Environmental radioactivity during 50 years

Nielsen, Sven Poul

Publication date:
2013

Citation (APA):
Environmental radioactivity during 50 years

Sven P. Nielsen
Investigations of man-made radioactivity in the Danish environment from 1957
Atmospheric nuclear weapons tests

Global pollution from atmospheric nuclear weapons tests: fission products, activation products, fissile material and tritium
Radioecological sensitivity

• Studies covering
 – Air, water, soil
 – Grain, bread
 – Grass
 – Vegetables and fruit
 – Sea plants
 – Milk, meat, fish
 – Total diet
 – Human body, bone

• Radioecological sensitivity is the time integral of quantities of the sample type from a quantity of the radionuclide deposited

• Example for Cs-137 in Danish cow’s milk
 – $2.0 \text{ Bq/L d per Bq/m}^2$
Strontium-90 and caesium-137

- Fission products of particular importance due to long half lives and significant uptake in food chains
Aerosols

- Monitoring of radioactivity in air is based on aerosol collectors located in Haderslev, Allinge and Risø.
- Air is sampled at flow rates of 500-2000 m3/h through organic filters retaining particles.
- Filters are changed weekly and analysed for short-lived radionuclides first and later for longer lived radionuclides, particularly 7Be, 210Pb, 90Sr, 137Cs.
Radioactivity in Air at Risø

Atmospheric nuclear weapons tests 1945-1980

Chernobyl, 1986

Fukushima, 2011

CONCENTRATION (µBq/m³)

YEAR

Sr-90

Cs-137

Chernobyl, 1986

Fukushima, 2011

Atmospheric nuclear weapons tests 1945-1980
Precipitation

Precipitation is collected at Risø and 10 other locations in Denmark and analysed for content of Sr-90 and Cs-137
Milk, potatoes, vegetables and total diet

Sampling zones (I-VIII) for milk, potatoes, vegetables and total diet in Denmark.

Cereals: rye, oats, wheat, barley

Grain sampling locations (State experimental farms in Denmark)
Stream, lake and ground water

_sampling_locations_for_ground_water_in_denmark.png

Sampling locations for ground water in Denmark (n) and lakes (ns).
Sea water and plants

Cesium-137 in seaweed (Fucus vesiculosus and Fucus serratus) from February 1983 to June 2009 collected at Klint, Zealand (55°58'N, 11°33'E).

DTU Nutech, Technical University of Denmark
Caesium-137 in fish/cod

[Graph showing concentrations of caesium-137 in fish from different areas over the years from 1960 to 2010, with data points for Færøerne, Grønland, Nordsøen, Kattegat, and Østersøen.]
Humans

- Employees at Risø monitored for radiocaesium and tritium
- Human bone samples received from hospitals (with difficulty)
External exposure

External exposure rates in 4 locations in Denmark, as measured with a Na(Tl) detector.

Grain sampling locations (Some experimental farms in Denmark)
Radioactive contamination in Denmark

- Poster in building 204 shows concentrations of strontium-90 and caesium-137 in air, precipitation, milk and grass at Risø and in Denmark since the 1950’s
- Including input from the Fukushima accident in Japan in 2011
Why monitor environmental radioactivity?

- EURATOM Treaty: Health and safety matters - Obligation of EC Member States to monitor levels of radioactivity in air, soil and water and to ensure compliance with basic standards
- Helsinki Convention: Contracting Parties undertake to prevent and eliminate pollution of the marine environment of the Baltic Sea Area caused by harmful substances from all sources
- Study man-made and naturally occurring radionuclides in the environment to document baseline levels and increase knowledge on behaviour and processes
- Expertise available for emergency purposes in case of accidents/incidents involving release of radioactivity to environment
- Improve radiological assessment models in decision support systems used by authorities in case of accidents
- Useful platform for research and development of existing and new analytical methods and application of these in other areas