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Abstract

The microbiota in the human gastrointestinal tract (GIT) is highly exposed to antibiotics, and may be an important reservoir
of resistant strains and transferable resistance genes. Maternal GIT strains can be transmitted to the offspring, and
resistances could be acquired from birth. This is a case study using a metagenomic approach to determine the diversity of
microorganisms conferring tetracycline resistance (Tcr) in the guts of a healthy mother-infant pair one month after
childbirth, and to investigate the potential for horizontal transfer and maternal transmission of Tcr genes. Fecal fosmid
libraries were functionally screened for Tcr, and further PCR-screened for specific Tcr genes. Tcr fosmid inserts were
sequenced at both ends to establish bacterial diversity. Mother and infant libraries contained Tcr, although encoded by
different genes and organisms. Tcr organisms in the mother consisted mainly of Firmicutes and Bacteroidetes, and the main
gene detected was tet(O), although tet(W) and tet(X) were also found. Identical Tcr gene sequences were present in different
bacterial families and even phyla, which may indicate horizontal transfer within the maternal GIT. In the infant library, Tcr

was present exclusively in streptococci carrying tet(M), tet(L) and erm(T) within a novel composite transposon, Tn6079. This
transposon belongs to a family of broad host range conjugative elements, implying a potential for the joint spread of
tetracycline and erythromycin resistance within the infant’s gut. In addition, although not found in the infant metagenomic
library, tet(O) and tet(W) could be detected in the uncloned DNA purified from the infant fecal sample. This is the first study
to reveal the diversity of Tcr bacteria in the human gut, to detect a likely transmission of antibiotic resistance from mother to
infant GITs and to indicate the possible occurrence of gene transfers among distantly related bacteria coinhabiting the GIT
of the same individual.
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Introduction

The human gastrointestinal tract (GIT) is host to a very dense

microbiota, harboring 1013–1014 bacterial cells in adults and a

broad diversity of bacterial species, of which a large proportion are

not yet cultured. This microbiota is often exposed to a variety of

antibiotics, both directly and indirectly, due to their routine use in

clinical settings and in farm animals. Therefore, its many other

fundamental roles in health notwithstanding [1–5], the GIT

microbiota may serve as an important reservoir of antibiotic

resistant strains that could act as opportunistic pathogens or as

donors of resistance genes to other bacteria [6]. In infants,

infections due to antibiotic resistant strains are on the rise and

represent a major cause of mortality and morbidity worldwide.

Although the infant’s gut is thought to be mostly germ-free at

birth, it rapidly enters an extensive and complex process of

colonization by a variety of microbes [7,8], and recent studies have

firmly established that strains from the mother’s GIT can be

transmitted to the infant and persist during the first weeks of life

[9]. Consequently, antibiotic resistances could be vertically

transmitted from the maternal GIT and bear on infant health

from a very early age.

Tetracyclines are one of the most widely used groups of

antibiotics worldwide and tetracycline resistance (Tcr) is extremely

common among bacteria [10]. Presently, 43 distinct Tcr genes are

known and they are usually associated with large mobile genetic

elements (MGE) (http://faculty.washington.edu/marilynr/). The

most common forms are the active efflux of tetracycline from the

cell and the synthesis of ribosomal protection proteins that prevent

the binding of tetracycline to the ribosomes [10,11]. Although its

medical applications have decreased in the last decade and it is no

longer used for treatment of pregnant women or children under
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the age of 8 years [12], tetracycline is still widely used for

therapeutic treatment in animal production and in some countries

it is also used as growth promoter in animal feed [11,13].

Therefore intestinal bacteria are still extensively exposed to this

antibiotic.

A recent microarray-based study has found tet(M) and tet(W) to

be the most prevalent Tcr genes for the oral and fecal

metagenomes of healthy adults, respectively [14]. Furthermore,

Tcr genes like tet(M), tet(O) and tet(W) have also been detected in

fecal samples from healthy and exclusively breast-fed infants,

suggesting that Tcr genes are common in the environment [15].

However, these studies have not revealed the types of bacteria that

harbor these resistances in the GIT and have not addressed the

potential origin of the Tcr genes and strains present in healthy

infants. Here, we have used a culture-independent approach to

characterize the diversity of microorganisms conferring Tcr in the

gut of one healthy infant-mother pair. Two fecal metagenomic

libraries, one from the mother and one from her exclusively

breast-fed infant one month after birth [9], were screened for

fosmid clones conferring Tcr, which were further screened by PCR

for a battery of Tcr genes. End-sequencing established the

microbial diversity among the Tcr organisms. Finally we identified

a novel Tn916-like conjugative transposon, Tn6079 carrying Tcr

resistance genes tet(M) and tet(L) and the erythromycin resistance

gene erm(T) in the infant gut.

Results

Screening metagenome libraries from infant and mother
for clones conferring Tcr

The metagenome libraries from the infant and the mother

contained 44 and 272 fosmid Tcr clones respectively. In a first

instance, we screened all obtained Tcr clones for the common

ribosomal protection genes tet(M), tet(O), tet(W) and tet(S). Out of

the 44 Tcr fosmid clones from the infant library, 43 were shown to

be positive for tet(M) by PCR. One of the end-sequences (B04-U-

PCC1R, 386 bp) from the fosmid clone negative for the tet(M)

PCR was identical to a region in tet(M) downstream of one of the

screening primers. Thus all 44 Tcr clones from the infant’s

metagenomic library were tet(M) positive and negative for tet(S),

tet(O) and tet(W). In contrast, out of the 272 Tcr clones from the

mother library, 21 (7.7%) were only positive for tet(W) and 204

(75%) were only positive for tet(O); for 47 (17.3%) of the Tcr clones

none of the assayed Tcr genes were detected, and all clones were

negative for tet(M) and tet(S).

To further investigate what resistance genes might be present

in the 47 maternal clones that were negative for tet(M), tet(O),

tet(W) and tet(S), we performed a series of multiplex PCRs

designed to detect tet(A), tet(B), tet(C), tet(D), tet(E), tet(G), tet(K),

tet(L), tetA(P), tet(Q) and tet(X). This second round of PCR

screening detected tet(X), encoding a tetracycline-inactivating

enzyme, in 17 of the tested clones and none of the other genes

assayed. Overall, our PCR screens were able to account for the

Tcr genes present in 242 (89%) of the Tcr clones from the

mother’s metagenomic library.

Sequencing of all the PCR screening products for tet(M)

detected in the infant library identified a single sequence type,

tet(M)a, based on 505 bp out of the 1920 bp of the tet(M) gene

(Table S1). All 21 tet(W) PCR screening products, 63 of the 204

products for tet(O) and 12 of the 17 tet(X) products from the

maternal library were also sequenced (Table S2). Of the sequenced

tet(O) products, 13 were selected to represent genes assigned to

different families/genera (see later in the Results section) and the

remaining 50 were randomly selected. Based on 609 bp and

499 bp out of the 1920 bp of tet(W) and tet(O) and 446 bp out of

the 1161–1167 bp of tet(X), 2 (tet(W)a, b), 9 (tet(O)a–i) and 1

(tet(X)a) different sequence types were identified (Table S2). The

sequenced PCR screening products, tet(M)a and tet(O)a–i could

discriminate among the known variants of tet(M) and tet(O) (Fig.

S1, S2). tet(W)a and tet(W)b could discriminate between groups

with highly related tet(W) genes sharing 99.9–100% and 99.5–

100% sequence identity, respectively (Fig. S3). tet(X)a could

discriminate among most known variants (Fig. S4) and was

identical to the corresponding fragments from two tet(X) genes

identified in Bacteroides, including the tet(X) gene first detected in

transposon Tn4351/Tn4400 [16].

PCR screening of the infant’s fecal DNA for the presence
of tet(W), tet(O) and tet(X)

Although tet(W), tet(O) and tet(X) were not detected in the

infant’s metagenomic library, these genes could nonetheless have

been present in the infant GIT microbiome, perhaps in non-

abundant species that were not captured in the library. To further

investigate the possibility of maternal transmission of resistances to

the infant, we PCR-screened the total DNA from the infant fecal

sample from which the metagenomic library was constructed.

tet(X) was not detected, but, remarkably, we obtained amplifica-

tions in both the tet(W) and the tet(O) screening PCR’s, albeit the

tet(W) product could only be observed as a very faint band after a

standard number of screening PCR cycles. Both products yielded

clean sequence reads, indicating that single sequence types were

present in the amplicons. These screening products (tet(W)_in-

fant_plug and tet(O)_infant_plug) were shown to be identical to

tet(W)a and tet(O)h detected in the maternal metagenomic library

(Fig. S2 and S3). This strongly indicates mother to infant

transmission of specific tet(W) and tet(O) genes.

Identification of a novel composite Tn916/1545-like
conjugative transposon carrying tet(M), tet(L) and erm(T)
in the infant library

In a sequenced fosmid from the infant library, tet(M) was found

on a Tn916/1545-like transposon, a family of conjugative

transposons that have an extremely broad host range [17,18].

The transposon was highly similar to a putative Tn916-like

transposon identified in Streptococcus gallolyticus subsp. gallolyticus

strain UCN34 (FN597254), isolated from an elderly endocarditis

and colon cancer patient [19], although the infant transposon was

located at the 39end of rpmG (predicted to encode protein L33

from the ribosomal 50S subunit), whereas the transposon from

strain UCN34 was located in a putative peptidoglycan-linked

protein (Fig. 1). Both transposons contained a second Tcr gene,

tet(L), predicted to encode an efflux protein, closely linked to

plasmid recombination/mobilization (pre/mob) and replication (rep)

genes. A DNA fragment containing the Tn916-like orf12 as well as

tet(M), tet(L), pre/mob and most of repB (see Fig. 1) has also recently

been deposited in GenBank (AEEL01000025, contig of 6541 bp)

as part of the draft sequence of a Human Microbiome Project

(HMP) strain characterized as S. bovis ATCC 700338 and isolated

from the vagina. This fragment is 100% identical to the

homologous region in the infant transposon. Additionally, another

DNA fragment from the same S. bovis draft sequence

(AEEL01000027, contig of 35283 bp) contained a region

(1900 bp) with Tn916-like orf5, xis and int that was 100% identical

with a homologous region in the infant transposon (Fig. 1). This

Tn916-like region was located at the 39end of putative transposase

ISSdy1. The infant transposon also contained a 3026 bp sequence

encoding an erythromycin rRNA methylase gene, erm(T),

Tcr in Human Gut Microbiota

PLoS ONE | www.plosone.org 2 June 2011 | Volume 6 | Issue 6 | e21644



surrounded by two putative IS1216 transposase genes, not present

in strain UCN34. This 3026 bp sequence was 100% identical,

except for an additional 30 bp between the erm(T) leader and the

second IS1216 element (overall DNA identity of 99%), to a

corresponding fragment from S. gallolyticus subsp. pasteurianus

NTUH 7421 (AY894138) [20] (Fig. 1). A fragment from S. bovis

ATCC 700338 (AEEL01000026, contig of 1578 bp) containing

erm(T), leader and an IS1216 was 100% identical with the

homologous region in the infant transposon (Fig. 1).

At the genic level, the tet(M) sequence in the infant library insert

was also highly similar to previously identified tet(M) genes from

the composite transposons, CTn6002, identified in Streptococcus

cristus (AY898750, 99.9% DNA identity), and Tn1545, first

identified in Streptococcus pneumoniae BM420 (AM889142, 98.2%

DNA identity) [21,22]. The infant tet(L) gene was shown to share

98.1% DNA identity (1.4% gaps) with tet(L) genes found on pre/

mob- and rep-containing plasmids in Bacillus stearothermophilus

(M63891), Enterococcus faecalis (AF503772) and Staphylococcus aureus

Figure 1. Composite transposon Tn6079 from the infant metagenome compared to corresponding sequences from S. gallolyticus
strains. Part of the sequenced fosmid-insert in the infant Tcr metagenome (GU951538; 1–3095) is compared with the most similar homologous
sequences in current databases, from S. gallolyticus subsp. gallolyticus strain UCN34 (FN597254; minus strand 564709–589025 and 52545–55152), S.
gallolyticus subsp. pasteurianus NTUH7421 (AY894138; minus strand 1–4107) and S. bovis ATCC700338 (AEEL01000024; 112037–123526,
AEEL01000025; 1–6541, AEEL01000026; 1–1578, AEEL01000027; 1–3192, AEEL01000028; 37166–39101). The relationships between sequences are
shown as percentage identity at nucleotide level, calculated with the EMBOSS program Needle (http://www.ebi.ac.uk/Tools/emboss/align/index.
html). Light gray arrows represent ORFs with homology to ORFs from Tn916/Tn1545-like conjugative transposons: orf5–10, orf12–24, tet(M), an
excisionase (xis) and an integrase (int) of Tn6079. Dark gray arrows illustrate ORFs thay may be of plasmid origin: tet(L), pre/mob and rep. Black arrows
illustrate ORFs that appear to be inserted by the two identical IS1216-like elements: first IS1216, erm(T), erm(T) leader sequence and second IS1216.
rmpG and rmpF were predicted to encode L33 and L32 of the 50S ribosomal subunit. The functions of the predicted ORFs, mid12_1, mid12_5 and
mid12_7 are unknown. hisS: histidyl-tRNA synthetase. ISSdy1: putative transposase.
doi:10.1371/journal.pone.0021644.g001
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(FM207105), as well as with chromosomally encoded tet(L) genes

located just downstream of tet(M) and upstream of pre/mob in

Streptococcus suis (FM252032) and S. gallolyticus subsp. gallolyticus

strain UCN34 (Fig. 1).

Thus we have identified a novel composite Tn916/1545-like

conjugative transposon which we registered as Tn6079 in the

Transposon Nomenclature Database from the UCL Eastman

Dental Institute, London (http://www.ucl.ac.uk/eastman/tn/)

[23].

Tcr was conferred exclusively by tet(M) and/or tet(L) from
streptococci in the infant metagenomic library

In the infant Tcr metagenomic library, 97.7% (43/44) of the

fosmids had at least one of their end-reads assigned within bacteria

and at the genus level 72.7% (32/44) of the fosmids were assigned

within Streptococcus (Fig. 2A and Table 1). This was further

supported by a comparison showing 100% DNA identity between

the rpmG and rpmF ORFs from the sequenced infant fosmid,

predicted to encode the 50S ribosomal subunit proteins L33 and

L32, and the corresponding regions from the three Streptococcus

strains in Fig. 1 containing similar MGE fragments (S. gallolyticus

subsp. pasteurianus strain NTUH 7421, S. gallolyticus subsp.

gallolyticus strain UCN34 and S. bovis ATCC 700338).

Out of the 44 infant fosmids, 43 were positive for a PCR

designed to amplify the rpmG and rpmF ORFs region from the

sequenced fosmid (Fig. 1). The reverse primer used in this PCR

was specifically designed to target a sequence just downstream of

the rpmF ORF that was present in the sequenced fosmid and in S.

gallolyticus subsp. pasteurianus strain NTUH 7421 and S. bovis

ATCC 7000338 (AEEL01000028) but not in S. gallolyticus subsp.

gallolyticus strain UCN34. The reverse end-sequence from the only

fosmid that was negative for this PCR (B04-M32-PCC1R, 625 bp)

mapped to a region containing the Tn916-like orf5 in the

sequenced transposon, which showed that this insert ended within

this ORF (see Fig. 1). All 44 fosmids were positive for tet(L) and

erm(T) PCR screenings. Alignment of sequences for 5 randomly

selected PCR products containing rpmG and rpmF showed 100%

identity (over 634 bp) with the sequenced fosmid (see Fig. 1). Thus

the 44 Tcr fosmids from the infant probably represent fragments

from the same S. gallolyticus–like genomic region having different

fragment-specific start and end points.

Tcr was conferred mainly by Firmicutes and Bacteroidetes
in the mother metagenome

In the adult Tcr metagenome, 83.1% (226/272) of the fosmids

had at least one of their end-reads assigned within Bacteria (Fig. 2B

and Table 2). For 9.9% (27/272) of the fosmids neither of the end-

reads had a BLASTX hit even though the majority (17/

27 = 62.9%) of these had a read length .500 bp. At the

Phylum/Order level, fosmids were mainly assigned within

Firmicutes/Clostridales (66.2%/51.1%) compared to a smaller

group of fosmids assigned within Bacteroidetes/Bacteroidales

(8.1%/7.0%). At the Family/Genus level fosmids were assigned

to Lachnospiraceae/Dorea (10.7%/4.4%), Clostridium (3.3%), Eu-

bacterium (0.4%), Ruminococcus (2.9%), Faecalibacterium (0.7%) and

Bacteroides (3.3%) (Fig. 2B and Table 2).

In regards to the Tcr genes assayed in the mother, fosmids

carrying tet(O) and tet(X) were assigned both within Bacteroidales

and Clostridiales or to the group with no BLASTX hits (in this

group both end-reads had lengths .500 bp for 11/18 = 61.1% of

fosmids positive for tet(O) and for 3/3 = 100% of fosmid positive

for tet(X)). Fosmids carrying tet(W) were only assigned within

Clostridiales except for one fosmid having both end-reads assigned

to the group with no BLASTX hits (lengths of forward and reverse

end-reads were 128 and 219 bp, respectively) (Fig. 2B). Remark-

ably, fosmids containing tet(W) sequences type (a) with 100%

identity were assigned within different families of the Clostridiales

(Lachnospiraceae, Ruminococcaceae and Clostridiaceae) (Table

S2). In addition, fosmids harboring identical sequences of types

tet(O)b, tet(O)c or tet(O)d were also assigned within different

families of this order (tet(O)b and tet(O)d within Lachnospiraceae

and Clostridiaceae, tet(O)c within Lachnospiraceae and Rumino-

coccaceae). And most remarkably, fosmids containing tet(O)h and

tet(X)a were assigned within different phyla of bacteria (orders

Bacteroidales and Clostridiales) (Table S2). This may suggest that

specific tet(W) and tet(O) genes have been horizontally transferred

among different members of the Clostridiales and that specific

tet(O) and tet(X) genes have transferred between bacteria belonging

to different phyla.

Discussion

This is a case study based on a functional screen for Tcr fosmid

clones from two previously prepared metagenomic libraries

representing the gut microbiota from an infant and his mother

one month after childbirth [9]. In correspondence with the lower

complexity in the infant gut microbiota compared to the mother,

we detected much fewer Tcr fosmid clones in the infant

metagenome than in the mother metagenome. The Tcr genes

detected in the infant metagenomic library did not represent a

subset of those found in the mother, but rather a completely

distinct set, belonging to a different gene class and encoded by a

different species. However, total fecal DNA from the infant sample

was shown to also contain specific Tcr genes that were present in

the maternal library (tet(W)a and tet(O)h), suggesting that these may

have been transmitted from mother to son. Given that this DNA

was not cloned, we can not determine the organisms that carried

these genes in the infant, but phylogenetic assignment of maternal

fosmids suggests that they may have been present in organisms

belonging to the Clostridiales (and/or to Bacteroides in the case of

tet(O)h).

In the infant library, tet(M) and tet(L) were detected in all the Tcr

fosmids whereas mainly tet(O) but also tet(W) and tet(X) were

detected among the Tcr fosmids from the mother. Although the

approach employed here can only detect Tcr genes that can be

expressed in the E. coli library host, the prevalence of Tcr genes

observed in this study is in general agreement with former culture-

independent studies that analyzed Tcr in Europe directly by PCR

or microarray hybridization [14,15]. These works detected the

tet(M) genotype to be abundant in Finnish infant fecal samples [15]

and tet(O) and tet(W) to be the most prevalent Tcr genes in fecal

samples from adults in six different European countries as detected

by microarray analysis [14]. In contrast, a functional metagenomic

screen of antibiotic resistances in the gut of two adult individuals

carried out in the USA (Boston, MA) recovered numerous tet(W)

sequences but did not identify any tet(O) or tet(X) genes [24]. It is

important to note that the screening approaches in this latter work

and in our own study both require that Tcr can be expressed in the

E. coli library host strains at a level sufficient to confer resistance in

the presence of the antibiotic, although each employs a different

cloning vector. Our fosmid-based study has the potential

disadvantage that resistance genes located on smaller plasmids

(,40 kb) may not be represented in the metagenomic libraries,

but, on the other hand, the larger insert size increases the

likelihood to clone complete resistance genes and enables the

recovery of complex genetic elements. The different results

obtained in the two USA studies could be due to the different

Tcr in Human Gut Microbiota
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Figure 2. Microbial diversity of Tcr fosmid clones in infant (A) and mother (B) metagenomes. Modified MEGAN tree (collapsed at Genus
level) showing summarized number of reads assigned at different taxonomical levels. The size of each node is proportional to the number of reads
assigned to the node. Beneath each node the number and percentage of Tcr genes detected in this study are noted. A. The ‘‘No hits & removed MGE
hits’’ category contains 13 reads with no BLASTX hits (or hits that did not attain the min score/length of 0.15), 2 removed reads which were predicted
to be located in MGE and were initially assigned below order level and 4 reads that mapped to ORFs in the sequenced transposon (Tn6079). B. The
‘‘No hits & removed MGE hits’’ category contains 138 reads with no BLASTX hits (or hits that did not attain the min score/length of 0.15) and 31
removed reads which were predicted to be located in MGE and were initially assigned below order level. The ‘‘Not assigned’’ category contains 2
reads that were assigned by BLASTX hits to uncultured bacteria.
doi:10.1371/journal.pone.0021644.g002
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cloning systems and/or reflect the antibiotic concentrations used

in the functional screenings (10 mg/ml tetracycline in our study

versus 20 mg/ml tetracycline, oxytetracycline or minocycline in

Sommer et al). In addition, functional screenings performed at

even lower tetracycline concentrations might reveal further Tcr

genes that are weakly expressed.

The previous culture-independent analyses that identified Tcr in

human fecal samples did not investigate the bacterial species in

which such resistance was encoded [14,15,24]. In our fosmid-

based study, end-sequencing of fosmid inserts allowed for

taxonomic identification of the resistant organisms present in the

GIT of the two individuals analyzed. All infant Tcr clones

appeared to represent the same Streptococcus genomic region

containing tet(M), tet(L) and erm(T) within a novel composite

Tn916-like transposon, Tn6079, located at the 39end of rpmG. The

nucleotide sequences of both rpmG and its 59 neighbor rpmF were

100% identical to those of S. gallolyticus subsp. pasteurianus strain

NTUH 7421, S. gallolyticus subsp. gallolyticus strain UCN34 and S.

bovis ATCC 700338 (Fig. 1). It is important to note that the

heterogenous group of strains traditionally designated S. bovis has

recently been split by modern taxonomic techniques into the sister

species S. gallolyticus and S. infantarius [25]. Indeed, the 16S rRNA

sequence of S. bovis ATCC 700338 shows 99 to 100% identity with

the S. gallolyticus subsp. pasteurianus and S. gallolyticus subsp.

gallolyticus 16S rRNA sequences currently available in GenBank.

Therefore, the presence of rpmG and rpmF next to the Tn6079

transposon in the sequenced infant fosmid allows for identification

of the Tcr-carrying organism in the infant GIT to species level.

The similarities in sequence and structure between Tn6079 and

corresponding MGE sequences in the S. gallolyticus subsp.

pasteurianus, S. gallolyticus subsp. gallolyticus and S. bovis ATCC

700338 strains (Fig. 1) strongly suggest that the infant’s composite

transposon arose through a process involving intraspecific genetic

exchange.

Regarding the origin of the S. gallolyticus-like strain carrying the

transposon in the infant, this organism was probably not

transmitted from the maternal GIT, since no streptococci were

detected in the mother’s fecal samples, neither in the resistance

screens performed here, nor in the previous random end

sequencing of the library [9], even though this species is a normal

inhabitant in the GIT of humans and animals and can be isolated

in 5–16% of fecal samples from healthy adults [26]. Possible

origins may include transmission from other maternal areas that

are known to often harbor streptococci, such as the skin, the birth

canal and the mouth, from breast milk, where streptococci have

also recently been detected [27], or from other individuals

handling the infant. The 100% identities recovered between the

sequenced fosmid insert and the vaginal strain S. bovis ATCC

700338 (see Fig. 1) suggest that the infant may have acquired this

strain or a closely related one during his passage through the birth

canal.

In the maternal library, microorganisms conferring Tcr

consisted mainly of Firmicutes and Bacteroidetes, which com-

monly represent the two major Phyla of the human GIT [28,29]

and were also the most represented in the fosmid library of the

mother according to random end reads [9]. For 9.9% of the

maternal Tcr fosmids, neither of the end-reads had any BLASTX

hits against the NCBI non-redundant protein database in spite of

being of substantial length (.500 bp). These fosmids likely carry

Tcr genes, mainly tet(O), from microorganisms for which no close

relatives have yet been cultured. tet(O) was the main gene

conferring resistance and was detected both within the Clostri-

diales (Firmicutes) and also the Bacteroidales (Bacteroidetes),

where it had not been reported previously. Similarly, tet(X) was

detected within the Clostridiales and the Bacteroidales and fosmids

carrying identical tet(O) or tet(X) sequences were assigned within

both phyla/orders. tet(W) was present only within Clostridiales, but

also for this order fosmids carrying 100% identical tet(W)

sequences were assigned within three different families (Table

S2). Sequence identity is not expected between genes that have

been diverging as orthologs since the phylogenetic split between

such distantly related bacteria and can therefore be interpreted as

evidence of recent horizontal transfers among these organisms

[30–32]. tet(W) genes and flanking sequences in different isolates of

GIT bacteria from diverse hosts have also been shown to share a

high degree of similarity in previous analyses [33]. However, this is

the first time that exact sequences of an antibiotic resistance gene

are shown to occur in distantly related bacteria naturally

Table 1. Assignment of end-reads and corresponding fosmids from the infant Tcr metagenome at different taxonomical levels.

Level of assignment Assignment details
No. of reads (percentage
of total reads: 88)

No. of fosmids (percentage
of total fosmids: 44)

Kingdom Reads/fosmids of which at least one
end-read was assigned within Bacteria.

69 (78.4%) 43 (97.7%)

Phylum Reads/fosmids of which at least one
end-read was assigned within Firmicutes.

55 (62.5%) 39 (88.6%)

Order Reads/fosmids of which at least one
end-read was assigned within Lactobacillales.

38 (43.2%) 36 (81.8%)

Family Reads/fosmids of which at least one
end-read was assigned within Streptococcaceae.

38 (43.2%) 36 (81.8%)

Genus Reads/fosmids of which at least one
end-read was assigned within Streptococcus.

34 (38.6%) 32 (72.7%)

No hit & removed MGE hits Both forward and reverse fosmid
end-reads in ‘‘No hit & removed MGE hits’’

2 (2.3%) 1 (2.3%)

Both forward and reverse fosmid
end-reads with no blastx hits or hits
below min cut off (0.15 bit score/length).

0 0

Both forward and reverse fosmid
end-reads with no blastx hits.

0 0

doi:10.1371/journal.pone.0021644.t001
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coexisting in the gut of a single person at a particular point in time.

Although their coexistence does not prove that the horizontal

transfers occurred in the GIT of the infant’s mother, alternative

explanations would still necessitate recent transfers, in the

environment or in the GITs of other individuals, followed by

colocalization of the bacteria in this individual’s GIT. These

scenarios would imply a high frequency of these exact sequences in

nature and/or a high likelihood of colocalization of the bacteria

carrying them, and therefore seem less parsimonious than in situ

transfer among bacteria coexisting closely in the dense microbiota

of the adult GIT. In addition to fosmids containing tet(O), tet(W)

and tet(X), there was also a fraction of Tcr maternal fosmids in

which none of the assayed genes were detected (11%, assigned

within Firmicutes or Bacteroidetes), and where Tcr must have

been conferred by rare resistance genes.

This study showed strong indications of transmission of specific

Tcr genes (tet(W)a and tet(O)h) from the mother’s GIT to that of the

infant. However, the third Tcr gene present in the maternal

genomic library, tet(X), was not detected in the infant. tet(W)a and

tet(O)h could be found in the infant’s uncloned fecal DNA but not

in the infant metagenomic library, suggesting that they were only

present in low numbers. This is supported by the fact that PCR

with tet(W) screening primers produced only a very faint band, and

by the detection of a single tet(O) sequence type in the infant out of

the 9 different types detected in the mother (Fig. S2). The scarcity

of maternal Tcr genes in the infant could be partially explained by

the fact that approximately half of the detected Tcr in the mother

library was encoded by clostridia, and previous analyses of random

end sequences from these libraries showed that clostridia were not

abundant in the mother and that they were not transmitted to the

infant [9]. On the other hand, those analyses, as well as

comparisons of fosmid sequences and Bacteroides-specific 16S

PCR libraries, have shown transmission to the infant of the two

Bacteroides phylotypes present in the mother [9]. Given this

Table 2. Assignment of end-reads and corresponding fosmids from the mother Tcr metagenome at different taxonomical levels.

Level of assignment Assignment details
No. of reads (percentage
of total reads: 544)

No. of fosmids (percentage
of total fosmids: 272)

Kingdom Reads/fosmids of which at least one
end-read was assigned within Bacteria.

365 (67.1%) 226 (83.1%)

Phylum Reads/fosmids of which at least one
end-read was assigned within Bacteroidetes.

27 (5.0%) 22 (8.1%)

Reads/fosmids of which at least one
end-read was assigned within Firmicutes.

254 (46.7%) 180 (66.2%)

Order Reads/fosmids of which at least one
end-read was assigned within Bacteroidales.

20 (3.7%) 19 (7.0%)

Reads/fosmids of which at least one
end-read was assigned within Clostridales.

182 (33.4%) 139 (51.1%)

Family Reads/fosmids of which at least one
end-read was assigned within Bacteroidaceae.

9 (1.7%) 9 (3.3%)

Reads/fosmids of which at least one
end-read was assigned within Lachnospiraceae.

35 (6.4%) 29 (10.7%)

Reads/fosmids of which at least one
end-read was assigned within Clostridiaceae.

9 (1.7%) 9 (3.3%)

Reads/fosmids of which at least one
end-read were assigned within Eubacteriaceae.

1 (0.2%) 1 (0.4%)

Reads/fosmids of which at least one end-read
was assigned within Ruminococcaceae.

10 (1.8%) 10 (3.7%)

Genus Reads/fosmids of which at least one end-read
was assigned within Bacteroides.

9 (1.7%) 9 (3.3%)

Reads/fosmids of which at least one end-read
was assigned within Dorea.

16 (2.9%) 12 (4.4%)

Reads/fosmids of which at least one end-read
was assigned within Clostridium.

9 (1.7%) 9 (3.3%)

Reads/fosmids of which at least one end-read
was assigned within Eubacterium.

1 (0.2%) 1 (0.4%)

Reads/fosmids of which at least one end-read
was assigned within Ruminococcus.

8 (1.5%) 8 (2.9%)

Reads/fosmids of which at least one end-read
was assigned within Faecalibacterium.

2 (0.4%) 2 (0.7%)

‘‘No hit & removed MGE hits’’ Both forward and reverse fosmid end-reads
in ‘‘No hit & removed MGE hits’’

92 (16.9%) 46 (16.9%)

Both forward and reverse fosmid end-reads with
no blastx hits or hits below min cut off
(0.15 bit score/length).

76 (13.9%) 38 (13.9%)

Both forward and reverse fosmid end-reads
with no blastx hits.

54 (9.9%) 27 (9.9%)

doi:10.1371/journal.pone.0021644.t002
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established phylotype transmission, the fact that Bacteroides were

amply represented in both the mother and infant libraries and the

presence of tet(O)h and tet(X)a genes in Bacteroides-assigned

maternal fosmids, the lack of Bacteroides-encoded Tcr in the infant’s

library suggests that 1) tet(O)h and/or tet(X)a were present in only a

small fraction of the maternal Bacteroides population and/or that 2)

tet(O)h- and tet(X)a-encoding Bacteroides were selected against

during the transmission process or in the infant gut. In fact, the

first proposition is likely true, as according to previous random end

sequencing analyses, Bacteroides represent nearly 48% of the

maternal fosmid clones [9], and therefore hundreds of Tcr-

encoding fosmids would be expected in a 69,000-clone library if

tet(O)h and/or tet(X)a were present in every Bacteroides cell (based

on a genome size of 6.5 Mb); in contrast, only 3 and 18 end-reads

were assigned to Bacteroidetes among the mother clones

containing tet(O)h and tet(X)a, respectively (Fig. 2B and Table S2).

In summary, for the first time we have characterized the

microbial diversity of Tcr bacteria in human gut samples, by

analyzing GIT fosmid libraries from a mother and her infant. The

maternal and infant libraries contained different resistant taxa

encoding distinct sets of genes, but some of the specific Tcr genes

present in the mother could be recovered from uncloned infant

fecal DNA. This indicates that transmission of Tcr genes from the

mother’s GIT to the infant likely occurred, but that, due to the

complexity of the GIT microbiota, species and genes present in

low numbers were missed in the infant metagenomic library in

spite of its large size (.70,000 clones). The likely role of the human

gut as a privileged environment for HGT has been previously

recognized [8], but here we present the first documented cases of

identical resistance genes that could be directly linked to distantly

related bacteria coexisting in the GIT of the same individual. The

finding of a transposon in the infant carrying tet(M), tet(L) and

erm(T), belonging to a family of broad host-range transposons,

implied a strong potential for the joint transfer of tetracycline and

erythromycin resistance within the infant’s gut. These findings

reinforce the notion that the human GIT is currently a relevant

environment for the spread of antibiotic resistances, even in the

case of young infants that solely ingest maternal milk. Further

analyses involving more mother-infant pairs will be required in

order to establish whether the trends observed in this case study

describe the general relationship between mother and infant

antibiotic resistomes.

Materials and Methods

Sample collection and ethics statement
The infant and mother metagenomic fosmid libraries analyzed

in this study were prepared from fecal samples obtained one

month after the infant’s birth [9]. The infant was a healthy male,

vaginally delivered at full term at the University Medical Center of

the University of Arizona in Tucson (USA). He was exclusively

breast-fed for 5 months. Samples were collected at the University

of Arizona, with informed written consent from the infant’s

parents, using protocols approved by the institutional review

boards of the Lawrence Berkeley National Laboratory and the

University of Arizona.

Metagenomic fosmid libraries and preparation of master
plates with pooled clones

The infant and mother metagenomic fosmid libraries analyzed

consisted of approximately 76000 and 69100 clones, respectively

[9]. Fosmid inserts were approximately 40 kb, thus the infant and

mother libraries represent roughly 3 Gb of DNA each. Clones

from the infant and mother metagenomic fosmid libraries were

pooled resulting in a reduction from 198 and 180 library (384

wells) plates to 14 and 12 (384 wells) master plates, respectively.

Each master plate was constructed by pooling 15 library plates

into one master plate using a Plate Mate Plus from Matrix. Each

well in the master plates contained 30–40 ml LB (Millers) broth

supplied with 7.5% Glycerol and 2 ml from each of the original

library plates.

Phenotypic screening of library master plates for Tcr

All master plates were screened for clones conferring Tcr in

growth plates (384 wells) containing 60 ml LB (Millers) broth with

10 mg/ml tetracycline per well. Growth or no growth was detected

after overnight incubation at 37uC. When growth was detected,

each of the 15 clones from the original fosmid libraries that could

be responsible for the observed resistance phenotype was tested for

Tcr separately as described above.

Genotypic PCR screenings and sequencing
All Tcr clones (44 infant and 272 mother clones) from the two

metagenomic libraries were screened for tet(M), tet(S), tet(O) and

tet(W) by PCR using primer pairs TetM-1D/TetM-2, tetW-1/

tetW-2, TetS-1/TetS-2 and TetO-1/TetO-2 (Table S3) [34]. To

detect other possible resistance genes in the maternal Tcr clones

that were negative for these screening primers, we performed a

series of multiplex PCRs designed to detect tet(A), tet(B), tet(C),

tet(D), tet(E), tet(G), tet(K), tet(L), tetA(P), tet(Q) and tet(X), using

previously reported primer combinations and protocols [35]. In

addition, purified DNA from the infant fecal sample from which

the infant fosmid library was constructed was screened for the Tcr

genes detected in the mother (tet(W), tet(O) and tet(X)).

After characterization of transposon Tn6079, the 44 infant

clones were also screened for tet(L) [36], for a region linking erm(T)

to an IS element (1010 bp) and for a region containing the rpmG

and rpmF ORFs (664 bp) using primer pairs TetL-1/TetL-2,

ermG-2/IS1216V3-1 and ,REO/tRNA_S (Table S3). The latter

PCR primer pair was designed to specifically target the region

starting just downstream of the int gene within Tn6079 and ending

downstream of the rpmF gene.

PCR screening products from both uncloned fecal DNA from

the infant (tet(W) and tet(O)) and from each metagenomic library

(tet(M), tet(W), tet(O) and tet(X)) were sequenced with the PCR

primers by Macrogen, Korea (http://www.macrogen.com/eng/

sequencing/sequence_main.jsp) (see Tables S1 and S2). In

addition, 5 randomly selected PCR screening products containing

the rpmG and rpmF ORFs (B04-M4, B04-M8, B04-M13, B04-M16

and B04-M18) were also sequenced. ClustalX [37] was used to

align sequences within the tet groups to determine different

sequence types (Tables S1 & S2) and to align the rpmG and rpmF

sequences. All together, 13 different Tcr gene sequence types were

deposited in GenBank (accession no. HN150556–HN150563,

HR941095–HR941098 and JN104731). Neighbor Joining (NJ)

trees based on the total gene sequence of selected Tcr genes (57

tet(M), 18 tet(O), 24 tet(W) and 26 tet(X)) from GenBank and NJ

trees based on the sequenced PCR screening products (505 bp,

499 bp, 609 bp and 446 bp, respectively) were constructed in

ClustalX [37]. The trees were compared in order to show to what

degree the sequenced PCR screening products were able to

discriminate among the known variants of tet(M), tet(O), tet(W) and

tet(X).

Sequencing a fosmid-insert carrying tet(M)
One fosmid carrying tet(M) from the infant library (B04-M2) was

sequenced as part of a mix of 12 fosmids pyrosequenced with

Multiple Sequence Identifiers (MIDs) in a Roche GS FLX
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instrument in the Sequencing Technology group of the DOE Joint

Genome Institute (JGI), CA, USA (http://www.jgi.doe.gov/).

Reads belonging to the B04-M2 fosmid were sorted out and

assembled using the Roche 454 Newbler software. Seven contigs

were generated of which five (lengths 23744 bp, 19861 bp,

6382 bp, 1578 bp and 809 bp) were used to assemble the fosmid

sequence. The remaining two contigs (lengths 958 bp and 507 bp)

were highly similar or identical to the E. coli host genome and

therefore were not incorporated into the assembly. Ten sequenc-

ing primers, M1b, M2, M2b, M3, M4, M5, M6, C340F, C01F

and C01R were designed (Table S3) and Sanger reads, produced

by Macrogen, Korea, were used to close the remaining five gaps.

FosmidMAXTM DNA Purification Kit (EPICENTRE, USA) was

used to prepare fosmid DNA template for the Sanger sequencing

reactions. A finished 53499 bp circular fosmid containing a

45066 bp insert was assembled. The insert was annotated by

NCBIs ORF finder, visualized by Vector NTI 10 (Invitrogen) and

deposited in GenBank (accession no. GU951538).

End-Sequencing
Inserts from all Tcr fosmid clones from the infant (44) and adult

(272) library were sequenced at both ends using pEpiFOS forward

(PCC1F) or T7 promoter sequencing (T7) primers and the

pEpiFOS reverse primer (PCC1R) (Table S3). End-sequencing

was performed by the Sanger method using BigDye Terminators

in ABI 3730 sequencers at the JGI. Out of 632 end-reads, 543

high quality (Phred$Q20) sequences [38,39], with a minimum

length of 100 bp were retained after being trimmed by the

program Trim at Greengenes (http://greengenes.lbl.gov) [40].

The remaining 89 end-reads were resequenced by Macrogen,

Korea, and quality checking ($Q20) and trimming were

performed manually in Vector NTI. Vector contaminations were

removed from 16 end-reads prior to Genome Survey Sequences

(GSS) submission to GenBank. All together 632 end-reads with

lengths ranging from 100 bp to 811 bp were deposited in

Genbank (accession no. HN149924–HN150555). Read lengths

ranged from 500 bp to 799 bp for 84.1% and 86.4% of infant and

mother Tcr end-reads, respectively.

Assignment of end-sequences
All together 632 high quality sequences were used as queries to

establish bacterial diversity through BLASTX searches against the

NCBI non-redundant protein database (e-value,e215). End-

sequencing has recently been validated as a reliable method of

determining diversity in a metagenomic sample, as random

sequence reads from fosmid libraries of human fecal samples

provide results very similar to those obtained based on the analysis

of 16S sequences [41]. Each of the two BLASTX results (mother

and infant) were separately parsed and visualized using MEGAN

(version 3.7.4) software (Min Score = 35, Min Score/Length =

0.15, Top Percent = 20, Min Support = 1) [42]. Min Score/

Length = 0.15 was chosen in order to account for the different read

lengths. Because end-sequences located in MGE could easily bias

the bacterial assignment by MEGAN, the BLASTX results were

parsed for reads with hits containing the regular expressions

conjugative, transposon, tn916, integrase, recombinase, excisionase, mobilization

and resistance, and if such reads were assigned below order-level they

were manually removed (Tables S4 & S5). Additionally, 4 infant

end-reads (B04-M19-PCC1F, B04-M20-PCC1F, B04-M29-

PCC1R, B04-M33-PCC1R) that were not found by the parsing

of the BLASTX result but mapped to ORFs in the sequenced

transposon were also removed. The assignment of reads by

MEGAN based only on one BLASTX hit is very sensitive to

misclassified sequences in GenBank. Therefore the taxonomical

classification of BLASTX hit sequences used by MEGAN to assign

reads at species level was reviewed (Tables S6 & S7). Finally, it was

checked that assignments of forward and reverse end-reads from the

same fosmid did not contradict each other.

Supporting Information

Figure S1 NJ tree based on 505 bp corresponding to the
sequenced PCR screening products of tet(M). The tree

includes 57 tet(M) genes from GenBank and sequence type tet(M)a

(bold) found among Tcr clones in the infant metagenomic library.

tet(M)a differs from the 57 tet(M) genes present in GenBank at the

time of screening.

(TIF)

Figure S2 NJ tet(O) trees showing that tet(O)a–i can
discriminate among the known variants of tet(O). A. Tree

based on 499 bp corresponding to the sequenced PCR screening

products of tet(O). tet(O)a–i represent the nine sequence types found

among 63/204 tet(O) fosmids from the maternal metagenomic

library and tet(O)_infant_plug represents the sequence type detected

directly in uncloned DNA from the infant fecal sample. B. Tree

based on the total tet(O) gene (1920 bp) of 18 GenBank sequences

defined as tet(O) by sharing $80% identity at the amino acid level.

However, NC_006134 is a mosaic combination of tet(O) and tet(M).

(TIF)

Figure S3 NJ trees showing to what degree tet(W)a,b can
discriminate among the known variants of tet(W). A. Tree

based on 609 bp corresponding to the sequenced PCR screening

products of tet(W). tet(W)a,b represent the two sequence types found

among 21 tet(W) fosmids from the maternal metagenomic library

and tet(W)_infant_plug represents the sequence type detected

directly in uncloned DNA from the infant fecal sample.

(DQ525023 is not included in group tet(W)b because the tet(W)

screening primers are not specific for this gene). B. Tree based on

the total tet(W) gene (1920 bp) of 24 GenBank sequences defined as

tet(W) by sharing $80% identity at the amino acid level. However,

AY485122, AY485126, AY196920, AY196921, and DQ525023

are different mosaic combinations of tet(W), tet(O) and tet(32) and the

tet(W) screening primers are not specific for these genes.

(TIF)

Figure S4 NJ trees showing to what degree tet(X)a can
discriminate among the known variants of tet(X). A. Tree

based on 447 bp corresponding to the sequenced PCR screening

products of tet(X). tet(X)a represents the single sequence type found

among 12 sequenced tet(X) PCR screening products from the

maternal metagenomic library. B. Tree based on the total tet(X)

gene (1167 bp) of 26 GenBank sequences of tet(X).

(TIF)

Table S1 Sequence type of 43 tet(M) genes detected in
the infant metagenome.

(DOCX)

Table S2 Sequence types among 21 tet(W) and 63 out of
a total of 204 tet(O) genes detected in the mother
metagenome.

(DOCX)

Table S3 Primers used in this study.

(DOCX)

Table S4 End-reads (17) from the infant Tcr metagen-
ome for which BLASTX hits contained the regular
expressions conjugative, transposon, tn916, integrase,
recombinase, excisionase, mobilization and resistance
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and therefore were predicted to be located in MGE (2
end-reads in bold letters were assigned below order
level and therefore removed from their initial assign-
ments to the group with no hits in figure 2A).
(DOCX)

Table S5 End-reads (141) from the mother Tcr meta-
genome for which BLASTX hits contained the regular
expressions conjugative, transposon, tn916, integrase,
recombinase, excisionase, mobilization and resistance
and therefore were predicted to be located in MGE (31
end-reads in bold letters were assigned below order
level and therefore removed from their initial assign-
ments to the group with no hits in figure 2B).
(DOCX)

Table S6 Review of taxonomical classification of
BLASTX hit sequences used by MEGAN to assign reads
at species level in the infant Tcr metagenome.
(DOCX)

Table S7 Review of taxonomical classification of
BLASTX hit sequences used by MEGAN to assign reads
at species level in the mother Tcr metagenome.

(DOCX)
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