
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Jan 23, 2019

Pair Correlation Function Integrals
Computation and Use

Wedberg, Nils Hejle Rasmus Ingemar; O'Connell, John P.; Peters, Günther H.J.; Abildskov, Jens

Published in:
Journal of Chemical Physics

Link to article, DOI:
10.1063/1.3626799

Publication date:
2011

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Wedberg, N. H. R. I., O'Connell, J. P., Peters, G. H. J., & Abildskov, J. (2011). Pair Correlation Function
Integrals: Computation and Use. Journal of Chemical Physics, 135, 084113. DOI: 10.1063/1.3626799

https://doi.org/10.1063/1.3626799
http://orbit.dtu.dk/en/publications/pair-correlation-function-integrals(c06152f1-2c9f-4ed0-b6aa-1d5350316836).html


THE JOURNAL OF CHEMICAL PHYSICS 135, 084113 (2011)

Pair correlation function integrals: Computation and use
Rasmus Wedberg,1 John P. O’Connell,2 Günther H. Peters,3 and Jens Abildskov1,a)

1CAPEC – Department of Chemical and Biochemical Engineering, Søltofts Plads, Building 229,
Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
2Department of Chemical Engineering, University of Virginia,102 Engineer’s Way, PO Box 400741,
Charlottesville, Virginia 22904-4741, USA
3MEMPHYS – Center for Biomembrane Physics, Department of Chemistry, Kemitorvet, Building 207,
Technical University of Denmark, 2800 Kgs. Lyngby, Denmark

(Received 20 April 2011; accepted 29 July 2011; published online 24 August 2011)

We describe a method for extending radial distribution functions obtained from molecular simu-
lations of pure and mixed molecular fluids to arbitrary distances. The method allows total cor-
relation function integrals to be reliably calculated from simulations of relatively small systems.
The long-distance behavior of radial distribution functions is determined by requiring that the cor-
responding direct correlation functions follow certain approximations at long distances. We have
briefly described the method and tested its performance in previous communications [R. Wedberg,
J. P. O’Connell, G. H. Peters, and J. Abildskov, Mol. Simul. 36, 1243 (2010); Fluid Phase Equilib.
302, 32 (2011)], but describe here its theoretical basis more thoroughly and derive long-distance ap-
proximations for the direct correlation functions. We describe the numerical implementation of the
method in detail, and report numerical tests complementing previous results. Pure molecular fluids
are here studied in the isothermal-isobaric ensemble with isothermal compressibilities evaluated from
the total correlation function integrals and compared with values derived from volume fluctuations.
For systems where the radial distribution function has structure beyond the sampling limit imposed
by the system size, the integration is more reliable, and usually more accurate, than simple integral
truncation. © 2011 American Institute of Physics. [doi:10.1063/1.3626799]

I. INTRODUCTION

Integrals of the total correlation function provide a di-
rect link between the microscopic structure of a fluid mix-
ture and macroscopic thermodynamic derivative properties
by a set of algebraic relations termed fluctuation solution
theory,1–3 or Kirkwood-Buff theory. Isothermal compressibil-
ities, partial molar volumes, and composition derivatives of
activity coefficients are expressed in terms of these integrals.4

The integrals have been extensively used in the development
of accurate force fields for fluid mixtures.5–12 Christensen
et al.4, 13, 14 utilized the integrals in a methodology for pre-
dicting the excess Gibbs energy of liquid mixtures. They sim-
ulated the mixture at a few compositions using molecular
dynamics and then regressed parameters of the modified
Margules GE model.15 This is an alternative approach
to free energy calculations such as Widom insertion,16

thermodynamic integration,17–19 and Gibbs-ensemble Monte
Carlo.20–22 The method furthermore suppresses statistical er-
rors in the functions since the derivatives are used to obtain
the parameters. For substances exhibiting nearly ideal behav-
ior in the vapor phase, this approach has proven to be a viable
alternative for predicting vapor-liquid equilibria.13, 14

In addition, correlation function integrals themselves are
interesting properties as several established corresponding
state theories for thermodynamic properties are based on
modeling direct correlation function integrals.23–29

a)Author to whom correspondence should be addressed. Electronic mail:
ja@kt.dtu.dk.

Numerical integration of the radial distribution functions
from molecular simulation is often inaccurate because the in-
tegrals rarely converge adequately for the system sizes com-
monly used. Partly this is due to the functions retaining subtle
structure over relatively long distances that contributes to the
integral. A technique due to Theodorou and Suter30 allows
calculation of the pair correlation functions for distances up
to

√
3/2 times the box dimension. This might however still

be insufficient for convergence, and the pair correlation func-
tions obtained in this way often exhibit substantial noise as
the upper limit is approached.30 The role of finite-size effects
on the accuracy of the functions as the sampling limit is ap-
proached has also been discussed.31 Several approaches have
been proposed in order to correct the sampled distribution
functions and extend them to long range, so that the integrals
can be evaluated accurately. Weerasinghe and Smith5 evalu-
ated the integrals numerically using an appropriately selected
truncation radius. Perera and Sokolić,32 and Hess and van der
Vegt33 corrected the sampled distribution functions by rescal-
ing them such that they converged to unity within the sam-
pling limit. Matteoli and Mansoori,34 Christensen et al.,4 and
Wedberg, Peters, and Abildskov35 fitted the functions to para-
metric expressions selected by empirical means, which then
were used for extrapolation to long range. Another approach
proposed by Nichols, Moore, and Wheeler36 extrapolates the
structure factors to zero with polynomials of varying de-
grees, in order to obtain the correlation function integrals. Ap-
proaches for correcting correlation functions specifically for
the use of truncated potentials have also been discussed.37, 38
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A different approach to utilize density fluctuation expressions
and correct for finite-size effects was recently described by
Schnell et al.,39 who calculated fluctuations in a sub-region
of the simulation box. The size of this sub-region was extrap-
olated to infinity to obtain properties in the thermodynamic
limit.

Our previous studies40, 41 extend molecular radial dis-
tribution functions by enforcing the corresponding direct
correlation functions to follow a certain long-range approx-
imation. This procedure is based on the work of Verlet42

who applied the methodology to analyze simulations of the
Lennard-Jones fluid. We applied the modified method to
simulations of pure Lennard-Jones and Stockmayer fluids,40

Lennard-Jones/Stockmayer mixtures,41 and mixtures of wa-
ter and alcohols,41 demonstrating that integration of these ex-
tended functions yielded accurate derivative properties.

The present paper describes the basis more thoroughly
including derivation of the direct correlation function approx-
imations and the numerical implementation. Numerical tests
comprise molecular dynamics simulations of the pure molec-
ular fluids ethane, n-butane, n-hexane, 2-propanol and water,
using the CHARMM force field,43 in the isothermal-isobaric
ensemble. The accuracy of the extended distribution functions
is assessed by comparing isothermal compressibilities from
the integrals with those from fluctuations in the simulation
box volume. Comparisons are also made with integrals from
the simple truncation approach by Weerasinghe and Smith.5

II. MOLECULAR CORRELATION FUNCTIONS

Unlike atomic total correlation functions, hij (r), and pair
radial distribution functions, gij (r), which are functions of
only the spatial distance r between the centers of mass of
two molecules, molecular correlation functions depend on
orientations, ω1 and ω2. As described in detail by Gray and
Gubbins,44 the total correlation function can be split into
isotropic and anisotropic parts,

hij (r12ω1ω2) = hij (r12) + h
(a)
ij (r12ω1ω2). (1)

The isotropic part hij (r12) is identical to the atomic to-
tal correlation function, and is obtained by averaging out the
angular dependence,

hij (r12) ≡ 〈hij (r12ω1ω2)〉ω1ω2 , (2)

where

〈·〉ω1 ≡ 1

8π2

∫
dω1

≡ 1

8π2

∫ 2π

0
dφ1

∫ 1

−1
d(cos θ1)

∫ 2π

0
dχ1, (3)

and 〈
h

(a)
ij (r12ω1ω2)

〉
ω1ω2

= 0. (4)

For flexible molecules, the correlation functions are also
functions of the molecular conformations, but since the or-
ganic molecules considered in this work are small and do not
(except n-hexane) possess multiple conformations, we ignore
this effect.

The molecular Ornstein-Zernike equation defines the
molecular direct correlation function, cij (r12ω1ω2),44

hij (r12ω1ω2) = cij (r12ω1ω2)

+ ρ
∑

l

xl

∫
〈hil(r13ω1ω3)clj (r32ω3ω2)〉ω3d r3,

(5)

where ρ denotes the overall number density of the fluid and
xl is the number fraction of component l. In analogy with
Eqs. (1), (2), and (4) the direct correlation function can be
written as a sum of isotropic and anisotropic parts,

cij (r12ω1ω2) = cij (r12) + c
(a)
ij (r12ω1ω2). (6)

Substituting Eqs. (1) and (6) into Eq. (5) and averaging
out the angular dependence leads to

hij (r) = cij (r) + ρ
∑

l

xl

∫
hil(r13)clj (r32)d r3

+ ρ
∑

l

∫ 〈〈
h

(a)
il (r13ω1ω3)

〉
ω1

〈
c

(a)
lj (r32ω3ω2)

〉
ω2

〉
ω3
d r3.

(7)

Neglecting the last term in Eq. (7) gives a simplified ver-
sion of the Ornstein-Zernike equation, in which the isotropic
direct and total correlation functions are related without the
anisotropic terms,

hij (r) = cij (r) + ρ
∑

l

xl

∫
hil(|r − r ′|)clj (r ′)d r ′. (8)

Here we use Eq. (8) instead of Eq. (5). While there may
not be rigorous arguments for this choice, it is supported by
several results. First, Eq. (8) is exact in several integral equa-
tion theories of fluids with anisotropic interactions, such as
the mean-spherical approximation and the generalized mean
field theory.44 Second, Wang et al.45 showed with Monte
Carlo simulations of Lennard-Jones particles with signifi-
cant dipole and quadrupole moments, that anisotropic forces
have limited effects on hij (r). Also, Gubbins and O’Connell23

showed that for dense fluids the correlation function integrals
for water and argon scaled with only two parameters. In ad-
dition, several studies show successful corresponding-states
scaling for the direct correlation function integrals,23–29 as
described in detail in Ref. 46. Finally, the approximation of
Eq. (8) is the first term of the spherical harmonic expansions
of the molecular correlation functions.

III. METHOD

A. Extrapolation of molecular correlation functions

A method due to Verlet42 aims to correct the correla-
tion functions obtained from simulation for the effects of
finite-sized systems, such as those summarized by Salacuse,
Denton, and Egelstaff,31 and to extend the correlation func-
tions to longer ranges. The method was originally used for a
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pure Lennard-Jones fluid, with focus on the qualitative behav-
ior of the direct correlation function and the structure factor,
and later extended to a Lennard-Jones mixture.47 The present
formulation of the method numerically determines total and
direct correlation functions that satisfy the Ornstein-Zernike
equation (8), under the constraints{

hij (r) = hMD,ij (r), r ≤ Rij

cij (r) = tij (r), r > Rij

, (9)

where hMD,ij (r) are the total correlation functions obtained
from simulation, tij (r) are approximations of the long range
part of the direct correlation functions and Rij are the dis-
tances where the simulation correlation functions are matched
to the calculated functions. Solving the Ornstein-Zernike
equation with Eq. (9) yields correlation functions which may
be integrated to obtain fluctuation properties. The procedure
of solving the Ornstein-Zernike equation with the given con-
straints requires explicit approximations tij (r) for the behav-
ior of the direct correlation functions at large separations and
choosing appropriate matching distances Rij , as described
later.

Commonly, the Wiener-Hopf factorization technique is
applied when the direct correlation function is to be com-
puted numerically from the total correlation function or vice
versa.44, 47, 48 The present implementation is instead based on
the Fourier-transformed Ornstein-Zernike equation, similar
to the approach of Gillan.49 A grid is introduced in the r

and k space. The long-range part of hij (r) is adjusted, using
Newton-Raphson, until the long-range part of cij (r) coincides
sufficiently with the tail-approximation tij (r). For all systems
tested, hMD,ij (r) was used as initial guess and the solution
converged within 5–15 iterations.

B. Approximating the long-range direct
correlation function

A well-known result for the long-range part of
cij (r12ω1ω2) is44

cij (r12ω1ω2) → −βuij (r12ω1ω2), r12 → ∞, (10)

where uij (r12ω1ω2) is the pair interaction potential for
molecules of type i and j and β ≡ (kBT )−1. This also implies
that the long-range behavior of the direct correlation function
is insensitive to the density. For simulation potentials such as
the CHARMM force field,43 the anisotropic potential at large
separation is dominated by dipole-dipole interactions. The po-
tential is written as

uij = u
(LJ)
ij + u

(dd)
ij . (11)

While Eq. (10) is valid for the molecular direct correla-
tion function, it is not in general for the angle-averaged cij (r).
For example, at low densities, cij (r) is identical to the angle
averaged Mayer f -function44 which includes a second-order
contribution from the dipole-dipole interaction, i.e.,40

〈(
u

(dd)
ij (r12ω1ω2)

)2〉
ω1ω2

= −2μ2
i μ

2
j

3r6
12

. (12)

A suitable high-density form is found with the hypernet-
ted chain closure,50

cij (r12ω1ω2) = − βuij (r12ω1ω2) + hij (r12ω1ω2)

− log(1 + hij (r12ω1ω2)). (13)

For a pure fluid composed of rigid, dipolar molecules,
Nienhuis and Deutch51 showed that the asymptotic behavior
is

h(r12ω1ω2) → −βG2

ε
u(dd)(r12ω1ω2), r12 → ∞, (14)

where ε and G are the dielectric constant and Kirkwood factor
of the fluid, respectively. The latter is defined by

G ≡ 〈μ · M〉
μ2

, (15)

where μ and M, respectively, denote the dipole moment of a
single molecule in the fluid and the total dipole moment of the
fluid, and where 〈·〉 denotes ensemble average. For mixtures,
Eq. (14) becomes

hij (r12ω1ω2) → −βGiGj

ε
u

(dd)
ij (r12ω1ω2), r12 → ∞,

(16)
where Gi is a specific Kirkwood factor, defined by

Gi ≡ 〈μi · M〉
μ2

i

, (17)

where μi denotes the dipole moment of a single molecule of
type i. Combining Eq. (16) with the hypernetted chain re-
lation (Eq. (13)) and Taylor-expanding the logarithm of the
latter, leads to

cij (r12ω1ω2)

= −βuij (r12ω1ω2) + 1

2
(hij (r12ω1ω2))2 + O

(
r−9

12

)
= −βu

(LJ)
ij (r12ω1ω2) − βu

(dd)
ij (r12ω1ω2)

−β2G2
i G

2
j

2ε2

(
u

(dd)
ij (r12ω1ω2)

)2 + O
(
r−9

12

)
.

(18)

Only in the last step, the pair potential was assumed to
be the sum of Lennard-Jones and dipole-dipole contributions.
The final result averages out the angular dependence; to lead-
ing order it is

cij (r12) = tij (r12) + O
(
r−8

12

)
(19)

with

tij (r12) ≡ −2β

[ ∑
α∈Mi,β∈Mj

εαβR6
min,αβ

]
r−6

12

+ β2G2
i G

2
jμ

2
i μ

2
j

3ε2
r−6

12 , (20)

where Mi denotes the set of atoms of a molecule of type i

and εαβ , and Rmin,αβ denote CHARMM parameters for the
Lennard-Jones interaction between atoms of type α and β.
The coefficient of the first (Lennard-Jones) term of Eq. (20)
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is evaluated directly from the CHARMM parameters. The co-
efficient of the second (dipole-dipole) term uses Gi , Gj , and
ε evaluated by Eq. (17) with properties from the simulations
and using52

ε = 1 + 4πβρ

3

∑
i

xiμ
2
i Gi. (21)

This requires that the electrostatic forces in the simulations
are evaluated using tinfoil boundary conditions. The deriva-
tion of Eq. (20) used the hypernetted chain relation (Eq. (13)).
The Percus-Yevick relation could also be considered, giving
the last term of Eq. (20) as

(2GiGj − 1)β2μ2
i μ

2
j

3ε
r−6

12 . (22)

It appears that the hypernetted chain approximation pro-
vides better results. First, integral equation theories for dipo-
lar fluids from the hypernetted chain approximation seem to
be more accurate for dense fluids.53–55 Second, the dipole-
dipole contribution to the long-range direct correlation func-
tion would be expected to be positive, based on Eq. (12). The
hypernetted chain result, Eq. (20), is positive definite while
the Percus-Yevick result, Eq. (22), is not. In fact, the Percus-
Yevick derived coefficient becomes negative for several of
the fluid mixtures we studied.41 The asymptotic behavior of
correlation functions in special situations (e.g., interactions
between polar molecules and conducting walls), and possi-
ble corrections to the hypernetted chain result, have been dis-
cussed in the literature.56–58

C. Errors due to finiteness

We discuss here molecular dynamics simulations of the
pure Lennard-Jones fluid to illustrate how different types of
truncation errors affect the numerical direct correlation func-
tion, i.e., the function as computed without employing the
extrapolation method of Sec. III A. As we shall see, the ex-
trapolation method corrects satisfactorily for such errors. The
simulations used the argon parameters40 at reduced density
(ρ/σ 3) and temperature (kBT/ε) of 0.822 and 1.15, respec-
tively, where ε and σ are the Lennard-Jones parameters. The
equilibration times were at least 200 ps and the production
times were between 800 ps and 8 ns, where systems con-
taining fewer particles were simulated for longer times. The
simulations were carried out at constant number of atoms,
volume and temperature (NV T -ensemble) using NAMD.59

The temperature was controlled using a Langevin thermostat
with parameters as given in Sec. IV. Radial distribution func-
tions were sampled using a bin width of 0.1 Å. Three simula-
tions comprising, respectively, 2000, 8000, or 20 000 atoms in
total were carried out. Lennard-Jones forces were truncated at
12 Å and a switching function was used from 10 Å to
smoothly force the potential to zero at 12 Å. One additional
simulation comprising 20 000 atoms was carried out with
Lennard-Jones forces truncated at 22 Å and using the switch-
ing function from 20 Å.

Figure 1(b) compares the direct correlation function eval-
uated with different upper truncation radii, Rt, for the nu-
merical Hankel transform of the total correlation function

−10

 0

 10

 20

 0  10  20  30

r2 h(
r)

 [Å
2 ]

r [Å]

−60

−40

−20

 0

 20

 0  10  20  30

r2 c(
r)

 [Å
2 ]

r [Å]

Rt=15Å
Rt=30Å
Rt=45Å

(a) (b)

FIG. 1. (a) Total correlation function and (b) numerical direct correlation
function of the Lennard-Jones system with N = 20 000. The functions were
evaluated by Ornstein-Zernike transformation of the total correlation function
truncated at, respectively, 15 Å, 30 Å, and 45 Å (Rt). The line y = 0 is marked
in both panels to guide the eye.

(Fig. 1(a)). Apparently, c(r) is sensitive to Rt, and with a too
small truncation radius (15 Å ∼ 4.4σ ), the behavior of c(r) at
small r is inaccurate. With Rt ≥ 30 Å (8.8σ ), truncation er-
rors are seen as r approaches Rt with c(r) deviating from the
theoretical r−6 decay at large r .

The spatial range required for accurate evaluation of
c(r) may not be available if the simulated system is too
small. In addition, finite-size effects may affect the correlation
functions in the accessible range.31 Size-effects in the total
correlation functions (not shown) are very subtle for dense
systems with low compressibility. They can result in signif-
icant numerical inaccuracies in the reduced bulk modulus
and c(r). Figure 2(a) demonstrates this by comparing direct
correlation functions obtained using different system sizes.
With N = 2000, the long range part of c(r) is negative, but
shifts upward with increasing N . Figure 2(b) shows that in-
creasing N improves the agreement with the tail approxi-
mation (Eq. (20)). With N = 20 000, the agreement is good
when r ≥ 6 Å (1.8σ ), which corresponds well to matching
distances used in previous applications of the extrapoation
method.40, 41 If we replace this c(r) with the approximation
for r ≥ 5 Å, the difference integrated up to 25 Å corresponds
to a mere 1% shift in the reduced bulk modulus.

Although the size-effects are difficult to observe in h(r),
they are apparent in Fig. 3 showing H , the integral of h(r),
as a function of upper truncation limit Rt for systems of dif-
ferent size. With N = 2000, the integral seems to diverge and
gives a negative value for the reduced bulk modulus. Increas-
ing the system size gradually removes the divergence over the
displayed range. The extrapolation method of Sec. III A was

−10

−5

 0

 5

 10

 0  10  20  30

r2 (c
(r

)−
t(

r)
) 

[Å
2 ]

r [Å]
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r2t(r)

(a) (b)

FIG. 2. (a) Numerical direct correlation function of the Lennard-Jones sys-
tems with N = 2000, 8000, and 20 000, evaluated by Ornstein-Zernike trans-
formation of the total correlation function truncated at 30 Å. (b) Difference
between the same direct correlation functions and the long range approxima-
tion (Eq. (20)). Standard errors are shown at selected distances and the line y

= 0 is marked in both panels to guide the eye.
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+

1

Rt [Å]
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FIG. 3. Reduced bulk modulus, H + 1, with H denoting the integral of h(r),
of the Lennard-Jones system with N = 2000, 8000, and 20 000, evaluated
by numerical integration of the total correlation function up to a truncation
radius Rt . Corresponding integral for the corrected correlation function for
the system with N = 2000, obtained by the extension method of Sec. III A
with R = 6.3 Å, is shown for comparison. Standard errors are shown for
selected distances, and the line y = 0 is marked to guide the eye.

employed to correct the h(r) obtained with N = 2000, using
6.3 Å for the matching distance R of Eq. (9). The integral
of the corrected function was in excellent agreement with the
integral of h(r) obtained with N = 20 000 (Fig. 3). The ex-
trapolated h(r) integrates to ρkBT κT = 0.055, ∼2% from the
Mecke et al.60 equation of state value of 0.056. This shows
that via the extrapolation method, accurate properties can be
obtained from simulations of small systems, avoiding the ex-
tra computational efforts that larger systems require.

Finally, Figs. 4(a) and 4(b) compare c(r) obtained from
simulations using different truncation radii for the Lennard-
Jones potential. There is no significant difference between
the functions, and they furthermore agree well with the tail
approximation (Eq. (20)). For dense fluids, the extrapola-
tion method seems to be insensitive to the use of a truncated
Lennard-Jones potential. Also, the tail approximation, which
is derived for a potential of unlimited range, seems accurate
for a truncated potential.

D. Determining matching distances

The extrapolation method requires appropriate selection
of matching distances Rij , as in Eq. (9). The strategy em-
ployed here has been described previously,41 but it is briefly
outlined below for completeness.

The parameter Rij is chosen to match c(r) continuously
with the tail approximation, tij (r) (Eq. (20)). The calculations

−10
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r2 (c
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) 
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]
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FIG. 4. (a) Numerical direct correlation function of the Lennard-Jones sys-
tems with N = 20 000, using potential cutoffs at 12 Å and 22 Å, evaluated by
Ornstein-Zernike transformation of the total correlation function truncated at
40 Å. (b) Difference between the same direct correlation functions and the
long range approximation (Eq. (20)). Standard errors are shown at selected
distances and the line y = 0 is marked in both panels to guide the eye.

are therefore first carried out with preliminary parameter val-
ues, R

†
ij , set to the largest radius for which hij (r) is sampled.

Preliminary correlation functions c†ij (r) are calculated using
the extrapolation method. The final parameters Rij are then
chosen at a point beyond the peak of c†ij (r) where it intersects
tij (r). In case tij (r) does not intersect c†ij (r), Rij is chosen as
the value of r after the peak which minimizes the expression,

|c†ij (r) − tij (r)|
|tij (r)| . (23)

The peak of c†ij (r) is approximately independent of R†
ij ,

as long as it is large enough for c†ij (r) to be beyond its peak,
which ensures that the selection of Rij is robust. For the
Lennard-Jones systems shown in Fig. 2, the selected match-
ing distance is 6.1–6.3 Å. For larger r , t(r) agrees very well
with the c(r) from the system with N = 20 000, as discussed
above.

IV. TESTS FOR MOLECULAR FLUIDS

Molecular models resembling “real” substances most of-
ten involve multiple interaction sites. Successful applications
to atomic fluids do not necessarily imply that the exten-
sion method is accurate for molecular fluids since the treat-
ment of these is less rigorous for two reasons. First, the
non-spherical geometry of molecules leads to anisotropic in-
teractions. These interactions might not lead to decoupling
of the isotropic and anisotropic correlations as in Eq. (8).
In particular, the short-ranged repulsive forces between non-
spherical molecules seem to affect the orientation-averaged
radial distribution functions to a greater extent than the mostly
attractive dipole-dipole interactions, as shown by Monte
Carlo simulations of Wang et al.45 Second, the tail approx-
imation for the direct correlation function of Eq. (20) re-
tains only the r−6 term in the power series expansion of the
angle-averaged pair potential. This term is independent of the
molecular geometries as it is determined by the atom types
only. Yet, the neglected terms of order r−8 and higher do de-
pend on the molecular geometries, becoming more significant
as the molecules become more non-spherical.

The ultimate goal of this methodology is to enable effi-
cient simulation-based prediction of thermodynamic proper-
ties that are in good agreement with experimental data. This
however comprises two tasks. First, a reliable integration pro-
cedure must be established. This involves assumptions or ap-
proximations of the total correlation functions, and it is thus
crucial to validate integration results against previous sim-
ulations or alternative simulation-based routes to the same
properties. Second, potential models and parameters for the
relevant atoms and chemical groups need to be optimized
such that experimental properties are reproduced by simula-
tion. For now, we focus on the first step.

Pure atomic fluids and atomic and molecular mixtures
have been discussed in previous communications.40, 41 For
each test system, the methodology has been applied to
evaluate the total correlation function integrals. Depending
on the system, the integrals are converted into different
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TABLE I. Temperatures, T , pressures, P , and densities, ρMD, for the simu-
lations of pure molecular fluids. Experimental critical temperatures Tc,exp are
also listed for each fluid.

T P ρMD

ID Tc,exp [K] [atm] [g/dm3]

Ethane EthA 296 380 600 403
EthB 305 225 399
EthC 260 100 438
EthD 180 100 561
EthE 120 100 636

Butane ButA 425 500 350 426
ButB 425 140 424
ButC 340 100 531
ButD 260 100 623
ButE 180 100 704

Hexane HexA 508 610 300 424
HexB 508 120 437
HexC 400 100 561
HexD 300 100 658
HexE 200 100 746

Water 647 323 1 1018

2-propanol 509 298 1 781

thermodynamic derivative properties. For instance, for pure
fluids isothermal compressibility is evaluated via

ρkBT κT = 1 + 4πρ

∫ ∞

0
r2h(r)dr, (24)

where ρ, kB, T , and κT , respectively, denote molecular den-
sity, Boltzmann constant, temperature, and isothermal com-
pressibility.

We now test the extension method on simulations of pure
molecular liquids. The studied liquids were ethane, n-butane,
n-hexane, water, and 2-propanol. Normal alkanes were con-
sidered due to their relatively simple structure and because
the chain length serves as an order parameter for molecu-
lar nonsphericity. Pure water and 2-propanol were consid-
ered in order to test the extension method for polar molec-
ular fluids. The calculations are verified by comparing the
derivative properties obtained from the integration procedure
with the same properties obtained from an alternative “bench-
mark” method, here compressibility values derived from
volume fluctuations.

Simulations of pure ethane, butane, hexane, water, and
2-propanol were carried out in the NPT ensemble using the
CHARMM force field43 and the CHARMM-adapted TIP3P
model with flexible bonds for water43 at state conditions sum-
marized in Table I.

The simulations of alkanes and 2-propanol involved 1000
molecules, while the simulation of water included 500. NAMD

(Ref. 59) was used for all simulations. The velocity Verlet al-
gorithm with 1 fs time steps was employed to integrate the
equations of motion, periodic boundary conditions were em-
ployed in the x, y, and z directions, and electrostatic forces
were evaluated using the particle mesh Ewald method with a
grid spacing smaller than 1 Å. This is consistent with “tin-
foil” boundary conditions. Temperature and pressure were,

respectively, controlled using the Langevin thermostat algo-
rithm with a damping constant of 5 ps−1 and the Langevin pis-
ton algorithm with a period of 200 fs and a decay constant of
500 fs. Coordinates were saved every 500 fs. For the water and
2-propanol simulations, Lennard-Jones forces were evaluated
using a 12 Å cutoff, a 10 Å switching distance, and a pair list
with an outer radius of 14 Å. The alkane simulations used a
15 Å cutoff, a 13 Å switching distance and a pair list outer ra-
dius of 17 Å. These were used because some simulations were
for state conditions where the fluid is fairly compressible. For
such systems, long-range correlations play a more important
role than for dense liquids, and the results are more likely to
be sensitive to the truncation of Lennard-Jones forces. The
systems were equilibrated for at least 200 ps, and the produc-
tion periods were 8 and 10 ns for the alkane and 2-propanol
systems, respectively. For the water systems, the production
period was 8 ns. Statistical uncertainties were estimated using
the blocking method.52

V. RESULTS

The most directly accessible derivative property for pure
fluids is the isothermal compressibility. The values of this
property obtained from the extension method were compared
to those obtained via the fluctuation formula, given by52

κT =
〈V 2〉NPT − 〈V 〉2

NPT
kBT 〈V 〉NPT

, (25)

where V denotes simulation box volume, and 〈·〉NPT denotes
isothermal-isobaric (NPT) ensemble average. The results are
listed in Table II. Differences between Eq. (25) and the exten-
sion method can be due to many things. In particular, Eq. (24)
constitutes an approximate expression where only h(r) ap-
pears, instead of the whole (angular dependent) total corre-
lation function. Equation (24) possibly constitutes a source of
errors in addition to the various approximations for c(r). It is,
based on the present data, difficult to discriminate the relative
importance of these approximations.

For the alkane systems, the extension method agreed well
with the fluctuation formula with discrepancies in the range
of 2–9%. Note that all but one of the calculations resulted in
compressibilities that were larger than those obtained from
the fluctuation formula. There was no correlation with tem-
perature and density though. As in previous Lennard-Jones
and Stockmayer fluids studies,40 good agreement was seen at
supercritical temperatures, as well as for some of the simula-
tions at low temperature, i.e., EthE, ButE, HexD, and HexE.
The deviations were only slightly larger than for the pure
Lennard-Jones and Stockmayer fluids in the dense region.
While this might be due to the non-spherical character of
the molecules, the deviations do not seem to increase as the
molecules become less spherical. For the water simulation,
the result was within 2% which is quite accurate for this
strongly anisotropic fluid. The result for 2-propanol deviates
1.4% from the fluctuation value.

The matching distances R, selected for continuity as
in Sec. III D, were typically half the upper sampling limit
for h(r) or less. This allowed us to verify that the calcu-
lated extensions for all systems agreed very well with the
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TABLE II. Results for isothermal compressibility for the simulations of pure molecular fluids obtained via the fluctuation formula, Eq. (25), the extension
method, Eq. (24) and simple integral truncation (Ref. 5). Matching distances for the extension method, R, are also listed. Standard errors were estimated by the
blocking method (Ref. 52).

(ρkBT κT )fluc (ρkBT κT )ext Dev. [%] (ρkBT κT )trunc Dev. [%] R [Å]

EthA 0.183 ± 0.003 0.1934 ± 0.0002 6 0.20 ± 0.03 8 9.5
EthB 0.286 ± 0.004 0.303 ± 0.003 6 0.27 ± 0.06 6 10.4
EthC 0.230 ± 0.003 0.2361 ± 0.0007 3 0.22 ± 0.04 5 10.2
EthD 0.0411 ± 0.0003 0.0446 ± 0.0001 8 0.07 ± 0.14 60 12.3
EthE 0.0143 ± 0.0003 0.0141 ± 0.0001 2 −0.02 ± 0.38 220 11.1

ButA 0.224 ± 0.006 0.2349 ± 0.0005 5 0.219 ± 0.001 2 11.7
ButB 0.37 ± 0.02 0.383 ± 0.003 3 0.3653 ± 0.0004 2 13.3
ButC 0.109 ± 0.001 0.118 ± 0.001 9 0.11 ± 0.01 3 14.5
ButD 0.0357 ± 0.0006 0.0391 ± 0.0002 9 0.04 ± 0.02 14 15.0
ButE 0.0131 ± 0.0003 0.0137 ± 0.0002 5 0.01 ± 0.02 4 14.8

HexA 0.225 ± 0.006 0.238 ± 0.001 6 0.226 ± 0.001 0.4 16.7
HexB 0.330 ± 0.005 0.342 ± 0.006 4 0.308 ± 0.003 7 15.5
HexC 0.083 ± 0.003 0.0889 ± 0.0009 8 0.089 ± 0.004 8 18.2
HexD 0.0274 ± 0.0004 0.0285 ± 0.0003 4 0.03 ± 0.01 14 27.8
HexE 0.0090 ± 0.0001 0.0093 ± 0.0001 3 0.01 ± 0.02 38 27.5

Water 0.0767 ± 0.0007 0.0790 ± 0.0002 2 0.080 ± 0.006 2 9.2
2-propanol 0.0377 ± 0.0006 0.0382 ± 0.0003 1 0.03 ± 0.07 20 13.1

sampled h(r) over the accessible range (data not shown). The
agreement was also good for the corresponding running in-
tegrals (Figs. 5(a)–5(b)), which are more sensitive to subtle
differences in the total correlation functions. Note that the
extension method accurately predicted h(r) for a range
where significant structure remained present, as apparent in
Figs. 5(a)–5(b). The integral over this range contributed sig-
nificantly to the estimates of isothermal compressibilities
which, as discussed above, were satisfactory.

From Table II, especially for hexane, it is apparent
that larger molecules require larger matching distances R,
as do lower temperatures. For HexE, the R used was only
slightly smaller than half the simulation box dimension. For
molecules that are larger than hexane and studied at similar
temperatures, systems with more than 1000 molecules might
need to be used.

We also attempted to obtain the isothermal compressibil-
ities by simply truncating the integrals within the sampled
range.5 A key difficulty is that for systems where h(r) has
structure beyond the sampled range, the result is sensitive to
the truncation radius Rt. Figure 5(b) demonstrates this; as the
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FIG. 5. Running total correlation function integral as function of upper trun-
cation limit (Rt) for (a) Eth1 and (b) Eth4. In both panels, running integrals
are shown for the simulation total correlation function (solid) and the ex-
tended total correlation function (dashed-dotted), and the line y = 0 is shown
to guide the eye. The matching distances R for the extension method (see Ta-
ble II) are marked with vertical dashed lines.

upper sampling limit is approached, the running integral still
oscillates, and truncation may result in a negative estimate of
the isothermal compressibility. Commonly, the sensitivity to
the truncation radius is reduced by averaging the running to-
tal correlation function integrals over an interval correspond-
ing to one oscillation of g(r).5 For our dense systems, such
averaging reduced the dependence on truncation distance to
some extent. The results were sensitive to choice of averaging
interval and, in some cases, negative estimates of the com-
pressibility were still obtained. Estimates reported in Table II
were computed as the mean of the final maximum and min-
imum of the running integral within the sampled range (see
Fig. 5). Error intervals give half the difference between the fi-
nal maximum and minimum, thus reflecting how sensitive the
result is to truncation radius. For the dense systems, where the
results were particularly sensitive to truncation, the method of
Theodorou and Suter30 was used to access h(r) up to

√
(2)/2

times the box length. Higher values of r were not considered
due to increasing statistical uncertainties.30

The extension method generally performed better than
truncation, although truncation was equally good or better
for some of the simulations. For the alkanes, the two meth-
ods performed similarly at supercritical temperatures and, in
general, for systems with a reduced bulk modulus of at least
0.07. For these systems, the running total correlation function
integrals were generally converged within the sampled range
(Fig. 5(a)), and integral truncation yielded satisfactory results.
For systems with a reduced bulk modulus smaller than 0.05,
the truncation results did typically deviate from the fluctua-
tion values with at least 14%. Substantially larger deviations
were seen for EthD, EthE, and HexE. For these systems, the
uncertainties in the estimates from truncation were compara-
ble or larger than the estimates themselves (Table II), since the
running integrals contained significant oscillations of alternat-
ing sign beyond the range sampled in simulation (Fig. 5(b)).
For the butane family, the extension method is not uniformly
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better than truncation. However, Table II seems to suggest that
truncation is unexpectedly good for butanes, rather than the
extension being appreciably worse for butanes than for other
substances. A very good result was obtained for ButE. This is
probably coincidental, since the uncertainty is larger than the
estimate itself. It was similarly observed for the 2-propanol
system, with a reduced bulk modulus of 0.038, that trunca-
tion failed due to long-range oscillations, while the exten-
sion method performed very well. For water, truncation per-
formed similarly to the extension method, since the integral
converged sufficiently within the sampled range.

VI. CONCLUSIONS

We have previously described a computational methodol-
ogy for extending molecular radial distribution functions ob-
tained from molecular simulation to arbitrarily large spatial
separations, so that total correlation function integrals can be
reliably obtained by numerical integration. In this paper, this
extension method is described in detail and additional testing
has been carried out in order to verify that the calculated in-
tegrals are accurate for pure molecular fluids. The computed
integrals were validated by comparisons with the more rigor-
ous values from density fluctuations. The systems considered
for the tests were liquids with ρ > 2ρc, where ρc is the corre-
sponding critical density.

The tests show that the total correlation function inte-
grals are quite accurate under the considered conditions. Good
results have been obtained for molecules as nonspherical as
hexane and for molecules with anisotropic interactions such
as water and 2-propanol. The extension method compares fa-
vorably with the simple truncation method,5 though if the
simulated system is sufficiently large, the two methods yield
similar results. Thus, the present method is superior when the
system is small and the radial distribution functions have sig-
nificant structure beyond the sampling limit imposed by the
simulation box dimension.
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32A. Perera and F. Sokolić, J. Chem. Phys. 121, 11272 (2004).
33B. Hess and N. F. A. van der Vegt, Proc. Natl. Acad. Sci. USA 106, 13296

(2009).
34E. Matteoli and G. A. Mansoori, J. Chem. Phys. 103, 4672 (1995).
35R. Wedberg, G. H. Peters, and J. Abildskov, Fluid Phase Equilib. 273, 1

(2008).
36J. W. Nichols, S. G. Moore, and D. R. Wheeler, Phys. Rev. E 80, 051203

(2009).
37F. Lado, Phys. Rev. A 135, 1013 (1964).
38P. Attard, Thermodynamics and Statistical Mechanics: Equilibrium by

Entropy Maximization (Academic, Amsterdam, 2002), Chap. 9.6, 10.4.2.
39S. K. Schnell, T. J. H. Vlugt, J.-M. Simon, D. Bedeaux, and S. Kjelstrup,

Chem. Phys. Lett. 504, 199 (2011).
40R. Wedberg, J. P. O’Connell, G. H. Peters, and J. Abildskov, Mol. Simul.

36, 1243 (2010).
41R. Wedberg, J. P. O’Connell, G. H. Peters, and J. Abildskov, Fluid Phase

Equilib. 302, 32 (2011).
42L. Verlet, Phys. Rev. 165, 201 (1968).
43A. D. MacKerell, Jr., D. Bashford, M. Bellot, R. L. Dunbrack, Jr.,

J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha,
D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau,
C. Mattos, S. Michnik, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher
III, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe,
J. Wio’rkiewicz-Kuczera, D. Yin, and M. Karplus, J. Phys. Chem. 102,
3586 (1998).

44C. G. Gray and K. E. Gubbins, Theory of Molecular Fluids: Fundamentals
(Oxford University Press, New York, 1984), Vol. 1.

45S. S. Wang, C. G. Gray, P. A. Egelstaff, and K. E. Gubbins, Chem. Phys.
Lett. 21, 123 (1973).

46J. P. O’Connell, in Supercritical Fluids: Fundamentals and Applications,
edited by E. Kiran and J. M. H. Levelt Sengers, NATO Science Series
E, Vol. 273 (Klüwer Academic Publishers, Dordrecht, Holland, 1994),
pp. 191–229.

47D. L. Jolly, B. C. Freasier, and R. J. Bearman, Chem. Phys. 15, 237 (1976).
48R. Ramirez, M. Mareschal, and D. Borgis, J. Chem. Phys. 319, 261 (2005).
49M. J. Gillan, Mol. Phys. 38, 1781 (1979).
50D. A. McQuarrie, Statistical Mechanics (Harper & Row, New York, 1976).
51G. Nienhuis and J. M. Deutch, J. Chem. Phys. 55, 4213 (1971).
52M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford

University Press, New York, 1987).
53S. Murad, K. E. Gubbins, and C. G. Gray, Chem. Phys. 81, 87 (1983).
54P. H. Fries and G. N. Patey, J. Chem. Phys. 82, 429 (1985).
55P. J. Rossky, Annu. Rev. Phys. Chem. 36, 321 (1985).

Downloaded 06 Sep 2011 to 130.225.65.38. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.1748352
http://dx.doi.org/10.1080/00268977100100031
http://dx.doi.org/10.1002/aic.690170331
http://dx.doi.org/10.1080/08927020601177109
http://dx.doi.org/10.1063/1.1574773
http://dx.doi.org/10.1063/1.1574773
http://dx.doi.org/10.1021/jp022049s
http://dx.doi.org/10.1063/1.1768938
http://dx.doi.org/10.1021/jp051773i
http://dx.doi.org/10.1002/jcc.20441
http://dx.doi.org/10.1021/jp904806f
http://dx.doi.org/10.1016/j.fluid.2009.11.023
http://dx.doi.org/10.1016/j.fluid.2007.07.027
http://dx.doi.org/10.1016/j.fluid.2007.07.027
http://dx.doi.org/10.1016/j.fluid.2007.06.026
http://dx.doi.org/10.1006/jcht.1995.0011
http://dx.doi.org/10.1063/1.1734110
http://dx.doi.org/10.1016/0378-3812(86)90001-4
http://dx.doi.org/10.1016/0378-3812(87)80057-2
http://dx.doi.org/10.1063/1.458420
http://dx.doi.org/10.1080/00268978700101491
http://dx.doi.org/10.1080/00268978700102501
http://dx.doi.org/10.1080/00268978800100361
http://dx.doi.org/10.1080/00268978800100361
http://dx.doi.org/10.1063/1.1681558
http://dx.doi.org/10.1002/aic.690180622
http://dx.doi.org/10.1016/0378-3812(87)80044-4
http://dx.doi.org/10.1002/aic.690331216
http://dx.doi.org/10.1016/j.fluid.2009.08.001
http://dx.doi.org/10.1016/j.fluid.2010.04.019
http://dx.doi.org/10.1016/j.supflu.2010.10.005
http://dx.doi.org/10.1063/1.448472
http://dx.doi.org/10.1103/PhysRevE.53.2382
http://dx.doi.org/10.1063/1.1817970
http://dx.doi.org/10.1073/pnas.0902904106
http://dx.doi.org/10.1063/1.470654
http://dx.doi.org/10.1016/j.fluid.2008.07.011
http://dx.doi.org/10.1103/PhysRevE.80.051203
http://dx.doi.org/10.1103/PhysRev.135.A1013
http://dx.doi.org/10.1016/j.cplett.2011.01.080
http://dx.doi.org/10.1080/08927020903536366
http://dx.doi.org/10.1016/j.fluid.2010.10.004
http://dx.doi.org/10.1016/j.fluid.2010.10.004
http://dx.doi.org/10.1103/PhysRev.165.201
http://dx.doi.org/10.1021/jp973084f
http://dx.doi.org/10.1016/0009-2614(73)80029-6
http://dx.doi.org/10.1016/0009-2614(73)80029-6
http://dx.doi.org/10.1016/0301-0104(76)80156-5
http://dx.doi.org/10.1016/j.chemphys.2005.07.038
http://dx.doi.org/10.1080/00268977900102861
http://dx.doi.org/10.1063/1.1676739
http://dx.doi.org/10.1016/0301-0104(83)85304-X
http://dx.doi.org/10.1063/1.448764
http://dx.doi.org/10.1146/annurev.pc.36.100185.001541


084113-9 Pair correlation function integrals J. Chem. Phys. 135, 084113 (2011)

56G. Stell, Statistical Mechanics. Part A: Equilibrium Techniques (Plenum,
New York, 1977), p. 47.

57P. Attard, J. Chem. Phys. 93, 7301 (1990).
58P. Attard, D. R. Berard, C. P. Usenbach, and G. N. Patey, Phys. Rev. A 44,

8224 (1991).

59J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa,
C. Chipot, R. D. Skeel, L. Kale, and K. Schulten, J. Comput. Chem. 26,
1781 (2005).

60M. Mecke, A. Müller, J. Winkelmann, J. Vrabec, J. Fischer, R. Span, and
W. Wagner, Int. J. Thermophys. 17, 391 (1996).

Downloaded 06 Sep 2011 to 130.225.65.38. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.459402
http://dx.doi.org/10.1103/PhysRevA.44.8224
http://dx.doi.org/10.1002/jcc.20289
http://dx.doi.org/10.1007/BF01443399

