Introduction

As more than 50 % of the crude oil is expected to remain trapped in many mature oil reservoirs, tertiary oil recovery techniques must be introduced to keep an efficient oil recovery. This is the so-called Enhanced Oil Recovery (EOR). Surfactant flooding is considered as a potential EOR technique, which basically is the injection of appropriate chemicals (surfactants) into the reservoir to lower the interfacial tension (IFT) to ultra low [1].

Surfactants help mobilizing the trapped crude oil leading to an increase in oil recovery. The aim in this project is to study surfactant systems phase behavior at elevated pressures as there are no consensus whether pressure effects the formation of the desired three phase area. Several complex issues follow along, such as sensitivity to salinity, adsorption into the reservoir rock, etc.

Phase Behavior

- **Emulsions**: Formed in mixtures of liquids as droplets either as macroscopic or microscopic size. In surfactant flooding either water/oil or oil/water microemulsions are required, as the microemulsion reduces the IFT between oil and water.

 Experimental Work

- **Surfactant system tested**: Sodium Dodecyl Sulphate/1-Butanol/Heptane/Water in Sodium Chloride [2].

- **High pressure equipment**:
 - DBR JEFRI PVT cell
 - Allowing phase volume measurements through a window.
 - At a wide range of pressures and temperatures.

Future Work

Further experimental study of the conditions for change in number of phases, thus presence of an microemulsion phase.

References

Poster presentation at European Symposium on Applied Thermodynamics – June 24th to 27th 2011 – St. Petersburg - Russia