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Abstract:  The speech-based envelope power spectrum model (sEPSM) presented by Jørgensen 
and Dau [(2011). J. Acoust. Soc. Am. 130, 1475-1487] estimates the envelope signal-to-noise 
ratio (SNRenv) after modulation-frequency selective processing. This approach accurately 
predicts the speech intelligibility for normal-hearing listeners in conditions with additive 
stationary noise, reverberation, and nonlinear processing with spectral subtraction. The latter 
condition represents a case in which the standardized speech intelligibility index and the speech 
transmission index fail. However, the sEPSM is limited to conditions with stationary interferers 
due to the long-term estimation of the envelope power and cannot account for the well-known 
phenomenon of speech masking release. Here, a short-term version of the sEPSM is described 
[Jørgensen and Dau, 2012, in preparation], which estimates the SNRenv in short temporal 
segments. Predictions obtained with the short-term sEPSM are compared to data from Kjems et al. 
[(2009). J. Acoust. Soc. Am. 126 (3), 1415-1426] where speech is mixed with four different 
interferers, including speech-shaped noise, bottle noise, car noise, and a highly non-stationary 
cafe noise. The model accounts well for the differences in intelligibility observed for the 
stationary and non-stationary interferers, demonstrating further that the SNRenv is crucial for 
speech comprehension. 
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1. Introduction 
 

The masking of speech is greatly influenced by the spectral and temporal characteristics of the masker. In 
an early study, Miller and Licklider (1950) demonstrated that the amount of speech masking caused by a 
stationary noise decreases if the noise is periodically interrupted, while keeping the long-term spectrum 
and the signal-to-noise ratio (SNR) the same. The corresponding reduction of the speech reception 
threshold (SRT) for the speech presented in interrupted noise, relative to the threshold in stationary noise, 
was denoted as speech masking release (MR). The MR was attributed to the listener's ability to take 
advantage of the temporal dips of the masker with a favorable short-term SNR.  

Classical speech intelligibility prediction metrics like the articulation index (AI, ANSI-1969) and, its 
successor, the speech intelligibility index (SII; ANSI-1997) fail to account for the data, since they are 
based on the frequency contents of the speech and the noise only. The speech transmission index (STI, 
IEC-60268) includes information about the temporal modulation energy of the target signal, which 
typically decreases when stationary noise or reverberation is added. However, the STI does not 
distinguish between masker and target fluctuations and thus cannot account for the MR phenomenon.  
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A common characteristic of the classical models is that their predictions are based on the long-term 
(several seconds) estimates of speech and noise and thus lack fine temporal resolution. To overcome this 
limitation, Rhebergen and Versfeld (2005) proposed a short-time version of the SII, denoted as the 
extended SII (ESII). The main element of this metric is the determination of the SII in a number of short 
temporal windows covering the duration of a given speech token. While this approach was shown to 
account for various aspects of the MR effect, substantial discrepancies between predictions and data were 
observed (e.g., when speech was used as the masker). Furthermore, as with the original SII and STI, the 
ESII fails in conditions with nonlinearly processed noisy speech, such as after amplitude compression 
(Rhebergen et al., 2009) and noise reduction (Smeds et al., 2011). Thus, the short-term SNR, as calculated 
in the ESII-metric, does not seem to represent an appropriate indicator of speech intelligibility in adverse 
conditions.  

Recently, it was shown that the change in SRT caused by nonlinear processing of noisy speech could be 
accounted for using a metric based on the envelope power signal-to-noise ratio (SNRenv; Jørgensen and 
Dau, 2011). The key step in this approach is the determination of the SNRenv from the envelopes of noisy 
speech and noise alone at the output of a modulation-frequency selective process. The SNRenv is computed 
as part of the speech-based envelope power spectrum model (sEPSM; Jørgensen and Dau, 2011), which 
was shown to account for the intelligibility of different speech materials in stationary noise. In addition, 
the sEPSM could account for the shift of the SRT caused by applying additional reverberation and 
processing by spectral subtraction. However, the sEPSM presented in Jørgensen and Dau (2011), is 
limited to conditions with stationary interferers since the SNRenv is computed from the long-term 
integration of the envelope power. In order to extend the framework to conditions with fluctuating 
interferers, a short-term version is presented here, where the SNRenv is estimated in short temporal 
windows. 

The hypothesis is that the SNRenv is a general metric of the intelligibility of speech in both steady and 
fluctuating noise. Following this hypothesis, it was expected that the SNRenv increases during the periods 
where the masker amplitude is low. This was tested here by comparing model predictions to data obtained 
using two different speech materials and six different interferers with widely different spectral and 
temporal characteristics. 
 

2. Model description 
 
The processing structure of the short-term sEPSM is illustrated in Fig. 1A. The first stage is a bandpass 
filterbank comprised of 22 gammatone filters with ERB bandwidth and one-third octave spacing, 
covering the range from 63 Hz to 8 kHz. An absolute sensitivity threshold is included such that individual 
gammatone-filters are included, only if the level of the stimulus at the output is above the absolute hearing 
threshold for normally hearing listeners. The temporal envelope of each output is extracted via the 
Hilbert-transform and then low-pass filtered with a cut-off frequency of 150 Hz using a first-order 
Butterworth filter. The resulting envelope is analyzed by a modulation bandpass filterbank, which 
consists of eight second-order bandpass filters with octave spacing covering the range from 2 - 256 Hz, in 
parallel with a third-order lowpass filter with a cutoff frequency of 1-Hz.  

The temporal output of each modulation filter is divided into short segments using rectangular 
windows with no overlap. The durations of the windows are specific for each channel, and set equal to the 
inverse of the center-frequency of a given bandpass filter (or the cut-off frequency in the case of the 1-Hz 
low-pass filter). For example, the window duration in the 4-Hz modulation channel is 256 ms. For each 
segment, the AC-coupled envelope power (variance) of the noisy speech (PS+N) and the noise alone (PN) 
are calculated and normalized with the corresponding DC-power. The envelope power of a segment is 
assumed to have a minimum value of -30 dB (rel. to DC), which reflects the minimum human sensitivity 
to amplitude modulation (Ewert and Dau, 2000). The SNRenv of a segment is estimated from the envelope 
power as:   
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For each modulation channel, the resulting segmental SNRenv-values are averaged across all windows 
covering the duration of a given speech token. The SNRenv-values are then combined across modulation 
filters and across gammatone filters using the “integration model”  from Green and Swets (1988). The 
overall SNRenv is converted to the probability of correctly recognizing the speech item using the concept 
of a statistically “ideal observer”. The ideal-observer stage contains two parameters that reflect the 
response set size and the redundancy of a given speech material. 

 

 
Figure 1 – (A) Block-diagram of the sEPSM processing structure. (B) Scheme for predicting speech 

intelligibility using the sEPSM. (C) SNRenv as a function of the input SNR (top panel) and the corresponding 
probability of a correct response (bottom panel). 

 
The scheme for predicting intelligibility of noisy speech is shown in Fig. 1B. Noisy speech and noise 

alone (assumed to be available separately) are used as inputs to the sEPSM. Here, the noise alone 
represents an estimate of the intrinsic noise within the noisy speech. These inputs are analyzed separately 
until the SNRenv-stage. Figure 1C illustrates the internal representation of the SNRenv as a function of the 
input SNR (top panel) and the corresponding probability of recognizing the speech input (bottom panel). 
The latter can be regarded as the model’s psychometric function. The predicted SRT is defined here as the 
50%-point of this psychometric function. 
 

3. Method 
 
Model predictions are compared to two sets of data obtained for normal-hearing (NH) listeners. The first 
data set is from Kjems et al. (2009) and consists of sentences from the Danish version of the Hagerman 
sentence test, denoted as DANTALE II (Wagener et al., 2003). The sentences are mixed with four 
different interferers: a stationary speech-shaped noise (SSN), a conversation between two people sitting 
in a Café (Cafe), a car-cabin noise (Car), and the sound of bottles on a conveyer belt (Bottle). The 
long-term frequency spectra of the maskers are shown in Fig. 2 (Left). While the Café-noise and the SSN 
have identical long-term spectra, they have different temporal characteristics, since the Café-noise is real 
speech. Otherwise the frequency spectra of the maskers are very different. 

The second data set was obtained using the Danish Conversational Language Understanding 
Evaluation (CLUE) test (Nielsen and Dau, 2009), which is similar to the HINT-test. SRTs were measured 
using three maskers: a stationary speech-shaped noise (SSN), a fluctuating noise constructed by fully 
modulating the SSN with an 8-Hz sinusoid (8-Hz mod), and the non-semantic International Speech Test 
Signal (ISTS, Holube et al., 2010). The SRTs were obtained for five NH listeners using the adaptive 
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procedure described in Jørgensen and Dau (2011).  
Model predictions were obtained as the average across 100 and 150 sentences from the DANTALE 

II-material and the CLUE-material, respectively. For both speech materials, the model parameters were 
calibrated to a close match between the predictions and the data for the SSN-conditions. These parameters 
were then used for all masker-conditions for a given speech material.  
   

4. Results 
 

    
Figure 2 – Left: Long-term third-octave frequency spectra of the maskers. Middle: psychometric functions 

(solid lines) estimated from measured data by Kjems et al. (2009) and corresponding predictions by 
the short-term sEPSM (connected symbols) for the four noise conditions. Predictions from the 

long-term sEPSM with the Café-noise are also shown labeled on the graph. Right: Measured and 
predicted SRTs as a function of the noise type. 

 
The middle panel of Figure 2 shows the psychometric functions (solid lines) measured by Kjems et al. 

(2009). The corresponding sEPSM predictions are shown as closed symbols connected by straight lines. 
In addition, predictions from the long-term sEPSM for the Café-noise are shown with a label on the graph. 
There is a good match between the predicted and the measured for all noise types. However, the predicted 
slopes are generally slightly shallower. The predictions from the long-term sEPSM clearly fail in the case 
of the Cafe noise. The model parameters were calibrated only to the SSN-condition. Thus, since the model 
parameters are fixed, the changes in the predicted intelligibility across the noise-types result only from the 
differences in the stimuli.  

The right panel of Figure 2 shows the measured (open squares) and the predicted (filled squares) SRTs 
for the four interferers. The lowest SRT for the listeners is obtained with the Car-noise. This can be 
explained by the frequency content of this noise, which does not mask the speech as effectively as the SSN 
or the Bottle-noise. The SRT for the Café-noise is slightly lower than for the SSN, even though these two 
maskers have the same long-term spectrum; this reflects a small MR-effect. A model such as the SII, 
which only considers spectral information, would not be able to account for this difference. In contrast, 
the short-term sEPSM accounts well for the SRTs obtained with all four interferers.  
 

    
Figure 3 – Average SRTs for five NH subjects (open squares) with error-bars indicating plus/minus one standard 

deviation and sEPSM predictions (closed squares). 
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Figure 3 shows the measured (open squares) and predicted (filled squares) SRTs obtained with the 
CLUE-sentences. In the measured data, the SRTs for the two fluctuating noises were found at lower SNRs 
than the SSN. The lowest SRT was observed for the speech-like ISTS, consistent with the data by Festen 
and Plomp (1990). The SRT for the 8-Hz mod-noise is about 6 dB lower than the SRT for the SSN, 
reflecting a clear MR-effect. Since the long-term spectrum is the same for both maskers, the reduced SRT 
can be only be explained by the temporal fluctuations of the 8-Hz mod-noise. The lower SRT for the ISTS 
compared to the SSN is also most likely due to the temporal fluctuations. However, the long-term spectra 
of these two noise types were not matched, which means that differences in spectral masking may also 
play a role. The sEPSM-predictions are in agreement with the data, although, the match is not as good as 
that found with the DANTALE II-material.    
 

5. Model analysis 
 

  
Figure 4 – Left : Temporal waveform (top panel) of a sentence mixed with a stationary noise (blue) together with 
the noise alone (green) and the corresponding SNRenv measured in the 64-Hz channel (bottom panel). Right: The 

same situation as the left panel but with speech mixed with a modulated noise.  
 
To illustrate how the prediction of speech MR is reflected in the internal representation of the sEPSM, 

the top-left panel of Figure 4 shows an example of a sentence-plus-SSN waveform (blue) overlaid by the 
noise alone (green), both used as inputs to the sEPSM. The top-right panel of Figure 4 shows the same 
sentence, but here the noise is amplitude modulated at 8 Hz. In both cases, the long-term SNR is -5 dB. 
The bottom panels of Figure 4 show the corresponding short-term SNRenv-values, measured at the output 
of the 64-Hz modulation filter and averaged across all the audio filters. A comparison of the left and right 
panels reveals that the SNRenv is increased during the dips of the modulated noise and decreased during 
the peaks. Overall, this leads to an increase of the time-averaged SNRenv across the whole sentence, which 
in turn leads to an increase of the predicted intelligibility. Hence, the MR effect in the model is caused by 
an increase of the short-term SNRenv during the dips of the fluctuating noise. 

 

6. Summary and discussion  
 
Jørgensen and Dau (2011) showed that the sEPSM could account for the change of the SRTs caused by 

applying reverberation or spectral subtraction to noisy speech. However, the sEPSM, as presented in 
Jørgensen and Dau (2011), has shortcomings in conditions with fluctuating maskers, since predictions are 
based on the long-term envelope power. A solution was presented here in the form of a short-term version 
of the sEPSM. This model accounts well for the SRTs reported by Kjems et al. (2009), measured in four 
noise-conditions with maskers having very different spectral and temporal characteristics. Neither the STI 
nor the SII perform as well in these tasks (Christiansen et al., 2010). Furthermore, the short-term sEPSM 
predictions were in agreement with the SRTs obtained with the CLUE-sentences in stationary noise, 8-Hz 
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modulated noise, and for a competitive talker represented by the ISTS material. In contrast, the short-term 
ESII fails in similar conditions (Rhebergen and Versfeld, 2005).  

The ESII and other short-term prediction metrics predict the MR-effect from the short-term SNR in the 
audio-domain. In these models, the MR-effect results from an increased audio-domain SNR in the dips of 
the masker. In contrast, the MR predicted by the sEPSM is caused by an increase of the SNRenv in the dips 
of the masker.  

Even though other short-term prediction metrics, such as the ESII, can predict some aspects in the 
MR-data, none of them can account for the effects of nonlinear processing with spectral subtraction. This 
indicates that the SNR in the audio-domain does not appropriately capture the relevant information in the 
stimuli underlying the intelligibility of speech in noise. The sEPSM-framework can account for the 
MR-effect; the key difference between the sEPSM and other intelligibility models is the determination of 
the SNR in the envelope domain, after frequency selective processing. This supports the hypothesis that 
the SNRenv may capture relevant features underlying the intelligibility of noisy speech. 
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