Automation and Methodology Development for Environmental and Biological Determination of Pu, Np, U and Tc

Qiao, Jixin

Publication date: 2013

Automation and Methodology Development for Environmental and Biological Determination of Pu, Np, U and Tc

Jixin Qiao

Radioecology and Tracer Studies
DTU Nutech

06-09-2013
Properties of Pu, Np, U and Tc

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Isotope</th>
<th>Main origination</th>
<th>Half-life</th>
<th>Main production</th>
<th>Principal decay mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pu</td>
<td>238Pu</td>
<td>Anthropogenic</td>
<td>87.7 y</td>
<td>NA and β decay of 235U and 238U</td>
<td>α</td>
</tr>
<tr>
<td></td>
<td>239Pu</td>
<td>Anthropogenic</td>
<td>2.4×10^4 y</td>
<td>Bombardment of 238U</td>
<td>α</td>
</tr>
<tr>
<td></td>
<td>240Pu</td>
<td>Anthropogenic</td>
<td>6.6×10^3 y</td>
<td>239Pu (n, γ) 240Pu</td>
<td>α</td>
</tr>
<tr>
<td></td>
<td>241Pu</td>
<td>Anthropogenic</td>
<td>14.4 y</td>
<td>240Pu (n, γ) 241Pu</td>
<td>β^-</td>
</tr>
<tr>
<td>Np</td>
<td>237Np</td>
<td>Anthropogenic</td>
<td>2.4×10^6 y</td>
<td>NA and β decay of 235U and 238U</td>
<td>α</td>
</tr>
<tr>
<td>U</td>
<td>234U</td>
<td>Natural</td>
<td>2.4×10^6 y</td>
<td></td>
<td>α</td>
</tr>
<tr>
<td></td>
<td>235U</td>
<td>Natural</td>
<td>2.5×10^5 y</td>
<td></td>
<td>α</td>
</tr>
<tr>
<td></td>
<td>236U</td>
<td>Anthropogenic</td>
<td>2.3×10^7 y</td>
<td>235U neutron activation (NA)</td>
<td>α</td>
</tr>
<tr>
<td></td>
<td>238U</td>
<td>Natural</td>
<td>4.5×10^9 y</td>
<td></td>
<td>α</td>
</tr>
<tr>
<td>Tc</td>
<td>99Tc</td>
<td>Anthropogenic</td>
<td>2.1×10^5 y</td>
<td>235U, 239Pu fission product</td>
<td>β^-</td>
</tr>
</tbody>
</table>
Sources of Pu, Np, U and Tc in the environment

- Nuclear weapons testing
- Nuclear power plants
- Nuclear reprocessing plants
- Nuclear accidents
- Nuclear medicine

Pu isotopes, 237Np, 99Tc, 236U
Sources of Pu and Np in the environment

<table>
<thead>
<tr>
<th>Source term</th>
<th>238Pu, Bq</th>
<th>239Pu, Bq</th>
<th>240Pu, Bq</th>
<th>241Pu, Bq</th>
<th>237Np, Bq</th>
<th>240Pu/239Pu atomic ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear weapons testing</td>
<td>3.3×10^{14}</td>
<td>7.4×10^{15}</td>
<td>5.2×10^{15}</td>
<td>1.7×10^{17}</td>
<td>3.9×10^{13}</td>
<td>~ 0.19</td>
</tr>
<tr>
<td>Burn up of SNAP-9A</td>
<td>6.3×10^{14}</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thule, Greenland, 1968</td>
<td>-</td>
<td>1×10^{13}</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Palomares, Spain</td>
<td>-</td>
<td>5.5×10^{10}</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chernobyl, 1986</td>
<td>3.0×10^{13}</td>
<td>2.6×10^{13}</td>
<td>3.7×10^{13}</td>
<td>5.5×10^{15}</td>
<td>-</td>
<td>~ 0.39</td>
</tr>
<tr>
<td>Sellafield reprocessing plant</td>
<td>1.2×10^{14}</td>
<td>6.1×10^{14}</td>
<td>2.2×10^{16}</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>La Hague reprocessing plant</td>
<td>2.7×10^{12}</td>
<td>3.4×10^{12}</td>
<td>1.2×10^{14}</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Sources of Pu, Np, U and Tc in the environment

Sources of 99Tc and 236U in the environment

<table>
<thead>
<tr>
<th>Source term</th>
<th>99Tc released, Bq</th>
<th>236U released, Bq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sellafield nuclear reprocessing plant</td>
<td>1.72×10^{15}</td>
<td></td>
</tr>
<tr>
<td>La Hague nuclear reprocessing plant</td>
<td>1.54×10^{14}</td>
<td></td>
</tr>
<tr>
<td>Global weapons fallout (1940s-1970s)</td>
<td>1.40×10^{14}</td>
<td></td>
</tr>
<tr>
<td>Nuclear accident in Chernobyl</td>
<td>7.5×10^{11}</td>
<td></td>
</tr>
<tr>
<td>Estimated nuclear accident in Fukushima</td>
<td>$>2.5 \times 10^{11}$</td>
<td></td>
</tr>
<tr>
<td>Estimated medical application (99Mo-99mTc generator)</td>
<td>$<2 \times 10^{10}$</td>
<td></td>
</tr>
<tr>
<td>Estimated nuclear power plants</td>
<td>$<1 \times 10^{10}$</td>
<td></td>
</tr>
<tr>
<td>Natural</td>
<td>8.4×10^{10}</td>
<td></td>
</tr>
<tr>
<td>Anthropogenic</td>
<td>2.4×10^{15}</td>
<td></td>
</tr>
</tbody>
</table>
Significances of Pu, Np, U and Tc determination

1) Environmental risk assessment and monitoring
2) Nuclear emergency preparedness
3) Routine occupational health monitoring
4) Nuclear Forensics
5) Nuclear decommissioning and waste disposal
6) Radioecology and tracer studies
Distribution characters of Pu, Np, U and Tc in environmental and biological samples

1) Levels are very low and vary with location or sample type
2) Often coexist with matrix elements (Ca, Mg, Al, V, Ru, Mo…) and other interfering radionuclides (Th, Am, Cm…)
Traditional analytical methods for Pu and Np

Pre-concentration:
- 8-16 batchwise
- Fairly straightforward

Chemical purification:
- Lengthy
- High labor intensity
- High consumption of resin
- Organic waste

Detection:
- Long counting time
- High detection limit

Pre-concentration:
- Dry, ashing
- Acid leaching

Chemical purification:
- Valence adjustment
- Anion exchange chromatography + solvent extraction

Detection:
- Electro-deposition
- Alpha spectrometry
Our objectives

1. Rapid determination of Pu, Np, U and Tc
2. Automation of the analytical procedure

Specific focuses:

i. Chemical purification
 – Protocol simplification and optimization
 – Automation

ii. Detection
 – Mass spectrometry (ICP-MS, AMS)
Automation techniques

- Vacuum box
- HPLC
- Flow injection/Sequential injection

Final strategies

Flow/Sequential injection

Carriër SP HC R1 R2 SV E W

Extraction or anion exchange chromatography

Eluates

ICP-MS/AMS
Methods Development-Pu and Np

Environmental Samples:
- 0.5-200 g of soil, sediment or seaweed
- 50-200 L of seawater

Parameters optimized:
- Resin type (TEVA, AG1, AG MP-1M)
- Column size (1-20 mL)
- Washing solution (1-8 M HNO₃)
- Elution solution (NH₂OHCl-HCl, 0.1-1.0 M HCl)
- Flow rate (1-5 mL/min)

Performance evaluation:
- Chemical yields; $^{237}\text{Np}/^{242}\text{Pu}$ chemical yield;
- Decontamination of U; Method reability; Sample throughput
Auto-uint no.1---Sequential injection

Automatically handle 9 samples! Work overnight!

Selected results for soil analysis

<table>
<thead>
<tr>
<th>Method</th>
<th>Analyte</th>
<th>Resin</th>
<th>Chemical yield of 242Pu, Y_{Pu} (%)</th>
<th>Chemical yield of 237Np, Y_{Np} (%)</th>
<th>Ration of Y_{Np}/Y_{Pu}</th>
<th>239Pu measured (Bq/kg) *</th>
<th>240Pu measured (Bg/kg)**</th>
<th>Decontamination factor ***</th>
<th>238U</th>
<th>232Th</th>
<th>208Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extraction chromatography 1, 2</td>
<td>Pu</td>
<td>TEVA (2mL, 0.7 × 5 cm)</td>
<td>97.7 ± 3.4</td>
<td>-</td>
<td>0.14 ± 0.01</td>
<td>0.09 ± 0.01</td>
<td>7.5 × 10^4</td>
<td>2.5 × 10^4</td>
<td>1.3 × 10^5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Np & Pu</td>
<td>TEVA (2mL, 0.7 × 5 cm)</td>
<td>88.1 ± 3.4</td>
<td>85.7 ± 3.9</td>
<td>0.97</td>
<td>0.14 ± 0.01</td>
<td>1.0 × 10^4</td>
<td>7.0 × 10^3</td>
<td>1.0 × 10^4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pu</td>
<td>AG 1-X4 (50-100mesh), (2mL, 0.5 × 10cm)</td>
<td>103.0 ± 5.2</td>
<td>84.8 ± 5.3</td>
<td>0.75</td>
<td>0.14 ± 0.02</td>
<td>3.9 × 10^3</td>
<td>2.4 × 10^4</td>
<td>2.7 × 10^4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Np & Pu</td>
<td>AG 1-X4 (100-200mesh), (2mL, 0.5 × 10cm)</td>
<td>91.6 ± 4.6</td>
<td>75.8 ± 4.6</td>
<td>0.77</td>
<td>0.14 ± 0.01</td>
<td>6.9 × 10^3</td>
<td>1.7 × 10^4</td>
<td>1.0 × 10^3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Np & Pu</td>
<td>AG MP-1M (100-200mesh), (2mL, 0.5 × 10cm)</td>
<td>86.5 ± 4.3</td>
<td>85.3 ± 4.3</td>
<td>0.99</td>
<td>0.14 ± 0.02</td>
<td>3.9 × 10^3</td>
<td>2.5 × 10^5</td>
<td>1.0 × 10^3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10 g of soil was used in each analysis. *The reference value is 0.140 ± 0.008 Bg/kg. **The reference value is 0.098 ± 0.006 Bg/kg. *** The relative standard deviations were in all instances better than 10%.

Optimized chemical purification for Pu and Pu simultaneous determination

Sample solution, with Pu (IV) and Np(IV) in 8M HNO₃ medium

Sequence 1: Wash with 100 mL of 8M HNO₃, 1.2 mL/min
Sequence 2: Wash with 100 mL of 9M HCl, 1.2 mL/min
Sequence 3: Elute with 40 mL of 0.5M HCl, 1.2 mL/min

Matrix (Ca, Mg, Fe, Pb...) Am, U

Load, 1.2 mL/min

2 mL AGM P-1M

Th

Pu and Np

ICP-MS

Comparison: >2 days using traditional method

Loading: 0.2 hr

Rinsing: 2.8 hr

Pu elution: 0.5 hr

Measurement: 0.5 hr (including sample preparation)

Total: 3.5 + 0.5 = 4 hr

Performance comparison

<table>
<thead>
<tr>
<th>Item</th>
<th>Extraction chromatography</th>
<th>Anion exchange chromatography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price of resin</td>
<td>☀ High (e.g. 5600 €/500 g)</td>
<td>☁ Relatively Low (e.g. 330-1000 €/500 g)</td>
</tr>
<tr>
<td>Chemical yields</td>
<td>☀ 80-100% (Pu), ☀ 40-80% (Np&Pu)</td>
<td>☁ 80-100% (Pu), 70-90% (Np&Pu, AG MP-1M resin)</td>
</tr>
<tr>
<td>Separation time</td>
<td>☀ 1.5 hr/sample</td>
<td>☁ 2.5-3.5 hr/sample</td>
</tr>
<tr>
<td>Decontamination</td>
<td>☀ High (1-10 × 10^4 for ²³⁸U)</td>
<td>☁ Medium (1-10 × 10³ for ²³⁸U)</td>
</tr>
<tr>
<td>Accuracy</td>
<td>☀ High (RSD ≤ 5%)</td>
<td>☁ Medium (RSD ≤ 10%)</td>
</tr>
<tr>
<td>Consumption of chemicals</td>
<td>☀ Low (e.g. 10 mL of conc. HNO₃/sample)</td>
<td>☁ High (e.g. 80 mL of conc. HNO₃/sample)</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Pu determination using TEVA resin</td>
<td>Pu &Np simultaneous determination using AG MP-1M resin</td>
</tr>
</tbody>
</table>
Methods Development-Pu and Np

Biological samples:
- 1-5 L urine

Parameters optimized:
- Co-precipitation techniques (Ca$_3$(PO$_4$)$_3$, Fe(OH)$_3$, MnO$_2$, etc.)
- Decomposition of organic matter (acid digestion/dry ashing)
- Washing solution (0.2-1 M HNO$_3$)
- Elution solution (0.025-0.5 M HCl)

Performance evaluation:
Chemical yields; 237Np/242Pu chemical yield ratio;
Method reliability; Sample throughput
• LOV: Lab-on-valve; HC: Holding Coil; PP: Peristaltic Pump; PV: Pinch Valve; SP: Syringe Pump

• Column size: 5 mm i. d. x 42 mm long (ca. 0.82 mL)

Analytical procedure for urine analysis

1 L of human urine

- Ca$_3$(PO$_4$)$_2$ co-precipitation
- Fe(OH)$_3$ co-precipitation
- MnO$_2$ co-precipitation
- Evaporation

Sample pre-concentration

Organic matter decomposition

- Dry ashing
- Acid digestion

Column separation

TEVA extraction chromatography

Measurement

ICP-MS
Selected results for urine analysis

<table>
<thead>
<tr>
<th>Group no.</th>
<th>Pre-concentration method</th>
<th>Organic matter decomposition</th>
<th>Valence adjustment reagents</th>
<th>Operation time</th>
<th>Chemical yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ca$_3$(PO$_4$)$_2$ co-precipitation</td>
<td>Dry ash</td>
<td>Ascorbic acid / conc.HNO$_3$</td>
<td>13 hr</td>
<td>242Pu, % 84.7 ± 5.7, 237Np, % 80.9 ± 10.7, 237Np/242Pu 0.95</td>
</tr>
<tr>
<td></td>
<td>Acid digestion</td>
<td></td>
<td></td>
<td>8 hr</td>
<td>46.8 ± 4.1, 8.3 ± 5.4, 0.18</td>
</tr>
<tr>
<td>2</td>
<td>Fe(OH)$_2$/Fe(OH)$_3$ co-precipitation</td>
<td>Dry ash</td>
<td>Fe/K$_2$S$_2$O$_5$ / conc.HNO$_3$</td>
<td>6 d</td>
<td>84.3 ± 15.6, 73.3 ± 33.0, 0.87</td>
</tr>
<tr>
<td></td>
<td>Acid digestion</td>
<td></td>
<td></td>
<td>5.5 d</td>
<td>80.3 ± 9.9, 77.9 ± 10.9, 0.97</td>
</tr>
<tr>
<td></td>
<td>Acid digestion</td>
<td></td>
<td></td>
<td>6 hr</td>
<td>51.3 ± 0.2, 57.5 ± 8.8, 1.12</td>
</tr>
<tr>
<td>3</td>
<td>MnO$_2$ co-precipitation</td>
<td>Acid digestion</td>
<td>Fe/K$_2$S$_2$O$_5$ / conc.HNO$_3$</td>
<td>6 hr</td>
<td>242Pu, % 88.4 ± 8.0, 237Np, % 91.4 ± 10.0, 237Np/242Pu 1.03</td>
</tr>
<tr>
<td>4</td>
<td>Ca(OH)$_2$/Fe(OH)$_2$/Fe(OH)$_3$ co-precipitation</td>
<td>Acid digestion</td>
<td>Ascorbic acid / conc.HNO$_3$</td>
<td>6 hr</td>
<td>87.3 ± 6.6, 51.2 ± 1.6, 0.59</td>
</tr>
<tr>
<td>5</td>
<td>Evaporation</td>
<td>Dry ash + acid leaching</td>
<td>Fe/K$_2$S$_2$O$_5$ / conc.HNO$_3$</td>
<td>1.5 d</td>
<td>242Pu, % 75.5 ± 2.6, 237Np, % 81.1 ± 3.6, 237Np/242Pu 1.07</td>
</tr>
</tbody>
</table>

Environmental Sample:
- 10 L of seawater

Parameters optimized:
- Resin type (TEVA, UTEVA)
- Washing solution (1-4 M HNO₃)
- Decomposition of organic matter

Performance evaluation:
Chemical yields; $^{237}\text{Np}/^{242}\text{Pu}$ chemical yield ratio;
Method reability; Sample throughput
Auto-unit no.3---Dual-column sequential injection

Flexible control the connection of two columns!

Add conc. HCl to pH=2, add tracer ^{242}Pu; Add 0.5 g Fe and 5 g $\text{K}_2\text{S}_2\text{O}_5$; N_2 bubbling for 20 min.; Add 10% $\text{NH}_3\cdot\text{H}_2\text{O}$ to pH 8-9; Add 40 g NaCl, wait 0.5-1 h, discard the supernatant.

Fe(II) hydroxide co-precipitate

Dissolve with 40 mL aqua regia; Digest under 200 °C for 2 h; Filtrate with GF/A filter paper; Add conc. $\text{NH}_3\cdot\text{H}_2\text{O}$ to pH 8-9; Centrifuge and discard the supernatant.

Fe(III) hydroxide co-precipitate

Dissolve with diluted HCl; Add 500 mg $\text{K}_2\text{S}_2\text{O}_5$ stir for 20 min.; Add conc. $\text{NH}_3\cdot\text{H}_2\text{O}$ to pH 8-9; Centrifuge and discard the supernatant.

Fe(II) hydroxide co-precipitate

Dissolve with 1-2 mL of conc. HCl; Add conc. HNO_3 to the final concentration of 3 mol/L HNO_3.

1. Sample loading
2. Rinse with 20 mL 3 mol/L HNO_3
3. Rinse with 20 mL 1 mol/L HNO_3
4. Rinse with 20 mL 1 mol/L HNO_3
5. Rinse with 20 mL 6 mol/L HCl
6. Elute Pu/Np with 20 mL 0.1 mol/L $\text{NH}_2\text{OH-HCl}$; 2 mol/L HCl

7. Elute U with 20 mL 0.025 mol/L HCl

TEVA + UTEVA + 1+2+3 Waste

7 Eluate

4 Eluate Pu/Np
Selected results for Pu/Np/U seawater analysis

Typical analytical performance

<table>
<thead>
<tr>
<th>Analytical time, h</th>
<th>Chemical yield, %</th>
<th>DU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>242Pu</td>
<td>237Np</td>
</tr>
<tr>
<td>8</td>
<td>73.6 ± 9.8</td>
<td>73.9 ± 5.6</td>
</tr>
</tbody>
</table>

Method application with the use of AMS measurement

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>236U/238U, $\times 10^{-8}$</th>
<th>238U, µg/L</th>
<th>236U, atom/L</th>
<th>Measured value, mBq/L</th>
<th>Expected value, mBq/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Atlantic-1</td>
<td>8.88 ± 1.33</td>
<td>2.76 ± 0.41</td>
<td>(6.21 ± 0.93) × 10^8</td>
<td><0.001</td>
<td><0.005</td>
</tr>
<tr>
<td>North Atlantic-2</td>
<td>2.03 ± 0.30</td>
<td>2.17 ± 0.33</td>
<td>(1.11 ± 0.17) × 10^8</td>
<td>0.18</td>
<td>1.02</td>
</tr>
<tr>
<td>Roskilde Fjord-1</td>
<td>1.40 ± 0.21</td>
<td>1.65 ± 0.28</td>
<td>(6.88 ± 1.03) × 10^7</td>
<td><0.001</td>
<td>0.03</td>
</tr>
<tr>
<td>Roskilde Fjord-2</td>
<td>1.65 ± 0.25</td>
<td>1.65 ± 0.28</td>
<td>(5.85 ± 0.88) × 10^7</td>
<td>0.16</td>
<td>1.18</td>
</tr>
</tbody>
</table>
Methods Development-Pu, Np, U and Tc

Environmental Sample:
- 200 L of seawater

Parameters optimized:
- Resin type (TEVA, UTEVA, AG MP-1M)
- Selection of Redox reagents
- Decontamination of interferences

Performance evaluation:
Chemical yields; $^{237}\text{Np}/^{242}\text{Pu}$ chemical yield ratio;
Method reliability; Sample throughput
Auto-uint no.4---Flow injection

Simultaneously handle 4 samples!
Summary

<table>
<thead>
<tr>
<th>Objectives</th>
<th>Achievement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Rapid determination of Pu, Np, U and Tc</td>
<td>• Environmental solids: 2-5 h/sample</td>
</tr>
<tr>
<td></td>
<td>• Large volume seawater: 1-2 days/sample</td>
</tr>
<tr>
<td></td>
<td>• Biological samples: 6 h/sample</td>
</tr>
<tr>
<td>2. Automation of the analytical procedure</td>
<td>• Sample pre-concentration: batchwise</td>
</tr>
<tr>
<td></td>
<td>• Chemical purification: automated</td>
</tr>
<tr>
<td></td>
<td>1. Auto-unit no.1: sequentially 9 samples</td>
</tr>
<tr>
<td></td>
<td>2. Auto-unit no.2: automated column packing</td>
</tr>
<tr>
<td></td>
<td>3. Auto-unit no.3: automated dual connection</td>
</tr>
<tr>
<td></td>
<td>4. Auto-unit no.4: simultaneously handle 4 samples</td>
</tr>
<tr>
<td></td>
<td>• Measurement: automated</td>
</tr>
</tbody>
</table>
Conclusions and perspectives

Innovation of the previous work:
• Automatic
• Rapid and simple
• No need of Np isotopic tracer
• Low consumption of resins
• High sample throughput
• Low labor intensity

On-going projects:
• Tracer application studies of Pu and ^{236}U
• Multi-radionuclide determination (Pu/Np,U, Th, Am) in environmental samples
Thank you!

Jixin Qiao

jiqi@dtu.dk