Synthesis, model and stability of helically coiled carbon nanotubes

Fejes, Dora; Raffai, Manuella; Hernadi, Klara; Popovic, Zoran P.; Damnjanovic, Milan; Milocsevic, Ivanka; Balogh, Zoltan Imre
Published in:
E C S Solid State Letters

Link to article, DOI:
10.1149/2.003303ssl

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Synthesis, Model and Stability of Helically Coiled Carbon Nanotubes

Dora Fejes,a Zoran P. Popović,b Manuella Raffai,a Zoltan Balogh,c Milan Damnjanović,b Ivanka Milošević,b••• and Klara Hernadia

aDepartment of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Hungary
bNanoLab, Faculty of Physics, University of Belgrade, 11001 Belgrade, Serbia
cCenter for Electron Nanoscopy, Technical University of Denmark, 2800 Lyngby, Denmark

Structural model of helically coiled carbon nanotubes is proposed. It is constructed by means of topological coordinate method. Relaxation and cohesive energy calculation are performed by molecular mechanics, using second-generation bond order potential for hydrocarbons introduced by D. W. Brenner. Our experiments focused on the production and development of catalysts for the synthesis of helically coiled CNTs (carbon nanotubes). The catalysts were tested in the decomposition of acetylene by CCVD (Catalytic Chemical Vapor Deposition) method. The carbon deposit was imaged by TEM (Transmission Electron Microscopy), HRTEM (High Resolution Transmission Electron Microscopy).

Experimental

Preparation of the catalysts for the synthesis of coiled carbon nanotubes.— Here we apply wet milling with distilled water and with ammonia solution, they provide slightly acid and basic environment, respectively. During the wet milling process 0.2469 g of the precursor (Co(NO3)2(H2O)8, Sigma-Aldrich), 0.95 g of the support (13X pentagons and heptagons or between the twin columns of heptagons in order to enlarge tubular diameter and indirectly, through process of relaxation, enlarging also diameter of a coil and changing helical angle and helical step as well.5

Helically coiled CNT is constructed from the graph defined as follows (more detailed description of the model is given in Ref. 6): (n0, n1, n2, n3, (b1, b2)), where b1 and b2 are the super-cell vectors, ni is number of rows of hexagons added above a single LR (Laszlo-Rassat)5 cell (n0, (1, 0), (0, 1)), n1 and n3 are numbers of columns of hexagons inserted between the columns of heptagons and pentagons, respectively (Figure 1). Three series of helically coiled CNTs defined by the n3 parameter are shown in Figure 2. This parameter defines radial position of pentagons, i.e. their distance from the helical axis.

Helical diameter increases and helical step decreases with n3 when n0 and n1 are fixed. Within each of the series particular tubes are defined by parameters n0 and n1 which are here set equal and are taking the values 1, 3, 5, 7 and 9. The super-cell vectors are b1 = (1, 0) and b2 = (0, 5) and there is no separation of the columns of heptagons of the original LR cell (i.e. n3 = 0). Within each of the series tubular and helical diameter increase linearly with n0 = n1, as well as the monomer length a.

However, if n0 ≠ n1 and the value of n3 is fixed, the helically coiled CNTs constructed out of such graphs mutually differ by the size of the helical diameter and helical step (the both increase with n3) while tubular diameters of these coils do not differ appreciably. Oppositely, if n3 is fixed, helical and tubular diameter increase with n0 while the inclination decreases.

Different choices of the super-cell, within the same tiling, have considerable impact on the overall structure of the helically coiled tube. Particular choice of the super-cell defines orientation of the pentagons relative to the nanotube axis while concentration of polygons relative to the nanotube axis while concentration of pentagons and heptagons is determined by the tiling only. However, fine tuning of the geometrical parameters of the coiled nanotube cannot be achieved by taking different super-cell vectors on the same tiling. Engineering of the structural features of the helically coiled CNTs is easier to control when the type of the super-cell remains the same while the tiling is changed gradually. Characteristic structural data of the ensemble of 218 modeled helically coiled CNTs is summarized in Table I.
acetylene, carbon yield was calculated as follows:

\[\text{Carbon yield} = \frac{100(m_{\text{cat}} - m_{\text{act}})}{m_{\text{corr.cat}}} \]

where, \(m_{\text{cat}} \) is the initial mass of the catalyst immediately before the reaction, \(m_{\text{act}} \) is the total weight of the sample after reaction, and \(m_{\text{corr.cat}} \) is the corrected mass of the catalyst after weight loss at the temperature of CCVD reaction (720°C). We calculated carbon yield instead of CNT yield because oxidative purification could be carried out, however, it would result in the complete elimination of coiled carbon nanotubes.9 Additionally the essence of CCVD method is the selective production of CNTs, so only small amount of amorphous carbon can be formed during the synthesis.

Experimental Results

Nanosized particles generated from the solid surface during grinding tend to form agglomerate instantaneously and become stable, coarser particles. In this way, it is very difficult to produce stable nanosized particles by dry grinding method, since active nanoparticles from fresh agglomerates as soon as they contact each other. Therefore, the grinding has to be carried out in a liquid (wet milling). In the wet milling process, as the surface of the generated particle is surrounded by a solvent instantaneously, it is possible to control the agglomeration of particles much better than in the dry milling. Furthermore the pH (or the organic nitrogen content) of the solution during catalyst preparation has a significant role on the resulted structure. Figure 3a shows the result of the wet milling with distilled water, the as-prepared sample consist of irregular nanotubes, while Figure 3b represents the coiled carbon nanotubes prepared by using wet milling with ammonia solution. The calculated carbon yield was 30.09% in case of preparing the catalyst with distilled water, and 39.1% with ammonia solution. Figure 4 summarizes the outer diameter distribution of the as-prepared helically coiled carbon nanotubes, mainly they are in the range of 10–20 nm. To compare the characteristic data with the theoretical ones, we characterized the helix diameter, coil pitch, tube diameter and tube length of the modeled helically coiled carbon nanotubes (Table II), quantitatively most of the characteristic parameters are nearly close to the dimensions of the modeled helically coiled carbon nanotubes. The helix diameter is overlapping, but the modeled coil pitch and tube length is 1114 nm.

Table I. Range of diameters, inclination angles and length data of the ensemble of 218 modeled helically coiled carbon nanotubes.

<table>
<thead>
<tr>
<th>Characteristic data</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helix diameter (D)</td>
<td>1.2 nm–44.0 nm</td>
</tr>
<tr>
<td>Coil pitch (p)</td>
<td>0.3 nm–3.0 nm</td>
</tr>
<tr>
<td>Tube diameter (d)</td>
<td>0.4 nm–3.4 nm</td>
</tr>
<tr>
<td>Tube length</td>
<td>Infinite</td>
</tr>
<tr>
<td>Inclination angle (\chi)</td>
<td>5° – 64°</td>
</tr>
<tr>
<td>Monomer length (a)</td>
<td>0.8 nm–10.8 nm</td>
</tr>
<tr>
<td>(D / d)</td>
<td>0.9–31</td>
</tr>
</tbody>
</table>

Figure 1. (Color online) Graph \((n_5,n_7,n_7,n_5,(b_1,b_2))=(\{1,1,2,2,\{2,2\},\{1,3\}\})\) tiling of the plane by heptagons, pentagons and hexagons where one row of hexagons is added at the top of the original LR cell and columns of heptagons and pentagons are separated by two stripes of hexagons, each. Super-cell vectors \(b_1 \) and \(b_2 \) are represented by the arrows and the unit cell by the rectangle.

Figure 2. Within each of the three series (defined by the value of \(n_5 = 0, 2 \) and 4) of helically coiled CNTs \(n_7 = n_5 \) dependence of the helical radius \(R \) (a) and helical diameter \(D \) and step \(p \) (b) are shown. Inset of (a) gives \(n_7 \)--dependence of the helical \(R \) and tubular \(r \) radii ratio (for the series defined by \(n_5 = 4 \)).

Figure 3. Figure 3(a) shows the result of the wet milling with distilled water, the as-prepared sample consist of irregular nanotubes, while figure 3(b) represents the coiled carbon nanotubes prepared by using wet milling process with ammonia solution. Here the dimensions of the helically coiled carbon nanotube are the follows: the helix diameter is 58 nm, the coil pitch is 55 nm, the tube diameter is 13 nm and the tube length is 1114 nm.

zeolite, UOP Fluka) and 2 mL distilled water or 25% NH\(_4\)OH were mixed mechanically in a Pulverisette 6 type planetary ball mill (in air), equipped with a 250 mL grinding bowl. As-prepared catalysts contained 5% metal. Each time 8 balls of 20 mm size were used for homogenization. The rotational speed was 450 rpm, the respective treatment times of planetary ball milling were 60 minutes.

CCVD Synthesis of helically coiled carbon nanotubes.— Carbon nanotubes were grown catalytically by acetylene decomposition at 720°C for 30 min in a fixed-bed flow reactor using gas feed of nitrogen (500 mL/min) and acetylene (10 mL/min). In order to give some quantitative characterization of the catalytic decomposition of acetylene, carbon yield was calculated as follows:

Downloaded on 2013-08-08 to IP 192.38.67.112 address. Redistribution subject to ECS license or copyright; see ecsdl.org/site/terms_use
diameter is smaller than the synthesized ones. Our theoretical model is single-walled in contrast to the multi-walled structure of the real tubes. On one hand the cell of the model is limited by number of atoms, on the other hand, has not been reported on the synthesis of single-walled helically coiled nanotubes according to our knowledge. To bring even better agreement we should succeed in the synthesis of single-walled helically coiled CNTs.

Stability

Relaxation and cohesive energy calculations are performed by molecular mechanics based on the bond order potential for hydrocarbons developed by D. W. Brenner. Application of the symmetry made the relaxation procedure more efficient. As to the generators of the symmetry of the helically coiled CNTs, apart from the screw axis transformation, also a rotation for π around the axis perpendicular to the helical axis, relaxation can be restricted just to a half of the monomer. The Hooke-Jeeves algorithm11 is used, as here it proved to give the best minima and to be reasonably fast.

Within the series of helically coiled CNTs, cohesive energy increases with the tubular and helical diameter and saturates eventually. The calculated values are between 6.7 eV/atom and 7.2 eV/atom. In Figure 5, tubular and helical diameter dependence of the energies calculated for the series \((n,n_0,0, n_5, ((1,0),(0,5)))\), \(n_0 = 0, 2, 4\) and \(n = 1, 2, \ldots, 11\), of helically coiled CNTs are presented. Tubes of these series mutually differ by the number of stripes of hexagons \(n_5\) inserted between the columns of pentagons, by the number of columns of hexagons \(n_0 = n\) which separate pentagons from hexagons and by the number of rows of hexagons \(n_5 = n\) added to the initial LR cell. Pentagons and heptagon concentration per monomer decreases with \(n\).

For the sake of comparison, dependence of the cohesive energy on the tubular radius of the straight single-walled CNTs has been calculated by the same method. The fitted \(E(r)\) function, Figure 5a, when up shifted for 200 meV represents also a good fit of the cohesive energies calculated by the same method. The fitted \(E(r)\) function, Figure 5a, when up shifted for 200 meV represents also a good fit of the cohesive energies calculated by the same method.

Table II. Range of diameters, coil pitches, length data of the as-synthesized helically coiled carbon nanotubes.

<table>
<thead>
<tr>
<th>Characteristic data</th>
<th>Helix diameter (D)</th>
<th>30.0 nm–88.0 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coil pitch (p)</td>
<td>31.0 nm–53.2 nm</td>
</tr>
<tr>
<td></td>
<td>Tube diameter (d)</td>
<td>9.6 nm–29.2 nm</td>
</tr>
<tr>
<td></td>
<td>Tube length</td>
<td>150 nm–700 nm</td>
</tr>
<tr>
<td>(D/d)</td>
<td></td>
<td>3.3–6.8</td>
</tr>
</tbody>
</table>

Figure 5. (a) Cohesive energy \(E\) of helically coiled CNTs as a function of tubular radius \(r\): Black triangles represent data for the series of helically coiled CNTs \((n,n_0,n_5,((1,0),(0,5)))\), where \(n_0 = 0, 2, 4\) and \(n = 1, 2, 3, \ldots, 11\); solid line shows the data for the straight SWCNTs calculated using the same bond order potential; dashed horizontal line at \(-7.394\) eV indicates the infinite radius limit of the cohesive energy of SWCNTs. Inset: \(E(r)\)-dependency over wider tubular radii range of helically coiled CNTs. (b) Helical radius \(R\) dependence of the cohesive energy \(E\) of helically coiled CNTs. Calculated values of the above defined series of the coiled nanotubes are presented.

Conclusion

By the technique presented here we are able to build helically coiled CNTs within the wide range of geometrical parameters and also within considerably large interval of the tubular-helical lateral sizes ratio (Table I). Control over the structural features of the coils is gained by picking particular tiling of the plane and by choosing appropriate super-cell vectors.

Final structural model has smooth helical profile and circular cross section, qualitatively matching the as-synthesized helically coiled CNTs. Quantitatively most of the characteristic parameters are nearly close to the dimensions of the CCVD grown carbon coils (Table II). Nevertheless, our theoretical model is single-walled in contrast to the multi-walled structure of the real tubes.

Acknowledgments

This work was supported by the Swiss National Science Foundation (IZ73Z0_128037/1), Klara Hernadi and Dora Fejes thank the support for the Hungarian Science Foundation (OTKA KMI 15 T 76125). Milan Damjanović, Zoran P. Popović and Ivanka Milošević acknowledge funding of Serbian Ministry of Science (ON171035).

References