Fabrication and Characterizations of Materials and Components for Intermediate Temperature Fuel Cells and Water Electrolysers

Jensen, Annemette Hindhede; Prag, Carsten Brorson; Li, Qingfeng; Christensen, Erik; Bjerrum, Niels J.

Publication date: 2013

Fabrication and characterizations of materials and components for intermediate temperature fuel cells and water electrolysers

A. H. Jensen, C. B. Prag, Q. Li, E. Christensen, N. J. Bjerrum
DTU Energy Conversion
Technical University of Denmark, Building 207,
DK 2800 Lyngby, Denmark

Introduction
The worldwide development of fuel cells and electrolysers has so far almost exclusively addressed either the low temperature window (20-200 °C) or the high temperature window (600-1000 °C). This work concerns the development of key materials and components of a new generation of fuel cells and electrolysers for operation in the intermediate temperature range from 200 to 400 °C.

The intermediate temperature interval is of importance for the use of renewable fuels. Furthermore electrode kinetics is significantly enhanced compared to when operating at low temperature. Thus non-noble metal catalysts might be used.

One of the key materials in the fuel cell and electrolyser systems is the electrolyte. Proton conducting materials such as cesium hydrogen phosphates, zirconium hydrogen phosphates and tin pyrophosphates have been investigated by others and have shown interesting potential. [1-3]

Experimental
A new type of fuel cell and electrolyser suited for the temperature interval is in the design phase.
So far fuel cell and electrolysis tests have been performed for technical demonstration using phosphates as electrolytes.

Acknowledgement
Funding of this work is acknowledged from the Danish National Research Foundation (the Danish-Chinese Center for Intermediate Temperature Proton Conducting systems (PROCON)).

The Danish Council for Strategic Research, Danish Agency for Science Technology and Innovation (Medium Temperature Water Electrolysers (MEDLYS)).

References
200051006