Development of new catalysts for water electrolysis

Hernandez-Fernandez, Patricia; Paoli, Elisa Antares; Frydendal, Rasmus; Stephens, Ifan; Rossmeisl, Jan; Chorkendorff, Ib

Publication date: 2013

Development of new catalysts for water electrolysis

Patricia Hernández-Fernández¹, Elisa A. Paoli¹, Rasmus Frydenhal¹, Ifan E.L. Stephens¹, Jan Rossmeisl², Ib Chorkendorff¹

¹Center for Individual Nanoparticle Functionality,
²Center for Atomic-scale Materials Design Technical University of Denmark

Symposium
Water electrolysis and hydrogen as part of the future Renewable Energy System
Outline

✓ Motivation
✓ Theoretical trends in oxygen evolution activity
✓ Corrosion protection mechanism
✓ Films preparation- Sputter deposition
✓ Nanoparticles- Cluster source
✓ Summary

Water electrolysis and hydrogen as part of the future Renewable Energy System
Motivation

Renewable sources → Electrical energy

Fuel Cells ↔ Electrolysers

Chemical energy H_2 ↔ $\frac{1}{2} \text{O}_2 + \text{H}_2$

PEM
Motivation

Limitations of the efficiency of a PEM electrolyser

\[E_{\text{cell}} = E_0 + \eta_{\text{anode}} + \eta_{\text{cathode}} + \text{IR} \]

Theoretical trends in oxygen evolution activity

Ideal catalyst

\[\Delta G [\text{eV}] \]

- \(2\text{H}_2\text{O(l)} \)
- \(\text{HO}^*+\text{H}_2\text{O(l)}+\text{e}^-+\text{H}^+ \)
- \(\text{O}^*+\text{H}_2\text{O(l)}+2(\text{e}^-+\text{H}^+) \)
- \(\text{HOO}^*+3(\text{e}^-+\text{H}^+) \)
- \(\text{O}_2(\text{g})+4(\text{e}^-+\text{H}^+) \)

\[\text{U}=0 \text{ V} \]

1.23 eV
Theoretical trends in oxygen evolution activity

\[\text{RuO}_2 \text{ (110)} \]
Theoretical trends in oxygen evolution activity

Composition of the earth crust

O, Si, Al, Fe, Ca, Na, Mg, K, Ti \rightarrow 98.8%

- Ru \rightarrow 1E-7 %
- Ir \rightarrow 3E-8 %
- Mn \rightarrow 0.095%
Theoretical trends in oxygen evolution activity

\[
\begin{align*}
H_2O + * & \rightarrow HO^* + H^+ + e^- \quad \Delta G_1 \\
HO^* & \rightarrow O^* + H^+ + e^- \quad \Delta G_2 \\
O^* + H_2O & \rightarrow HOO^* + H^+ + e^- \quad \Delta G_3 \\
HOO^* & \rightarrow O_2 + H^+ + e^- \quad \Delta G_4
\end{align*}
\]

Descriptor of the oxygen evolving activity: \(\Delta G_{O^*} - \Delta G_{HO^*} \)

Scaling relations:

\[
\Delta E_{HOO} = \Delta E_{HO} + 3.2 \text{ eV}
\]

Volcano plots

- Perovskites, rutiles, anatase, Mn\(_x\)O\(_y\), Co\(_3\)O\(_4\), NiO
- Too strong
- Too weak

\[
\Delta G_{O^*} - \Delta G_{HO^*}
\]
Theoretical trends in oxygen evolution activity

Volcano plots for oxides

Garcia-Mota and col, Chem Cat Chem 3 (2011) 1159
Theoretical trends in oxygen evolution activity

Manganese

MnO₂ → Stable from 1.1 to 1.7V at pH1

η₉ = 0.61 V
η_{RuO₂} → 0.37 V
η_{IrO₂} → 0.57 V

How to protect MnOx from corrosion

Mann I., Thesis, 2010, DTU Physics
Protection from corrosion

↑ activity ($\eta = 0.42\text{V @10mA/cm}^2$)

↓ corrosion resistance (1.4 V at pH1)

RuO$_2$ + IrO$_2$

↓ activity ($\eta = 0.58\text{V @10mA/cm}^2$)

↑ corrosion resistance (2.1 V at pH1)

Mann I., Thesis, 2010, DTU Physics
Protection from corrosion

IrO$_2$ + 2H$_2$O \leftrightarrow IrO$_4$$^{2-}$ + 4H$^+$ + 4e$^-$ U_0 = 2.057V
RuO$_2$ + 3H$_2$O \leftrightarrow H$_2$RuO$_4$ + 4H$^+$ + 4e$^-$ U_0 = 1.4V

Ir segregates to the kink sites

Ir should be placed on the kink sites to protect Ru from corrosion

Mann, I. Thesis, 2011, DTU Physics
Film preparation - Sputter deposition

• **MnO\textsubscript{x}-1**
 - 90 nm Mn at 5 mTorr Ar and 480C
 - 100 W
 - Annealed in air at 480 C (Furnace)

• **MnO\textsubscript{x}-2**
 - 1.5 nm Ti
 - 90 nm MnO\textsubscript{x} at 3 mTorr Ar/O\textsubscript{2} (10sccm) and 150C
 - 100 W
 - Annealed in air at 480 C (Furnace)
Film preparation - Sputter deposition

OER activity in N₂ sat. 0.1M KOH
1600 rpm 5mV/s

1.8V_{RHE} @ 10 mA/cm²
1.73 V_{RHE} @ 5 mA/cm²

MnOx-1

1.66 V_{RHE} @ 5 mA/cm²

Table 1. Oxygen Electrode Activities

<table>
<thead>
<tr>
<th>Catalyst Material</th>
<th>ORR: E(V) at (l = -3) mA·cm⁻²</th>
<th>OER: E(V) at (l = 10) mA·cm⁻²</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 wt % Ir/C</td>
<td>0.69</td>
<td>1.61</td>
</tr>
<tr>
<td>20 wt % Ru/C</td>
<td>0.61</td>
<td>1.62</td>
</tr>
<tr>
<td>20 wt % Pt/C</td>
<td>0.86</td>
<td>2.02 (1.88)²</td>
</tr>
<tr>
<td>Mn oxide</td>
<td>0.73</td>
<td>1.77</td>
</tr>
</tbody>
</table>

Jaramillo et al., JACS 132 (2010) 13612
Film preparation - Sputter deposition

MnOx-1 SEM MnOx electrodeposited

Corrosion protection → Acidic media

Jaramillo et al, JACS 132 (2010) 13612
Nanoparticles- Cluster source

- Size varies from 1 atom to 10nm
- Size is function on the power and gas flow

STM • TPD • ATM
SEM • LEED
ISS • TEM
Nanoparticles- Cluster source

OER activity in \(N_2 \) sat. 0.1M HClO\(_4\)
1600 rpm 20mV/s

\[j \text{ (mA/cm}^2\text{)} \]
\[U(V) \text{ vs RHE} \]

Ru NP 4nm

0.07 \(\mu g_{\text{Ru}} \)
Nanoparticles- Cluster source

Ru NP 4nm \rightarrow 1344 mA/mg$_{Ru}$ @1.48V
Ru NP 4nm \rightarrow 1344 A/g$_{Ru}$ @1.48V

Corrosion protection
Summary

• RuO$_2$ is the most active catalysts for OER, but we need to protect it from corrosion \rightarrow Ir on the kink sites

• MnO$_2$ is a good candidate to replace RuO$_2$ because is active and abundant

• The catalytic activity of the MnO$_2$ films prepared by sputter deposition are comparable with the state of the art (alkaline)

• The mass activity of the Ru NP prepared in the cluster source is one order of magnitude higher than the state of the art
Development of new catalysts for water electrolysis

Patricia Hernández-Fernández1, Elisa A. Paoli1, Rasmus Frydendal1, Ifan E.L. Stephens1, Jan Rossmeisl2, Ib Chorkendorff1

1Center for Individual Nanoparticle Functionality,
2Center for Atomic-scale Materials Design Technical University of Denmark

Symposium
Water electrolysis and hydrogen as part of the future Renewable Energy System
Theoretical trends in oxygen evolution activity

RuO$_2$ vs ideal catalyst

\[\Delta G [eV] \]

- Optimal
- RuO$_2$

\[\begin{align*}
S_0 + 2H_2O(l) &\quad \rightarrow \quad S_1 \\
S_1 &\quad \rightarrow \quad S_2 \\
S_2 &\quad \rightarrow \quad S_3 \\
S_3 &\quad \rightarrow \quad S_0 + O_2(g)
\end{align*} \]

\[+ e^- + H^+ \]

\[+2(e^- + H^+) \]

\[+3(e^- + H^+) \]

\[+4(e^- + H^+) \]

U = 0 V
Theoretical trends in oxygen evolution activity

Ideal catalyst

\[\Delta G \text{ [eV]} \]

- \(2H_2O(l) \)
- \(HO^*+H_2O(l) + e^-+H^+ \)
- \(O^*+H_2O(l) + 2(e^-+H^+) \)
- \(HOO^*+3(e^-+H^+) \)
- \(O_2(g) + 4(e^-+H^+) \)

\(U=0 \text{ V} \)
Theoretical trends in oxygen evolution activity

RuO$_2$ (110)
Theoretical trends in oxygen evolution activity

Free energy diagram:

\[\text{HO}^* \rightarrow \text{O}^* + \text{H}^+ + e^- \quad \Delta G_2 \]

\[\text{O}^* + \text{H}_2\text{O} \rightarrow \text{HOO}^* + \text{H}^+ + e^- \quad \Delta G_3 \]

\[\Delta G_3 - \Delta G_2 \sim 3 \text{ eV} \rightarrow \text{O}^* \text{ position} \]

\[\eta_{\text{RuO}_2} \rightarrow 0.37 \text{ V} \]

\[\eta_{\text{IrO}_2} \rightarrow 0.57 \text{ V} \]

\[\eta = 0.61 \text{ V} \]

Rossmeisl and col, Chem Cat Chem 3 (2011) 1159