider to operag¢ a set of trips, and they all have
the purpose of operating the requested timetable at the lowst possible cost.

Today, e cient systems for generating near-optimal vehicle schedules exist within all

Lcf. http:/iwww.dtu.dk/centre/modelcenter/TU/Standard %?20Tabeller/
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modes of transport. However, these systems treat the timetale as xed input, meaning
that potential savings in operating costs from moving a set é trips in the timetable are lost.
Only very limited research has been done on models that addss the problem of minimising
the operating costs by modifying the timetable. Furthermore, research is scarce on models
that focus on minimisation of the waiting time during transf er.

In this paper we introduce the Simultaneous Vehicle Schedihg and Passenger Service
Problem (SVSPSP) which addresses the multiple objective @nning problem of improving
timetables such that they remain economically satisfactoy for the operator, and at the same
time o er high-quality service to the passengers by reducingthe unproductive time spent on
waiting during transfers. Please note that whenever we refieto waiting time throughout this
paper we are solely referring to the waiting time associateavith transfers, and not the waiting
time of passengers entering the system. The SVSPSP framewois sketched in Figure 2, and
integrates the planning processes of timetabling and vehle scheduling.

[ Frequency setting]

[ 777777 Timetabling----- }

'SVSPSI

[ Vehicle Scheduling|

[ Crew pairing J

|

[ Crew rostering ]

Figure 2: The role of the SVSPSP shown in relation to the tradtional sequential planning
approach.

Its main input is the original timetable and estimates of passenger demand in the network.
The natural problem owner of the SVSPSP is the public transpat service provider, as this is
the authorithy which on the one hand is committed to provide a high-quality timetable to the
customers (in terms of e.g. minimum waiting times) and on theother hand holds the respon-
sibility of ensuring that the o ered timetable is feasible from an operating costs perspective.
By integration of the vehicle scheduling phase, which prewusly belonged to the operator,
the service provider can obtain a better negotiating positon towards the operator, since the
operating costs have already been considered during the ojptisation of the timetables.

The contributions of this paper are fourfold: 1) we formally introduce a new interesting
problem, motivated by a real-life case, 2) we make a realisti data set available, that can
be used for future studies, 3) we propose a heuristic solutiomethod that is able to handle
data sets of realistic size, 4) we show that substantial redctions in passenger waiting time
are possible using the proposed methodology. The paper is ganised as follows: Section 2
reviews the literature on the multiple depot vehicle schedling problem as well as work on
minimising passenger transfer times. In section 3 we formakte the SVSPSP as an integer
programming model. Section 4 discusses how the proposed filem can be solved by the large
neighborhood search metaheuristic. Section 5 introducese data set used in this study which
is based on the bus network of the Greater Copenhagen area, drin Section 6 we discuss
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the results obtained. Finally, we provide our concluding ranarks and suggest directions for
further research in Section 7.

2 Literature review

Our approach for the integrated vehicle scheduling and timéabling problem is based on the
multiple depot vehicle scheduling problenfMDVSP). Desrosiers et al. [9] provide an excellent
introduction to the problem and survey the literature prior to 1995. A more recent, but short
literature survey is presented by Pepin et al. [23] who also gesents an interesting comparison
of heuristic approaches for the problem. Section 4.1 in Desdniers and Hickman [8] also
contains a recent survey. Some of the currently best exact nteods for the MDVSP are
proposed by Hadjar et al. [12] and Lebel [20]. We are aware ofivopapers that extend vehicle
scheduling problems to handle parts of the timetabling proess. The paper by van den Heuvel
et al. [28] studies the integration of timetabling and multi depot vehicle scheduling with the
aim of reducing costs (reducing the number of vehicles) whdl ignoring passenger waiting times.
On the timetabling level the approach allows the trip starti ng times for each line to be shifted
in time to allow greater exibility in the vehicle schedulin g part. The paper presents integer
programming models as well as a local search algorithm thataves a network ow problem
in each local search iteration. Guihaire and Hao [11] also tegrate vehicle scheduling and
timetable synchronisation in their optimisation problem. They consider several terms in their
objective: number of vehicles required, number and qualityof transfer possibilities and the
so-called headway evenness. The second term aims at miniritig passenger inconvenience.
The last term attempts to make arrivals of vehicles, servinga particular line, occur with a
regular frequency. The three terms are weighted together. H terms of the vehicle scheduling
problem, the paper considers a single depot setup while ourpproach handles the multiple
depot case. The problem studied in this paper is probably thene that resembles our problem
the most.

Several papers focus on optimising timetables in order to mmimise passenger waiting
times, without explicitly considering the impact such changes have on the physical resource
requirements (e.g. more buses may be needed to carry out theadi ed plan). Examples of
such approaches are Jansen and Pedersen [13] who formulateetproblem as a mathematical
model and propose simulated annealing and tabu search algithms to solve the problem (see
also Pedersen [21]); Ceder et al. [5] who synchronise bus tetables by maximising the number
of times two buses arrive at the same time at any node in the netork; Klemt and Stemme [15],
Bookbinder and Desilets [4] and Daduna and Vo [7] who synctronise timetables by solving
a quadratic semi-assignment problem. Worth mentioning is &0 the paper by Chakroborty
et al. [6], which studies timetable synchronisation and \ogtimal eet size" using a genetic
algorithm heuristic. They do not study the vehicle scheduling aspect of the problem, instead
the term \optimal eet size" refers to the fact that the numbe r of departures on a specic
line is a variable, decided by the proposed model.

As explained in the introduction, SVSPSP integrates the timetabling and vehicle schedul-
ing phases. The integrated problem has not been widely stuéd in the literature but some
papers on the topic do exist. One approach for handling the itegrated problem has been the
so-calledperiodic event scheduling problen{PESP). The PESP is mainly used for timetabling
but has been extended to handle some aspects of vehicle schiéidg as well. The PESP model
was proposed by Serani and Ukovich [26]. It is a general frammwork for modelling opti-

144



The Simultaneous Vehicle Scheduling and Passenger Serviégoblem

misation problems with a periodic nature. Liebchen and Metring [18] show how the PESP
and extensions can be used to handle many aspects of railwajntetabling. One of these is to
minimise the changeover time for passengers and another ifé minimisation of the number of
vehicles needed to perform the timetable. The complexity othe vehicle minimisation depends
on whether trains are allowed to switch line when they reach heir endpoint. Contrary to our
approach the paper does not model the situation where vehiek can perform deadheading in
order to switch terminal (this does not seem practical when he vehicles are trains running
on tracks, but can be useful for buses). The material in Liebhen and Mehring [18] builds on
the work of Liebchen and Peeters [19] which focuses on vehiciminimisation, but arrives at
a model with a quadratic objective function. Other recent warks on the PESP and railway
timetabling include Liebchen and Mehring [17], Peeters [2], and Kroon et al. [16].

Wong et al. [29] studies theMass Transit Railway in Hong Kong that contains 6 train lines.
They minimise the overall passenger waiting time in a non-pgodic fashion. The number of
vehicles needed to carry out the plan is determined in advare and is kept constant. In this
way it is ensured that the proposed timetable does not becoméoo expensive to carry out,
while optimising customer satisfaction. The authors presat a MIP model and solve it using
a heuristic that incorporates a standard MIP solver as an imprtant component. Fleurent
et al. [10] describe an optimisation system and an interactie tool for minimising passenger
waiting time while keeping vehicle costs under control. Thesuggested approach is tested on
a case from the city of Montreal, Canada, and the results indiate that the passenger waiting
time can be improved while keeping the vehicle count constan The paper provides little
detail about the optimisation algorithm used to obtain these results.

We can conclude that the work on integrating time tabling and vehicle scheduling is rather
limited and that Guihaire and Hao [11] is the paper that presents a problem that is most
similar to the SVSPSP. The SVSPSP model is, regarding some pects, more ambitious than
the model studied by Guihaire and Hao [11] as it considers a niti-depot setting which is not
the case in the aforementioned paper.

3 The SVSPSP: modelling

In a classical multi-depot vehicle scheduling problem (MDVSP) one has to cover a set of trips
with a set of vehicles (based at several depots) while miningsing costs. Atrip has a start
and end location, as well as a departure and arrival time. In abus scheduling setting a trip
corresponds to the movement from the start to the end of a busihe. A line is a collection
of trips that have the same start and end locations but di erent departure and arrival times.

A line also contains trips going in the opposite direction. The MDVSP can be modelled as

depots. With each depotk 2 K we associate a graptG¥ = (V¥: AK) where the set of nodes
is de ned as VX = N [f n+ kg with n + k being the node representing thek™ depot. The
set of arcsAX is a subset of the setvX VK, with all infeasible arcs removed. An arc is
infeasible if it forms an impossible connection between twdrips; typically this is caused by
timing constraints. For each depotk 2 K and each arc {;j ) 2 Ak we de ne an arc costc{}
and we are given an upper bound/X on the number of vehicles located atk. Using a binary
variable x!} for all k 2 K; (i;j ) 2 AK, having value 1 if and only if a vehicle from depotk
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travels from nodei to j we can write an integer multi-commodity ow model as follows:

X X
min o xk 1)
k2K (i;j )2 Ak
subject to
X X
xi =1 i2N 2)
k2K j2vk
Xk VS k2 K (3)
x 12N
xK xK =0 k2K;j 2Vk (4)
ij ji ~ |
i2Vk i2vk
xi 210;1g k2 K; (i;j) 2 Ak (5)

The objective (1) minimises the total cost. The arc costsci‘} can be set such that the total
cost re ects a xed cost per vehicle and deadheading costs. @nstraints (2) ensure that all
trips are served, constraints (3) ensure that we do not use me than the available number of
vehicles and, constraints (4) are ow conservation constrits.

The SVSPSP generalises the MDVSP as follows: in the SVSPSP wgroup trips into
so called metatrips. The set of metatrips, , forms a partitioning of the set N, that is,
[Mm2 M = N and 8M;M, 2 ;M; 6 Mo : M\ My = ;. Furthermore, we relax the
condition that every trip must be covered. Instead we requie that exactly one trip from
each metatrip must be covered. In the context of this paper, v& assume that each metatrip
corresponds to a trip from the original timetable, and the (sub)trips belonging to the metatrip
represent copies of the original trip, with alternative departure times. Thus, the requirement
that each metatrip is covered corresponds to the MDVSP-reqirement that each trip is covered
(2). The idea behind this, in relation to our goal of increashg passenger service, is that
selecting alternative departure times may reduce waiting tmes and thereby improve the
passenger service level.

We will now introduce some useful concepts that will be usedn our treatment of the
SVSPSP. Trips in the SVSPSP model can beancompatible for various reasons, as we shall
see later. This is captured by a set 2N containing sets of mutually incompatible trips.
Thus, if 2 thenany pair i;j 2 isincompatible and cannot be used together in a feasible
solution. For the SVSPSP we maintain the de nition of a line that is known from the MDVSP;

a line L is a sequence o$tops to be visited in a given order. A line can be travelled in both
directions, and we use the term d-line (directed line) for aiine in a particular direction. Each
metatrip, and the trips contained in it, belongs to exactly one d-line. Therefore we can view
a d-line L as a subset of the set of metatripsL . For every bus line a number a stops are
de ned. The stops are the locations where the bus stops to plcup and unload passengers.
Several bus lines may share one stop and a stop can provide awattion to other modes of
timetabled transportation like trains or ferries. Any tran sfer of passengers takes place at a
stop. We are only interested in stops where transfers can tak place, hence, when mentioning
stops in the rest of this paper we assume a stop with at least antransfer opportunity.

top of the gure. Trips 4 and 9, marked with grey, are the two original trips, from which the
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metatrips are constructed. The remaining trips in each metdrip are constructed by creating
duplicates of the original trip, spread evenly in the availeble time interval. The nodes 1 and
12 belong to other metatrips, not illustrated in the gure. A Il trips shown in the gure belong
to the same d-line.

The usage of incompatible trips to impose passenger servide apparent: trips belonging
to the same d-line and departing within a short time interval should be incompatible, for
example trip 6 and 7 on Figure 3 could be incompatible becausthey depart within 4 minutes.
Similarly, two consecutive departures on a d-line should nbbe too far apart. Therefore it
would make sense to make trip 2 incompatible with trip 11. If departures at regular intervals
are required on a bus line for a speci c period of the day or theentire day this could also be
modelled using incompatible trips. If we desire departuresevery 20 minutes in the example
on Figure 3 we must make trip 2 incompatible with trips 8, 9, 10 and 11 (by adding the set
f2;8;9;10;,11g to ), trip 3 should be incompatible with trips 7, 9, 10, and 11 , and so on.

9.20 9.30 9.40 9.50
1 2 3 4 %5 6 7 8 9 10 11| 1
O O O (@) O O O (@) O O O
_ L .

metatrip 1 metatrip 2

Figure 3: Example of trips and metatrips.

Using the notation from the MDVSP we can now present a mathemécal model for a
simple version of the SVSPSP, denoted SVSPSP

X X
min o xk (6)
k2K (i )2 Ak
subject to
X X X
xi =1 M 2 (7)
i2M k2K j2Vvk
X X X
1 2 (8)
i2 k2K j2vk
X
Xk V¥ k2 K 9)
i2N
X X
X xj =0 k2K;j 2V (10)
i2Vk i2Vvk
xi 210;1g k2 K; (i;j) 2 Ak (11)

Constraints (9) and (10) are identical to (3) and (4) in the original MDVSP formulation.
Constraints (7) ensure that exactly one trip from each metatip is selected and constraints
(8) ensure that no incompatible trips are selected at the sara time.

In order to discuss how passenger service can be taken into@mnt in the SVSPSP we
need to de ne exactly how we measure passenger service. Theea we focus on in relation
to passenger service is waiting time during transfers. We st introduce the central concept
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transfer opportunity. A transfer opportunity is a triple ( s;M;L). Here s is the stop where the
transfer takes place,M is a metatrip that stops at s, and L is a connecting line that exchanges
passengers withM at s. For each transfer opportunity we assume that an estimateDy,, of
the number of passengers disembarking metatrigM and transferring to line L at stop s, as
well as an estimateEy,, of the number of passengers embarking metatrip/ transferring from
line L at stop s are available. It is assumed that all passengers disembarnkg a metatrip to
transfer to line L take the earliest possible departure on lind. and all passengers embarking
a metatrip M come from the latest possible arrival on lineL. For the SVSPSP, L is a line
external to the model, but we will later generalise it to include those lines that are rescheduled
by the model.

To improve passenger service we desire to minimise the totalumber of passenger minutes
wasted by waiting for a connection, at the same time as we wanto minimise the cost of serving
all trips. This results in two goals that are weighted together in the cost coe cients of the
objective function. The SVSPSP model can accommodate a part of the waiting times that
we desire to include in the model, namely a penalty for waitirg times related to lines that
are external to the model, such as already timetabled train @partures: for each tripi in N
we nd the transfer opportunities ('s; M; L) of the metatrip M that i belongs to. As stated
above, L is an external line with xed departures and arrivals, therefore we can a priori nd
the arrival and departure on line L that are used by passengers embarking and disembarking
trip i at stop s and we can calculate the associated waiting times. The two w#ng times are
multiplied by the passenger estimatesEg,, and DZ,, and summed to give the total number
of minutes waited for the particular trip and transfer opportunity. By summing over all
the transfer opportunities that the trip is involved in we ob tain the total number of waiting
minutes incurred by the trip. This number, weighted in a suitable way, is added to the cost
of all arcs leaving the node corresponding to the trip.

The SVSPSP model cannot take the transfer of passengers from bus to busitio account
if both buses are rescheduled by the model. We therefore inrduce the model SVSPSP, that
generalises SVSPSPto accommodate this. The overall idea is to introduce two newsets of
binary variables yﬁ and zi? that indicate if transfers between trip i and j are taking place at
stop s. For each transfer opportunity (s; M; L) involving a d-line L which is timetabled by the
model we create a number of variableyﬁ wherei 2 M, j 2[ wo. M P Each variable indicates
if the transfer opportunity of passengers disembarking medtrip M to transfer to d-line L is
realised by transferring from trip i to j. Similarly, for the same transfer opportunity, we
create a number of variableszi? wherej 2 M, i 2[ woMP These variables indicate if the
transfer opportunity of passengers embarkingM , coming from L is realised by transferring
from trip i to j. We assign a costcj > 0 for eachyj variable and a costgj > 0 for eachz;
variable. The cost is based on the time between arrival and dearture on the two trips and
the number of passengers expected to take advantage of theansfer opportunity.

Consider the following example: the bus lines 200 and 300 bbtvisit Lyngby Station
Assume that a trip for line 200 northbound (200-N) has been chsen by the model such that
the bus arrives at Lyngby station at 9:29. A number of the pasgngers on board the bus
wish to disembark the bus to transfer to line 300 heading norh (300-N). Their waiting time
depends on the departure time of the next 300-N, which is alsdecided by the model. Figure 4
shows this situation. The chosen trip for bus 200-N (trip a) is shown at the top of the gure
along with alternative 200-N arrivals and nine trips belongng to line 300-N are shown on the
bottom. Passengers from tripa cannot transfer to bus 300-N on the departure times marked
with grey circles: departure 4 is impossible because it depts before bus 200-N arrives, while
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9.30 9.40 9.50
Bus 200-N o oP o® od o® of
Bus 300-N .4 s 06 O7 08 Og O 10 O 11 O 1
_ J

Figure 4. Example of a bus-to-bus transfer.

departure 5 departs one minute later than trip a arrives and there is not enough time for the
transfer (passengers have to walk). The other departures a&r all feasible transfers. Note that
trips 7 to 11 constitute a metatrip, so exactly one of these tips must be selected. This means
that no passenger from trip a heading for line 300-N would transfer to trip 12 because an
earlier, feasible departure will exist in the plan. On the other hand, if trip 12 is selected by the
model and trip a is the latest selected bus from 200-N that allows a transferda trip 12 then
embarking passengers on trip 12 arriving from 200-N would pdorm the transfer. Since both
embarking and disembarking passengers are considered, oy and z variables are necessary.
The y variables handle passengerslisembarking a speci ¢ trip to the rst possible trip on
the speci ed d-line. The z variables handle passengersmbarking a speci c trip from the last
possible trip on the speci ed d-line.

Let S be the set of all stops that are visited by more than one bus lie. We introduce a
graph Gs = (Vs; As) for each stops 2 S. The set of verticesVs is the set of all trips that

visit stop s and the set of arcs is de ned as
n o]
As = (i:j):i;j 2YVS; passengers can transfer from tripi to trip j at stop s

For example, if s is Lyngby station as shown in Figure 4 we would have that
f(a;6);(a;7); (a;8); (a;9); (a;10); (a;11); (a;12)g  AS

but f(b;1); (b;2)g\ AS = ;. The variables yﬁ and zi? are de ned for every s 2 S and every
arc (i;j ) 2 AS. We can use Figure 4 to show the meaning of thg variables. If, for example,
trips b and 7 are chosen and none of the tripg 3; 4;5; 6g are chosen theryg, = 1 and yg;j =0
for j 2f3;4;5,6;8;9;10g. If both trip 3 and 7 were chosen then we would haveyg, = 1 and
Y7 = 0 because all passengers disembarkinig bound for 300-N, would transfer to trip 3.

For atrip i 2 N and a stops on its line we de ne t(i;s) to be the departure time of trip
i at stop s. For a trip i we de ne dl(i) to be the d-line that the trip belongs to. For a stop s
and an arc (;j ) 2 AS we de ne

(i;5:s)= fi%2 [ moayM?: (i1 Y 2 A%t <t (j)g;

thatis, (i;j;s) is the set of trips j °from the same d-line agj that are earlier than j but that
still are feasible transfer destinations from trip i. Similarly we de ne

(i:5;8) = fi°2[ moanMO: (%) 2 A% t(i) <t (i9g;
which is the set of tripsi%from the same d-line ag that are later than i but where a transfer to

trip j still is feasible. We can now present an extended model thatlao handles the bus-to-bus

transfers: X X X X X X
min o xk + cy o+ &z (12)
k2K (iij )2 Ak 2S5 (ijj )2As S2S (ijj )2 As
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subject to

X X X

X =1 M 2 (13)
i2M k2K j2vk
X X X
i1 2 (14)
i2 k2K j2vk
X
Xk VK k2K (15)
i2N
X k X k ; k
i K i2Vk
X X |2VX X i
xK + i1
k2K |2Vk X k2K)|<2ka ) . N .
X yP s2Si(i))2A (17)
N jo2 (i;ji)kZXK [2Vk
xK + i1
k2K |12Vvk X k2K %ka
Xty s2 S;(i;j) 2 AS (18)
%2 (iij;s) k2K [2Vvk
i 210,19 k2 K; (irj) 2 A¥ (19)
y? 2f0;1g s2S;(i;j) 2 A (20)
z2 20,19 s2S;(i;j) 2 A® (21)

Two changes have been performed compared to model SVSP%Pa) two terms have been
added to the objective function (12) to model the cost of pasengers waiting during transfers
between two buses that are both re-timetabled by the model, ad b) inequalities (17) and
(18) have been added to ensure that theyi? and zﬁ variables are set correctly. For example,
yﬁ is set to 1 by (17) when both trip i and trip j are used (the rst two sums on the left
hand side) and when none of the feasible transfer destinatits earlier thanj are in use (the
last sum on the left hand side). The constraints only enforcea lower bound on yﬁ but the

minimisation in the objective and assumption that (,,ﬁ is positive ensure that they variables
take the lowest possible value. Constraints (18) are similato (17), but work on z rather than

y variables.

The mathematical model presented in (6){(11) has been impleented in CPLEX, but
CPLEX was not able to solve instances with the dimensions cosidered in this paper. No
attempts have been made to solve the model presented in (12)21) with a general purpose
solver, since the number of variables and constraints usechithe advanced model is even
larger than in the model presented in (6){(11). However, by gesenting the models here,
they have served as an instrument to give a precise de nitionof the problem to be studied.
Using techniques like reformulation or cut or column gener#on it might be possible to solve
realistically sized instances using the mathematical mods | in particular, model (6){(11)
lends itself to a column based solution approach. However, & have worked in a di erent
direction, and in the following section we shall present a mmheuristic for solving the problem.
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4  Solution method

The solution method we propose for solving the SVSPSP is badeon the large neighbor-
hood search (LNS) metaheuristic. The LNS was proposed by Ska[27]. As many other
metaheuristics, the LNS is based on the idea of nding improing solutions in the neighbor-
hood of an existing solution. What sets the LNS apart from other metaheuristics is that the
neighborhood searched (or sampled) in the LNS is huge.

The term LNS is often confused with the termvery large scale neighborhood searcfVLSN)
de ned in Ahuja et al. [1]. While the LNS is a heuristic framework, VLSN is the family of
heuristics that searches neighborhoods whose sizes growpexentially as a function of the
problem size, or neighborhoods that simply are too large to b searched explicitly in practice,
according to Ahuja et al. [1]. The LNS is one example of a VLSN Buristic.

We are aware of one application of LNS to the MDVSP, this apprach is described in Pepin
et al. [23]. That LNS implementation is more complex than ours as it uses column generation
and branch and bound to solve restricted instances of the MD\BP. The computational results
reported in Pepin et al. [23] show that the LNS is competitive against 4 other heuristics. LNS
has also been successful in solving the related vehicle rant) problem with time windows.
See for example Bent and van Hentenryck [3] and Pisinger and épke [25].

4.1 Large neighborhood search

A LNS heuristic moves from the current solution to a new, hopdully better, solution by rst
destroying the current solution and then repairing the destroyed solution. To illustrate this,
consider the traveling salesman problem (TSP). In the TSP weare givenn cities and a cost
matrix that speci es the cost of traveling between each pairof cities. The goal of the TSP is
to construct a minimum cost cycle that visits all cities exadly once (see e.g. Applegate et al.
[2]). A destroy method for the TSP could be to remove 10% of thecities in the current tour
at random (shortcutting the tour where cities are removed). The repair method could insert
the removed cities again using a cheapest insertion princip (see e.g. Junger et al. [14]).

The LNS heuristic is outlined on Algorithm 1. In the pseudo-code we use the symbols
x for the current solution, x for the best solution observed during the search an® for a
temporary solution. The operator d() is the destroy method. When applied to a solution
X it returns a partially destroyed solution. The operator r() is the repair method. It can
be applied to a partially destroyed solution and returns a namal solution. The expression
r(d(x)) therefore returns a solution created by rst destroying x and then rebuilding it.

The LNS heuristic takes an initial solution as input and makes it the current and best
known solutions in lines 1 and 2. Lines 4 to 10 form the main boy of the heuristic. In line
4 the current solution is rst destroyed and then repaired, resulting in a new solution x% In
line 5 the new solution is evaluated to see if it should replag the current solution, this is done
using the function accept which is described in Section 4.2.3 below. In lines 8 to 10 thbest
known solution is updated if necessary. Line 11 checks the @pping criterion which in our
implementation simply amounts to checking if tmax seconds have elapsed.

4.2 Large neighborhood search applied to the SVSPSP

This section describes how the LNS heuristic has been tailed to solve the SVSPSP. In
particular, we describe the implemented destroy and repairmethods and the acceptance
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Algorithm 1 Large Neighborhood Search
1: input: a feasible solution x;

2. X =X

3: repeat

4: x%= r(d(x));

5. if accept(x®x) then
6: x = x°

7. end if

g if f(x9<f (x) then
o: x = x°

10: end if

11: until stop criterion is met
12: return X

criterion.

4.2.1 Destroy methods

Destroy methods for the SVSPSP remove trips from the currentsolution. Every time a
destroy method is invoked the number of trips to remove is salcted randomly in the interval
[5;30]. Two simple destroy methods for the SVSPSP have been impinented. The rst
method simply remove trips at random, which is a good method ér diversifying the search.

The second method is based on theelatednessprinciple proposed by Shaw [27]. Here we
assign a relatedness measur(i;j ) to each pair of trips (i;j ). A high relatedness measure
indicates that the two trips are highly related. The relatedness of two tripsi andj are de ned
as

R(;)) =30 1gi)=si) + 30 legiy=e) * 20 Igiy=eg) * 20 Lei)=sy ) ()  t()i

where s(i) and e(i) are the start and end locations of trip i respectively, t(i) is the start time
of trip i (start time in the current solution). The notation 1leypr is used to represent the
indicator function which evaluates to one if expr evaluates to true and zero otherwise. The
measure de nes two trips to be related if they start around the same time and if the share
start and/or end locations. The measure is used to remove tps as follows. An initial seed
trip is selected at random and added to a set of removed tripsS. For each trip i still in the
solution we calculate the relatedness

v(i;S) = r?%fR(i;j )9

The trips still in the solution are sorted according a non-increasingv(i; S) in a sequence
T, a random number p in the interval [0;1) is drawn and the trip at position bjTjp°cin T is
selected. This selection rule favours trips with highv(i; S) value. The selected trip is added
to the set of removed trips, andv(i; S) is recalculated after adding a trip to S. We continue
to add trips to S, until we have reached the target number of removed trips.

The two destroy methods are mixed in the LNS heuristic. Befoe removing a trip from
the solution it is decided which destroy method that should ke used to select the trip. With
probability 0.15 the rst method (random) is used and with pr obability 0.85 the second
method (relatedness) is used.
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The trips that have been removed from the solution are stillactive in the sense that they
will be used in the trip incompatibility check de ned by constraints (8) and (14). That is
when adding a trip to a solution in the repair step below, we cleck if it is compatible with
the trips in the solution and the trips removed in the previous destroy operation. A trip i
is made inactive when another trip, belonging to the same medtrip as i, is inserted into the
solution.

4.2.2 Repair methods

The repair method for the SVSPSP reinserts the trips that were removed from the solution
by the destroy method. The repair method uses a randomised gedy heuristic. For each
unassigned metatrip S the heuristic calculates an insertion costf (S) given the current so-
lution. When inserting a metatrip S we have a choice of which tripi 2 S that should be
inserted. With probability  we insert the same trip that was used in the solution before
destruction and with probability 1 we insert a random trip from S. The chosen trip
should be compatible with all active trips. Such a trip exists because we are sure that the
trip from the pre-destruction solution is compatible with all trips. The requirement ensures
that we never get to a situation where one or more metatrips canot be inserted because of
the the compatibility constraints (8) and (14).

Given the choice of trip i, we de ne the cost f (S) as the cost of inserting trip i at the
best possible position in the current solution multiplied by a random factor that is meant to
diversify the insertion procedure. More precisely the cosis de ned as:

£(S) = minyorfc(i;r)g (L+rand( ; )) if min2rc(i;r)6 1
c(i; ;) otherwise

wherec(i; r) is the cost of inserting trip i in route r at the best possible position,R is the set
of routes in the current solution, c(i; ;) is the cost of serving the trip using a new vehicle from
the best possible depot, is a parameter and rand( ; ) is a function that returns a random

number in the interval [ ; ]. The parameter controls the amount of randomisation applied
by the insertion procedure. The heuristic chooses to inserthe metatrip S with lowest cost.

It does this by inserting the trip i that was used as a representative foS and inserts this at
its best possible position. This continues until all metatrips have been inserted. With to the
assumption that v€ = j j it is always possible to insert a metatrip | we will always be a ble

to serve it using a new vehicle.

4.2.3 Acceptance criterion

The acceptance criterion used in our implementation of the INS heuristic is the one used in
simulated annealing metaheuristics: The function accept(® x) used in line 6 of Algorithm
1 accepts the new solutionx? if it is at least as good as the current solutionx, that is,
f(x9 f(x). If f(x9 >f (x) then the solution is accepted with probability

oo f(x9
e T :

The parameter T is called the temperature and controls the acceptance probability: a high
temperature makes it more likely that worse solutions are acepted. Normally the temperature
is reduced in every iteration using the formulaT™W = T ©°d where 0< < 1 is a parameter
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Algorithm 2 Heuristic for generating an initial solution
1: while there are non-served metatrips leftdo

2. Select a random stations with unserved metatrips;

3. Select earliest non-served metatripS starting from s;

4:  Start a new route r serving S. Use a vehicle from the depot nearest tc;

5. repeat

6: Let sObe the station where router is ending;

7 if r can be extended with a non-served metatrip starting ins® then

8: Select earliest non-served metatripSP starting in sCthat can extend r. Add S°to
r,

9 else

10: End route r by returning to the depot;

11: end if

12: until r has returned to the depot;
13: end while ;

that is set relative to desired start and end temperatures aml desired number of iterations.
Because we use elapsed time as stopping criterion we calctdathe current temperature by

the formula
t

Te

TM=Ts =

M=Ts &
heret is the elapsed time since the start of the heuristic,Ts is the starting temperature and

Te is the end temperature. Because of the acceptance criteriotihe LNS heuristic can be seen

as a simulated annealing heuristic with a complex neighborbod de nition.

4.2.4 Starting solution

A starting solution is necessary because the LNS heuristianproves an existing solution. It is
constructed using the greedy heuristic outlined in Algorithm 2. The generation heuristic does
not consider time shifting, instead it only considers insetion of the original trip from each
metatrip. Therefore, when writing earliest metatrip in Algorithm 2 we refer to the metatrip
whose original trip is the earliest. The heuristic construds vehicle routes one at a time and
attempts to create routes where little time is wasted in between trips. Lines 2{12 deal with
the construction of a single route for a vehicle. Lines 2{4 dect the rst trip on the route and
the depot which should provide the vehicle for the route. Lires 5{12 add trips to the partial
route. The selection of which trip to add is based on the termnal where the partial route is
ending at the moment. The algorithm adds the rst trip that le aves that terminal or closes
the route if the route cannot be extended with a trip starting in the current terminal.

5 Data

The data set that has been developed for the SVSPSP during th@reparation of this paper
has been described in further detail in a technical report byPetersen et al. [24], and in this
section we will give a brief description of the background ad the resulting data set. The
data set can be obtained from http://www.transport.dtu.dk /SVSPSP/.
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The local train network in the Greater Copenhagen area rougly has the form of a fan
or the ngers of a hand, as shown in Figure 5. A network of expres bus lines complements
the train lines across and in parallel, as can be seen in Figer6. The data set that has been
developed for the SVSPSP is based on this structure, where thradial train lines are operated
on a xed timetable, and the timetables for the bus lines (of which most are circular) are
adjusted according to this.

Figure 5: The local train network of Copenhagen

A data set for the SVSPSP consists of several parts: 1) distance matrix, containing all
distances between depots and line end-points, 2ked time tables of all xed-schedule train
connections, 3)number of transferring passengergor each transfer opportunity, 4) an initial
scheduleused to determine the available set of trips, 5)costs of di erent activities, and other
parameters such as turnaround times, passenger transferrties, etc.

Among these elements the distances and xed time tables areanerally relatively easy to
obtain. Furthermore the initial schedule, in the form of the current bus schedule, is required
to provide information regarding frequencies and servicedvel, which will be maintained by
the new solution. Given a suitable generation strategy, theset of potential trips can be
generated based on these time tables.The current scheduler also be used to generate an
initial feasible (VSP) solution for the heuristics.

The problem objectives of operating cost and passenger wailg time have been combined
by expressing both in monetary units. The various costs regined for calculating the total
cost of a solution have been estimated for the data set, in pdicular the cost of passenger
waiting time has been estimated based on the recommended vat of travel time by the Danish
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Figure 6: The S-bus network; trains are shown as thin lines, ampare Figure 5
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Ministry of Transport.

What then remains to be estimated is the number of passengend their transfer patterns.
This transfer information will allow us to calculate the number of (dis)embarking passengers
using each available transfer opportunity, for any arrival or departure of a bus at a station.

For this project these data have been obtained by a two-stag@rocess: First we estimated
the number of (dis)embarking passengers, as a function of #h station, bus line and time of
day, and then we estimated the percentage of (dis)embarkingpassengers that sould perform
each possible transfer.

The number of (dis)embarking passengers at each station isafculated asf; f;, fgs n
wheref; is a time factor, f, is a line factor, f5 is a station factor, and n is a random number
evenly distributed in the interval [32;48]. The values ofn is chosen to roughly re ect the
capacity of a vehicle, and the introduction of randomness igreases the variation of data, to
make them more realistic.

The distribution of transferring passengers between ava#lble connections has been esti-
mated based on knowledge of the network, and considering thdirection of trains (towards
the town centre or away from it). A random element has been adéd to provide a better
spread of the obtained values. Connections have been speed either for a particular train
line or as e.g. "the rst departure going into town". For mode lling purposes this could be
obtained by adding arti cial train lines.

Metatrips are created from trips in the original timetable. Let T; be the departure time of a
trip in the original timetable, belonging to a particular d- line L. We create an interval [T;%; Tf]
around T; and distribute  trips in this interval to form a metatrip. Assume that is an uneven
number. We express the start and end of the interval as follow TS = T; ; andTe= Ti+ ;*.
The symbols ; and i* are expressed in terms terms of the departure time3; ; and T;+1 of
the previous and next, respectively, trip onL as follows: ;, = bLzllc; Fo= bwc.
This construction ensures that the intervals around the trips on each d-line are disjoint. The
set of departure times constructed are

: ik : ik

Ti 4. j=1c 5 [f Tig[ Ti+ 4 Forj=1n 5
with the time expressions rounded to the nearest integer to msure that departures occur at
integer valued times. If the trips in the original timetable are close then we may end up with
fewer than departure times because some departures get mapped to thersa integer due
to the round-o . In that case we only create as many trips as we lave departure times for.
In our test we used = 5. Figure 7 shows an example of how the trips of a metatrip are
distributed.

9.15 9.30 9.45
‘ | | ‘ | | ‘
OO —On OO OO P
J L U
30-4/5+7 30-2/5+7 30+2/547 30+4/5%7

Figure 7: Example of the distribution of trips in metatrips
The only incompatibilities used in this project are found by multiplying the current interval

between two trips by a factor to determine lower and upper bounds allowed for the same
interval. This factor has been set to 0.5 for the lower bound ad 1.5 for the upper bound.
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Instances of three di erent sizes have been considered for th project. These instances
have been constructed by considering a meaningful subset tifie actual operated bus routes,
i.e. a subset that in itself constitutes a realistic problem This means that the routes selected
for the smaller subset have characteristics that may di er from the routes added in the larger
subsets. Thus the smaller problem consists of the most cerdt lines, and the lines that are
added in the larger sets are more rural, and/or have fewer intrsections with the train network.

The properties of the three di erent instances will be summaiised below:

3 lines. 538 trips. All lines are circular lines with 5{6 intersections with the train network, but
only few interconnections between the buses. Many passenge Subset of

5 lines. 792 trips. All lines are circular lines with 4{6 intersections with the train network, and
only few interconnections between the buses. Some lines gpassenger intensive. Subset
of

8 lines. 1400 trips. Combination of circular and radial lines. The radial lines only have 2{3
connections to trains, but more connections to other buses.Most lines are passenger
intensive.

6 Computational experiments

To evaluate the quality and usefulness of the algorithm, we lve performed a series of tests
to examine its behaviour with di erent instance sizes and setings, which will be presented
in this section. The tests have been performed on an Intel Peium 4, 2.8 GHz, with 2GB
RAM, running Windows XP.

The current vehicle schedules used for the data set were notvailable, so these had to
be constructed initially. This has been done by using the impemented LNS as a regular
VSP solver, i.e. by not allowing any time shifts. The generaed solutions have been used as
initial solutions when solving the SVSPSP, and also as ref@nce solutions representing current
practive, when evaluating the quality of the obtained nal solutions. As we know that the
actual current schedules are not created with dedicated sofare, this should produce reference
solutions that are not worse than the currently used solution. For each instance a running
time of 24 hours was allowed for the construction of the refeence solution.

Table 1 shows the results from running the implemented LNS aorithm on instances
of dierent sizes with di erent running times. For each run we r eport the cost reduction
compared to the initial solution, the number of vehicles usd, the reduction of empty mileage
costs (i.e. a negative value indicates that the empty cost ha increased), the reduction of
total passenger waiting time, the percentage of trips that Fave been time shifted, the average
amount of time that each trip is shifted, and the percentage & trips that are regular. A
regular/memorable trip is a trip for which the gap to the preceding trip on the same line
is a multiple of 5. This makes the schedule easier to remembgeand is thus an advantage
to the passengers. For the current schedule the percentagd oegular trips is around 72%
for the largest instance, and 83{84% for the others. Howevermemorability has not been an
objective of the implemented algorithm.

The table shows that good results can be obtained, and that a @nsiderable reduction
of passenger waiting time is possible. The reduced waitingirnes lead to an increase in the
amount of empty travel, however the total operating cost still shows improvement of around
3% for the smaller instances, and 1{2% for the 8 line instance

158



The Simultaneous Vehicle Scheduling and Passenger Serviégoblem

3 lines

total avg.
cost  veh. empty  time shifts  shift reg.

lh  29% 0.0% 14.2% 16.5% 74.2% 219 39.7%
6h 3.1% 0.0% 13.0% 17.4% 73.4% 222 43.2%
24h  3.3% 0.0% 8.9% 18.1% 73.8% 2.11 48.1%

5 lines

total avg.
cost veh. empty  time shifts  shift reg.

1h 28% 0.0% 101% 19.8% 77.0% 258 39.8%
6h 3.1% 0.0% 92% 21.8% 79.3% 2.68 43.4%
24h  3.2% 0.0% 7.8% 22.5% 78.2% 2.61 40.5%

8 lines

total avg.
cost veh. empty time shifts  shift reg.

1h  1.1% 0.0% 7.8% 9.5% 64.2% 1.88 30.4%
6h 1.6% 0.0% 6.4% 13.3% 76.6% 2.38 31.4%
24h  2.0% 0.0% 7.1% 16.4% 76.4% 2.39 36.0%

Table 1: Solution improvements for di erent problem sizes
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Alternative small instances

As stated previously the di erent tested instances di er not only in size, but also in some
characteristics regarding the type of lines that are used. Tus the variation in cost and time
reduction obtained for the di erent instances may well deperd just as much on the change
in these characteristics as on the actual size of the problem The tests of Table 1 have been
repeated on two additional small instances that have been @ated with a mix of lines more
similar to those of the largest instance. These instances pgesent subproblems that would
most likely not be considered in real-life, but can hopefuly demonstrate the behaviour on
smaller instances without being a ected by the di erent characteristics of the problem. Each
instance consists of two circular lines (of which one is pasmger intensive) and one radial line.
The results for these two instances can be found in Table 2, ahindicate that it is di cult to
compare the properties of instance just by looking at simpleproperties of the included lines.
The results also indicate that the achievable cost improverent does indeed depend on the
choice of lines to include in the problem.

total avg.
cost veh. empty time shifts  shift reg.

1h 13% 0.0% 7.2% 12.2% 73.2% 2.0 29.8%
6h 16% 0.0% 7.7% 14.7% 76.4% 2.1 31.4%

l1h 29% 0.0% 8.6% 20.4% 79.4% 2.8 39.2%
6h 3.1% 0.0% 5.6% 21.3% 76.5% 2.8 45.0%

Table 2: Solution improvements for more \realistic" small instances

Random variation of the instances

The network structure and the existing time tables are xed, so in order to produce a series
of di erent data sets/problem instances that still re ect th e real world, the only adjustable

parameter has been the random element of the spread of the pssngers over di erent available

connections. This has been done for the medium-sized instaas (5 lines), using running times
of 1 and 6 hours, and the results can be found in Table 3.

total avg.
cost veh. empty time shifts  shift reg.

lh 28% 0.0% 10.5% 19.7% 78.8% 2.7 37.3%
2.2% 0.0% 6.4% 15.4% 75.5% 25 39.3%
28% 0.0% 11.8% 20.1% 77.8% 2.7 34.5%
27% 0.0% 11.6% 19.7% 76.8% 2.7 39.6%

6h 3.2% 0.0% 6.2% 21.8% 76.4% 2.6 39.9%
2.6% 0.0% 48% 17.8% 77.1% 2.7 43.1%
3.1% 0.0% 9.0% 21.8% 78.3% 2.6 43.1%
3.2% 0.0% 54% 21.8% 76.4% 2.5 39.5%

Table 3: Solution results with modi ed transfer distributi ons
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These results show that the actual distribution of the passagers to some extent in uences
the size of the reductions that can be obtained, but also thathe improvements are consistently
around 2.6% for the shorter running times, and around 3% for he 6 hour running times.

7 Conclusion

We have introduced a new problem that integrates the timetalding and vehicle scheduling
phases in public transportation planning. It does so by simitaneously considering resource
costs and passenger waiting time at transfers. The problem &s been de ned formally and a
metaheuristic based on the LNS principle has been designechd tested. The metaheuristic
has been tested on a data set based on a subset of the buses s&guvhe Greater Copenhagen
area. The results obtained are encouraging: for the full dae set we have observed that a
16% reduction of passenger transfer waiting times are podsie. This reduction was possible
without using more buses to provide the service, but an incrase in the amount of deadheading
was necessary. We consider the increase in deadheading nrigille compared to the total cost
involved in operating a public transport system and when corsidering the increased passenger
service obtained.

A topic for future research is how to make the timetables prodiced by the heuristic easier
for the passengers to memorise. This could be achieved eithby adding a term penalising
solutions with low memorability to the objective function o r ensuring that blocks of subsequent
departures have xed headway.
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The Multi-Commodity K-splittable
Maximum Flow Problem

Mette Gamst
DTU Management Engineering, Technical University of Denmaik

Bj rn Petersen
DTU Management Engineering, Technical University of Denmarik

1

The Multi-Commodity Kk-splittable Maximum Flow Problem (MC kKMFP) consists of maxi-
mizing the amount of routed ow through a capacitated network such that each commodity
uses at mostk paths and the capacities are satis ed. The MC&KMFP appears in the trans-
portation sector when a number of commodities must be routedusing only a limited number
of transportation units, and in telecommunication for limi ting the number of used network

Abstract

The Multi-Commodity k-splittable Maximum Flow Problem consists of routing as
much ow as possible through a capacitated network such that ealc commodity uses at
most k paths and the capacities are satis ed. The problem has previously een solved
to optimality through branch-and-price. In this paper we propose two exact solution
methods both based on an alternative decomposition. The two metbds di er in their
branching strategy. The rst method, which branches on forbidden edge sequences, shows
some performance di culty due to large search trees. The secondhethod, which branches
on forbidden and forced edge sequences, demonstrates muctttbe performance. The lat-
ter also outperforms a leading exact solution method from the literaure. Furthermore, a
heuristic algorithm is presented. The heuristic is fast and yields goodsolution values.

Keywords: Multi-Commodity ow, k-splittable, Dantzig-Wolfe decomposition, br anch-
and-price.

Introduction

connections.

In revision.
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The Multi-Commodity k-splittable Flow Problem (MC kFP) was presented by Baier et al.
[1], who solved the Maximum Budget-Constrained Single- andVulti-Commodity k-splittab-
le Flow Problems using approximation algorithms. The authas proved that the Maximum
Single-Commodity k-splittable Flow Problem is NP -hard in the strong sense for directed
graphs. Finally, they noted that for k j Ej, a k-splittable (s;t) ow problem degenerates to
an ordinary (s;t) ow problem.

Koch et al. [7] proved that the MCKMFP is NP -hard in the strong sense for directed as
well as undirected graphs, and showed that wherP & NP, the best possible approximation
factor is %. Koch et al. [6] considered the MGKMFP as a two-stage problem, where the rst
stage consists of the decision on th& paths (routing) and the second of the amount of ow
on the paths (packing). If k is a constant then it su ces to consider a polynomial number of
packing alternatives, which can be constructed in polynomal time. If k is part of the input,
they proposed an approximation algorithm having approximaion factor (1 ), > O.

Tru ot and Duhamel [8] used branch-and-price to solve the Sirgle-Commodity k-splittable
Maximum Flow Problem (SCKkMFP). A 3-index edge-path model was presented to which a
branch-and-price algorithm was applied. The pricing probkem for the column generation is
a shortest path problem solvable in polynomial time. Truot et al. [9] have applied their
3-index branch-and-price algorithm to the MCKMFP.

Gamst et al. [5] used branch-and-price to solve the Minimum ©st Multi-Commaodity k-
splittable Flow Problem (MCMC kFP). They applied the algorithm of Tru ot et al. [9] to
the MCMC kFP. Furthermore, they proposed a nhew branch-and-price algathm based on a
2-index model. The latter showed very good performance and uiperformed the existing
branch-and-price algorithm.

The MCKMFP can be represented by a directed graphG = (V; E), where V is the set of
vertices and E the set of edges. A positive capacityue is associated with every edgee 2 E.
Edge capacities are positive since any edge2 E with non-positive capacity can be removed
from the graph. The set of commodities is denoted. and each commodityl 2 L has a source
s 2 E and a destinationt; 2 E. The maximal number of routes each commodity may use is
denoted k.

In this paper three exact solution methods are applied to theMCkMFP and compared.
The 3-index branch-and-price algorithm (3BP) by Tru ot et al . [9] is extended with a heuristic
proposed by Gamst et al. [5] to reach feasible solutions fast. The extended 3BP is compared
to two algorithms based on a 2-index branch-and-price apprach applied to the MCKMFP by
Gamst et al. [5]. The two algorithms for the MCKMFP di er in their branching scheme. The
rst algorithm (2BP) uses a branching strategy from the lite rature where certain subpaths
are forbidden, and the second algorithm (2BP") uses a new bmaching strategy where the use
of certain paths is either forced or forbidden and where braoh cuts are added to the master
problem.

The main contribution of this paper is to apply the 2BP algorithm to the MC kMFP and
especially to introduce the new branching scheme and the brech cuts of the 2BP' algorithm.
Furthermore, a heuristic use of the 2BP and 2BP' algorithms B presented, denoted 2HEUR.

The paper is organized as follows. First, we summarize and oabine exact methods from
the literature on MC kMFP into an overall 3-index branch-and-price algorithm in Section 2.
The 2BP algorithm is presented in Section 3, which is followd by the 2BP' algorithm in
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Section 4. All algorithms are tested and compared in Sectiorb. Section 6 concludes the
paper.

2 The 3-index branch-and-price algorithm (3BP)

Tru ot et al. [9] solved the MC KMFP by applying Dantzig-Wolfe decomposition Dantzig
and Wolfe [4]. We denote their branch-and-price algorithm BP. The pricing problem nds
the h'th path of commodity | and the master problem merges paths into an overall feasible
solution. In the master problem, the variable XBI 0 denotes the amount of ow on path p
for the h'th path of commodity | and the binary variable yg' denotes whether or not pathp
is used as theh'th path for commodity |. The 3BP problem is:

X X X
max XBI
I12L h=1 p2p!
X X X
s.t. Bxp ue 8e2 E 1)
|2Lh=lp2P|
XB'X upyl[,‘I 0 8l2L;h2f1::::kg;8p2 P! 2)
yp 1 812 L;h2f1;::::kg (3)
p2pP!
xp 0 8l2L;h2f1::::kg;8p2 P!
yQ'ZfO;lg 8l2L;h2f1;:::;kg;8p2 P!

The objective function maximizes the total amount of routed ow. The set P! contains paths
p for commodity I. In capacity constraints (1), & indicates whether or not edgee is used
by path p. The constant u, denotes the capacity constraint on pathp, which is de ned as
up = minfueje2 pg. Hence, constraints (2) force the decision variabIQ/B' to be set if there
is ow on the corresponding path xB'. Constraints (3) ensure that at most one path is used

solution space, hence a symmetry-breaking constraint is atked to the formulation:
X

X
XB+1| XBI 0 8h2f1;:::;k 1g;8l2L (4)

p2P! p2P!

The constraint eliminates some symmetry, but does not prevet symmetric solutions where
paths carry the same amount of ow. The 3-index model is LP-rdaxed by setting O yg' 1
and then the model is simpli ed by substituting x§'=u, for yf)', which is feasible according to
constraints (2) and (3) and to the fact that up, > 0. Constraints (2) and the bounds on the
yB' variables are removed from the formulation and constraints(3) are rewritten as:

X yh
P 1 82Lh2fL::: kg (5)
p2P Up
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space as well as a large number of columns in the master prolohe They improved the
3BP algorithm by including a heuristic, which merges certan fractional columns such that a
feasible solution was possibly reached. Speci cally, onefdhe following two situations may
occur:

1. For a commodity, several identical paths are used but withdi erent values of h
2. More than one path is used for a single value olfi for a commodity

In the rst case, the paths are merged into one single path. Inthe second case, each path is
assigned a unique value oh, if possible.

Adding this heuristic to the 3-index branch-and-price algaithm gives us the nal 3BP
algorithm. We do not expect the heuristic to solve all symmety problems caused by the path
index, hence a branch-and-price algorithm (2BP) without the path index for The Minimum
Cost k-splittable Flow Problem by Gamst et al. [5] is investigated. In the following sections
we show that the 2BP algorithm can be applied to the MCkMFP, and we present a branch-
and-price algorithm (2BP") based on the same master problenmas in the 2BP algorithm, but
with a di erent branching strategy.

3 The 2-index branch-and-price algorithm (2BP)

Applying Dantzig-Wolfe decomposition to the edge-based mdel without using the h-index
gives a pricing problem, which generates a path for each comaality, and a master problem,
which merges the paths into an overall feasible solution. L'ex'p 0 denote the amount of
ow on path p for commodity | and let yl'O 2 f 0; 1g denote whether or not path p is used by
commodity I. The master problem is:

X X
max Xp
|>2(L p2P|
s.t. Bxp, Ue 8e2E (6)
2L p2P!
x'%( upy, O 82L;8p2P 7)
yp k 8l 2L (8)
p2pP!
x 0 8l2L;8p2P!

p
yp 210,19 8l2L;8p2 P!

The objective function maximizes the total amount of routed ow. Constraints (6) ensure
edge capacities are never violated and constraints (7) foecthe decision variables to take on
value 1, whenever the amount of ow on the corresponding pathis positive. Constraints (8)
limit the number of used paths for commodity | to at most k.

By LP-relaxing the binary variables y'p to O y:) 1 the model is turned into an LP-
model. Setting yl'O = xlozup satis es constraints (7) and (8) and simpli es the formulation
to only consisting of one type of variable. Constraints (7) ae now redundant and can be
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removed from the formulation. The relaxed master problem beomes:

X X |
max Xp 9)
12L p2pP!
e p2P
s.t. Bx, Ue 8e2E (10)
2L p2P!
X Xl
Pk 8l2L (11)
Up
p2P!
X, O 8l2L;8p2P! (12)
3.1 Pricing problem
Let 0 and 0 be the dual variables for constraints (10) and (11). The redeed cost
for a path p2 P! for a commodity | 2 L is:
X |
e2E Up

The pricing problems generate columns with positive reduce cost for each commodity|.
Now, 'is a constant whenl is xed so nding a column with positive reduced cost (if any
exists) is equivalent to solving the shortest path problem:

X I |
Pe 1 —; 8l2L; 82P
Up
e2E

The path capacity up is not known until the path has been generated. Hence, we setxed

bounds onup. We know that the capacity can be set to at mostjEj di erent values (one for

each dierent ue : e 2 E), hence the pricing problems can be solved by considering anost

JEj shortest path problems. The pricing problems can now be de ®d as solving the shortest
path problem de ned on costs 0 for edges withue  up for each dierent ue : e 2 E.

This can be done in polynomial time by using, e.g., Dijkstras algorithm.

3.2 Branching scheme { forbidding edge sequences

The branching scheme consists of forbidding edge sequencest the divergence vertex for a
commaodity be de ned as the rst vertex with one incoming path and several outgoing paths.
If the number of paths emanating from the divergence vertex ér some commodityl is greater
than k then branching can be applied. For each emanating pattp we nd the rst edges of
p, which make p di erent from the remaining emanating paths. This is denoted the unique
edge sequence fop. Each unique edge sequence is forbidden in a branching childf more
than k + 1 paths emanate from the divergence vertex, then we let soméranching children
consist of more than one unigue edge sequence such that the mber of branching children
is always equal tok + 1. The reason for this is to reduce the width of the search tre. It is
legal to let a branching child forbid several unique edge segnces, because all combinations
of k paths from the emanating paths are available in at least one ther branching child.

An illustration of the branching strategy is seen in Figure 1 A graph with four vertices
is given and a commodity with sources and destination t is to be routed using at most
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two paths. In the current solution three paths are used: p1 = fe;;e4;es0;p2 = fer; e3;650,
and p3 = fep;es3;esg. Assume that the optimal solution consists of path p; and ps. Now
k + 1 subpaths are found: fe;; esqg, fer;esg and fexg. The optimal solution is found in the
branching child, which forbids the use of edge sequendee; ; esg.

Figure 1: A graph used to illustrate the branching scheme. Tle graph consists of four vertices,
the source vertex is denoteds, and the destination vertex t. Edges aree;; e; €3; €4, and es.

The branching scheme changes the pricing problem. When sdhg the shortest path
problem we need to ensure that we do not use the forbidden edggequences. The shortest
path problem with forbidden paths is a polynomial problem and can be solved by applying a
shortest path algorithm to an extended graph, see Villeneug and Desaulniers [10].

4 A new 2-index branch-and-price algorithm (2BP")

The 2BP' algorithm only di ers from the 2BP algorithm in the br anching scheme. The master
problem (9){(12) is the same and the reduced cost is given by X3).

4.1 Branching

This branching scheme resembles the branching strategy ofdok et al. [3] and is based on the
idea of forbidding or forcing the use of a certain pathp?for a xed commodity | 2 L. This
corresponds to settingy'po =0or y'po =1, respectively, in the non-relaxed master problem. In
the remainder of this section a xed commodity | 2 L is assumed.

The e ect of the branching scheme on the non-relaxed master mblem, speci cally con-
straint (8) is considered: X
Yp K
p2P
In both the case that y:)o =0 or y'po = 1 the variable can be left out of the constraint. If
y||oo = 1 then the constraint is rewritten as
X
yp k 1
p2 P nf p%
Now, the e ect of the branching scheme on the relaxed master wblem, speci cally con-

straint (11) is considered:
X

x

|
L
p2p! P
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When path p°is forbidden for commodity | then x:oo = 0. When use of path pYis forced then
we setx'po > 0 and constraint (11) is rewritten as

X oy
u—p k 1 (14)

p2 P !nf pS P

This is stronger than the original constraint when x'po < U po, hence the bound of the branching
child is strengthened in this case.

The number of branching children varies according to the curent fractional solution.
Assume that the current solution consists ofk + ; > 0 paths for commodity |. If a path
in the current solution carries as much ow as possible, i.e.x'p = up, then forcing the use of
path p has no e ect because (14) is not violated.

Since the current fractional solution is a feasible solutio to the relaxed master problem
Bonstraints (11) are satis ed. Hence, at least + 1 paths have x'p < up (otherwise the sum

2P X,=Up would exceedk). An optimal solution may consist of paths not part of the
current fractional solution. Thus, we cannot generate +1 branching children, where the use
of exactly one path is forced in each child. Rather, +2 children should be generated: Each
of the rst + 1 branching children forces the use of exactly one pathp with x:o < Uup, and
the last branching child forbids the use of all + 1 paths.

The rst + 1 children cause symmetry in the solution space; several $ations in one
branching child can also be found in the other children, espaally when several of the +1
paths are part of the solutions. The rst + 1 children are thus changed into forcing and
forbidding the use of certain paths. Consider the +1 = 3 branching children by, by, and b;,
forcing the use of pathpy, p2, and ps, respectively. Child b, is unaltered and forces the use
of p1. Child by, forces the use ofp, and forbids the use ofp;. In this way, the solution using
p1 and py is only available in the subtree ofb,. Similarly, child bz forces the use ofps and
forbids the use ofp; and p».

In practice we would rather add a cut than rewrite constraints (11) when the use of a path
is forced. Recall inequality (14) when forcing the use of pdt p° This inequality is denoted
the branch cut. Let !, O be the dual of branch cutb for commodity |. The resulting
reduced cost for pathp 2 P' for commodity | 2 L is

{ X e I X g! bl ( )
Cp =1 pe — _— 15
e2E U pg Up

The extra dual cost! y is subtracted from the reduced costs for all new paths for comodity
[; this is similar to how | is handled. Hence, the branch cut does not a ect edge weightsro
path properties in the graph of the pricing problem. The pricing problem must, however, be
able to avoid using forbidden paths as before.

5 Computational results

A computational evaluation is performed on a dual 2.66GHz Intel® Xeon® X5355 machine

with 16 GB of RAM. Note that CPU times in the following stem fro m using one core only.
We have tested three algorithms; the 3BP extended with a heustic to reach feasible

solutions faster, the 2BP, and the 2BP'. We implemented all tree algorithms using the
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Name Vi JEj jLj
Random5-35 5 35 1
Random10-45 10 45 1
Random15-60 15 60 1
Random20-140 20 140 1
tg10-2 12 40 1
tg20-2 22 80 1
tg40-1 42 154 1
tg40-5 42 154 1
tg80-1 82 322 1
tg100-2 102 400 1

Random10-40 10 40 3
Random11-42 11 42 11
Random?20-80 20 80 20
Random?22-56 22 56 22

Table 1: Sizes of test instances. First column denotes the stance name, then follows the
number of vertices, the number of edges, and nally the humbe of commaodities.

framework of COIN [2] with ILOG CPLEX 10.2s LP-solver. Computations concerning the
selection of branching candidates and branching children @ handled by COIN.

The three solution methods are tested on benchmark instancefrom the literature Tru ot
and Duhamel [8]: The Randoninstances are randomly generated and thdg instances are
generated by the Transit Grid generator* using topologies from transportation networks. See
Table 1 for details.

Two di erent types of tests have been performed. First the three exact algorithms are
computationally evaluated on the proposed instances and mlts are compared. Then we
examine if the 3BP and either of the 2BP and 2BP' algorithms give good heuristic solutions
by terminating each test run once the root node has been compgad (when omitting branching
the 2BP and the 2BP' algorithms are identical).

5.1 Optimal approach

The three algorithms are computationally evaluated on the poposed instances. Results for
the single-commodity Randoninstances are summarized in Table 2 and results for the singt

commodity tg instances are summarized in Table 3. The multi-commodity irstances are all
of the Randomype and results are summarized in Table 4.

In the tables the rst column holds the name of the problem ingance, the second column
holds the value ofk and the third column holds the optimal value. Then follows the size and
depth of the search tree, the number of generated variableghe gap in percent between the
upper and lower bound, and the time in seconds spent on solvinthe instance for the 3BP,
the 2BP, and the 2BP' algorithms, respectively. If a test run is marked with \-" then it has
run out of memory. If the gap is also marked with \-" then no lower bound was found. The
total number of times each algorithm has best performance,s found at the bottom of each
table. Also, for each instance the best performance is writtn in bold .

The 2BP algorithm performs much better than the 3BP algorith m for the Minimum Cost
MCKFP Gamst et al. [5]; however, this is generally not the case fothe MCkMFP. Although

Lhttp:/www.informatik.uni-trier.de/ ~naeher/Professur/research/generators/maxflow/tg/ind ex.
html
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3BP 2BP 2BP'
Problem k z* size depth vars gap time size depth vars gap time s ize depth vars  gap time

Random5-35 1 66 1 0 5 0.00% 0.00 1 0 5 0.00% 0.00 1 0 50.00% 0.00
2 128 1 0 14 0.00% 0.00 1 0 7 0.00% 0.00 1 0 7 0.00% 0.00

3 182 1 0 270.00% 0.01 1 0 9 0.00% 0.00 1 0 9 0.00% 0.00

4 223 13 6 48 0.00% 0.01 1 0 12 0.00% 0.00 1 0 12 0.00% 0.00

5 262 19 9 60 0.00% 0.03 1 0 12 0.00% 0.00 1 0 12 0.00% 0.00

6 297 21 10 78 0.00% 0.03 1 0 14 0.00% 0.01 1 0 14 0.00% 0.00

7 326 67 12 98 0.00% 0.10 1 0 14 0.00% 0.00 1 0 14 0.00% 0.00

8 326 1 0 104 0.00% 0.00 1 0 11 0.00% 0.01 1 0 11 0.00% 0.00

Random10-45 1 73 1 0 6 0.00% 0.00 1 0 5 0.00% 0.00 1 0 50.00% 0.00
2 142 5 2 15 0.00% 0.01 4 1 9 0.00% 0.01 8 2 9 0.00% 0.01

3 209 9 3 33 0.00% 0.02 21 3 150.00%  0.03 20 3  120.00% 0.02

4 260 45 17 68 0.00% 0.08 411 12 24 0.00% 0.56 34 4 20 0.00% 0.03

5 306 369 22 102 0.00% 0.80 23599 18 34 0.00% 44.96 40 4 20 0.00% 0.07

6 345 973 26 137 0.00%  2.90 >427099 >26 39 2.36% - 135 6 260.00% 0.22

7 381 4281 36 219 0.00% 16.55 >354551 >22 46 -% - 313 8 34 0.00% 0.64

8 413 22985 43 265 0.00% 102.51 >431299 >29 46 2.93% - 606 9 400.00% 131

9 429 >110199 >58 380 6.43% - >388228 >26 60 -% - 2507 11 46 0.00%  5.97

10 451 >104999 >57 448 5.74% - >456699 >41 74 6.57% - 2355 12 46 0.00% 591

Random15-60 1 86 1 0 5 0.00% 0.00 1 0 6 0.00% 0.00 1 0 6 0.00% 0.00
2 163 1 0 16 0.00% 0.00 1 0 8 0.00% 0.00 1 0 8 0.00% 0.00

3 221 9 3 34 0.00% 0.02 41 6 150.00%  0.06 12 2 120.00% 0.02

4 248 111 10 70 0.00%  0.32 >100454 >26 50 -% - 111 6 200.00% 0.22

5 268 557 18 101 0.00% 551.83 >176599 >29 52 2.86% - 322 7 290.00% 0.76

6 287 419 21 135 0.00% 1.59 >277801 >31 45 2.74% - 354 9 300.006 0.79

7 295 19097 35 194 0.00% 72.91 >387565 >23 49 -% - 836 10 27 0.00% 1.74

8 301 >88799 >47 231 2.90% - >413343 >33 55 2.90% - 4995 11 30 0.00% 11.32

9 306 >153099 >51 229 1.29% - >547079 >28 48 -% - 2263 11 19 0.00%  4.42

Random20-140 1 81 1 0 4 0.00% 0.00 1 0 5 0.00% 0.00 1 0 50.00% 0.00
2 158 1 0 14 0.00% 0.00 1 0 7 0.00% 0.00 1 0 7 0.00% 0.00

3 228 1 0 300.00  0.02 1 0 11 0.00% 0.00 1 0 11 0.00% 0.00

4 253 9935 31 103 0.00% 75.25 >41444 >42 68 -% - 90 18 67 0.00% 1.04

5 274 >39999 >41 146 1.86% - >68299 >66 87 1.86% - 819 22 51 0.00% 12.65

6 294 >30199 >61 184 1.78% - >60299 >86 107 1.78% - >14106 >32 113 1.78% -

7 - >28999 >70 227 1.81% - >75894 >46 91 -% - >14299 >32 109 1.69% -

8 319 >30599 >80 267 1.91% - >94699 >101 120 1.91% - 4028 22 29 0.00% 52.95

9 325 >39599 >93 315 0.84% - >108990 >63 105 -% - 130 9 25 0.00% 0.32

10 327 2907 109 326 0.00% 19.15 >272685 >49 68 0.61% - 17 3 22 0.00% 0.02

11 327 1325 86 301 0.00% 8.75 49 3 22 0.00% 0.03 20 5 20 0.00% 0.03
Best 11 14 36

Table 2: Results from solving the single-commodityRandoninstances exactly.
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3BP 2BP 2BP'
Problemk  z* size depth vars gap time size depth vars gap time s ize depth vars gap time
tg10-2 1 389 1 0 5 0.00% 0.00 1 0 4 0.00% 0.00 1 0 4 0.00% 0.00
2 557 215 13 26 0.00% 0.21 355 14 10 0.00% 0.21 41 5 11 0.00% 0.04
3 716 553 19 58 0.00% 0.70 39505 20 28 0.00% 32.49 53 5 15 0.00% 0.06
4 815 83 17 52 0.00% 0.10 6 1 8 0.00% 0.00 5 1 8 0.00% 0.00
5 815 1 0 40 0.00% 0.00 1 0 8 0.00% 0.00 1 0 8 0.00% 0.00
tg20-2 1 385 1 0 4 0.00% 0.00 1 0 4 0.00% 0.00 1 0 4 0.00% 0.00
2 643 1 0 10 0.00% 0.00 1 0 6 0.00% 0.00 1 0 6 0.00% 0.00
3 832 5 2 33 0.00% 0.04 1 0 10 0.00% 0.00 1 0 10 0.00% 0.00
4 853 1 0 40 0.00% 0.01 1 0 10 0.00% 0.00 1 0 10 0.00% 0.00
tg40-1 1 517 1 0 5 0.00% 0.00 1 0 5 0.00% 0.01 1 0 5 0.00% 0.00
2 750 5 2 16 0.00% 0.07 4 1 10 0.00% 0.02 10 3 12 0.00% 0.07
3 908 >9999 >40 96 2.61% - >83282 >61 94 -% - 231 11 21 0.00% 3.32
4 994 >7799 >57 143 1.00% - >82770 >45 64 -% - 893 18 33 0.00% 25.15
5 1004 15 7 65 0.00% 0.09 703 27 20 0.00% 141 11 2 18 0.00% 0.03
6 1004 1 0 96 0.00% 0.03 29 3 13 0.00% 0.02 43 6 13 0.00% 0.07
tg40-5 1 487 1 0 8 0.00% 0.01 1 0 6 0.00% 0.00 1 0 6 0.00% 0.00
2 828 >20599 >46 80 4.11% - >64248 >45 57 5.70% - 144 9 23 0.00% 1.49
3 1062 >17299 >59 139 0.28% - >77103 >44 65 -% - 276 8 22 0.00% 4.20
4 1078 181 47 68 0.00% 0.61 >148934 >22 50 -% - 1520 21 22 0.00% 26.53
5 1078 3 1 90 0.00% 0.03 61 4 16 0.00% 0.04 76 20 16 0.00% 1.72
tg80-1 1 549 1 0 7 0.00% 0.04 1 0 6 0.00% 0.02 1 0 6 0.00% 0.02
2 984 1591 29 80 0.00% 65.22 2308 22 25 0.00% 59.16 288 11 39 0.00% 8.72
3 1411 >2199 >36 162 3.85% - >51476 >49 107 -% - 1914 10 38 0.00% 110.38
tg100-2 1 530 1 0 7 0.00% 0.07 1 0 6 0.00% 0.03 1 0 6 0.00% 0.02
2 1007 3 1 16 0.00% 0.20 1 0 8 0.00% 0.04 1 0 8 0.00% 0.04
3 1407 >1099 >31 115 0.39% - >29087 >60 113 -% - 229 6 51 0.00% 29.14
4 1768 >1499 >72 234 1.51% - >56256 >40 167 -% - 2118 9 820.00% 284.41
Best 7 12 23
Table 3: Results from solving thetg instances exactly.
3BP 2BP 2BP*
Problem k z* size depth vars gap time size depth vars gap time s ize depth vars gap time
Random10-40 1 110 5 2 18 0.00% 0.02 5 2 15 0.00% 0.00 4 1 14 0.00% 0.01
2 194 1 0 26 0.00% 0.00 34 5 21 0.00% 0.04 4 1 18 0.00% 0.01
3 258 183 18 80 0.00% 0.39 213 12 24 0.00% 0.18 50 6 23 0.00% 0.06
4 293 695 36 129 0.00% 2.23 2956 16 41 0.00% 4.25 112 7 32 0.00% 0.20
5 309 1989 30 176 0.00% 7.91 >253716 >25 56 1.24% 1.06 561 12 39 0.00% 1.06
6 318 15905 36 253 0.00% 73.84 >610006 >24 59 1.35% - 1294 13 60 0.00% 2.63
7 321 >153199 >56 286 0.01% - >335959 >26 54 -% - 26182 18 47 0.00% 57.10
8 323 113 37 299 0.00% 0.52 2008 14 37 0.00% 1.23 2051 15 36 0.00% 2.43
9 323 333 49 318 0.00% 1.38 11 1 32 0.00% 0.01 18 5 320.00% 0.02
Random11-42 1 291 5 2 29 0.00% 0.02 7 3 28 0.00% 0.01 7 2 27 0.00%  0.02
2 343 1 0 50 0.00% 0.01 7 2 27 0.00% 0.01 6 1 27 0.00% 0.01
3 344 1 0 75 0.00% 0.00 1 0 26 0.00% 0.00 1 0 26 0.00% 0.00
4 344 1 0 100 0.00% 0.00 1 0 26 0.00% 0.00 1 0 26 0.00% 0.00
Random20-80 1 347 7 3 55 0.00% 0.06 3 1 51 0.00% 0.02 7 2 530.00% 0.04
2 553 3 1 100 0.00% 0.03 4 1 50 0.00% 0.02 4 1 51 0.00% 0.01
3 584 1063 24 188 0.00% 6.14 57 7 59 0.00% 0.16 1020 16 62 0.00% 3.45
4 601 5599 33 277 0.00% 40.05 1041 10 60 0.00% 2.02 >81550 >548 601 2.01% -
5 617 13291 44 340 0.00% 117.96 4363 14 66 0.00% 7.35 49695 34 67 0.00% 198.61
6 621 >48999 >40 380 0.01% - 3998 11 63 0.00% 6.42 32552 29 58 0.00% 100.08
7 626 413 37 412 0.00% 3.48 17 2 57 0.00% 0.02 116 14 57 0.00% 0.22
8 626 1 0 440 0.00% 0.03 1 0 57 0.00% 0.01 1 0 57 0.00% 0.01
Random22-56 1 365 9 3 52 0.00% 0.02 7 3 42 0.00% 0.02 7 2 44 0.00% 0.02
2 389 11 4 81 0.00% 0.02 10 3 42 0.00% 0.02 9 3 42 0.00% 0.01
3 407 1 0 108 0.00% 0.01 1 0 41 0.00% 0.01 1 0 41 0.00% 0.01
4 407 1 0 144 0.00% 0.01 1 0 41 0.00% 0.00 1 0 41 0.00% 0.00
Best 7 17 14

Table 4: Results from solving the multi-commodity instances exactly.
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the number of times the algorithm has best performance is lager for the 2BP, the 3BP
algorithm is capable of solving more instances. The changef @bjective function has a great
impact on the problem; the algorithms always try to push as mwh ow through the network
as possible, thus potentially exploiting the somewhat wealy formulated bound on the number
of used paths. The formulation has less impact on the minimuncost problem because it may
not always be bene cial to increase the number of used paths.The 2BP algorithm su ers
from large search trees because of the existence of poteritiamany solutions using more
than k paths per commodity and because the branching scheme allowsuch symmetry in the
branching children. The 2BP algorithm, however, performs ®mewhat better than the 3BP
for the multi-commodity Randoninstances with respect to running times.

The 2BP' algorithm generally performs much better than 3BP algorithm. Exceptions
are tg40-5, k = 4 and Random20-80k = 5, which the 2BP' algorithm spends more time
on solving. Furthermore, 2BP' is unable nd an optimal solution for Random20-80k = 4.
For the far majority of test instances, however, the 2BP" algorithm is capable of nding an
optimal solution in little time, even when the 3BP algorithm shows great diculty. The
2BP' algorithm generally also generates smaller gaps for stances, which are not solved to
optimality. Reasons are that the search tree sizes are geraly smaller for the 2BP', the
number of variables in the master problem is smaller, and mue symmetry is eliminated
because of the lackingh-indices.

The 2BP' algorithm generally also performs much better than the 2BP algorithm. Ex-
ceptions areRandom?20-80k = 4;5; and 6 where the 2BP has overall best performance. The
reason for the generally superior performance of the 2BP' glorithm is that the branching
scheme gives better bounds in the branching children: foraig the use of a path is much
stronger than forbidding a path. Also forbidding the use of dl paths with positive ow is
stronger than forbidding a subset of the paths.

All three algorithms su er from the same weakness in the formuation, speci cally the
bounding of the number of used paths per commodity: constraits (3) for the 3BP and (11)
for the 2BP and the 2BP' algorithms. Because the objective id0 maximize the total amount of
ow, the algorithms are very likely to exceed k paths per commodity whenever the mentioned
constraints are not tight. The constraints will rarely be ti ght, especially when several paths
share the same edges and the correspondinQ:up then can become much smaller than one.
The 2BP' reduces this problem to some extend with the branchmg cut (14).

5.2 Heuristic approach

The three exact algorithms presented can be used as heuriss by only computing the root
node and then returning the best feasible solution. The appoach of only computing the root
node does not guarantee a polynomial running time, since anx@onential number of columns
potentially needs to be added in the root. In practice, howeer, we expect low running times.

The heuristic usage of the 3BP algorithm is denoted 3HEUR. Beause no branching occurs
the heuristic usage of the 2BP and the 2BP' algorithms is idetical and is denoted 2HEUR.
Tru ot and Duhamel [8] argue that the 3-index and 2-index formulations are equivalent, also
after LP-relaxation and elimination of the binary variables. Even though the formulations
give the same bounds, we may not reach the same feasible satuts in the root node. Hence
we investigate the performance of 3SHEUR and 2HEUR empiricdy.

The 2HEUR may give infeasible solutions where more thark paths are used for each
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commodity. In this case we try to move the ow between the paths in order to nd a
feasible solution using at mostk paths for each commodity. For each commodity the approach
investigates all paths in the current fractional solution and greedily assigns ow to the path
having the highest capacity. The steps of the approach are:

1: for (each commodity) do
2. Sort all the paths in the current fractional solution according to decreasing capacity
for (each path in the sorted list, until ow is assigned to k paths) do
Assign as much ow as possible to the path
Subtract the assigned ow from the capacity of each edge on th path
6: end for
7: end for

Including this ow-moving approach in 2HEUR gives the nal h euristic denoted 2HEUR'.
It is noted that including the ow-moving approach in the exa ct 2BP and 2BP' approaches
does not improve performance; see the tables dtttp://www.diku.dk/  ~gamst/heuristic_
results.pdf  for documentation.

AN

All three heuristics 3HEUR, 2HEUR, and 2HEUR' are evaluated on the previously pro-
posed instances. Test results are summarized in tables 5, énd 7.

The rst column of each table holds the name of the problem ingance, the second column
holds the value ofk, and the third column holds the optimal value. Then, follows for each
of the algorithms 3HEUR, 2HEUR, and 2HEUR'; the number of iterations, the gap between
the heuristic and the optimal value, and the time in seconds pent on solving the instance.
An entry marked with \-" indicates that no feasible solution was found. The average number
of iterations, gap, and time usage are given at the bottom of ach table.

The results show that the 3HEUR algorithm often gives poor heiristic solutions with gaps
of up to 94%. For three multi-commodity Randoninstances the 3BP algorithm is even unable
to nd a feasible solution in the root node. The 2HEUR algorithm generally nds much
better solution values than the 3HEUR algorithm. The 2HEUR', however, shows superior
performance by solving the majority of the instances to optmality and with the largest gap
of those not solved being 20%. All heuristics have very low roning times and terminate in
less than a second.
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3HEUR 2HEUR 2HEUR'

Problem k z* iter. gap time iter. gap time iter. gap time

Random5-35 1 66 5 0.00 0.00 3 0.00 0.00 3 0.00 0.01
2 128 7 0.00 0.00 5 0.00 0.00 5 0.00 0.00
3 182 8 0.00 0.00 7 0.00 0.00 7 0.00 0.00
4 223 12 16.60 0.00 10 0.00 0.00 10 0.00 0.00
5 262 12 54.96 0.00 10 0.00 0.00 10 0.00 0.00
6 297 13 80.37 0.00 12 0.00 0.00 12 0.00 0.00
7 326 14 54.29 0.00 12 0.00 0.00 12 0.00 0.00
8 326 13 0.00 0.01 11 0.00 0.00 11 0.00 0.00

Random10-45 1 73 6 0.00 0.00 4 0.00 0.00 4 0.00 0.00
2 142 7 12.68 0.00 6 12.68 0.00 6 0.00 0.00
3 209 10 22.00 0.01 10 15.31 0.00 10 0.00 0.00
4 260 13 65.38 0.01 13 18.08 0.00 13 0.00 0.00
5 306 15 75.82 0.01 17 46.73 0.00 17 0.00 0.00
6 345 17 73.91 0.02 19 43.48 0.00 19 0.00 0.00
7 381 23 76.38 0.02 21 47.77 0.00 21 840 0.01
8 413 24 78.21 0.02 23 48.18 0.00 23 6.78 0.01
9 429 30 79.02 0.04 30 37.06 0.00 30 140 0.00
10 451 35 80.04 0.05 38 36.59 0.01 38 0.00 0.01

Random15-60 1 86 5 0.00 0.00 6 0.00 0.00 6 0.00 0.00
2 163 8 0.00 0.01 8 0.00 0.00 8 0.00 0.00
3 221 10 55.24 0.01 11 85.52 0.00 11 16.74 0.00
4 248 13 87.50 0.01 18 56.04 0.01 18 10.01 0.00
5 268 16 57.49 0.02 20 51.49 0.00 20 597 0.00
6 287 18 93.38 0.02 22 50.52 0.01 22 6.62 0.00
7 295 20 85.05 0.02 23 46.44 0.01 23 13.90 0.00
8 301 19 59.47 0.01 21 46.84 0.00 21 17.94 0.00
9 306 18 60.13 0.01 18 39.87 0.00 18 19.93 0.00

Random20-140 1 81 4 0.00 0.00 4 0.00 0.00 4 0.00 0.00
2 158 7 0.00 0.02 6 0.00 0.00 6 0.00 0.00
3 228 10 0.00 0.02 10 0.00 0.00 10 0.00 0.00
4 253 12 82.48 0.03 13 0.00 0.00 13 0.00 0.01
5 274 16 84.69 0.04 16 1.46 0.01 16 0.00 0.01
6 294 18 84.69 0.04 24 69.05 0.01 24 340 0.01
9 325 22 86.15 0.04 24 4492 0.01 24 031 0.01
10 327 21 86.24 0.01 19 3.67 0.00 19 3.67 0.00
11 327 20 86.24 0.01 19 0.61 0.00 19 0.61 0.00

Sum 14 49.40 0.01 15 22.29 <0.01 15 3.21 <0.01

Table 5: Results from solving the single-commodity Randominstances heuristically, where
each algorithm terminates after having evaluated the root rode only.

3HEUR 2HEUR 2HEUR'
Problem k z* iter. gap time iter. gap time iter. gap time
tg10-2 1 389 5 0.00 0.00 4 0.00 0.00 4 0.00 0.00
2 557 6 0.00 0.00 6 0.00 0.00 6 0.00 0.00
3 716 9 0.00 0.00 10 15.22 0.00 10 0.00 0.00
4 815 8 0.00 0.00 8 15.83 0.01 8 0.00 0.00
5 815 8 0.00 0.00 8 0.00 0.00 8 0.00 0.00
tg20-2 1 385 4 0.00 0.00 4 0.00 0.00 4 0.00 0.00
2 643 5 0.00 0.00 6 0.00 0.00 6 0.00 0.00
3 832 11 18.03 0.00 10 0.01 0.00 10 0.00 0.01
4 853 10 0.00 0.01 10 0.00 0.00 10 0.00 0.00
tg40-1 1 517 5 0.00 0.01 5 0.00 0.01 5 0.00 0.01
2 750 7 7213 0.01 9 61.33 0.01 9 0.00 0.01
g40-5 1 487 | 8 000 000 | 6 000 000 | 6 0.00 001
tg80-1 1 549 7 0.00 0.04 6 0.00 0.02 6 0.00 0.02
2 984 11 52.74 0.14 14 14.63 0.06 14 0.00 0.06
tg100-2 1 530 7 0.00 0.07 6 0.00 0.02 6 0.00 0.02
2 1007 8 28.10 0.15 8 0.00 0.04 8 0.00 0.03
Sum 7 10.69 0.03 8 6.69 0.01 8 0.00 0.01

Table 6: Results from solving thetg instances heuristically, where each algorithm terminates
after having evaluated the root node only.
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3HEUR 2HEUR 2HEUR'

Problem k z* iter. gap time iter. gap time iter. gap time

Random10-40 1 110 6 31.82 0.00 5 20.00 0.01 5 17.27 0.00
2 194 6 0.00 0.00 9 60.82 0.00 9 0.00 0.00
3 258 11 80.62 0.01 11 69.38 0.00 11 6.59 0.00
4 293 14 66.21 0.02 15 36.52 0.01 15 7.17 0.01
5 309 16 67.96 0.02 19 34.95 0.00 19 841 0.01
6 318 21 68.89 0.03 25 33.02 0.00 25 597 0.01
7 321 17 84.42 0.02 21 2461 0.00 21 156 0.01
8 323 21 84.52 0.01 20 22.29 0.00 20 434 0.00
9 323 20 84.52 0.01 21 9.29 0.00 21 0.00 0.00

Random11-42 1 291 6 6.19 0.01 6 6.19 0.00 6 0.00 0.01
2 343 4 0.00 0.00 5 19.53 0.00 5 4.08 0.00
3 344 4 0.00 0.00 5 0.00 0.01 5 0.00 0.00
4 344 4 0.00 0.00 5 0.00 0.00 5 0.00 0.00

Random?20-80 1 347 6 25.36 0.01 6 16.14 0.01 6 0.00 0.01
2 553 7 35.80 0.02 7 1591 0.01 7 0.00 0.01
3 584 9 - 0.02 9 753 0.00 9 0.00 0.01
4 601 12 - 0.03 12 7.65 0.01 12 0.00 0.01
5 617 14 - 0.04 16 4.05 0.02 16 227 0.00
6 621 12 58.29 0.03 14 064 0.01 14 0.00 0.01
7 626 12 58.63 0.03 14 096 0.01 14 0.80 0.01
8 626 12 0.00 0.03 14 0.00 0.01 14 0.00 0.01

Random22-56 1 365 6 0.00 0.01 5 0.00 0.00 5 0.00 0.00
2 389 6 154 0.00 5 154 0.00 5 0.00 0.00
3 407 6 0.00 0.01 5 0.00 0.00 5 0.00 0.01
4 407 6 0.00 0.00 5 0.00 0.01 5 0.00 0.01

Sum 9 3431 0.01 11 15.64 <0.01 11 2.34 <0.01

Table 7. Results from solving the multi-commodity Randoninstances heuristically, where
each algorithm terminates after having evaluated the root rode only. ) sum is only over the
instances where all heuristics found a feasible solution.

6 Conclusion

Two exact solution methods for the MCKMFP problem have been introduced. They are both
based on Dantzig-Wolfe decomposition, where the master plidem is a 2-index formulation
merging paths for commodities into an overall solution. Thetwo methods dier in their
branching schemes: the rst method forbids subpaths (2BP), while the second forces or
forbids the use of certain paths (2BP'). The latter also addsbranching cuts to the master
problem.

The 2BP and 2BP' algorithms have been implemented and compard with a leading exact
algorithm from the literature denoted 3BP. Results showed hat the 2BP' algorithm performs
signi cantly better than the 2BP and the 3BP algorithms both with respect to the number of
solved instances and with respect to the time usage. The maineason is that using the 2BP'
algorithm gives smaller search trees, reduces the number ofriables in the master problem,
and eliminates some of the symmetry in the solution space.

Terminating the computations after having evaluated the root node transforms the 3BP
and the 2BP/2BP' algorithms into heuristics denoted 3HEUR and 2HEUR, respectively.
Because no branching occurs in this heuristic use, the 2BP a@hthe 2BP' algorithms become
identical. Test results for this approach showed that the 3HEUR does not perform well,
with the majority of the solution values having gaps of up to 94%. The 2HEUR algorithm,
however, showed very promising performance when including ow-moving approach, which
transforms some fractional solutions into feasible solutins. In most cases optimal solutions
were found and the average solution gaps never exceeded 4%0otB heuristics terminate in
less than a second for all tested instances.

All algorithms su er from weak formulations for bounding the number of used paths per
commodity. We believe that future work should concentrate m tightening these constraints.
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This could be done by somehow reformulating the problem or byadding cuts. We believe
that the focus should be on cuts violated in the edge-based nuel or the original master
problem. Future work could also concentrate on nding better branching strategies for the
2-index formulation in order to further reduce the size of the search tree.
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Partial Path Column Generation for
the Elementary Shortest Path Prob-
lem with Resource Constraints

Mads Jepsen
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Abstract

This paper introduces a decomposition of the Elementary ShortesPath Problem with
Resource Constraints (ESPPRC), where the path is composed ofrsaller sub paths. We
show computationals result by comparing di erent approaches forthe decomposition and
compare the best of these with existing algorithms. We show that tle algorithm for many
instances outperforms a bidirectional labeling algorithm.

Keywords: Elementary Shortest Path With Resource Constraints, Column Gereration,
Dantzig-Wolfe, Vehicle Routing Problem

1 Introduction

A formal de nition of the ESPPRC is as follows: Given a directed G(V;A) with node set
V = f1;::;jVjg, arc setA = V  V, a set of resourcesR each with a global upper bound
W' :r 2 R. Let ¢j be the cost for arc {;j) 2 A and W{j be the consumption of resource
r 2 R when trlgversing arc (;j) 2 A. A path pis feasible if the arcs traversed on the path
A(p) satises YTA(D) wj W' forall r 2 R. The objective is to nd a feasible path p
with minimum cost i ,4(p) Gj from a origin nodeo 2 V to a destination noded 2 V .
When negative cycles are allowed inG the ESPPRC can be shown to beNP -hard by
reduction from the longest path problem, Dror [5]. Beasley ad Christo des [2] gave a math-
ematical formulation of the problem where each node is condered a resource. Feillet et al.

Extended abstract, INOC 2009.
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[6] introduced a labeling algorithm. Righini and Salani [9] proposed a bi-directional labeling
and a Branch-and-Bound algorithm. Baldacci et al. [1] compued lower bounds on paths costs
and used these to speed up a bi-directional labeling algotitm.

The main application of the ESPPRC is as a pricing problem whea solving the Vehicle
Routing Problem through Branch-Cut-and-Price. Chabrier [3] and Jepsen et al. [8] have
shown this successfully for the Vehicle Routing Problem wih Time Windows (VRPTW) and
Baldacci et al. [1] recently for the Capacitated Vehicle Roding Problem (CVRP).

Labeling algorithms has so far been used very successfullgrfESPPRC problems especially
when time windows are present. However, for problem instanes where the time windows are
very large the state space becomes huge and labeling algdrins are no longer desirable.

Motivated by the bi-directional labeling algorithm by Righ ini and Salani [9] and the
fact that Branch-and-Cut has been used quite successfullya solve the ESPPRC when time
window like restrictions are not included (see Jepsen et al[7]), we propose a Danzig-Wolfe
decomposition approach based on a model where small sub pattcalled partial paths are
concatenated to form the solution. Since each of the sub path are elementary the SR-
inequalities for VRPTW introduced by Jepsen et al. [8] can beused to improve the lower
bound. Furthermore, valid inequalities for the ESPPRC can be used.

2 Bounded partial paths

The idea behind the following mathematical model and decompsition is that any feasible

wherep; is a partial path from node i to nodej. Each of thejK | partial paths can be seen as
a path through the original graph G. This leads to an alternative formulation of the ESPPRC
where G is replicated jK j times and arcs are added between the adjacent layers.

Let L" be the upper bound of resource 2 R on each partial path and let

r — r
W = max Ww;
max i )2 ij

be the maximal resource consumption of on a single arc. For a xed number of partial paths
jKj the following relation ensures that all solutions can be obained:

}
r r
— Wy 1

K]

Let *(S)= f(i;j) 2 A :i 2 Sg denote the set of outgoing arcs of node sef and let
(S)= f(i;j) 2 A:j 2 Sg denote the set of ingoing arcs ofS. For notational purposes let
(i) be short for (fig) for i 2 V. The binary variable x; indicates if arc (i;j ) 2 A is used
in the k'th layer. The binary variable sj indicates if a partial path starts in node i 2 V in
layer k 2 K and the binary variable tjy indicates if a partial path ends in nodei 2 V in layer
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k. The mathematical model for ESPPRC can now be formulated as:

XX
min Gij Xijk 1)
k2KX(i;j )2A
(0;J§ *(0)
Xigjkj = 1 (3)
id)2 _(d
g( ) X( )
Xjk 1 v2Vnfo;dg 4)
k2K (i )2A
NS ¢
Wirj Xijk w' r2zRr (5)
k2K (i )2A
X X X X
Xijk Xijk S V;s2S (6)
l;(ZK (i )2 *(S) k2K (ij)2 * (s)
sik =1 k2K (7)
i2v
ik 1 rgpd jK J) = Sik X i2V:k2K (8)
Sik + Xjik = tik + Xijk i2V:k2 K 9
X ()2 () X ()2 (i)
Xijk Xijk k2K;S V;s2S (10)
(iiﬂ()2 *(S) ()2 *(s)
Xjj ~ LPound k2K (11)
(i )2A
Xijk 210;1g (i;j)2 Ak 2K (12)
ti: sk 2 0; 1g i2V:k2K (13)

The objective (1) is to minimize the total cost of the path. Constraints (2), (3), and (4)

ensure that no node is visited more than once and that the pathstarts at o and ends at
d. Constraints (5) are the resource bounds and constraints (bare the generalized subtour
constraints (GSEC) which prevent cycles in a solution. Congraints (7) to (11) ensure that the

partial paths are elementary, connected, and do not violatethe reduced resourcebound2 R

is the resource chosen as the bounding resource.

In the following we will make a Danzig-Wolfe reformulation of the mathematical model,
where constraints (9) to (11) form K identical sub problems. Each subproblem consists of
nding a shortest path p between two arbitrary nodes in the graph. Let I’J’ =1i path p
uses arc (;j ), let ip indicate if p starts in nodeii, let ,p indicate i p ends in nodei, let P
indicate if partial path p is used, and letc, be the cost of using pathp. The master problem

then becomes:
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X
min Co p (14)
K" X
s.t. o p=1 (15)
B2P (0i}2 * ()
W op=1 (16)
2P (i:d)2 d
g2P (id)2  (d)
ip 1 v2Vnfo,dg (17)
B2P (ij )2A
X ) X X )
B2P ()] )2 * () P2P (i )2 *(s)
wi §op W' r2R (19)
g(ZP (i )2A
p = IK]j (20)
e X
P o= D i2V (21)
p2P p2P
sk 210;1g i2V;k2K (22)
p2f0;1g p2P (23)

With the exception of constraint (20) the constraints follow directly from a standard Dantzig-
Wolfe reformulation. Constraint (20) substitutes the jK| constraints (7) and states that we
must choosejK j columns corresponding to one from each layer. The master madl may be
too large to solve, therefore delayed column generation issgd.

Let be the duals of constraints (15), (16), and (17), let be the duals of constrainta
(18), let  be the duals of constraints (19), and let be the duals of (21). Using standard
Linear Programming theory the arc cost is set to:

X X X
f st s

s2S;S Vi(iij)2 *(S) s2S;S Vi(iij)2 *(s)

Let xjj be a binary variable that indicates if arc (i;j ) 2 A is used, the binary variable s;
indicates if the path starts in node i 2 V and the binary variable t; indicates if the path ends
in nodei 2 V. The mathematical model for the pricing problem then becoms:
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_ X X X
min Gj xjj + i Si it (24)
(5)2A i2v i2v
si=1 (25)
'%V
ti=1 (26)
i2Vv X X
Si + Xji = tj + Xij i2V (27)
X(i:i )2 (1) X (B)2 * ()
Xij Xij S V;s2S (28)
(i:i()z (S (5)2 *(s)
Xij Lbound (29)
(i )2A
xj 2f0;1g (i;j)2 A (30)
si;tj 210;1g i2V (31)

A column has negative reduced cost if it is less than the dual ariable of constraint (20).

To solve the pricing problem we reformulate it as an ESPPRC. This is done by substituting
the variables s; and t; for i 2 V with arcs from a super source nodes and arcs to a super
target t node. The new arcs are de ned by arc selA = f(s;v) : v2 Vg|[f (v;t): v 2 Vg.
The pricing problem then becomes solving an ESPPRC with a sigle resource in the graph
G(V [ s[ t;A[ A) where the cost of the new arcs are given by

8
< 6§ 8(i;j)2 A
CGj = . j (sij) 2 A
: i ;1) 2 A

The lower bound can be improved using valid inequalities fothe ESPPRC polytope and valid
inequalities for the master model such as the SR-inequaliis by Jepsen et al. [8].

3 Implementation

The bidirectional labeling algorithm of Righini and Salani [9] have been implemented for
solving the pricing problem. The Branch-Cut-And-Price algorithm is implemented in the

BCP framwork from COIN [4]. CLP is used as LP solver and the GSE_s are separate by
solving a minimum cut problem, see Wolsey [10] for details. Tie SR-inequalities are separated
using the algorithm proposed by Jepsen et al. [8], either therst or the last node on a partial

path is not considered part of the SR-cut. Branching is done o a single arc or all arcs out of
a node and is added as a cut in the master model. The constraistin the original space are:

X X L
Xijk =0 _ Xijk =1 (I;j ) 2 A (32)
X X k2K lng X
Xijk = 0 _ Xijk = 1 i2V (33)
k2K (ijj )2 * (i) k2K ()2 * (i)
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