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Preface

This thesis was prepared at Informatics and Mathematical Malelling,
Technical University of Denmark in ful llment of the requir ements for
acquiring the Ph.D. degree in engineering.

The thesis deals with the assimilation of data in hydrodynaric models of
continental shelf seas. The main contribution of to this eld is the devel-

opment of cost-e ective Kalman lIter based data assimilation schemes
applicable to operational settings. Further main contributions are the

interpretaion of the schemes in terms of regularisation anda proposed
framework for the combination of error correction modelling and Kalman

Iters.

The thesis consists of a summary report and a collection of sen research
papers written during the period 2000{2003, and elsewhere yblished or
submitted for publication.

Lyngby, 16 January 2004

Jacob Viborg Tornfeldt S rensen
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Summary

Data assimilation in hydrodynamic models of con-
tinental shelf seas

This thesis consists of seven research papers published arbsnitted for

publication in the period 2002-2004 together with a summaryreport.

The thesis mainly deals with data assimilation of tide gaugedata in

two- and three-dimensional hydrodynamic models of the corihental shelf
seas. Assimilation of sea surface temperature and parametestimation

in hydrodynamic models are also considered. The main focusds been
on the development of robust and e cient techniques applicable in real
operational settings.

The applied assimilation techniques all use a Kalman Iter approach.
They consist of a stochastic state propagation step using a umerical
hydrodynamic model and an update step based on a best linearnii-
ased estimator when new measurements are available. The nmachal-
lenge is to construct a stochastic model of the high dimensiwal ocean
state that provides su cient skill for a proper update to be c alculated.
Such a stochastic model requires model and measurement ersoto be
described, which is a di cult task independent of the computational re-
sources at hand. Further, the need for e cient solutions necssitates
further assumptions to be imposed that maintain a skillful and robust
state estimate.

The assimilation schemes used in this work are primarily basd on two
ensemble based schemes, the Ensemble Kalman Filter and theeRuced

iX



X Summary

Rank Square Root Kalman Filter. In order to investigate the applicabil-
ity of these and derived schemes, the sensitivity to Iter parameters, non-
linearity and bias is examined in arti cial tests. Approxim ate schemes,
which are theoretically presented as using regularised Kahan gains, are
introduced and successfully applied in arti cial as well real case scenar-
ios. Particularly, distant dependent and slowly time varying or constant
Kalman gains are shown to possess good hindcast and forecasiill in
the Inner Danish Waters.

The framework for combining data assimilation and o -line error correc-
tion techniques is discussed and presented. Early resultshew a poten-
tial for such an approach, but a more elaborate investigatio is needed to
further develop the idea. Finally, work has been initiated an parameter
estimation in two-dimensional hydrodynamic models with an approach
that avoids the development of an adjoint code by using an algrithmic

structure that favours application of o ce-grids as they ar e envisaged to
look in the near future.

The main contribution is the development of a number of reguhrisation
techniques for tide gauge assimilation. Further, the techiques used to
assess the validity of underlying assumptions (weak nondliearity, un-
biasedness or error model skill) provide a valuable tool-bw for investi-
gating a dynamical system prior to potentially selecting an assimilation
approach. The combined data assimilation error correctionframework
may be an important contribution to future improvements of f orecast
skill for a number of systems. The work done on parameter esthation
is expected to mature into a future standard procedure for malel cali-
bration for models with rapidly evolving complex codes.
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Data assimilering i hydrodynamiske modeller af
farvande a kontinentalsoklen

N rv rende afhandling besr af syv forskningsartikler,  der er publiceret
eller indgivet til publicering i perioden 2002-2004, og en ammenfatning.
Afhandlingen besk ftiger sig hovedsageligt med data assinilering af data
fra vandstandsnalere i to- og tredimensionale hydrodynamiske modeller
af farvande p kontinentalsoklen. Endvidere behandles asimilering af
havets over adetemperatur og parameter estimation i hydrodynamiske
modeller. Fokus har v ret p udviklingen af robuste og tids -e ektive

metoder, der kan anvendes i virkelige, operationelle prolmstillinger.

De anvendte assimileringsteknikker er alle Kalman Filter kaseret. De
besr af et skridt som propagerer den stokastiske tilstand ved brug af
en numerisk hydrodynamisk model og et opdateringsskridt de baserer
sig p den bedste line re biasfrie estimator ar nye mali  nger er tilg n-
gelige. Hovedudfordringen er at konstruere en stokastisk mdel af havets
tilstand, der er god nok til at en ordentlig opdatering kan udregnes.
For at lave en adan stokastisk model skal man have en god bdgivelse
af model og malefejl, hvilket er svrt uanset hvor store com puterres-
sourcer, der er til adighed. For at leve op til kravet om ope rationel
anvendelighed, er det endvidere n dvendigt at lave yderligere antagelser,
der samtidig er underlagt krav om robusthed.

Assimileringsskemaerne, der bruges i n rv rende afhandling, er hoved-
sageligt baseret p de to ensemble-baserede teknikker, esemble Kalman

Xi
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Itret og reduced rank square root Kalman lItret. For at unde rsge
anvendeligheden af disse og a edte skemaer unders ges dserélsomhed
over for Iter parametre, ikke-linearitet og bias i en r kke kunstige test-
ops tninger. Tiln rmede skemaer pr senteres som regulari seringer af
Kalman gain matricen, og demonstreres succesfuldt i kunsgie avel som
virkelige scenarier. En afstandsafh ngig Kalman gain med langsom eller
ingen tidsvariation vises at have gode hindcast og forecasevner i de
indre danske farvande.

Et framework, der kombinerer data assimilering og o -line fejlkorrek-
tionsteknikker, pr senteres og diskuteres. Forel bige resultater viser et
potentiale for en adan angrebsvinkel, men en mere fyldesy rende un-
ders gelse mangler for at kunne f rdigudvikle iceen. Desu den er arbejdet
med parameter estimation i todimensionale hydrodynamiskemodeller
pbegyndt. Der anvendes ter en teknik, som undgr den tid skr vende

udvikling af en adjoint kode ved at bruge en algoritmisk struktur, som
tilgodeser anvendelse af morgendagens o ce-grid | sninge

Hovedresultatet er udviklingen af en r kke regularisering steknikker til
assimilering af vandstandsralere. Teknikkerne, som er bugt til at teste
de underliggende antagelser (svag ikke-linearitet, biasihed og korrekt
fejlmodel), giver en v rdifuld v rkt jskasse til at unders  ge dynamiske
systemer fr der potentielt skal vIges en assimileringsmetode. Det
kombinerede data assimilering og fejlkorrektion framewok vil bidrage
til fremtidige forbedringer af forudsigelsesevnen for et atal dynamiske
systemer. Arbejdet med paramter estimation forventes i frentiden at
modne til en standard procedure for model kalibrering i modder med
hurtigt udviklende komplekse koder.
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Chapter 1

Introduction

This thesis deals with data assimilation in hydrodynamic madels of con-
tinental shelfs and coastal seas. Ocean scientists and cdakengineers
are continuously faced with the problem of knowing what the gate of
the ocean was in the past, is now and will be tomorrow. Simultae-
ously, there is a need for better understanding why the ocearbehaves
in certain ways, i.e. what processes are dominating at varios locations,
times and spatial scales. The search for answers to these @i®ns has
been the foundation of most great scienti ¢ ndings in the past centuries.
However, with the advance of hydroinformatics and with the vast com-
putational resources available today, the scene is set foryrsuing new
techniques for lling out the rather large number of remaining gaps in
our capability of describing and understanding the seas. D& assimila-
tion is a rather general term for incorporating observations in a physical
and theoretical description of a system. Pending challengeto be solved
are related security, industrial and environmental issuessuch as climate
monitoring and prediction, risk assessment and design.

1.1 Coastal seas

The physical system under consideration consists of hydroghamic ow
and a range of other processes acting within bays, estuariesoastal re-

3



4 Introduction

gions or shelf seas. The body of water evolves according to ¢hlaws of
internal dynamics and its interaction with the atmosphere and the solid

earth. The system is very complex, accommodating nonlinearturbulent

mass and momentum uxes and further a rich density structure, sedi-
ment transports as well as chemical and biological processe Thus, a
great number of interactions and physical properties desdbe and deter-
mine the state of the system. The important spatial scales rage from
micrometers for molecular dissipation to a basin scale seasal cycle with

practically every intermediate scale playing a role for oneprocess or an-
other. Likewise the temporal scales vary from seconds to niégnnia and
above.

Many physical phenomena are described by the hydrodynamicrad ther-
modynamic equations alone. Among these are tidal waves, wihinduced
coastal upwelling, frontal dynamics and eddy formation. Thus, as a
simplest approach the treatment can be restricted to the hydodynamic
and thermodynamic variables. Hence, no chemical processesiological
processes or sediment transports are described and the thapdynamic,
momentum and mass distributions alone constitute the systen.

1.2 Numerical Modelling

With the advance of the computer technology and discrete mathemat-
ics, mechanistic numerical modelling became a more and moratractive
approach to solving hydrodynamic problems in the marine enironment.
The derived techniques build on known rst principles for u id dynam-
ics, which provide the basic mathematical formulation of a boundary
value problem. A tractable solution to the problem is typically found
by applying discretisation techniques. This has lead to thegeneration
of a large number of numerical models distributed throughou the world
with each their set of approximations. Any such approach reaires the
user to specify initial and boundary conditions along with calibration
parameters. The two models applied in the present study are NKE 21
and MIKE 3 developed at DHI Water & Environment, (DHI 2002) an d
(DHI 2001). MIKE 21 solves the depth integrated mass and moma-
tum conservation equations while MIKE 3 provides a solutionto the full
3-dimensional problem.
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A numerical modelling approach thus has its starting point in well es-
tablished theoretical knowledge. This allows for a physicly consistent
analysis of the results. However, a great number of approximations must
be introduced in order to obtain a tractable solution. Obselvations are
generally needed for model initialisation, speci cation d boundary con-
ditions as well as model calibration and performance assesgnt.

1.3 Observations

A large number of measurements with a quite diverse nature @st. These
range from spatial images of sea surface temperature (SST)ith a tem-

poral sparsity to tide gauge station, which possess a high taporal res-
olution, but are sparsely distributed in space. Other exampes of ob-
servations are salt and temperature pro les from cruises ad HF radar
observation of surface velocities. In this study comparisn with and as-
similation of tide gauge water level observations are priméily reported.

Both in the satellite earth observation community and among in situ
measurement providers, in increasing e ord is being direatd towards real
time delivery. The integrated service chain from sensor to asimilation
and customer service in terms of a forecast is being adressedhich
directs attention to the real-time aspects of data assimildion techniques.

1.4 Real-time operations

One nal aim of the work undertaken in this thesis is to provide data
assimilation solutions, which can be applied in operationhmodels used
to provide value adding forecasts. First of all this requires robustness.
The solution can not be marginally stable and it must handle nissing
data properly. For research purposes you need one good modein. In an

operational setting you can not have one failed model run. Ral-time op-
erations further impose increased constraints on executio times. Often
existing systems are already optimised to Il out these congaints and

hence very e cient assimilation schemes are called for, if he resolution
is to be maintained. Finally, the constraints on the physicd consistency
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of the state estimates are increased. Failure to provide a Hanced esti-
mate will result in generation of waves, which may deteriorde a forecast,
where no measurements are available to correct the errors froduced.

Simultaneously, real-time operations provide strong consaints on com-
putational e ciency. For dedicated cost-e cient commerci al solutions,
high performance computational facilities are typically not a ordable
and medium size computational resources must be employed,hich sets
even higher demands for computational e ciency.

1.5 Outline of thesis

Chapter A will provide an introduction to the methodology. T he system
description and state estimation are treated rather cursoy, but present

the very basic elements. For a more elaborate discussion, ¢hincluded

papers must be consulted. Sectiod 213 states the main chafiges in
ocean state estimation and reviews techniques developed tddress each
problem. Chapter[3 gives a condensed overview of the paperadluded.

These should be regarded as summaries of the undertaken apmaches
and results. Chapter[4 discusses the results in the contextfahe ocean
state estimation challenges of SectiolizZl3 and draws condions on the
work.



Chapter 2

Methodology

A fundamental formulation of the ocean state and parameter stimation

problem is to cast it in an optimisation framework. This amounts to

de ning a function, J, which somehow expresses a t or mis t between a
modelled state estimate of physical properties and obsenrtens thereof.

E.g. J could express a mean square error or a log-likelihood funah.

Traditionally, there are two di erent approaches to solvin g this problem.

One is based on the variational principle and has its roots incontrol

theory. This approach is followed in SectionCZZH, dealing wh parameter

estimation. An alternative method with its roots in estimat ion theory

provides a sequential solution to the problem. In a linear Gaissian frame-
work this approach reduces to the Kalman Iter, (Kalman 1960). Gen-

eralisations of the Kalman lter for solving the state estimation problem

are introduced and discussed in Sections2.2 arld2.3.

2.1 System description

The rst step when building a mathematical framework for estimating
the state of the ocean system, is to adapt the representatiorin which
the ocean is described and observed. This is discussed fughin Section
[Z3. Having decided on a state representation, the state atitme t; can
be written as a vector x!(t;) and the time propagation is expressed by

7



8 Methodology

the system equation:
x{ti) = M(x'(ti 1)suti )+ (2.1)

where u(t;) is the external forcing and the system error is denoted ;.
The state vector, x!(t;), and model operatorM may in the general setting
be augmented.

The observationsy? may be expressed in terms of the selected state
representation in the measurement equation:

yP = hi(x'(t) + (2.2)

where ; is the measurement error andh; is the measurement operator.

2.2 State estimation

Equations 27 and[Z2 provide a common reference frame for éhtwo
independent sources of information, model and measuremest If it is
assumed that the statistical properties of the two errors, ; and ;, are
known, a number of estimation techniques can theoreticallype employed
to estimate the state of the ocean. In the present work the BesLinear
Unbiased Estimator (BLUE) is adapted. This estimator only r equires
knowledge of the rst and second order moments of the stochdi vari-
ablesx!(t;) and y?°. Let the mean of these bex' (t;) and H;x' (t;) and
their error covariances Pif and R; respectively. H; is a linearised oper-
ator of h;. The BLUE estimate of the state x2(tj) can then be written,

x3(t) = x" () + Ki(y? Hix"(t) (2.3)
The Kalman gain matrix, K, is given by,
Ki=PIHT(HPTHT + R;) * (2.4)

The error covariance, P2, of x2(t;) will always be less than or equal to
P{ and can be calculated as,

Pa=Pl KiHP! (2.5)

The BLUE estimate constitute the Kalman Iter, (Kalman 1960 ), in
combination with a linear model operator for propagating the rst and
second moments of state in between measurement updates.



Chapter 2 9

2.3 Challenges in ocean state estimation

The main challenges in state estimation of the marine envirament are
embedded in the following characteristics of the problem:

Great dimensionality of the typical setting
Nonlinearity of the system
Non-Gaussianity of the state

Di erent representations in which the continuous reality i s observed
and modelled

Complexity of errors in numerical models of the ocean

Heterogeneity of data sets

2.3.1 Great dimensionality

The size of the state space can easily reaah= 107 in a numerical model.
If for no other reason, this renders the classical Kalman lter approach
intractable because of the costly error covariance propagan (2n times
a normal model propagation) and storage (2 as compared ton). Luckily
the e ective degrees of freedom in an ocean model error coviance, ns ,
is much smaller than n and hence it can be described e ciently in a
much smaller subspace of siza n¢ with a corresponding reduction in
propagation time to ns times a normal model propagation.

Much of the work on data assimilation has been centered arouwh nding

the best approximations that yields a tractable solution to the estima-
tion problem. Early attempts assumed stationarity of the model error
covariance and solved the resulting equations o -line to povide a steady
Kalman gain matrix, (Heemink 1986). Subsequently, methodsexplicitly

exploiting the low degrees of freedom in a time varying setiig was in-
troduced. The Ensemble Kalman Filter (EnKF), (Evensen 1994, uses a
Markov Chain Monte Carlo technique, while the Reduced Rank )uare
Root Kalman lter (RRSQRT), (Verlaan & Heemink 1997), uses a sin-
gular value decomposition to determine the directions in sate space with
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the largest components of uncertainty. Both these techniqes are based
on de ning explicit error sources in the model. The Singular Evolutive
Extended Kalman Iter (SEEK), (Pham, Verron & Roubaud 1997) , sim-
ilarly provides a low order model error covariance represdation, but
derives the model error space from model dynamics space.

A number of extensions and re nements to these original fornulations
have been developed, but the foundation for reducing the g dimen-
sionality is well established by them. For water level foreasting the
Steady approximation used in (Canizares, Madsen, Jensen &ested
2001) is particularly important, because is brings down thecomputa-
tional demands to a level, where assimilation can be appliecbpera-
tionally. All schemes described this far are based on a reded rank ap-
proximation of the covariance matrix. Other approaches appoximate the
model operator. (Dee 1991) used a simpli ed dynamical modeimposing
geostrophical balance in the atmosphere, while (Cohn & Todhg 1996)
employed a singular value decomposition of the model operat for the
error covariance propagation and (Fukumori & Malanotte-Rizzoli 1995)
used a coarse grid for the purpose.

2.3.2 Nonlinearity

The original Kalman lter is derived for a linear model operator. The

ocean contains many nonlinear processes and thus violatebis premise
of the lter. The Extended Kalman Iter, (Kalman & Bucy 1961) , was
introduced as a generalisation to weakly non-linear system. Among
other, the RRSQRT lter relies on this extended formalism. T he ap-
proximation has been shown to be valid for coastal areas by (Mdsen &
Canizares 1999) as well as (Canizares 1999). (Verlaan & Elmink 2001)
provides a more general test of the validity of the scheme. Th EnKF
handles even strong nonlinearities and thus non-Gaussiatyi in its state

propagation. However, neither of the schemes, which all endpy the
BLUE estimator, handles the derived non-Gaussianity of notinear model
propagation in the estimation part of the lter.
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2.3.3 Non-Gaussianity

The optimality of the BLUE estimator relies on Gaussianity and un-
biasedness of model variables as well as measurements, whis gener-
ally violated. All though the EnKF approximately propagate s the non-
Gaussian model error distribution, even this Iter assumes Gaussianity
in the BLUE estimator. In (Reichle, Entekhabi & McLaughlin 2 002) a
general mismatch between actual model errors and the standd devia-
tion predicted by an EnKF is accredited to the non-Gaussianty of the
state, which leads to an under estimation of the uncertainty In order
to handle non-Gaussianity we must look further into the application of
higher order approximations of Bayesian state updating. In(Anderson
& Anderson 1999) a fully nonlinear Iter was used, but the approach is
not feasible for large scale application.

2.3.4 Dierent representations in which the continuous
reality is observed and modelled

Mostly, the model spatial and temporal discretisation de nes the pro-
jection of the state representation. A projection on to this particular
subspace is implicit in a numerical model anyhow. Observatins rep-
resent dierent projections of reality. E.g. a tide gauge observation
may be a 10 minute temporal average of the water level in an idated
100cm? position, while the model projection provides the average eer a
2km  2km square with two minute time intervals. This mismatch poses
the question: Is it a model error that it does not resolve 108m? area of
the tide gauge or is it a measurement representation error tht it does
not provide a measurement of the Rm 2km box? The answer is that it
depends on the projection selected for the state represertian. Hence,
this choice is crucial for any model and measurement error deription.
A parallel of this discussion can be drawn to the dynamical Iter inherent
in a numerical model.

(Fukumori & Malanotte-Rizzoli 1995) discusses the measumment rep-
resentation error implicitly assuming that all estimation is done in the
model space. However, they provide a simplistic represent@n error
description by simply increasing the variance of the white neasurement
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noise.

2.3.5 Complexity of errors

Representation error is by no means the only error source, whbh is given
a simplistic description. Model formulation, discretisation and param-
eterisation as well as parameter misspeci cation, round-o errors and
uncertain boundary conditions all contribute to model errors. Measure-
ments errors spans a wide range of characteristics dependjron the vari-
able measured and sensor type used. Hence, both model and nsege-
ment errors may typically be biased and non-Gaussian, whileghey are
described by unbiased and Gaussian processes in the ItersHowever,
the generally successful application of Kalman Iter basedalgorithms
shows that they have some skill in assessing the rst order chracteris-
tics of errors, but this must not elude the fact that the error descriptions
still are erroneous.

A general model and measurement noise model can be formulateas
an augmented state description and their parameters estimid either
in a variational setting or by the Iter directly. (Dee 1995) devised a
technique for estimating error model parameters, but it requires large
amounts of simultaneous data for estimating only a few pararmaters.

2.3.6 Heterogeneous data sets

In many demonstrations of data assimilation, a fairly good cata cover-
age is used or focus is put on the area where measurements araitable.
A data assimilation scheme generally corrects results clesto measure-
ments, since it always basically drags the model solution tevards the
measurement. However, if erroneous error descriptions antence error
correlations are used, then the information from the measuement may
easily be used to provide erroneous updates in areas where other mea-
surements constrain the solution. A derived e ect of this isthe observed
deterioration of water level predictions on intermediate time prediction
horizons as reported by (Gerritsen, de Vries & Philippart 195) and
(Vested, Nielsen, Jensen & Kristensen 1995). Thus, sparseath sets
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increases the demand for good error modelling.

Another kind of data heterogeneity is their multivariate na ture and di er-
ent error characteristics. Large data sets require extense computational
resources if treated classically and correlated errors ragres the inversion
of the innovation error covariance for calculating the Kalman gain. In
(Haugen & Evensen 2002) a singular value decomposition (SVPDof the
model error covariance is used to limit the assimilation to asubspace of
the measurement space spanned by the largest model uncertdy.

2.4 Parameter estimation

Parameter estimation can in principle be solved by the sequatial state
estimation techniques discussed in Sectioi 2.2 by augmeniy the state
vector with the parameters and the system equation with a comistency
model for the parameters. However, the use of adjoint techmjues in
a variational setting has been shown to provide a successfudnd e -
cient solution to the problem, (Heemink, Mouthaan, Roest, \ollebregt,
Robaczewska & Verlaan 2002). In any case attention needs todpaid
to the cost function. (Evensen, Dee & Schmter 1998) show tle need for
including prior knowledge about parameter values along wih the uncer-
tainty of initial conditions, boundary conditions and model propagation
in the cost function, for a well-posed problem to be formulatd.

Variational approaches discussed above apply a gradient Is&d optimisa-
tion to nd the parameters that minimize the cost function, J. Solving
the adjoint equations of the numerical model is a very e cient technique
for nding the gradient of J with respect to the parameters. However,
the main drawback of this approach is the demand for an adjoih code.
Compilers for automatically generating adjoint codes havebeen devel-
oped, but have not yet been applied in any coastal ocean modeaind thus
adjoint code generation remains costly in terms of man-powe This can
be circumvented by calculating gradients of the cost functon by nite
di erencing. This is a much more computationally demanding algorithm
but it is easy to implement. Further, it is highly parallisab le and hence
with the advance of grid computing may become an attractive dterna-
tive to algorithms based on solving the adjoint equations fo medium size
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model applications.



Chapter 3

Overview of included
papers

The papers included in this thesis are concerned with data asmilation of
tide gauge and Sea Surface Temperature (SST) measurements mumer-
ical models of the marine system. They cover aspects ranginfjom water
level hindcasting in 2D and 3D hydrodynamic models to water ével and
SST forecasting and parameter estimation in a 2D hydrodynant model.
Throughout the papers, proposed techniques are either tesd in simple
idealistic settings or in the North Sea and Baltic Sea system

Paper[Al deals with the sensitivity to Iter parameters of the three data
assimilation schemes: The EnKF, the RRSQRT lIter and the Steady
Kalman Iter. The test bed is an idealised bay with a combined tidal

and wind driven circulation. The general Iter performance is good when
matching the lter error description to the actual errors in troduced. The
sensitivity to the the Iter parameters is investigated. Th e lter per-

formance is demonstrated to be robust with respect to low to noder-
ate parameter variations. For more typical non-Gaussian erors such as
phase errors in the open boundary water level variation or nsspeci ed
wind eld, the fairly high temporal and spatial correlation s characteriz-
ing these errors must be assumed in order to obtain good penfmance.
The uncertainty estimate of the lIter is quite sensitive to m isspeci ed
parameters. Hence, more care should be taken, when interptiag uncer-

15
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tainty estimates than the actual mean state estimates.

The basic framework underlying assimilation schemes baseash the BLUE
is discussed in PapefB, showing the equivalence between thdaximum
a Posteriori (MAP) estimator and the BLUE for Gaussian distr ibutions.
Di erent formulations of the state space reduction allowing an error co-
variance propagation are then used to derive the the EnKF, tre RRSQRT
Iter and the central EnKF combining a rst order approximat ion of the
mean state propagation with an ensemble estimate of the errocovari-
ance. These formulations are all based on assumptions of Gasianity
and unbiasedness. Further, the RRSQRT and the central EnKF &-
sumes weak non-linearity at worst. Even the EnKF optimally assumes
non-linearity, since non-linearity creates non-Gaussiaity, which violates
the BLUE assumption. In order to validate the underlying assumptions,
measures of non-linearity, non-Gaussianity and bias are fonulated based
on the EnKF and the central EnKF. The measures are demonstraed in
an idealised set-up in a semi-enclosed bay with a strong windriven ow.
All measures are shown to provide a realistic picture of thai respective
properties. Finally, sparse data coverage and approximatenodel error
description is shown to deteriorate results far from measugments.

In Paperda dynamical regularisation is suggested for the asmilation of
tide gauge data in a three-dimensional model. It is based onhte assump-
tion that the error covariance structure is predominantly barotropic.
Time averaged gains are derived from a barotropic model withan EnKF
using 100 ensemble members. These are subsequently used lie three-
dimensional model with a Steady Kalman Iter. The Iter modi cations
of the state are distributed to the three-dimensional velodty pro le by
assuming a vertically homogeneous shift of the velocity prde. The
scheme is tested in the idealised bay also used in PapEl A. Thiallows a
comparison to a full three dimensional EnKF. The good perfomance of
the elaborate EnKF in three dimensions is matched by the dynanically
regularised scheme.

The regularisation technique thus demonstrated is appliedn a model of
the North Sea and Baltic Sea system in PapeCD. This paper presnts the
operational Water Forecast modelling system considered ahthe water
level and SST data chosen for assimilation in a pre-operatioal test. The
SST assimilation builds on the work of (Annan & Hargreaves 199).
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The dynamically regularised assimilation technique showsggood skill in
the quite densely observed Inner Danish waters. The SST re#is shows
a fair nowcast improvement in the mixed layer and in a 10-daysforecast
of the surface temperature.

The successful application of regularisation is followed p upon in Pa-
per[H Here, the scheme introduced in PapeEX is cast in a moreem-
eral regularisation framework including also a smoothed Kéman gain
evolution, the Steady Kalman lter and distance regularisation, where
prior physically based assumptions about model error covaances can
be accounted for. Only tide gauge data is considered and therpposed
regularisations techniques are demonstrated in a pre-opational set-up
of the Water Forecast model. Throughout all tests the dynamic regu-
larisation is applied. The Steady Kalman lter is shown to perform as
good as a low order EnKF using a smoothed Kalman gain evolutio. The
introduction of distance regularisation signi cantly inc reases the perfor-
mance in data sparse regions which once again points to the iportance
of proper error covariance description when data sparsity $ part of the
setting.

In Paper Hthe water level forecast skill of the Steady Kalman Iter with
and without the distance regularisation introduced in Paper El and a
newly introduced hybrid error correction Kalman Itering a pproach is
investigated. The theoretical discussion focuses on the dirent repre-
sentations of the real ocean in the model and measurements.hE colored
error that almost inevitably results leads to the formulati on of a general
system equation with augmented model and measurement erromodels.
The properties of the innovation series is examined and it ishown that it
will be colored when model and measurement errors are not weknown.
The information thus present in the innovation series is usé to train
an error correction model and hence the innovation can be facast even
after the time of forecast and assimilated by the Steady Kalnan lter.
The forecast skill of a barotropic model of the Water Forecas region is
assessed using both the Steady lter for initialisation of the model state
and using the hybrid error correction Kalman Iter approach. The hy-
brid method was demonstrated to relatively improve results when the
Steady lter forecast skill is only moderate. Distance regdarisation was
successfully included to vastly improve the forecast skillof the Steady
initialisation. This however, left a smaller error to correct by the hybrid
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scheme and hence no signi cant improvement was observed irhis case.

Paper [3 reviews the work done on parameter estimation in hydody-
namic models and concludes in this respect that variationaloptimisa-
tion using adjoints provides the most e cient solution to th e problem
at present. It does however require an adjoint code and thiss costly to
develop despite improving automatic adjoint compilers. A more costly
nite di erence technique is used instead of the adjoint as part of of the
optimisation problem. The approach may become a realistic diture al-
ternative to using the adjoint in models of moderate size, beause of the
advance of grid computing and the highly parallisable strudure of the
algorithm. Using this technique, wind and bottom drag friction param-
eters are estimated in a barotropic model of the Water Forecat region.
Further, a weak constraint optimisation is approximated by employing
the Steady Kalman Iter in the model, thus accounting for mod el errors.
This increases the parameter estimation skill.



Chapter 4

Conclusion and Discussion

The main issue in this thesis has been state estimation in cdmental

shelf and coastal seas and parameter estimation in the numaal mod-
els thereof. The background and a brief methodology pointiig out the
main challenges of the scienti c discipline have been proded in this
summary report. The research consists of seven papers, whigresent
a detailed methodology, discuss the nature of the state and @rame-
ter estimation problem and suggest operational solutions & some of the
challenges posed.

The assimilation schemes used throughout this thesis buildn the EnKF

and the RRSQRT schemes, which have solved the challenge oféhgreat
dimensionality to a level, where data assimilation in largemodelling sys-
tem now has become feasible. The steady approximation prosles an ef-
cient algorithm, but its applicability can not be expected to be general
and it still requires computational resources capable of geerating the

time-invariant gains by employing a more elaborate assimition scheme
such as EnKF or RRSQRT.

In situations with moderate variability of the Kalman gain, the smooth-
ing factor introduced in Paper [Bl can be used together with the EnKF
to apply the right level of time variability and thus keep the ensemble
size signi cantly lower than required by the original EnKF. The paper
demonstrates good assimilation performance by the steady Iter using

19
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Kalman gain derived from an EnKF with ensemble size ten. Thisis to
be compared to an ensemble size of 100 for the classic EnKF arkd for
the RRSQRT lIter (with similar execution times as the EnKF wi th rank
100). This means that data assimilation can be used in a new aks of
applications, that previously had too high computational demands.

The dynamic regularisation introduced in Paper [ and testedin the
North Sea and Baltic Sea in PaperdD and_E provides an alternave
way of making the assimilation schemes more e cient. A Kalman gain
calculated by a barotropic model combined with a homogeneosi vertical
pro le for the extrapolation to the three-dimensional velocity eld is
demonstrated to be su cient for obtaining good performance matching
that of applying the EnKF in the three-dimensional model dir ectly. On
existing computational resources the execution of MIKE 3 ughg EnKF
with an ensemble size of 100 in the North Sea and Baltic Sea sefp
considered was no where near feasible, but the dynamical ratarisation
approach made assimilation a realistic option nevertheles

The treatment of the nonlinearity of the model operator has been a major
issue in deriving the EnKF and the RRSQRT and their subsequehcom-
parison. Hence, the schemes used in the thesis have the lessdearned
last decade embedded. PapdrlB provides a discussion of namdiarity and
measures of the degree of non-linearity are suggested. Thesan be used
to validate the underlying assumptions of a particular schene in given
settings and for available observations. This can guide theselection of
the assimilation scheme in a subsequent application. Nonliearity has
important implications for the distribution in the stochas tic state vec-
tor. This is usually assumed to be Gaussian, but with a nonlirear model
operator, the distributions will inevitably be non-Gaussian. Paper[B also
formulates two measures of non-Gaussianity, which can be @asl to assess
the proper statistical interpretation of the state estimat es obtained.

A rather detailed discussion of the di erent lters through which model
and observations see reality is provided in PapelF. The isselis most of-
ten not considered in data assimilation applications apartfrom in ating

the measurement error by assuming representation error to & white and
Gaussian. This simple approach is also followed in the apptid PaperdDD,
[Eland[B However, the implications of taking this issue propely into ac-

count is that measurement errors are most likely not white. They depend
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on each other contrary to what is assumed for tide gauge measements,
and even on the system state. The importance of these dependeies
and hence the error introduced by not taking them into account must be
assessed in the future.

The simple description of representation error might be important, but

is easily hidden behind the general problem of describing nael errors.
Paper[H presents a general framework for describing model ahmeasure-
ment errors in a setting where numerical model and measurenm errors
are non-Gaussian. Presently, we are still some way from hamg devel-
oped techniques to estimate model error, and hence it makessse to
investigate the lter performance with misspeci ed model and measure-
ment error descriptions. Paper[A takes on such a sensitivitystudy and
concludes that lter performance actually is pretty robust with respect
to Iter parameter variations in the given ideal test consid ered. This is
encouraging for the application of the proposed tide gauge ssimilation
techniques in real cases. However, this does not ensure lowrsitivity in

other dynamical regimes and for all data types and variables

Another important conclusion of Paper[Alis that the Iter pre dicted stan-
dard deviation is sensitive to parameter variability. In any case, any Iter
application should accompanied by a test for whiteness of th innovation
sequence or an analysis thereof. Papdr]F derives an expressifor the
autocorrelation of the innovation time series for misspeced measure-
ment and model error covariances. The innovation sequenceilivonly be

white for correctly estimated error covariances. PapefF futher suggests
to use the information about the actual error covariances catained in

the innovation to improve the error modelling and hence the brecast
skill. Much work is still required to draw rm conclusions on the validity

of such an approach, but initial results are encouraging.

Paper B introduces a bias measure for indicating erroneousrer mod-
elling and provides a simple example where a false error stature as-
sumption gives a signi cant bias in data sparse regions. In he real
application of Paper[H, this problem is evident in the runs without dis-
tance regularisation. The hindcast results are severely deriorated due
to an inadequate model error description. In data sparse aras the model
uncertainty is big and hence even a very small correlation vth model
estimates of a distant measurement can give a signi cant Kaian gain
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in data sparse regions. The approximate model error descrijpn is un-
fortunately too poor for these correlations to be trusted ard no local
measurements are available to constrain the solution.

This ideally calls for improved error modelling, but the alternative of
using a regularisation approach is taken in PapeEE. The disance regu-
larisation is introduced to remedy for the erroneous behawur described
above, and does so very e ectively. The forecast skill when raploying
the distance regularisation is also signi cantly improved in Paper[H The
regularisation approach to the ltering is general and must be expected
to have a large potential in sequential ltering.

A variational parameter estimation framework was demonstiated in Pa-
per[Q with the perspective of ease of implementation and e ciency in a
grid computing environment. The test of the approach in the North Sea
and Baltic Sea system showed the need for including the bathyetry
as a control parameter, use a longer time period, to decoupl¢he op-
timisation for tidal and wind driven circulation and to empl oy a more
e cient optimisation algorithm. The Steady Kalman Iter wa s used in
one optimisation approach to approximate a weak constraintformula-
tion for the model state. Despite the aws of the test case, ths weak
constraint approach showed a more robust optimisation thanthe strong
constraint with no data assimilation. The work done is somevhat pre-
liminary, but now the stage is set for exploring the technique in parallel
with the emergence of grid computing facilities.

Future research will extend the ideas presented to other da types such
as salinity and temperature pro les, SST data, ecosystem peameters and
HF radar velocity measurements. This will restate the chalenges pre-
sented and the ideas on dimensionality reduction, error degiption, regu-

larisation and forecasting skill improvement in a nonlinea, non-Gaussian
setting presented in this thesis will be further pursued. Techniques for
adaptive model error estimation should be developed and fuher ex-

ploration of the full potential of regularisation techniqu es undertaken.
A parallel implementation of the EnKF will also be an objective. Fi-

nally, application of regularisation techniques in parameer estimation is

a topic of interest for making optimisation techniques that do not require
an adjoint code more feasible through integration with the advance of
grid computing facilities.
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Parameter sensitivity of three Kalman Iter schemes for
the assimilation of tide gauge data in coastal and shelf sea
models

Jacob V. Tornfeldt S rensen®2, Henrik Madsent, and Henrik Madser?

Abstract

In applications of data assimilation algorithms, a number o
poorly known parameters usually needs to be speci ed. Hence
the documented success of data assimilation methodologiesust
rely on a moderate sensitivity to these parameters. This stadly
presents three well known Kalman Iter approaches for the asim-
ilation of tidal gauge data in a three dimensional hydrodynamic
modelling system. It undertakes a sensitivity analysis of ley pa-
rameters in the schemes for a setup in an idealised bay. The
sensitivity of the resulting RMS error is shown to be low to mad-
erate. Hence the schemes are robust within an acceptable rge
and their application even with misspeci ed parameters is © be
encouraged in this perspective. However, the predicted urer-
tainty of the assimilation results are sensitive to the parameters
and hence must be applied with care.

1 Introduction

Data assimilation methodologies are becoming increasinglapplied in the
ocean modelling community. The methods employed can be cat@rised
according to two basic approaches: Sequential estimationral variational
optimisation. In this paper only the former approach is consdered al-
though most of the conclusions drawn on the error structure érmulation
carries over to the latter.

The standard approach and hence terminology of sequentialstimation
technigues is that of the Kalman lter, (Kalman 1960). The original
Kalman Iter was derived for a linear system with Gaussian eror sources.

1DHI Water & Environment, DK-2970 H rsholm, Denmark
2Informatics and Mathematical Modelling, Technical Univer sity of Denmark, DK-
2800 Lyngby, Denmark
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When applied to non-linear and high dimensional systems, te formula-
tion demands vast computational resources and its limitatons in terms
of Gaussian error assumptions and linearity become clear. éveral exten-
sions have been made in an attempt to accommaodate for such deiencies.

Primarily, the problem needs to be solvable on available comutational

resources. The most widespread techniques for making the pblem
tractable are ensemble based. Basically these schemes repent the in-
formation contained in the error covariance matrix in a reduced space
spanned by a small number of ensembles. The Ensemble Kalmarnilter

(EnKF), (Evensen 1994) and the Reduced Rank SQuare RooT Kalran

Iter (RRSQRT), (Verlaan & Heemink 1997), are examples presented in

this paper. Two alternative popular ensemble based approdwes are the
SEEK lIter, (Pham et al. 1997), and the SEIK Iter, (Pham, Ver ron

& Gourdeau 1998). A recent review of ensemble based Kalman térs

is provided in (Evensen 2003). Another approach reducing te compu-
tational cost uses a simpler description of model dynamics.This can

either be done by using a coarser grid for the error covariare mod-
elling in the numerical model, (Cohn & Todling 1996) and (Fukumori &

Malanotte-Rizzoli 1995), or by approximating time consuming elements
of the numerical model, such as employing cheaper numericachemes,
simpler turbulence closure schemes or assuming geostroghibalance for
the error covariance propagation, (Dee 1991).

A signi cant reduction in computational time can be obtaine d with the
Steady Kalman Iter, where the model error covariance or the Kalman
gain is assumed to be the same at each update time. (Fukumori &
Malanotte-Rizzoli 1995) derives such a steady gain from liriting theory
solving the time invariant Riccati equation. (Canizares ¢ al. 2001) also
uses a steady approach, but here the steady gain is calculateas a time
average of the EnKF. The steady approach generally reducesomputa-
tional times with two orders of magnitude compared to the EnKF and
is only slightly more computationally demanding than a single execution
of a numerical model.

Extensions to the Kalman Iter need to accommodate for non-inearities
in the model propagation and the measurement equation. Alspbias or
coloured noise in the numerical model and the measurementsequires
attention. Most schemes use a non-linear numerical model fothe state
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propagation, while the foreward operator employed for the eror covari-
ance propagation ranges from a steady linear operator, (Fukmori &
Malanotte-Rizzoli 1995), to a linear expansion in extendedKalman |-
ter applications such as the RRSQRT Iter and a full non-linear error
propagation in the EnKF.

While the handling and nature of non-linearities in a data assimilating
system thus have been widely examined, the importance of usg a proper
error structure and robustness to error misspeci cation ha gained only
sporadic attention. The optimality of the Kalman Iter assu mes known
and unbiased model and measurement errors. However, the éstation
of these errors is to some extent subjective and can typicall never be
estimated from the limited data sets available. Further, structural model
errors often lead to biased model states. (Dee & da Silva 199&resent
a scheme for the simultaneous estimation of the unbiased sta and the
model bias. (Canizares 1999) and (Verlaan 1998) both uses@loured
noise implementation. (S rensen, Madsen & Madsen 2004a) westigates
the behaviour under misspeci cation of the model error in the case of a
biased forcing. In all cases a clear improvement of the estiate results
from correct error structure speci cation.

In a general data assimilation application the error sourcs are typically
only known to a rst or second order approximation and hence nisspeci-
cation is part of the working conditions. However for storm surge mod-
els, good performance is nevertheless demonstrated in sches, which
do not explicitly account for the actual error structure, e.g. (Madsen
& Canizares 1999). This must be accredited to a su cient information
content of the measurements and subsequent distribution. Eas is also
corrected by a Kalman Iter approach assuming no bias, albeii in a sub-
optimal way, (Dee & da Silva 1998). The speci cation of error structure
and its subsequent propagation only need to provide a good terpolation
of the innovation in space and time. Hence, when many data arewvail-
able, the importance of a proper error model is reduced. In tke case of
assimilation of tidal gauge data, as considered herein, theneasurements
are usually sparsely distributed in space. Thus, the error sucture pro-
vides the mean for updating state elements situated far frompoints of
observation and hence its description becomes more imporitsd.

Focusing at the three state-of-the-art assimilation scheres, the EnKF,
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the RRSQRT Iter and the Steady Iter, with a coloured noise a ssump-
tion implemented in a 3D hydrodynamic model, this papers se$ out to

perform a sensitivity study of the schemes for various paramter settings.

Acknowledging that misspeci cations are often part of the working con-

ditions such a study provides insight to the e ect on performance of
uncertain parameters. Hence calibration can be focused atdy parame-
ters and in case of low sensitivity, con dence can be build inthe schemes
even for moderately misspeci ed parameters.

Section2 will introduce the building blocks of the assimildion approach,
which provides the Kalman lter as a special case. The three shemes,
which constitute the basis of this study will be described bie y - namely

the EnKF, the RRSQRT and the Steady Kalman lIter. In Section 3the
Iter parameters in the schemes are presented and discussedin Section[4
results are presented for a range of sensitivity twin expernents using an
idealised bay test case. Finally, Sectio]5 summarises andocludes the
paper. The notation suggested by (lde, Courtier, Ghil & Lorenc 1997)
is used throughout.

2 Assimilation approach

The foundation of sequential estimation schemes is a lineamodel for

combining the information contained in a model with measuranents in

an estimate of state variables. Hence, lek!(t;) 2 R" be a representation
of the true state at time t;. This could be an array of grid averaged
water levels and velocities at all model grid points in the aea of interest.

It can also contain additional augmented elements from an aor model.

Let x' (t;) 2 R" be the model estimate ofx!(t;) and y°; 2 RP be a vector
of observations at time tj, which is assumed related to the state vector
through the measurement equation,

yo = Hix'(t) + 1)

The operator H; 2 RP " projects the state space onto the measurement
space. The measurement noise is assumed additive and repeesed by
the random variable, ; 2 RP. The relation in ([} is assumed linear.

With the de nitions given above and assuming both x (t;) and y°; to be
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unbiased, a linear unbiased estimatex?(t;), of x'(t;) can be obtained as
x3(t) = x" () + Ki(y? Hix"(t)) )

A good sequential assimilation scheme is characterised by proper es-
timation of the elements of the linear operator, Ki 2 R" P, which is
denoted the Kalman gain. What is meant by proper depends on tle ap-
plication at hand and the properties of the estimate, x2(t;), sought for.
Usually assumptions about linearity and unbiasedness areniposed and
a least squares approach is taken. This is followed in the ne»section.

2.1 The BLUE estimator

The linear projection of x!(t;) on y°; provides the best (minimum vari-
ance) linear unbiased estimate (BLUE) ofx!(t;), (Jazwinski 1970). The
x" (i)

; and its covariance matrix
Hix" (ti)

rst moment of X;S,tii) is given as

pf pfuT
Hilpf HiPIIHiTl+Ri
in (M. The linear projection E(x'(tj)jy°;) is given by @) with K; given
by

is . Here, R is the covariance of the noise process

Ki=P{H{(HiP{HT + R)) * ©)
The error covariance of the estimated state x2(t;), is given by

PE=P] KiHP| (4)
The quest now becomes the estimation oPif and Rj. The measurement
error is usually assumed constant in time and is prescribed @ording
to measurement uncertainty and its representation in the malel state.
For sequential Kalman Iter based algorithms, the discrepancies lies in
the approximations made in the estimation of P{ and x' (tj). Three
approaches are described in Section2.2.

It should noted that the BLUE estimator assumes that E(x'(t;)jy°;)
is linear in y°,. This is true in the measurement point if the linear
relation in (I) is valid. However, the state variables are gaerally not
linearly related and hence this assumption is not valid. Theminimal
variance property of the BLUE estimator and hence the Kalman Iter
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only applies to class of linear functions. Further, the numeical model
does in most cases not provide an unbiased estimate of the teustate.
Since most sequential assimilation schemes employ this éstator, they
are also subject to these sources of sub-optimality.

2.2 State and error propagation

The basis of the predictions is a numerical hydrodynamic modl. In this
study the model adapted is MIKE 3, which is developed at DHI Water
& Environment, (DHI 2001). The code that constitutes a one-time-step-
ahead prediction can be regarded as a model propagation opagor, M ;.
With knowledge of the state attime t; 1 and the forcing, u(t;), it provides
the state at time tj. The state considered consists of velocities and water
levels on a specied grid. The forcing is open boundary waterevels,
sources and sinks, wind velocities and atmospheric pressewr Hence in a
standard non-assimilating application of the numerical madel, the one-
time-step-ahead prediction can be written as,

x"(ti) = Mus (X" (ti 1);u(ti)) ®)

In this case the state description and propagation are deteministic.

Acknowledging the approximate nature of a numerical modela more de-
tailed description must incorporate the model error introduced at each
time step and its propagation throughout the system. Thus the propaga-
tion operator and the the state become stochastic. The errointroduced
by the model propagation, ; 2 R is evident in the system equation,

x'(t) = My (xX'(ti u(ti); 1) (6)

Optimally, knowledge of the correct time varying probability density
function (pdf) of the noise sequence ; and an initial state could be used
to provide an exact stochastic forecast of the state. Howewve repre-
sentation and propagation of the full pdf is not a tractable approach. A
common approximation is to consider only the rst and secondorder mo-
ments of the distribution. In case of Gaussian random elds ad a linear
model operator this further describes the full probability distribution. In

addition, only these two moments are needed for the BLUE esthator in
® and [@B). Another approach is to approximate the propagation of the
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pdf to a precision, which allows a con dent estimation of the rst and
second moments. Two schemes for forecasting the rst and send order
moments in the hydrodynamic model and subsequent update oftte state
conditioned on observations are presented in SectiofiSZRand[ZZ2. A
steady Kalman gain reduction of these elaborate techniquess presented
in Section[ZZ3.

Of prime importance to any assimilation scheme is a proper mdel and
measurement error description. As previously stated, the reasurement
error is usually based on simple assumptions. The speci cédn of model
error is a more di cult task. It is generally assumed proport ional to

the model dynamics variability in some way or to originate sdely from

external forcing elds. The latter approach is applied here Errors are
introduced in the open boundary water level and in the wind vdocity.

Hence, the numerical model is in itself assumed to be perfecin coastal
and shelf seas this is often a good approximation to actual mael inac-
curacies. A further step is taken by assuming the error to be cloured as
described by a rst order autoregressive modeM uzg ,

i = Marp (i 1 )= A 1+ (7)

Cross correlations are neglected, suc thaf = diag( ), where the vector
contains the coe cient of the autoregressive model. The naie process
i iIs assumed Gaussian with zero mean and error covariance maty
Q; 2 R" ". Hence, x!(tj) is augmented with the boundary and wind
error description and an extended operator,M = (M ;; MAR(l))T, is in-
troduced. This leads to a system equation with additive noig, which
will be used in the remainder of this work,

xHt) = M (X't 1);u(ti); )= MUt 1);u(t)) + 0 (8)

h i h i
The error covariance of ° isQ; = § o . Runningthe hydrodynamic
model alone with error prlopagation accc;rding to one of the duemes de-
scribed below, but with no assimilation, will yield a model mean esti-
mate and its error covariance matrix. Hence, the accuracy ofmodel
results based on the given assumptions can be addressed anahtpared

to observational evidence.
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2.2.1 The ensemble Kalman Filter

In the Ensemble Kalman Filter (EnKF) the propagation of the f ull pdf

is approximated by an ensemble propagation. Both the rst and second
moments are calculated as ensemble statistics and used fohd update
of each ensemble member. The strength of the approach lies iits rep-

resentation of the full pdf, its handling of non-linearities and its ease of
implementation for complex state and error descriptions.

An ensemble ofq state realisations is de ned at an initial time. In this
work, a single model initial state de nes all ensembles withzero spread
at a pre-initial point of time as the starting conditions of a spin-up pe-
riod. During this period the forcing errors are propagated throughout
the system to provide the initial model error covariance matix and mean
state estimate.

All ensemble members are propagated according to model opator in
@,

X (t)= MR Diut); ) § =150 9)
The state estimate xf‘(ti 1) is the update from the previous time step.

If no new data were available for update thenxja(ti 1) = xJT (ti 1). The

model error, ; is randomly drawn from a prede ned Gaussian distri-

bution with zero mean and covariance,Q;. With each ensemble member
propagated by (@), the mean state estimate and model error oa@riance

estimate are provided by the following equations,

xd
A= 2 K () (10)
q._
j=1
SRR U R TN DR

The vector, sf;i 2 R", is the j%h column of S| 2 R" 9. The update
can be performed by [2) and [B), when given the proper interpetation
in an ensemble setting. For computational e ciency an algetraically
equivalent set of equations are used.

Each ensemble member must be updated rather than the ensentbistate
estimate, in order to maintain correct statistical properties of the up-
dated ensemble. For the same reason an ensemble of measuretse
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must be generated and used for each ensemble member updatecard-
ingly rather than the measurement itself, (Burgers, van Leawen &
Evensen 1998). Hence,

yo = yP+ i =150 (12)

Randomly generated realisations, j;, of ; are drawn from a Gaussian
distribution with zero mean and error covariance, R, and added to each
member. The update scheme presented here speci cally comkrs that

measurement errors are uncorrelated to assimilate simultaeous measure-
ments sequentially. The updating algorithm for every enserble member,

j, reads, (Chui & Chen 1991),

Xon (t) = X 1(t) + Kim (Vfim  DimXfm 2(8)); m=1;::5p (13)

and xf}o(ti) = xjf (t). In (I3 yj(;)i;m is the m&h element in yj?i and hjn

is the m%h row of H;. Treating one measurement at a time the Kalman
gain is a vector, Ki.m , given by,

K. _ _Sim aGim Cim =(S& )ThT (14)
m C;I;-mci;m + i2;m’ m im 1 im

The m%h diagonal element inR; is denoted 7. The matrix S in
(I3) is calculated as

1
Sfn = [S%im S3imls S = pﬁ(Xﬁm (t) 2Rp(t)  (15)

form=1;:;pand S%) = S{. Now, ([3), (@d) and [@I3) provides the
update equations of all ensemble members, one measuremertatime.

2.2.2 The reduced rank square root Kalman Filter

The Reduced Rank Square Root Kalman Iter (RRSQRT) is based m
the extended Kalman Iter formalism, in which the error prop agation
is calculated using a statistical linearisation of the modé¢ propagation
operator. It further uses a square root algorithm and a lowerrank ap-
proximation of the error covariance matrix. Thus, it handles weak non-
linearities and it has a concise and smooth representation fothe error
covariance matrix.
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The state propagation is the model forecast of the central gimate,
X' (ti) = M (x(ti 1);u(t);0) (16)

The error covariance propagation basically performs the fthowing trun-
cated Taylor Series approximation,

@M
PT(t)= MiP3(ti DM + QM = =— 17)
@ x=xf(ti);u=u(t;); =0
A square root implementation of this propagation and subsegent update
has been performed. Denote by52(t; 1) the approximation of rank q of
the square root of the error covariance matrixP2(t; ;). The propagation
of the error covariance matrix approximated according to [Id), is then
given by,
S'(t) = [MiS*(ti 1)iQ™] (18)

To calculate the derivatives needed inM ; a nite di erence approxima-
tion of M is column-wise adopted as follows,

M3t 1)+ s% 4 u(ti);0) M(x*(ti 1);u(ti);0)

(MiS%(ti 1)) =
(19)
The value of the parameter has been discussed in (Segers, Heemink,
Verlaan & van Loon 2000) and is set equal to one according to thir
recommendation. The propagation step in [IB) increases theumber of
columns in the error covariance matrix fromqto g+ r. Thus a compli-
mentary part of the scheme must provide a mean for reducing te rank
of the space similarly. In order to do this a lower rank approd¥mation
of S (t;) in (IB) is applied through an eigenvalue decomposition of e
matrix ( S’ (t;)) TS (t;), (Verlaan 1998). This approach provides e cient
calculations, but introduces the need for normalisation ina multivari-
ate setting. The optimal normalisation is application dependent which
is approximated by using normalisation based on energy corderation.
Basically, the constribution from potential and kinetic energy to each
element of (S’ (t;))TS' (t;) are equal.

Now, having calculated the forecast state and error covariace, the algo-
rithms developed for the EnKF can be followed to provide the pdate.
The state is updated using [IB). However, an additional ingedient is
needed, namely the update of the error covariance estimatewhen the
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state is updated. This is provided by, (Canizares 1999),

T
_ Kim Ciymy
' 2
1+ im

T . 2
hi;m h'?m + im

(20)

a _ ca
Si;m_ iim 1

The vectors, ki, and h;.,, are de ned in (4.

2.2.3 The Steady Kalman Filter

For the Ensemble Kalman lter and the reduced rank square rod Kalman
lter, the error covariance propagation typically takes of the order 17
model executions, (Canizares 1999), which may be too many iopera-
tional settings. A well known work around assumes time invarant model
and measurement error covariance matricesl?if and Rj, rendering a time
constant Kalman gain, K. However, it can still be di cult to estimate
K without the help from more elaborate methods.

When time invariance is approximately true, both the EnKF and the
RRSQRT can provide robust estimates of the gain. Hence a Kalran
gain that is still based on model dynamics can be obtained as dme

average of the gain from one of these two elaborate methodsC@anizares
et al. 2001). The update is still done using [IB), but now witha xed,

K, and operating on just a single state forecast.

3 Filter parameters

In an actual implementation of the lters above, several parameters need
to be speci ed. These mainly relate to the model and measuremnt error
covariance description. This section describes each paragter, while the
sensitivity to parameter variations is tested in Section[42.

Rank : g. The rank of the model error covariance matrix is essential ©
the performance of an assimilation scheme. For the ensembléalman
Iter this is equal to the ensemble size, while for the RRSQRT Kalman
Iter it is the number of leading eigenvalues preserved in the covariance
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reduction. In either case the rank needs to be large enough tdescribe
the error covariance eld with su cient accuracy, but with t he trade-o
of increased computational time.

Measurement standard deviation : m. This study only considers
uncorrelated water level measurements. Hence, the error gi cation is

simply given by a value of , for each measurement. Both instrumenta-
tion error and the error due to lack of representation of staie variables
need to be taken into account in the speci cation.

Model error standard deviation . . The model error speci cation
has a more complex description. The model errors are assumed be
due to an error in the open boundary water level and/or in the wind
forcing. The assumed standard deviation, , of the white noise process,
i is naturally a key parameter. An independent set of parametes are
speci ed for each boundary and wind velocities. The relatie sizes of
model and measurement uncertainty basically determines wich source
of information that ought to be trusted the most in the state e stimation.

Temporal correlation scale : . Thetemporal correlation scale de nes
the coecient, , in the AR(1) process by giving the half time of the
exponential process.

=0:5) (21)

where t is the model time step. Note that since the noise enters into
an autoregressive process the actual standard deviation,torcing Of the
boundary or wind forcing is given by,

fzorcing = h (22)

A higher temporal correlation allows a more distant e ect of an error in
the forcing. The formulation ensures that the standard devation can be
speci ed from (1) and ([Z2) to construct a forcing perturbation that is
independent of time step length, t, and changes in .

If =21and iszero with a suitable initial covariance, then the Kalman
Iter provides a bias estimate of the forcing terms. An  close to one
and a moderate  approximates this bias estimation, hence enabling the
Iters to detect a slowly varying errors in the external forc ing.
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Spatial correlation length  : I.. An exponential correlation model is
employed in the de nition of the error covariance model,Q . The spatial

correlation length of the model errors plays a key role in dening the cor-

relation structure in the model that ultimately determines the update. A

too large spatial correlation scale assumption in the wind elocities can
cause an update in sparse regions based on a measurement, gthdoes
not contain any information about this distant area in the re al system.
On the other hand, a too small spatial correlation scale undesstimates
the correlation in the model errors and thereby provides a ltered es-
timate, which is too close to the model solution. It also increases the
e ective number of degrees of freedom in the error model, with in turn

makes the estimated parameters of the error model more unctin.

Grid factor : g. The grid factor is introduced as an ad hoc approach to
reducing the dimension,r, of the error space. This integer factor simply
expresses the number of model grid points in between each eir point.
The errors are subsequently redistributed using a kriging echnique. Such
a space reduction is viable because the spatial correlatiotength often
is considerably larger than the grid spacing. However, wherthe spa-
tial correlation length approaches the distance between epr points, this
assumption is violated and the spatial correlation length boses its inter-
pretation. Other space reduction techniques, e.g. EOF deaoposition,
can also be cast in the present framework.

Smoothing factor : s. The Steady Kalman lter uses a time average
from one of the more elaborate schemes for the generation di¢ Kalman
gain. A greater deal of smoothness can be obtained in the timearying
Kalman lter schemes as well through the introduction of an exponential
smoothing factor. This number is the proportion of weight given to the
Kalman gain calculated at the present time, KKF . The applied gain
matrix then becomes

Ki=(@1 s)K; 1+ sKKF:s2[0;1] (23)

Update interval : d. In practical applications it must be considered
whether all data shall be assimilated. Trying to drive the model into an
observed regime with e ects not represented by the model, aaintroduce
noise and ultimately cause model instabilities. In practie, water levels
may typically be provided at half hourly intervals, but the i mplemen-
tation of the data assimilation schemes interpolates the masurements
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to every model time step and assimilates it. Hence, an updaténterval
is introduced as the nal parameter to test the e ect of using various
subsets of the interpolated water level measurements.

4 ldealised bay experiment

For the purpose of investigating lter performance, when basic assump-
tions are violated, an idealised, controllable and stable stup was chosen.
This choice also facilitates a large number of sensitivity uns to be per-
formed and a comparison to the full true eld to be done.

4.1 Setup and basic results

The region under consideration is the hypothetical Ideal By situated
at 51 N. Itis a 200 km by 200 km square bay with an open North-
ern boundary and simple bathymetry with a maximum depth of 100m
as shown in Figure[d. The vertical grid spacing is 10 meters ah the
horizontal resolution is 10 km.

Density is constant in this study, which is conducted over a 48 hour
period. The open Northern boundary is forced with a spatially constant
water level signal with a sinusoidal variation in time. The period is 12
hours and the amplitude is one meter. The model is further foced by
an arti cially generated passing cyclone, which moves 50 knacross the
bay every six hours. It has a maximum wind speed of 26 m/s.

The basic solution has a main ow, which is dominated by a Kehin wave

moving cyclonically in the bay. This is superposed with a wird generated
ow.

4.2 Parameter sensitivity and robustness assessment

The performance of an assimilation scheme should be examideunder
ideal conditions as well as under conditions, where assumjains that are
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Figure 1. Bathymetry of Ideal Bay. The three dots indicate the positions,
where water level time series were extracted to be used as nreaements

typically violated break down. This section does both, but with the focus
aimed at the nature of the solution in the latter case.

A large number of twin experiments has been performed. In edt case
the basic run from Section[Z1 is taken as the true state of thesystem.
Water levels are extracted at three locations indicated in Hgure [ at
every 15-minute time-step interval. Subsequently uncorréated Gaussian
white noise with a standard deviation of 5 cm is added to eachitme series
in order to represent measurement noise. Only these three rie series
provide information about the true state in the assimilation procedures.
In each perturbed run a dierent error source is introduced and the
ability of the assimilation scheme to correct this error is xamined.

As a measure of the Iter performance, the spatially averagd root mean
square error RMSE ) of water levels, |, calculated over the last 24 hours
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o<

X X g X
K I 1 (ltrue (Xj S Vi ti) Ipert(xj T Yk )2
j=1 k=1 i=1

RMSE =

=

(24)
The constants J;K = (20;21) are the number of grid points in the x
and y direction respectively. The constantl = 96 is the number of time
steps in the period, in which the statistic is calculated. The indicestrue
and pert refers to results from the true experiment and the perturbed
results respectively. The error types in the perturbed runsare divided
into two groups: Gaussian errors in SectiorTZZ]1 and typicherrors in
Section[£Z2. Gaussian errors refer to error structures tht basically
ful Il the assumptions of the assimilation schemes if the paameters are
chosen correctly. This is where the actual parameter senditity study is
performed. The typical errors, on the other hand, refers to erors that
include other distributions and sources than those assumeih the lIters.
This latter case is thought to closer resemble a real Iter application.

4.2.1 Gaussian errors

The model error assumption lies in two forcing terms: The boundary
water level and the wind velocity components. Thus, the investigation
and the presentation of the results are divided according tothis divi-
sion. All the results presented in this section attempt to carect the
same two perturbed runs, where a random coloured noise reahtion has
been added to the boundary forcing and wind eld respectivey. The
parameters used to generate these Gaussian perturbationge stated in
Tables[ and[2.

Boundary spatial correlation scale 100 km
Boundary grid factor 1
Boundary temporal correlation scale 2h
Boundary st.dev. 0:10 m
Autocorrelation coe cient, 0:92
Boundary actual st.dev. 0:25 m

Table 1: Characteristics of the imposed errors in the open bandary
perturbed runs
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Wind spatial correlation scale 300 km
Wind grid factor 3
Wind temporal correlation scale 6 h
Wind st.dev. 3 m/s
Autocorrelation coe cient, 0:97
Wind actual st.dev. 13 m/s

Table 2: Characteristics of the imposed errors in the wind véocity per-
turbed runs

Comparisons between the perturbed runs without data assiniation and
the true runs give RMSE values of 033 m and Q58 m for boundary and
wind errors, respectively. The maps of theRMSE values for each case
is shown in Figure[2 and[B. Using the correct parameters in thessimi-
lation schemes, but varying the rank of the covariance matrx, yields the
RMSE results displayed in Figures[@ andb. Since the the EnKF uses
randomly generated noise, an average over ve runs were useéd smooth
out the worst stochastic variations in the statistics. The assimilation
schemes simultaneously provide the standard deviation thg use for the
update. The spatial averages of these are also included in & gures.
A previous study by (Madsen & Canizares 1999) has shown thathe
RRSQRT lIter converges to a good performance at a lower rank han
the EnKF, but similar execution times gave similar performance. This is
also evident here for the wind error case, but in the boundaryerror, low
rank EnKF outperforms the RRSQRT. Further investigation sh ows that
this can be accredited to the normalisation procedure requied in the
eigenvalue decomposition of the RRSQRT scheme and hence arting of
the normalisation makes the RRSQRT converge faster for the bundary
error case as well. In general the gures show good performae with re-
spect to the reduction of overall prediction error as well aghe estimation
of the prediction error.

Also included in the Figures[4 and® are the results of the Stedy Kalman
Iter using a constant Kalman gain obtained as the average gin esti-
mated by the EnKF over the last 24 hours. For a low rank of the eror
covariance the steady Iter out-performs the EnKF. This is an example
of bias-variance trade-o . The EnKF attempts to estimate th e best un-
biased state. However, this is done at the price of a high vaance of the
estimated parameters in the Kalman gain. The time averagingoperation
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Figure 2: Spatial distribution of RMSE values between the true run
and the false boundary run, where a realisation of the Gausah process
described by Table[l has been added. The positions of the meagments

are indicated by dots.
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Figure 3: Spatial distribution of RMSE values between the true run and
the false wind run, where a realisation of the Gaussian proas described
by Table & has been added. The positions of the measurementsea
indicated by dots.
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Figure 4: Sensitivity to rank of error covariance for perturbed boundary
runs. All results are RMSE and given in meters (m)

employed for the generation of the time constant gain used irthe Steady
Kalman lter reduces this variance considerably, but deliberately intro-
duces a bias in the estimation by assuming the gain to be timénavariant.
For few ensembles, the latter trade-o between bias and vamnce gives
the better performance. As the rank is increased the ensemeblbased es-
timate becomes more and more certain and the performance getmuch
better. For the boundary error case the estimated gain is aatally rather
time invariant and hence, even when the EnKF and RRSQRT lIter are
converged their performance is matched by that of the cheapeSteady
Iter. The converged gain of the wind error case is more time warying.
Thus, in this case the Steady Kalman lter performs a little w orse than
the two time varying lters.

In the subsequent experiments, an ensemble size of 100 is dskr the
EnKF and a rank of 50 is used for the RRSQRT scheme. The Steady
Kalman Iter will be based on the EnKF with 100 ensemble membes.
For these choices the EnKF gives eRMSE of 0:08 m and Q10 m and
RRSQRT 0:09 m and Q09 m for boundary and wind error, respectively.
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Figure 6: Spatial distribution of RMSE values between the true run
and the 100 EnKF run for the boundary error case. The positiors of the
measurements are indicated by dots.
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Figure 7: Spatial distribution of RMSE values between the true run
and the 100 EnKF run for the wind error case. The positions of he
measurements are indicated by dots.
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Similarly the Steady Kalman Iter gives a RMSE of 0:08 m and Q10 m.
Maps of the RMSE for the EnKF case are shown in Figuredl6 andl7.
Compared to Figures[2 andB these demonstrate the good perfarance of
the lter. The results also show the importance of a good netvork design
for assimilation purposes. For instance, in the boundary eror case the
Northwestern measurement corrects most of the noise in the Klvin wave,
leaving little error in its cyclonic propagation further South in the bay.
Experiments show that leaving out the Southern measurementhardly
alters the performance of the schemes.

Now the sensitivity to the assumed measurement standard destion is
examined. For each of the three measurements extracted frorthe basic
solution a measurement standard deviation must be speci ed The same
value is used for all three stations. Table[B summarises th&@MSE re-
sults. The most notable result is the robustness of the Iters for varying
measurement standard deviation. The general picture is a dgradation
both when the solution is pulled too strongly toward the measirement,
where the innovation has an excessive impact on unobservecegions,
and when little trust is put in the measurements leading to only minor
corrections of the perturbed solution. However, in both directions, ex-
treme and unrealistic values must be assumed to signi canyy degrade
the results.

m Bound Wind

EnKF | RRSQRT | Steady | EnKF | RRSQRT | Steady
0:005 0:26 0:13 0:14 0:14
0:.01 0:12 0:09 0:10 0:24 0:11 0:11
0:02 0:09 0:08 0:08 0:13 0:10 0:10
0:05 0:08 0:09 0:08 0:09 0:09 0:10
0:15 0:09 0:10 0:09 0:10 0:10 0:11
0:40 0:12 0:12 0:12 0:13 0:12 0:13
1:00 0:18 0:19 0:18 0:19 0:18 0:21

Table 3: Sensitivity to measurement standard deviation for perturbed
boundary runs. Reference run is marked in bold. All results & RMSE
and given in meters (m)

The sensitivity to model standard deviation is summarised n Tables[4
andH asRM SE values. Here too, a quite robust performance is achieved.
In general the behaviour degrades as the values become toadg or too
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small. An interesting point is that the RRSQRT scheme has its best
performance for slightly overestimated model errors. Thisis explained
by the standard deviations estimated by the RRSQRT scheme iself. As
shown in Figures[4 and® the RRSQRT in general tends to underesnate
the size of the model error and hence it provides a more corréstandard
deviation estimate with an excessive error assumption.

EnKF | RRSQRT | Steady
0:001 0:31 0:31 0:31
0:005 0:20 0:19 0:19
0:.01 0:13 0:13 0:13
0:05 0:09 0:09 0:08
0:10 0:08 0:09 0:08
0:25 0:10 0:08 0:08
1:50 0:13 0:09 0:10

Table 4: Sensitivity to model error standard deviation for perturbed
boundary runs. Reference run is marked in bold. All results & RMSE
and given in meters (m)

EnKF | RRSQRT | Steady
0:05 0:32 0:32 0:36
0:10 0:23 0:22 0:26
0:50 0:12 0:11 0:13
1:00 0:11 0:10 0:11
3:00 0:09 0:09 0:10
5.00 0:11 0:09 0:11

10.00 0:10

Table 5: Sensitivity to model error standard deviation for perturbed
wind runs. Reference run is marked in bold. All results areRMSE and
given in meters (m)

Now, the sensitivity to the temporal correlation scale is examined. A
temporal correlation scale of 0 hours gives a white noise agsption and
a temporal correlation of 1 hours gives a random walk error process.
These extremes corresponds to values Oftorcing €qualto  and 1 m
respectively. Tables[® and¥ summarise the results. Here toauite ro-
bust performance can be observed. The results are most degtad when
there is a small time correlation. The explanation for this is a combina-
tion of the smaller resulting standard deviation of the forcing terms and
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a worse description of the spatial correlations due to the aproximate
white noise assumption. When coloured noise is adopted, thdynamical
propagation transfers the coloured signal into spatial corelations.

EnKF | RRSQRT | Steady

0:00 hours 0:15 0:15 0:14

0:25 hours 0:12 0:12 0:11

2:00 hours | 0:08 0:09 0:08

6:00 hours 0:09 0:09 0:08

24:00 hours 0:10 0:09 0:09

Table 6: Sensitivity to model error temporal correlation scale, , for
perturbed boundary runs. Reference run is marked in bold. Al results
are RMSE and given in meters (m)

EnKF | RRSQRT | Steady

0:00 hours 0:18 0:15 0:20

0:25 hours 0:16 0:13 0:16

1:00 hours 0:12 0:10 0:12

6:00 hours | 0:09 0:09 0:10

24:00 hours 0:13 0:10 0:10

Table 7: Sensitivity to model error temporal correlation scale, , for
perturbed wind runs. Reference run is marked in bold. All resilts are
RMSE and given in meters (m)

This dependence on a proper spatial correlation is also evaht when
considering the spatial correlation scale (Tabledd8 and9).In line with

the discussion above about temporal correlations, the casef no spatial
correlation has a poorer performance, which shows the imptance of
properly describing the correlations in the state vector. This can poten-
tially be an important factor to control in real setups of the assimilation
schemes. The results are in general insensitive to grid fast variations
as long as the resulting coarse error grid resolves the ass@a spatial
error covariance.

The smoothing factor shows hardly any sensitivity at all. This can be
accredited to the similar performance of the time varying ard the steady
schemes. In cases, with more time varying correlation struires, this
factor must be expected to play a greater role, providing a srooth tran-
sition from the time varying to the steady performance. The snoothing
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factor opens a possibility of obtaining stable time varying runs of e.g.
a low rank EnKF. If the time variation of the error covariance elds
are slow, but important to resolve, then this approach might provide an
important operational option.

Altering the update interval degrades the result shown in Table[IQ. This
proves a continuous transition to the runs with no assimilation, which
corresponds to an update interval equal tol . Using less information
from the true state gives a lower resemblance with the truth.

All together, in the present test case the assimilation schmes are robust
to moderately misspeci ed parameters for Gaussian error sarces that
resembles the speci ed error models. This is encouraging,ub does not
guarantee good performance for any setup. In particular, cee must be
taken to ensure a proper model error covariance in sparselybserved
systems.

le EnKF | RRSQRT | Steady

0 km 0:11 0:15 0:09
25 km 0:09 0:08 0:08
100 km 0:08 0:09 0:08
250 km 0:08 0:09 0:08
1000 km 0:09 0:10 0:08

Table 8: Sensitivity to model error spatial correlation scde, I¢, for per-
turbed boundary runs. Reference run is marked in bold. All results are

RMSE and given in meters (m)

lc EnKF | RRSQRT | Steady
30 km 0:19 0:18 0:20
100 km 0:11 0:09 0:13
300 km 0:09 0:09 0:10
1000 km 0:08 0:10 0:10

Table 9: Sensitivity to model error spatial correlation scde, |, for per-
Reference run is marked in bold. All resuls are

turbed wind runs.

RMSE and given in meters (m)
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4.2.2 Typical errors

The demonstrated robustness in the Gaussian error case gisesome hope
that even for more typical error sources, not elaborately tken into ac-

count by the schemes, an improved performance can be obtaideusing

good rst guess estimates of parameters in the Gaussian fraework as-
sumed. This section investigates such behaviour.

Perturbed runs with ten di erent errors have been conducted The re-
sults of the twin experiments both without and with the three data as-
similation schemes are summarised in TablgZ11. The runs wittBound:'

and 'Wind:' indicates that only open boundary or wind errors was added
and subsequently assumed in the assimilation procedures. e 'Bound:'
runs apply one and three hour phase errors as well as half a mat am-
plitude error by itself and in combination with the three hours phase
error. The two systemamic wind error runs are forced by 20 m/sWest-
erly winds and a a stronger cyclone with a perturbed path refered to

as 'False cyclone'. Further, a run was conducted with an erroeous bed
friction using a Nikuradse roughness coe cient of 05 instead of the true
0:05. The 'Bathymetry' perturbed run refers to a run applying a mod-
i ed bathymetry with a standard deviation of 1 meter compared to the

truth. Also, a run, 'All errors with y's', applying a composite of these
errors is included in the study. Finally, a '‘No forcing' run was conducted
with no wind and open boundary forcing at all, thus giving a sdution

at rest. In all assimilation runs, the parameters of Tables[1and [ were
used in the assimilation schemes.

d | Bound Wind
EnKF | RRSQRT | Steady | EnKF | RRSQRT | Steady
1 0:08 0:09 0:08 | 0:09 0:09 0:10
2 0:09 0:10 0:09 0:10 0:09 0:11
4 0:11 0:12 0:11 0:11 0:10 0:12
8 0:16 0:16 0:15 0:17 0:15 0:16
16 0:22 0:21 0:21 0:27 0:25 0:29
32 0:26 0:25 0:26 0:42 0:33 0:38

Table 10: Sensitivity to update interval for perturbed runs. Reference
run is marked in bold. All results are RMSE and given in meters (m)
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A much improved performance is observed in all cases. In the ovst case
the residual RM SE is 0:51, which is too large for many applications, but
a convincing result considering the size of the errors intrduced into the
model. Even in the 'No Forcing' run, the schemes are actuallyable to
generate a large portion of the signal from the missing forcig terms in-
cluding the forcing terms themselves through the augmentedtate vector
description.

However, the good performace is not matched by a good unceritaty
estimate. For instance, both time varying lters estimate a standard de-
viation of 0:07 for the 3h phase lag experiment. The standard deviation
estimates for the 'False cyclone' run were @6 and Q07 for the EnKF
and RRSQRT schemes, respectively, while the numbers for th&All er-
rors with y's' are 0:13 and Q14. This clearly shows the violation of the
underlying Iter assumptions and the error estimates provided by the
lters must be applied with care. At least, data must be retained in an
attempt to perform a subsequent validation of the standard deviation
estimates.

The biased nature of the errors makes the performance even me de-
pendent on fairly high temporal and spatial correlations than was the
case in the previous section. Hence, these are key paramesetio consider
in the calibration of any data assimilation setup. In generd the Steady

Error Type No ass.| EnKF | RRSQRT | Steady
Bound: 1h phase lag 0:69 0:07 0:.07 0:07
Bound: 3h phase lag 1.87 0:18 0:18 0:20
Bound: 1.5 amplitudey 0:62 0:07 0:.07 0:07
Bound: 3h phase lag

+ 1.5 amplitude 2:23 0:23 0:22 0:26
Wind: 20 m/s West 0:17 0:07 0:09 0:09
Wind: False cyclongy 0:25 0:12 0:12 0:12
Bed friction 0.5y 0:26 0:06 0:06 0:13
Bathymetry y 0:05 0:04 0:04 0:03
All errors with y's 2:53 0:51 0:44 0:38
No forcing 1:33 0:19 0:18 0:20

Table 11: Sensitivity to typical errors for perturbed runs. All results are
RMSE and given in meters (m)
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Iter performs well with the 'All errors with y's' case being the most
impressive case. Basically, when all the error assumptionare violated,
the elaborate schemes can not be expected to give superiorff@mance.
Rather, a certain regularisation of the Kalman gain acknowkdges the
bias in the estimate hence allowing a reduced variance and ithis case, a
better performance. However, time dependent schemes areedrly supe-
rior for bed friction error by itself. This study demonstrat es the success
of assimilation schemes despite the unavoidable wrong emr@assumptions
imposed, and also shows how di erent Iters handle di erent real error
sources the best.

5 Summary and Conclusions

This paper presented three known assimilation schemes andedcribed
the lter parameters that can typically be varied in an appli cation of the
schemes. In a set of experiments in an idealised bay a sensity study

has been conducted to investigate the Iter performance formisspeci ed
error structure in the schemes. The sensitivity to key paraneters are
vital for the practical use of sequential data assimilation techniques in
hydrodynamic modelling. It is demonstrated that the Iter p erformance
is robust with respect to low to moderate parameter perturbdions in

the speci cation of the noise statistics. For more typical erors such as
phase lags, bathymetry, etc., care must be taken to ensure geci cation

of fairly high temporal and spatial correlations. However, thought should
be put into properly setting up every application. For some, an EnKF

with a low smoothing factor is the best choice, while a sum of aange
of signi cant error sources not assumed by the Iter is best handled by
a steady lter.

In general the steady Iter seems like a good candidate for tle gauge
assimilation in coastal areas. This is particularly true if an operational
setting is considered. The spatial distribution of the Ite r performance
has further demonstrated that proximity to the stations or d ynamically
well chosen positions enhances the estimation skill. Hencehe denser
and better designed the measurement network is, the better e over-
all performance. Such a design increases the representagivinformation
available. Further, dense networks diminishes the importace of the
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spatial distribution of the information and thus the correct parameter
settings.



Parameter sensitivity of three Kalman lter schemes 61

References

Burgers, G., van Leeuwen, P. J. & Evensen, G. (1998), "Analyis scheme
in the ensemble Kalman lter', Monthly Weather Review126, 1719{
1724.

Canizares, R. (1999), On the application of data assimilabn in regional
coastal models, PhD thesis, Delft University of Technology

Canizares, R., Madsen, H., Jensen, H. R. & Vested, H. J. (240, "De-
velopments in operational shelf sea modelling in Danish watrs',
Estuarine, Coastal and Shelf Sciencé3, 595{605.

Chui, C. K. & Chen, G. (1991), Kalman Iter with real-time applications ,
Vol. 17 of Springer Series in information sciences Springer-Verlag.

Cohn, S. E. & Todling, R. (1996), "Approximate data assimilation
schemes for stable and unstable dynamicsJournal of Meteorologi-
cal Society of Japan74, 63{75.

Dee, D. P. (1991), ‘Simpli cation of the Kalman Iter for met eorological
data assimilation’, Q.J.R. Meteorological Society 117, 365{384.

Dee, D. P. & da Silva, A. M. (1998), "Data assimilation in the presence
of forecast bias', Q.J.R. Meteorological Society 124, 269{296.

DHI (2001), MIKE 3 estuarine and coastal hydrodynamics and oceanog-
raphy, DHI Water & Environment.

Evensen, G. (1994), 'Sequential data assimilation with a nolinear quasi-
geostrophic model using Monte Carlo methods to forecast ear
statistics’, J. Geoph. Res.99(C5), 10143{10162.

Evensen, G. (2003), The ensemble Kalman lter: Theoreticalformulation
and practical implementation, In print. Ocean Dynamics.

Fukumori, I. & Malanotte-Rizzoli, P. (1995), "An approxima te Kalman
Iter for ocean data assimilation; an example with an idealised Gulf
Stream model', J. Geoph. Res.100(C4), 6777{6793.

Ide, K., Courtier, P., Ghil, M. & Lorenc, A. C. (1997), "Unie d nota-
tion for data assimilation: Operational, sequential and vaiational',
Journal of Meteorological Society of Japan75(1B), 181{189.



62 Paper A

Jazwinski, A. H. (1970), Stochastic Processes and ltering theory Vol. 64
of Mathematics in Science and Engineering Academic Press.

Kalman, R. E. (1960), "A new approach to linear Iter and prediction
theory', Journal of Basic Engineering 82(D), 35{45.

Madsen, H. & Canizares, R. (1999), "Comparison of extendeghd ensem-
ble Kalman lters for data assimilation in coastal area moddling’,
International Journal of Numerical Methods in Fluids 31(6), 961{
981.

Pham, D. T., Verron, J. & Gourdeau, L. (1998), "A singular evolutive
Kalman lIter for data assimilation in oceanography', C. R. Acad.
Sci. Paris 326, 255{260.

Pham, D. T., Verron, J. & Roubaud, M. C. (1997), "Singular evolu-
tive Kalman Iter with EOF initialization for data assimila tion in
oceanography',Journal of Marine Systems 16, 323{340.

Segers, A. J., Heemink, A. W., Verlaan, M. & van Loon, M. (2000,
Kalman Itering for nonlinear atmospheric chemistry models: sec-
ond (order) experiences, Technical report, Delft Universly of Tech-
nology.

Srensen, J. V. T., Madsen, H. & Madsen, H. (2004a), Data assnila-
tion in hydrodynamic modelling: On the treatment of nonline arity
and bias, Accepted: Stochastic Environmental Research andRisk
Assessment.

Verlaan, M. (1998), E cient Kalman Itering algorithms for  hydrody-
namic models, PhD thesis, Delft University of Technology.

Verlaan, M. & Heemink, A. W. (1997), "Tidal ow forecasting u sing re-
duced rank square root lters', Stochastic Hydrology and Hydraulics
11, 349{368.



Paper B

Data assimilation in
hydrodynamic modelling:
On the treatment of
non-linearity and bias

Accepted by Stochastic Environmental Research and Risk Assessment

63




64

Paper B



On the treatment of non-linearity and bias 65

Data assimilation in hydrodynamic modelling: On the
treatment of non-linearity and bias

Jacob V. Tornfeldt S rensen®2, Henrik Madsent, and Henrik Madser?

1

Abstract

The state estimation problem in hydrodynamic modelling is for-
mulated. The three-dimensional hydrodynamic model MIKE 3
is extended to provide a stochastic state space descriptioof the
system and observations are related to the state through thenea-
surement equation. Two state estimators, the maximum a pos-
teriori (MAP) estimator and the best linear unbiased estimator
(BLUE), are derived and their di erences discussed. Combired
with various schemes for state and error covariance propagdin
di erent sequential estimators, based on the Kalman lIter, are
formulated. In this paper, the ensemble Kalman Iter with ei ther
an ensemble or central mean state propagation and the redude
rank square root Kalman lter are implemented for assimilation
of tidal gauge data. The e cient data assimilation algorith ms
are based on a number of assumptions to enable practical use
in regional and coastal oceanic models. Three measures of mo
linearity and one bias measure have been implemented to ass®e
the validity of these assumptions for a given model set-up. Wo
of these measures further express the non-Gaussianity ancais
guide the proper statistical interpretation of the results. The
applicability of the measures is demonstrated in two twin cae
experiments in an idealised set-up.

Introduction

The state of coastal seas has an impact on a number of socioemmic
issues such as sheries, tourism and ood warning. Thus, estnating
this state is of great importance. One way of solving the sta¢ estima-
tion problem is by combining the theoretical knowledge encasulated in

1DHI Water & Environment, DK-2970 H rsholm, Denmark
2Informatics and Mathematical Modelling, Technical Univer sity of Denmark, DK-

2800 Lyngby, Denmark
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numerical models with available data at or around the time of interest.
Such an approach is generally known as data assimilation.

One particular branch within data assimilation deals with sequential
state estimation based on a Kalman lIter approach. However,the op-
timality of the Kalman Iter can not be preserved without imp osing
linearisations and constraints on the size of the state spas which are
severe for the application in a realistic set-up of a hydrodyamic model.
Thus, sub-optimal schemes have been introduced that attempto reduce
computational requirements by simplifying the model propagation op-
erator and/or reducing the degrees of freedom in the model a@riance
estimation.

The use of a simpli ed process description was investigateth (Dee 1991).
Such an approach is case dependent and relies on the validitf the rather
strong dynamical approximations. Alternatively, the error covariance
calculation can be performed on a coarser grid (Fukumori & Mdanotte-
Rizzoli 1995). This implies an assumption about the main moe! vari-
ability to be at larger scales than the model resolution. Firally, the
model operator can be represented with a reduced rank appramation
by applying e.g. a singular value decomposition (Cohn & Toding 1996).
The simplied process description, the coarse grid approxination and
the model reduction approach are all examples of applying aagularised
model operator.

A di erent approach to speeding up a sub-optimal Kalman Ite r is to

work with a simpli ed error covariance representation. One such ap-
proximation is to assume that the error covariance is in stedy state
(Heemink 1986). This often works very well despite the stroig assump-
tion and has the advantage of being operational in many realime hydro-
dynamic forecast systems, (Canizares et al. 2001), (Heenk, Bolding &

Verlaan 1997). The reduced rank square root Kalman lter (Verlaan &

Heemink 1997) obtains a time varying approximation of the eror covari-

ance matrix. Based on the extended Kalman lter, the covariance is con-
tinuously approximated by its leading eigen sets. This lead to a rather
smooth Kalman gain, but its application is limited when very strong non-
linearities are present and only few measurements are avaible, (Verlaan
& Heemink 2001). Alternatively the covariance can be calcuhted using a
Monte Carlo technique as introduced in (Evensen 1994). Thisapproach
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handles even strong non-linearities well, but at the price 6 rather noisy
error covariance estimations. A larger ensemble size redas this prob-
lem, but at the cost of an increased computational burden. Fnally,
hybrids of regularised model operators and approximate ewr covariance
representations can be formed. As an example, (S rensen, Misen &
Madsen 2002) successfully combined the ensemble Kalman dtr with a
depth averaged model operator for generation of a steady Katan gain
to be used in a 3D hydrodynamic model.

Each of the sub-optimal schemes is based on a set of assumpt®such
as model linearity, a simpli ed description of the error covariance and an
unbiased model operator. Often the assumptions are merelytated or
even implicit in order to focus on other important issues. The schemes
are typically validated by application in one or two test cases, where
performance is rather good. Means of assessing the generallidity of
the underlying assumptions often lack and the Iter performance when
they are violated are generally not discussed for the di erat schemes.
We attempt to contribute to this matter. The main aim of this p aper is
to highlight the assumptions of di erent schemes and analyg the validity
of these assumptions under various conditions. In order to prform this
analysis, di erent performance measures are introduced.

In (Verlaan & Heemink 2001) a non-linearity measure is introduced,
which can be used to assess the validity of the assumption ohe model
operating in a regime, which is weakly non-linear at worst. h this paper
a simpli ed version of the measure is implemented in a 3D hydodynamic
model and the performance of two estimation schemes based ancen-
tral forecast is examined with respect to variation of this non-linearity
measure and compared to an ensemble forecast. The Gaussignbf a
solution a ects the valid interpretation of the results and thus two non-
Gaussianity measures are introduced. When the model noiss iGaussian,
these simultaneously provide alternative non-linearity measures. Finally,
the model bias is used to characterise the lter performanceunder var-
jous error structure assumptions. It is very important to understand
the Iter performance when actual errors are not well captured by the
assumed error structure. This aspect will be considered intte paper.

Section[2 introduces the considered coastal ocean systemhigh is de-
scribed by a stochastic hydrodynamic model. Sectioiil3 dis@ses state
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estimation with particular emphasis on issues of applicaton to a hydro-
dynamic model. The propagation of model error covariance igliscussed
in Section[4 along with a presentation of the ensemble Kalmaniter, the
central ensemble Kalman Iter and the reduced rank square rot Kalman
Iter. This section also describes the characteristics of ach lter. In Sec-
tion Blmeasures of non-linearity, non-Gaussianity and biaswhich will be
applied to assess the validity of Iter assumptions, are infoduced. The
simulation study is described in Sectior® and a discussionfdhe results
is given in Section¥. Finally, Section[8 concludes the paper

2 Stochastic state space model

The physical system under consideration consists of hydroghamic ow
in bays, estuaries, coastal regions and shelf seas. The bod§ water
evolves according to the laws of internal dynamics of a uid ad its
interaction with the atmosphere and the solid earth through the sea
oor. Among the processes encompassed by this system are tidlwaves,
wind induced coastal upwelling, eddy formation and turbulence.

The continuity and Navier-Stokes equations state the consevation of
mass and momentum in a continuum like the considered system.By
developing mathematical, physical and numerical approximations of the
system dynamics, the problem of estimating and predicting he state of
the coastal ocean can be solved. This theoretical approachas lead to
the advance of a range of numerical models, which are now roirely
applied to solve a number of scienti c and engineering probéms. One
such numerical modelling system is MIKE 3.

The MIKE 3 hydrodynamic model is part of a general nite dier -
ence modelling system and is designed to simulate non-lingaunsteady
three-dimensional ows. It is developed at DHI Water and Environ-
ment (DHI 2001) and has been successfully applied to variouscienti ¢
and engineering applications in domains with scales rangim from meters
to thousands of kilometres ( resundskonsortiet 1998), (Vested, Berg &
Uhrenholdt 1998), (Erichsen & Rasch 2002).

MIKE 3 utilises a nite di erence technique, and thus provid es the dis-
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crete time evolution of the model variables de ned on a meshn the do-

main under consideration. Details of the nite di erence scheme can be
found in the scienti c reference manual, (DHI 2001). For the purpose of
the problem at hand it is su cient to acknowledge that the ent ire state of
the model is uniquely determined by the variables (t;), (t; 1:2), (ti 1),

Vi (i), wy(t, 1?), vy(ti+1=2) and v, (t; 1;4) when the density of the water
is assumed constant. The variable is the water level, (vy,vy,v,) are the

three velocity components andt; is the time index.

With knowledge of the initial conditions, sources and sinksas well as
boundary conditions represented by surface elevation at opn bound-
aries and wind velocity and pressure at the sea surface, MIKB calcu-
lates a solution to the nite di erence equations. Thus, an estimate of

the state of the uid is given at discrete temporal and spatial intervals

and the state at time tj;1 is completely determined by the state at time
t; and the forcing terms embedded in the sources and sinks and bhad-

ary conditions. Thus, let Mp be the model operator representing the
approximate nite di erence equations, up (tj) the forcing de ned at a

snapshot in time projected onto the mesh andxp (tj) the model state at
time tj. The discrete deterministic model can then be expressed as,

Xp (ti+1) = Mp(Xp (ti);up (i) 1)

The hydrodynamic model attempts to construct the best possble es-
timate of the state of the system within the constraints of the model
structure imposed. However this estimate is based on a modeind forc-
ing terms, which we know are uncertain, but often we will have some
knowledge of the second order statistical properties of theerrors, ;.
Thus, the discrete model can be extended to a stochastic motiepropa-
gating a state that is now a stochastic variable characteried by its second
order statistical properties rather than the deterministi c estimate in Eq.

@.

For the hydrodynamic part of a continental shelf ocean model a main

source of error comes from inaccurate meteorological and ep boundary
forcing. Thus, in order to simplify the error description, it is assumed
that wind forcing and water level at open boundaries are the sle sources
of error. No initial errors are assumed, but the model is allaved a spin-up
period to propagate the forcing induced error throughout the system.
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To reduce the computational requirements, errors can be dened on a
coarser grid, G2, than the forcing grid, G1, and thus an intepolation

operator, , is introduced. In general any linear reduced rank repre-
sentation can be expressed by , e.g. refer to (Canizares 1999) for this
approach. If the errors in the forcing terms can be assumed tde uncor-
related in time, then MIKE 3 can be generalised to a stochastt model

operator, My 3:

Xm3(ti+1) = Mma(Xma(ti);up(ti) + ) 2)
where 0 1

(ti)
(ti 1;2)
(ti 1)
xma(ti) = B Vx(ti) 3)
Vy(ti 1=2)
Vy(ti+ 1—_2)
Vo (t; 1:4)
The only di erence betweenxy 3 and xp is that the elements inxy, 3 are
stochastic.

However, the errors in the forcing terms are usually correlged in time.
Thus it makes sense as a rst approximation to construct an agmented
state vector, by including the error as modelled by a rst order autore-
gressive model (AR[1)),

X;i =A X;i 1+ i (4)

where  isann -dimensionali.i.d. variable with zero mean and known
covariance,Q (tj). A = diag( ) is a linear diagonal model. In the phys-
ical system under consideration a rst order autoregressie process typ-
ically explains 80-90% of the variance. If necessary it is sdightforward

to formulate more general correlation models still adherimg to the state
space description.

Finally, by assuming the error to originate from the forcing, using the
augmented state vector with coloured error description as gpressed by
Eq. @) and allowing for a noise to be de ned on a reduced spacg.g. a
coarse grid), the following stochastic nite di erence model is obtained:

X(tis1) = Xiﬂ.ii(ltiﬂ) _ %Mxi(im3gti);uD(ti)+ i)

(®)
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or
X(ti+1) = M (X(t);up(ti)) + (6)

where M is the augmented model operator and
i= 00O0O0O0O0O0 (7)

is a n-dimensional i.i.d. variable with zero mean and covarianceQ (t;).

Eq. (@) is called the system equation and is the actual stochstic rep-

resentation of MIKE 3 that will be used subsequently. The dimension

of x is designatedn. Note that the equation actually has additive noise

even though the error is de ned to enter through the forcing terms, i.e.
i enters linearly, but has a non-linear e ect on xy 3.

Tidal gauge measurements provide an additional source of formation
about the state of the system. They are characterised by a hig temporal
resolution, but the gauges are very sparsely distributed inspace. Tidal
gauge sensors typically have a random instrumentation errowith a stan-
dard deviation less than 1 centimetre. Let the number of measrements
be designatedp.

For the purpose of data assimilation, we need to relate the masurements
to the state vector x. By doing this, a model representation error is
introduced. As an example, if the model resolution is 9 nauttal miles,
then the model variable that would typically represent the observation is
the water level averaged over the grid box at the position of he gauge,
which clearly may deviate from the point measurement. Reprgentation
error is typically the main error source that needs to be conglered when
using tidal gauge data for modelling purposes, (Fukumori, Righunath,
Fu & Chao 1999). Let x be the stochastic model state de ned by Eq.
@). It is assumed that the observation, y?, can be expressed as a linear
combination represented by thep n matrix H (t;) of the state variables,
and an additive zero mean Gaussian distributed observatioal error, ";,
with covariance R (t;).

yP = Hix(ti) + " (8)
This is called the measurement equation. The rows oH; will in many

cases consist of zeroes and a single one. It is assumed thaetkeparate
tidal gauge stations have both spatially and temporally uncorrelated er-
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rors. Thus the measurement error covariance can be expressas

0 1
2 0 0

R(ti)=%° o E ©)
L 0

Tide gauge observations are performed by independent instiments and
hence the instrumental errors are independent. However, thir main
error source is probably representation error, (Fukumori & Malanotte-
Rizzoli 1995) and (S rensen, Madsen & Madsen 2003d) and mayepend
on the system state and thus be correlated. This e ect is not pesent in
ideal scenarios as considered herein.

3 State estimation

In the previous section, stochastic descriptions of both mdel and mea-
surements have been presented. The description of the systeis pro-
vided by the system equation [®), while the measurements arelescribed
by the measurement equation [B). Now we will pay attention to how
the best estimate of the true oceanic state can be obtained tsed on the
available information from these two sources of informatio. The model
gives a state estimate with high temporal and spatial resoltion, but the

values are hampered by the accumulation of errors. Measureemts give
an alternative estimate that is usually more certain when ard where an
observation is made, but they are sparsely distributed in spce and time.
The two sources of information are complimentary and both owht to be
included in the state estimate.

At a given point in time consider the stochastic state, x, derived from
the model, and an observationy®. Note that by restricting ourselves
to a single time step, the propagation and the estimation prdlems are
separated. First, we deal with estimation. One approach is 0 use the
information about the oceanic state provided by the model pobability
density function (pdf) to give e.g. a maximum likelihood (ML) estimate.
However, including the information provided by available measurements
will improve the estimate. By using a Bayesian approach the esulting
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pdf of the estimate can be calculated as the conditional probhbility of x

given the data, y°,
. f(y°x)f (x) f(y°ix)f (x)

f %) = =R . 10

A 1 O Ty (x)0x 4o

The value x2 of x that maximises f (xjy°) is the maximum a posteri-

ori (MAP) estimate of x. It is common to work with the logarithmic

transformation of Eq. (L0) in order to ease the arithmetic expressions.

logf (xjy°) =log f (y°jx) +log f (x) logB (11)

In Eq. ([I), B is an abbreviation for the denominator of Eq. (I0). This
last term does not a ect the behaviour of extreme values becase it only
depends on the data. Thus, if the distributions f (x) and f (y°jx) are
known, then the optimum can be found. However, these distrilutions
are in general unknown and further assumptions must be impasd in
order to progress.

It will now be assumed that the distributions f (x) and f (y°jx) are Gaus-
sian with means xf and Hx and known covariance matricesP’and R
respectively. Thus,

1 f T 1 ;

B ex 3 x X pf X X
2 )"=2" det(PT) P

f(x)=
(12)
& ex th( ° Hx)"(R) (y° Hx)i
22 ey P 2V y

(13)
where n and p are the sizes ofPfand R respectively. By substituting
Egs. (12) and {I3) into Eq. () and di erentiating with resp ect to
x the maximum can be found. This provides the same solution ashe
minimisation in a least squares approach. For further elabeation on the
least square solution refer to (Wunsch 1996) and (Jazwinski970).

f(y°x) =

The MAP estimator now reduces to,

x?=x"+K(y° Hx") ; P*=pP" KHP' (14)

h i
K=P'HT HPTHT+ R (15)
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The matrix P2 is the error covariance of the estimated state x2. Since
the estimator can alternatively be derived from the least square approach
as the best linear unbiased estimator (BLUE) it will always supply the

minimum variance estimate under the assumption of a linear ad unbi-

ased estimate for any distribution. In the remainder of this paper we
will refer to Eqgs. ([4) and ([3) as the BLUE estimator. Note that the

problem of nding the probability density of the state varia bles has been
reduced to estimating its a posteriori mean and covariance.

The assumption about Gaussianity is certainly more an operéonal as-
sumption than a justied one. Particularly, model error sources are
generally far from being Gaussian. However, assimilation ghemes are
traditionally based on the BLUE, which is only a minimal vari ance es-
timator under the Gaussian assumption. We believe an improed es-
timation technique is essential in the further development of assimi-
lation techniques. An operational Bayesian approach as diussed in
(Christakos 2002) could provide an interesting alternative.

The discussion above has focused on the estimate when a prionodel
estimate is available at the time step of a new measurement. \&will now
extend the discussion to encompass available information i until the
time of the latest observation. In general the approach can e extended to
a sequential estimator with each estimate having a similar MAP or BLUE
interpretation based on all past and present measurementslf the BLUE
estimator is used with a linear model for propagation of the nean and the
error covariance matrix in between updates and all variabls are Gaussian
distributed, then the classical Kalman lIter is obtained. T he Kalman
Iter has in many cases been the starting point in the literature and
necessary generalisations have subsequently been imposedy. (Verlaan
& Heemink 1997). Here, we present the general problem and ingse
certain simpli cations that allow a solution to be found on available
computational resources.

So far the origins of the mean and error covariance estimatesf model
(system error) and measurement variables (measurement eor) were
avoided in order to pay attention to the estimator. However, their con-
struction is one of the major di culties in sequential data a ssimilation.
For tidal gauge data the measurements at separate stationsan be as-
sumed to have no error correlation andR (tj) becomes diagonal as ex-
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pressed by Eq. [®). This allows for an e cient sequential updating

of data from di erent tidal gauge stations within the same ti me step,
(Madsen & Canizares 1999). The values of the diagonal elems are
set, based on re ections on the error sources discussed in 8®n P Es-
timates of x (t;) are typically based on the composite hydrodynamic and
the AR(D) model in Eq. (B). The error covariance matrix, P (t;), on

the other hand, has been estimated by a number of di erent appoaches
in the literature. These range from solving the Riccati di erence equa-
tion (Fukumori, Raghunath, Wunsch & Haidvogel 1993) to geometric or

physical assumptions (Fox, Haines, de Cuevas & Webb 2000),ra tran-

sient propagation of Pf (t;) by the hydrodynamic equations (Verlaan &

Heemink 1997), (Evensen 1994). The latter approach is pursed in this

work and is treated further in the next section. Among its strengths it

accommodates the calculation of non-linearity measures.

Anyone of the approaches above requires a proper de nition bsystem
noise,Q(t;). The error in open boundary water level or wind velocity will
typically be correlated in space. The spatial error correldion patterns
are here assumed to be isotropic for each error source and cdinus be
described by a standard deviation and a spatial correlationscale corre-
sponding to the distance at which the correlation is 0.5. Futher, because
of the noise de nition in Eq. (FJ only the lower right n n portion
of Q(tj) is non-zero. The speci cation of Q(tj) poses quite a problem in
real applications. (Dee 1995) suggested a maximum likelinmd approach
for estimating the system noise from measurements. Howevetthis is
quite costly and requires 2-3 orders of magnitude of data ma than the
number of error parameters to be estimated. An alternative ®lution to
the problem should be adaptive in nature, because of the gemnally time-
varying and state dependent errors. This could be very inteesting to test
in ideal scenarios like the one discussed in the present papebut they
probably would be too computationally demanding for real applications.

It makes ltering seem less complex if we remind ourselves tht no mat-
ter what approach is taken, the procedure basically consist of two ele-
ments: Updating and propagation of model state estimates ad its error
covariance. We can pick and choose among various estimatoifer the
updating and various propagation schemes, but in all cases evpropagate
model information in between measurement times and update e state
instantaneously whenever a new measurement becomes avdila. The
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resulting updated state estimate can then be propagated onards.

4  Error covariance propagation

This section will describe various ways of propagating the mdel mean
and error covariance in time. The general approach for time eolution in
stochastic di erential equations is based on dynamic stochstic predic-
tion, (Evensen 1994). The starting point there is a stochasic di erential
equation with additive noise generated by a Wiener processThe general
solution is given by the Fokker-Planck equation and consiss of the full
probability density function of the state. In our approach, the stochastic
extension was introduced in Eq. [®) at the level of the actualnumerical
implementation in order to make clear the physical, mathemdical and
numerical assumptions that we ideally attempt to capture. For both
approaches, the nal aim is to provide accurate estimates ofthe state
by propagating information about the probability density i n time when
called for by the estimator. In both ensemble based lIters presented
in Sections[Z1 and[ZP the pdf is approximated by a nite ensmble.
However, for the Reduced Rank Square Root Kalman Iter presated
in Section [£3, the propagation is restricted to rst and semnd order
statistics.

The treatment will be restricted to expressing the various moments of
the state vector. Assuming the noise sequence,;, to be a zero mean
i.i.d. random variable, cf. Eq. (@), then the expectation of X (tj+1 )is:

Efx(ti+1)g= EfM(x(ti);up (ti))g (16)

Even this rst order moment is impossible to evaluate exactly for a non-
linear forecast model, such as MIKE 3. Calculation of the seand order
moment demands even more resources for a good approximati@nd so
forth. However, various approximate methods can be imposedwhich
makes the error covariance propagation manageable. In theoflowing,
two dierent ways of approximation, which are both implemented in
MIKE 3 are presented. The Ensemble Kalman Filter (Evensen 194)
is based on Monte Carlo theory, while the Reduced Rank Squar&oot
Kalman Filter (Verlaan & Heemink 1997) uses a truncated Taylor series
and a square root error covariance representation.
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4.1 Ensemble Kalman lter

In the ensemble Kalman lIter, (EnKF), an ensemble of possibke states
represents the statistical properties of the state vector.Each of these vec-
tors is propagated according to the dynamical system subjaed to model
errors, and the resulting ensemble then provides estimatesf the forecast
state vector and the error covariance matrix. In the measurenent up-
date, the Kalman gain matrix obtained from Eq. ([5) is applied for each
of the forecast state vectors. To account for measurement eors, the
measurements are represented by an ensemble of possible m@@&ments,
(Burgers et al. 1998). The resulting updated sample provide estimates
of the updated state vector and the associated error covariace matrix.
The following subsections provide the mathematical detailof the scheme.

4.1.1 Forecast

Each member,j, of the ensemble ofj state vectors is propagated forward
in time according to the dynamics of the augmented system in . (&)
and the speci ed model error, i.e.

f .
X = M(Xﬁi Lupi 1)+

i o1 o =120 17)

where the model error ; 4 is randomly drawn from a Gaussian distri-
bution with zero mean and nxn covariance matrix Q; which represents
the system noise. An estimate of the state vector (forecast)s calculated
as the average of the ensemble members, i.e.

X', (18)

The error covariance matrix of the forecast is estimated fron the ensem-
ble as

f_ of faf . fo_ 1 f f

where s}:i is the j th column in Sif.
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4.1.2 4.1.2 Update

An ensemble of sizeg of possible measurements is generated
yho=yP+ o s =12 (20)

wherey? is the actual measurement vector, and'j; is the measurement
error that is randomly generated from a Gaussian distribution with zero
mean and covariance matrixRj.

Each ensemble member is updated according to the updating keme
in Eq. (I4). The updated state vector and error covariance mé#ix are
derived from Eq. (@8) and (I3). When the data assimilation isbased on
in-situ measurements that are sparsely represented in spacthe full error
covariance matrix in Eq. ([[d) does not need to be calculatedln this case,
the measurement matrix H; only has a few non-zero elements and only
the columns in P'; that correspond to these non-zero elements i ; have
to be calculated. Furthermore, since it is assumed that measrement
errors are uncorrelated, a sequential updating algorithm hat processes
one measurement at a time can be implemented and the matrix imersion
in Eq. (IY) can be avoided.

The sequential updating algorithm reads (Chui & Chen 1991),

k= - = of
XA = X8 1tkin Yy hwxf 1 s k=1;mp 5 xB=x 0 (21)
where p is the number of measurements,h;x is the k'th row in the
measurement matrix Hi, hixxf ; is the element in the state vector
that corresponds to the measurementy?, , (i.e. (Y@  hixX{ 1) is the
model deviation from measurementk), and ki is a Kalman gain vector
corresponding to measuremenk. The Kalman gain vector is given by
; i . _ . _ of
Kik = w——> 1 Cik =(Sik 1)Thﬁk ; Sto= S (22)
where the numerator is the covariance between the measuremek and
the state vector and the denominator is the sum of the variane of mea-
surementk and the predictive variance of the measurement. In the EnKF
the sequential updating scheme is applied for each ensemhieember, and

after each measurement updateSf, is calculated from the ensemble cf.
Eg. (3). Remember that the scheme encompasses both the MIKB
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part and the auto regressive augmented part of the state vedr. For
an in nite number of ensembles (L -EnKF) and correct error descrip-
tion this scheme will provide an optimal estimate and is in this sense
asymptotically optimal.

4.2 Central ensemble Kalman lter

A second version of the EnKF that uses a central forecast ingad of the
ensemble average forecast forif has also been implemented for the pur-
pose of calculation of the non-linearity measures discusden Section 3.
This lter is referred to as the Central Ensemble Kalman Filt er (CEnKF).
A new central state vector, xf, is introduced. At initial time to it is set
equal to the mean estimate ofx? and subsequently it is propagated and
updated like any other of the ensemble members, i.e:

xg% = X3 (23)

xS = M (x;upi 1) (24)

The error covariance propagation is still centred at the engemble forecast
and hence the Kalman gain is exactly the same as in the EnKF { oly the

state estimate is di erent. The computational requirements are similar
to those of the EnKF, requiring only one more model execution

4.3 Reduced rank square root Kalman lter

The Reduced Rank Square Root Kalman Filter (RRSQRT) is basedon
the extended Kalman Iter formulation in which the error pro pagation
is calculated using a statistical linearisation of the modé¢ equation based
on a rst order Taylor series expansion.
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4.3.1 Forecast

In the case of a coloured system noise process as assumed in &), the
forecast step is given by

xI = M(x® ;;upi 1) (25)

Pl = FiP? (F] + Q (26)
- @M

Fis & e (27)

The RRSQRT approximation of the extended Kalman lter uses a square
root algorithm as well as a lower rank approximation of the eror covari-
ance matrix. Denote by S? ; the approximation of rank q of the square
root of the error covariance matrix P? ;. The propagation of the error
covariance matrix is then given by
h i
S = Fist; Qi (28)

WhereQi1=2 isthe n p-dimensional square root ofQ;. The matrix S ;
has q columns whereq is chosen much smaller than the dimension of
the state vector. To calculate the derivatives in F; a nite di erence
approximation is adopted as follows,

(FiSt i = M(X{ 1+ s} pupi) M(XP supsi )] j =150 (29)
where sf; 4 is the jth column of S} ;. Thus, the propagation of the
error covariance matrix requiresq model integrations.

The propagation step in Eq. (28) increases the number of colmns in
the error covariance matrix from gto g+ p. In order to reduce the num-
ber of columns and hence keep the rank of the error covariancenatrix
constant throughout the simulation, a lower rank approximation of S{ is
applied by keeping only theq leading eigenvectors of the error covariance
matrix. The reduction is achieved by an eigenvalue decompadton of the
matrix (Sif )TSif . For full details refer to (Canizares 1999). For a proper
reduction, S{ must be normalised prior to the eigenvalue decomposition.
Basically the normalisation is chosen to ensure that the poéntial energy
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expressed by the surface elevation and the kinetic energy pressed by
the velocity get similar total weight in ( S{ )TSif before the leading eigen-
values are found. The augmented forcing correction part of lhe state
vector is similarly given an equal total weight.

4.3.2 Update

Based on the square root approximation of rankq, S', the error covari-

ance matrix can be calculated ast = S{ (S{ )T, and subsequently used
for the Kalman lter update. However, by using the sequential updating

algorithm described for the EnKF it is not necessary to calcuate the

forecast error covariance matrix and the sequential updatng can be per-
formed using S{ directly. In this case the state vector is updated using
Eq. &I, and the updated square root covariance matrix is gien by

(Canizares 1999),

T
Kik i
' 2
1+ ,

T o+ 2
Cik Cik * j

_ . o
% = Stk 1 ; Sto= S (30)

wherek;x and ¢ are de ned in Eq. (Z2).

4.4 Filter characteristics

In the previous subsections three specic Kalman Iter schenes have
been presented. In the present subsection we will discuss e of their
properties in greater detail. All the schemes attempt to provide time-

e cient estimates of the predicted rst and second order moments of the
state vector. They dier primarily in the way they approxima te these
moments. The ensemble approach tries to make an exact propatjon at

the cost of an estimate that may be signi cantly in uenced by stochastic
errors due to slow convergence of the ensemble estimate (grortional

to 2 g). On the other hand, the RRSQRT KF deliberately introduces

a bias in both the rst and second order moments, but eliminates the
stochastic error.

In the EnKF stochastic errors are introduced in both rst and second
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order moments, but when all assumptions are valid it provides an unbi-
ased and asymptotically e cient estimate. The CEnKF mainta ins the
stochastic error in the error covariance propagation. The tate estimate
inherits this stochastic error component through the update, but on top
it has a bias from its rst order approximation of the dynamic s provided
by the central forecast.

The state and its associated covariance estimate are biasédthe RRSQRT
KF because of the rst order Taylor series truncation. A secod or-

der truncation would introduce an additional term in the estimate of

the mean state, but not otherwise a ect the error covariance estimate,

(Verlaan & Heemink 2001). Furthermore, the error covarian@ has a
truncation error originating from the eigenvalue decompogion and re-

duction. Generally, the RRSQRT will underestimate the modd error

covariance for correctly speci ed Q; and thus provide a state estimate
closer to the model solution than the optimal estimate. However, there

is no stochastic error in this scheme.

The various Kalman Iter algorithms generally attempt to mi nimise the
variance assuming no bias, (Dee & da Silva 1998). However, aids, b,
can enter the state estimate either through a bias in the systm error or
through non-linearities in the model operator in schemes usg central
forecasts such as RRSQRT KF and CEnKF. In this case the optima
estimator in a minimal prediction error sense must be calcuhted by using
PP+ bbT instead of P' in the BLUE estimator, Egs. ([Z) and ([5), and
thus the error covariance estimate provided by thel -EnKF is no longer
optimal. Alternatively, the Iter can estimate the bias by a ugmenting
the state with the bias terms. The bias is propagated by a peristence
model or a long memory auto regressive model. For a properlyetected
A in Eq. (@) this is exactly what the AR(1) noise description does under
the assumption of all bias coming from the forcing term (Ignayni 1990).
Thus all lters accommodate bias correction in the forcing.

The reaction time of the bias correction is determined by therelative sizes
of the elements inR; and Q;. If Q; is comparatively large, the state will
be updated to t the measurements rather closely where avadble and
simultaneously update all other state variables accordingo the assumed
correlation structure of the model error and its subsequentpropagation
throughout the model domain. Thus the imposed error structure in Qj
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is of prime importance. If the correlation between data rich and data
sparse regions are poorly estimated, signi cant errors care introduced
into data sparse regions. For a comparatively smallQ; there will be
more trust in the model and the state estimate will move slowly towards
the measurements. However, a potential structural error wil still be
introduced into data sparse regions albeit at a slower speed

5 Measures of non-linearity, Gaussianity and bias

It is important to note that all schemes are imposing a numberof approx-
imations in order to make the data assimilation problem manayeable.
The validity of these assumptions will be case dependent foa set-up
of a model like MIKE 3. Thus, before blindly relying on the schemes,
the correctness of the underlying assumptions ought to be t&ed. In the
following we will discuss a number of ways to estimate the nodinearity,
Gaussianity and bias of a data assimilation algorithm.

According to (Verlaan & Heemink 2001), the general aim of a no-
linearity measure of a data assimilation system is, withoutthe arti cial

twin experiment, to assess the accuracy of the data assimitaon algo-
rithm associated with the nonlinearity of a particular application. In
pursuing this goal, they developed a measure that is based atte Taylor
Series second order contribution to the propagation of the tate estimate.

Here we would like to add that the accuracy of a Iter is assocated
with other aspects than the expected bias accumulation indaed by non-
linearity, although this is an important factor in highly no n-linear ap-
plications. The applicability of the BLUE estimator as being optimal
in a prediction error sense and the MAP interpretation builds on the
assumption of an unbiased and Gaussian distributed state. Aon-linear
model propagator inherently violates the latter of these asumptions and
bias is only avoided in the EnKF and when using unbiased forgig.

(Verlaan & Heemink 2001) demonstrate the performance of thi& mea-
sure in the Burgers equation and in the Lorenz-system. Depeting on
the set-up, MIKE 3 possesses dynamics that can stretch overdih these
domains of non-linearity. Thus, it is of great interest to examine the
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non-linearity of a given model application in order to provide guidance
in selecting the correct Iter and to obtain an indication of Iter per-
formance and the accuracy of the provided error estimates. fbng with
validating the underlying assumptions, non-linearity measures also help
the modeller con guring a data assimilation approach and oliaining a
better understanding of the dynamics in the particular modd domain
under consideration.

Three non-linearity measures are used in the present invegation. Ver-
laan and Heemink's NL-measuré/,, and two measures based on skewness
and kurtosis respectively, s, and k,. The rst of these gives information
about the accumulation of bias introduced by the non-lineaity, while
the latter two measure the instantaneous deviation from Gaussianity.
Gaussianity and linearity are closely related. In general Gussianity im-
plies linearity whereas the opposite is only true in the caseof Gaussian
distributions of the sources and the initial eld. All three measures are
time varying spatial L,-norms. Based on the derivation in (Verlaan &
Heemink 2001), theV, measure can be written as:

Y
piX op)

n._, i

Va(ti) = (31)

b (t) = x{(t)  xj(ti) (32)

Here, n is the number of elements in the state vector and  (t;) is stan-
dard deviation of the state estimate derived as the square rot of the
diagonal elements ofP2(t;). The bias, b (ti) is simply estimated as the
di erence between the central ensemble estimate and the avage ensem-
ble estimate. In the update step the EnKF scheme is used to ebhate
the error covariance for both state estimates. Thus, the mesure in-
cludes e ects from the stochastic estimate of the error coveance and
average state estimate as well as the error introduced by th@on-linear
dynamics. For a proper assessment of non-linearity, it musbe assumed
that the latter is dominating, i.e. that the ensemble size is su ciently
large. The V,-measure di ers from the V measure suggested in (Verlaan
& Heemink 2001),

V(ti) = e Ip; b=[by: k] (33)

While V, measures the bias compared to the variance, i.e. the trace of
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the error covariance matrix, the V-measure compares the bias to the full
matrix taking correlations into account.

With g still being the ensemble size, thes,-measure is simply the spatial
L >-norm of the skewnesss; (t;):

Pq . 13
k=1 (Xk(ti)  x(t))
(@ D@ 2) 2)

5(t)= 3 (34)

~co<
S|k

X0 ,
(s (ti)) (35)
j=1

So(ti) =

A positive skewness expresses that the distribution has a hlmer tail to-
wards larger values and vice versa for a negative value. Likeise the
ko-measure is the spatiall o-norm of the kurtosis, kj (t;):

P
qa+1) o () x@)*  3(q 1)
(@ D@ 2@ 3 M) (@ 2@ 3)

ki (ti) = (36)

~co<
S|k

X 2
ka(ti) = (k; (ti)) (37)

j=1

A positive or negative kurtosis respectively expresses thathe distribu-
tion is peaked or at relative to the Gaussian distribution.

The two latter measures are introduced in order to measure tle point by
point non-Gaussianity of the ensemble distribution. Having a Gaussian
initial distribution and Gaussian sources, the non-Gaussanity is an ex-
pression of the e ect of accumulated non-linearity in the madelled state.
However, the measures have both a bias and a variance due to ank

ited ensemble size. Keep in mind that the forcing function ispart of
the model operator when employing the augmented state desiption.

Thus, the squared dependence between wind velocity and swfe mo-
mentum transfer will introduce a skewness into the velocitycomponents.
An important operational issue is the robustness of these masures to
the ensemble size. All three measures have an o -set that vgrwith en-

semble size. Further, the larger the ensemble size the smaltl variance of
the measures.
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The V, measure corresponds to a™ order Taylor series expansion in
the error covariance propagation. Thus, it can provide infamation about

the validity of the extended Kalman Iter (EKF) and its size ¢ an be used
to measure the linear deviation from this EKF validity regim e as long
as third and higher order moments can be neglected. The, and the k»

measures will provide measures of non-linearity that exceds the point

at which the V, measure levels out. However, their interpretation as
measures of non-linearity depends on having Gaussian syste errors.

Further, measures based on higher order moments could be irdduced
to measure higher order non-linearity. E.g. the deviation ketween the
EKF and the EnKF error covariance estimates could be appliedin an

appropriate way.

Finally, a bias measure is introduced, which compares the ugated model

to observations where available. The measurements shoulah¢lude vali-

dation stations not assimilated, since assimilation mightactually increase

bias in validation stations. For every measurement,k, the bias measure,
k. IS de ned as,

.
X Yok hixx?
g i

1
Tia  hyPehl o+ 2

K= (38)

T is the number of time steps. The -measure is applicable to any run
in which a model standard deviation is estimated. Taking the L ,{norm

over all available measurements, possibly divided into assnilated and

non-assimilated stations can aggregate the information othe measure
further.

6 Simulation Study

A twin test in an idealised set-up is used to demonstrate the @plication

of the non-linearity measures in MIKE 3. The study also invegigates
the model performance in a set-up with biased forcing using iderent

error correlation structures to estimate the state both with and without

a long memory AR() error assumption. Both investigations have been
designed in order to assess the validity of Iter assumptiors and the
performance when they are violated. However, rst attention must be
paid to the performance measures used.
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Only water level is used in the performance measures, whichra as such
di erent from the cost function that the scheme attempts to m inimise.
However water level is considered the most important forecst variable,
and it is the variable that has the largest correlations with the tidal

gauge measurements and therefore most clearly shows the strgths and
weaknesses of the various approaches. Practically all reks transfer to

the velocity part of the state vector, albeit with a smaller amplitude.

Similarly, the non-linearity, non-Gaussianity and bias measures de ned
in Section 5 are restricted to include only water levels as wé

A standard performance measure of data assimilation schersds the root
mean square error (RMSE) between the true {rue) and assimilating or
perturbed solutions (pert) in a twin experiment, (Verlaan & Heemink
2001), (Madsen & Canizares 1999). It can be expressed in a wahat
collapses either the temporal or the spatial dimension. In he present
paper, the following de nition is used,

RMSE = (feg) G2 (39)

1

N .
j=1 i=1

where N is the number of water level grid points, T is the number of

time steps included in the estimate and is the water level. Similarly

bias and standard deviation can be de ned as,

V
u " #o
u XN X
gas =t =" 27 meq) P (40)
j=1 i=1
V
1 X ﬁ 1 X
Stdev:= N GO I(D) (PG) P2
j=1 i=1

(41)
The lter theory is based on ensemble statistics, but in orde to estimate
the Iter performance time sampled statistics must be used. This requires
ergodicity and a su ciently long time period for the statist ics to have
acceptable accuracy.

For ergodicity to apply a basin with constant wind forcing and constant
open boundary elevation provides the basis of the test caseThe basin
contains a simple horse shoe island and the initial state haa constant
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surface elevation at 0 m and is at rest. The spatial resolutia is 10
kilometres and the time step is 15 minutes. The northern operboundary
has surface elevation 1.0 meter and the eastern has surfackeation 0.0
meters. The bathymetry, which is shown in Figure 1, was chose to
mimic a typical application of MIKE 3 in shelf seas, while remaining
simple enough for fairly fast execution and ease of interpt@tion. In the

nonlinearity twin test, NL, the false run uses a steady 20 m/swesterly
wind, while the true run is forced by the same wind eld with a r ealisation
of two similar AR(I] processes added to the x- and y-compones of the
wind velocity, respectively. Each AR(M) process has a time onstant of
one hour and 25 minutes and is forced with a Gaussian distribted white
noise with a standard deviation of 5 m/s. In the error structure twin test

case, ES, the false run is similar, but the true run uses a stety 19.8 m/s
south-westerly wind corresponding to x and y wind velocity mmponents
equal to 14 m/s.

The model was run for 16 days and statistics were calculated uting the
last 15 days. The realised wind errors (the two AR[1) processs) added
to the 20 m/s westerly wind in the true NL run had spatially ave raged
standard deviations of 9.0 m/s and 9.3 m/s in the x and y directions
respectively, and maximum norms of the mean of 0.5 m/s and 0.3n/s
with spatial averages of minus 0.01 and 0.03. This is taken tgrovide
a su ciently good representation of the assumed error statistics of zero
mean and standard deviation of 9.2 m/s. Thus, any bias introduced in
the system in the NL false run must be due to nonlinearity.

Note here that it is not su cient to work with a period much lon ger than
the time constant of the noise itself, since the model operatr potentially

Iters the input and thus transforms the characteristic tim e scales. This
is clearly seen when an auto-regressive noise is used, buteevin the case
of direct Gaussian wind stress perturbation, the model opeaitor performs
a ltering. In order to make sure that the time statistics are reliable, the
time average of the model output from an execution with the asumed
true run should compare well with the result of a 1 -EnKF of the false
run. For the NL true run this was successfully validated aganst a 1000
EnKF run without assimilation.

Measurements were extracted from four points in each of therue runs
to be assimilated into the false runs. The positions shown inFigure
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Figure 1: Test case bathymetry [m]. The black dots indicate neasure-
ment positions (10 km, 160 km), (60 km, 80 km), (80 km, 10 km) anl
(200 km, 30 km).

1 were chosen at boundaries, as is typically the case for tidegauge
stations. The asymmetry of the positions suggests a similansymmetry
in the standard deviation of the state estimate to be provided by the
assimilation schemes. The measurement positions are alsdasen to
investigate the lIter performance in data sparse regions ascompared to
data rich regions for various error structure assumptions.

The NL-experiments were designed to provide a comparison lheeen the
various non-linearity measures and relate these to the Ite performance
of the three Iters presented in Section[4. The design enable the 1 -
EnKF to provide the optimal estimate since care has been take not to
have signi cant reminiscent bias in the system apart from that introduced
by the non-linearity in the schemes based on a central forec Thus the
relation between bias and non-linearity should stand clear The non-
linearity is expected to increase with increasing update tine intervals,
(Verlaan & Heemink 2001). Therefore, update interval (ui) is chosen as
a control parameter of non-linearity. The update interval is given in time
steps and thus the uil2 run updates the state every 1® time step or
equivalently every 3 hours. Update intervals equal to 1, 4, 812, 24 and
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48 are chosen and compared to a simulation without updating.

The ES-experiments are meant to expose the importance of usg the
augmented AR() error description in the presence of bias. Mre gener-
ally they highlight the performance of the Kalman lIter usin g true and
false descriptions of the error structure and how insight ca be obtained
from the bias measure. The ES false run has a clearly biased md forc-
ing having a direction, which is turned 45 degrees. The EnKF § used to
assimilate the true results under the assumptions of biasednd unbiased
wind, i.e. time constants of 0 and 16 seconds equivalent to an AR[L)
parameter equal to 0.0 and 0.9994 respectively. This is done in com-
bination with four di erent spatial correlation scales of 0 km, 100 km,
495 km and 10,000 km for the wind error.

7 Results and discussion

7.1 Non-linearity (NL) experiments
7.1.1 Solution without data assimilation

In order to give an impression of the general solution of the N true and
false run and central and ensemble forecast without assination, Figure
A shows a time series of water level at the measurement point6Q km,
80 km) for each case. The ensemble run is based on 1000 enseesblAll
variability in the true run is due to a changing wind eld. A ra ther large
variation has been imposed and the shortcomings of the falseuns are
obvious. Further, the bias introduced by the central forecast stands out
clearly.

An alternative view of the false run is provided by Figures[3 and M,
which shows the bias and standard deviation over the last 15 ays for
the central forecast false run. The spatial distribution of the bias re-
ects the nonlinearity from the squared dependence of wind peed in the
momentum transfer. The distribution of the standard deviation arises
from the coloured wind error showing its peak values close tthe closed
boundaries. Similar statistics are shown for a 1000 ensemblforecast in
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Figure 2: Water levels extracted at (60 km, 80 km). Grey: True run.
Black dot-dashed: Central forecast false run. Black: Ensefnle forecast
false run.
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Figures[d and®. Note the reduction in bias, while the standad deviation
remains literally unaltered.
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Figure 3: Central forecast NL false run water level bias [m].

7.1.2 General Iter performance

The assimilation schemes all improve the rather poor falsedution sig-
ni cantly. Figures Tlto IT0dshow the bias and standard deviation for the
RRSQRT with 40 leading eigenvalues and EnKF based on 1000 eam-
bles, respectively, and should be compared to Figurell 3 thl 6In both
cases the state was updated at every time step, i.e. ui = 1. An lovious
error reduction is seen in either case, which proves the e céncy of the
assimilation schemes. FiguréZlll shows the standard deviatn estimated
by the EnKF averaged over the last 15 days. Ensuringly, the stucture
of this estimate is seen to correspond closely to the actuatandard devi-
ation in Figure [0 Neither of the schemes have a signi cant kas. Note
that ui = 1 is the most linear of the NL model runs. The good esti-
mation of standard deviation generalises to all assimilatbn runs. Table
1 sums up the performance of the schemes as estimated by the FO&
between the true run and each run with false forcing with asgnilation
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Figure 4. Central forecast NL false run water level standarddeviation
[m].
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Figure 5: 1000 ensemble forecast NL false run water level kdglm].
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Figure 6: 1000 ensemble forecast NL false run water level stdard de-
viation [m].
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Figure 7: Forecast NL false run water level bias [m] using the(RRSQRT.
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Figure 8: Forecast NL false run water level standard deviatbn [m] using
RRSQRT.
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Figure 9: Forecast NL false run water level bias [m] using theL000 EnKF.
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Figure 10: Forecast NL false run water level standard deviabn [m] using
1000 EnKF.
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Figure 11: Estimated water level standard deviation [m] by the 1000
EnKF.
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RMSE uil | ui4 | ui8 | uil2 | ui24 | ui48 | ui-1
1000 EnKF 0.10] 0.12| 0.17| 0.22 | 0.27 | 0.31 | 0.34
100 EnKF 0.10] 0.12| 0.17| 0.22 | 0.27 | 0.32 | 0.34

40 RRSQRT 0.12]1 0.13| 0.19| 0.24 | 0.30 | 0.34 | 0.36
1000 CEnKF 0.10] 0.12| 0.17| 0.22 | 0.28 | 0.33 | 0.36
100 CEnKF 0.10| 0.13| 0.18| 0.23 | 0.29 | 0.33 | 0.36
No assim. 0.36 | 0.36| 0.36| 0.36 | 0.36 | 0.36 | 0.36

Table 1: Root mean square error (RMSE) in the NL assimilation runs
for varying update interval (ui) and assimilation scheme. Runs with no
update are denoted ul .

and varying update interval and a run without assimilation. The good
Iter performance already demonstrated in the gures generlises to all
cases. The larger the update interval the worse performances expected
when longer periods of time with possible drift away from thetrue state

is allowed. An EnKF with 100 ensembles is also included in thgoresent
study and has approximately the same execution time as the RBQRT
KF with 40 leading eigenvalues. These numbers have been shawby
(Madsen & Canizares 1999) to be su cient in the kind of systan under
consideration. In order to assess the stochastic variatiorof the EnKF,

ve realisations of the 100 EnKF have been calculated. Only me of these
is included in Table 1, but the variability of the RMSE is generally less
than 0.005.

7.1.3 Assessment of non-linearity and non-Gaussianity

Consider the bias in the central forecast provided by CEnKF \ersus the
EnKF based forecast with no assimilation. Figure[3 and®d showmaps

of their time averaged bias for 1000 ensembles in the extremease of
no updates. Table 2 shows the spatialL ,-norm of the time averaged
bias for the range of di erent runs with false forcing and using the var-

ious schemes and update intervals. It is clear how the noniiear model
equation introduces a model bias as the update interval inceases in the
schemes relying on central forecasts, RRSQRT and CEnKF, wireas the
ensemble forecast has a negligible bias. This behaviour iselV captured

by the nonlinearity measure, V», de ned in Section[H. As can be seen in
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Bias uil | ui4 | ui8 |uil2 | ui24 | ui48 | ui-1
1000 EnKF 0.01] 0.01| 0.01| 0.01 | 0.01 | 0.02 | 0.01
100 EnKF 0.02] 0.01] 0.01| 0.02 | 0.02 | 0.02 | 0.01

40 RRSQRT 0.01]0.01|0.02|0.04 | 0.07 | 0.11 | 0.13
1000 CEnKF 0.01] 0.01|0.03|0.04 | 0.07 | 0.11 | 0.13
100 CEnKF 0.01] 0.02| 0.02| 0.04 | 0.07 | 0.11 | 0.13
No assim. 0.13] 0.13| 0.13| 0.13 | 0.13 | 0.13 | 0.13

Table 2: Spatial L,-norm of the bias in the NL assimilation runs for
varying update interval (ui) and assimilation scheme. Runswith no
update are denoted ul .

Table 3 the e ect of changing the update interval is consistantly to in-
creaseV,. This is a consequence of the bias demonstrated in Table 2. As
assumed, the non-linearities in the model operator introdwes progres-
sively more bias in the system as the update interval (ui) is hcreased.
However even when no assimilation is used at all, tha/, non-linearity
measures remain small. The main source of non-linearity intie model is
the conversion of wind velocity to wind stress in the interplay between
the augmented and the model part of the state vector. Thus, the present
set-up is not highly non-linear, but on the other hand non-linearities are
not negligible either. The s, and k, measures in Table 3 show a similar

NL-measure uil | ui4 | ui8 | uil2 | ui24 | ui48 | ui-1
Vo 0.10| 0.12| 0.14| 0.17 | 0.22 | 0.29 | 0.33
S5 0.21] 0.25| 0.35| 0.40 | 0.49 | 0.54 | 0.60
ko 0.37| 0.43| 0.52| 0.56 | 0.61 | 0.64 | 0.69

Table 3: Non-linearity measures for the NL assimilation rurs for varying
update interval (ui). Runs with no update are denoted uil .

dependence on update interval and thus provide interestingcomplimen-
tary measures. While describing the non-linearity they sinultaneously
provide an indicator of non-Gaussianity and thus the reliahility of inter-

preting the results as MAP-estimates. Fors, and ky the variability with

update interval is somewhat dierent from V,. They increase rather
steadily with update interval for the chosen intervals and even in the
most linear case (ui=1) the solution seems to be non-Gaussia There-
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fore, even the 1000 ensemble estimate does not give the statdth the
maximum a-posteriori probability, but rather the state est imate with the
lowest mean square error using linear and unbiased estimats.

All three measures are merely stochastic realisation and teir variability
should be assessed. First of all, the measures obviously yawith en-
semble size. This is to be expected since they rely on samplstenates
of second and higher order moments. However, for a given ensble size
there might still be a stochastic variability, due to limite d ensemble size.
Five realisations of 100 EnKF have been used to assess thisnability. In
all cases, the maximum di erence is less than 0.02 in the RMSEstimate,
0.02 in V,, 0.03 insp and 0.06 ink,. Thus the single run estimates can
be considered su ciently accurate to indicate the relative non-linearity
and Gaussianity of various data assimilating set-ups.

Bias has been introduced as a product and measure of non-liagty,

but simultaneously it is the source of trouble for schemes bsed on the
extended Kalman lter, such as the RRSQRT, in strongly non-linear
applications. In (Segers et al. 2000) a second order RRSQRTIter was
introduced, which handles signi cantly more non-linear situations. How-
ever, the only enhancement as compared to the regular RRSQRTter is

to estimate and correct the bias introduced in the state estimate by non-
linearities. The forcing induced bias, which can have a sintar impact
on the lter performance, is most often not considered in literature, but
much more attention needs to be paid to this aspect for operdbnal use of
Kalman ltering techniques. The next part of the discussion attempts to

examine this bias source and how the implemented schemes céwandle
it in the case of true as well as false error structure assumpans.

7.2 Error structure (ES) experiments

7.2.1 Solution without data assimilation

Both the true and the false ES runs reach a steady state ratherfast
and thus the false run error is essentially determined by thebias, which
is shown in Figure[I2. The bias is created by a constant di erace in
wind direction throughout the domain. Thus, the error source is known
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to be a bias in the wind velocity with in nite spatial correla tion. The

bias is evident and has anL,-norm of 0.27 meters. However, the bias
varies throughout the domain. In real applications the bias can only

be estimated in measurement points. Thus, su cient data cowerage is
required for a proper assessment of bias. The bias in FigureZldoes
not necessarily suggest a spatially constant bias to the umained eye.
Only with the proper physical insight and su cient sampling , this can

be anticipated.
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Figure 12: Forecast ES false run water level bias [m].

By running one of the data assimilation schemes with no updags, the
model standard deviation and thus the -measure can be estimated.
Assuming the entire eld to be known, the L,-norm of is 1.8 and if we
restrict ourselves to the measurement points the correspating value is
also 1.8, but obviously a di erent set of points could yield a substantially
di erent value. Four validation points were selected: (10 km, 80 km),
(160 km, 10 km), (130 km, 90 km) and (190 km, 190 km). Based on tese
the Lo-norm of is 2.1. In all cases the measure shows that the model-
measurement di erence is signi cantly larger than its standard deviation.
Knowing that the measurements are unbiased in this idealisé test case,
we can conclude that the model has a bias.
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Figure 13: Forecast ES false run water level bias [m] using DOEnkF
with a time constant of 10° and a spatial correlation scale of 10,000 km.

7.2.2 Solution with data assimilation

The biased error structure can be cast within the assimilaton schemes
presented in Section 4 and thus these ought to give a very goodsti-
mation of the bias. This is demonstrated in Figure[IB showingthe bias
from the 100 EnKF scheme correctly assuming a biased error Wi a very
high spatial correlation of 10.000 kilometres. Alternatively, if the error
is assumed to be white, a bias will always remain as shown in Gure[13,
still assuming a spatial correlation of 10.000 kilometres.The results are
summarised in Tables[# andb, showing thd >-norm of bias and for
varying spatial correlation lengths with a white noise or bias assumption
corresponding to a time constant of zero and 10 seconds, respectively.
The e ectiveness in bias correction is seen to clearly depehon the va-
lidity of the imposed error assumptions. The assimilation uns assuming
coloured and spatially correlated noise leave a bias, whicts smaller than
the estimated standard deviation of the model-measurementi erence.
Since the model believes it is correcting an error in all asaiilation runs,
this standard deviation is rather quickly dominated by the measurement



102 Paper B

standard deviation of 0.05 metres. However, for the assindtion runs
assuming white noise the resulting bias is only barely within the bounds
of the uncertainty even for the correct spatial correlation.

Bias 0 km 100 km | 495 km | 10,000 km
0 s. 0.25m| 0.13 m 0.08 m 0.05m
10° s. 0.17m|0.04m |0.01lm 0.00 m

Table 4. The Lo-norm of the bias. The time constant and the spatial
correlation scale vary along the vertical and horizontal axes respectively.
All runs are based on the 100 EnKF scheme.

0 km | 100 km | 495 km | 10,000 km
0 s. 413 | 1.63 1.12 0.84
10°% s. 3.03 | 0.64 0.21 0.06

Table 5: TheL,-norm of . The time constant and the spatial correlation
scale vary along the vertical and horizontal axes respectigly. All runs
are based on the 100 EnKF scheme.

Applying a wrong spatial correlation scale can potentially increase the
bias in data sparse areas as demonstrated in Figufedl5, whicthows the
bias for a spatial correlation scale of O kilometres and a tire constant of
10° seconds. Compared to FigurgZl2 there is an evident bias incase in
the data sparse bay of the horse shoe island.

All together, these experiments show the importance of treting the error
structure correctly. Making false assumptions can severgla ect the |-
ter performance. Both in the deterministic case and when emjpying an
assimilation scheme the bias in measurement points ought tdne exam-
ined. The -measure can be used to indicate whether the bias is within
the range of uncertainty for every point of interest.
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Figure 14: Forecast ES false run water level bias [m] using DOEnkF
with a time constant of zero and a spatial correlation scale 10,000 km.

8 Summary and conclusions

A stochastic model of the physical system consisting of hydsdynamic
ow in coastal and continental shelf seas has been formulag This
stochastic model and observations are the foundation of pnading sta-
tistically based estimates of the oceanic state. However,ni order to
obtain such estimates a number of assumptions must be impode A
nonlinearity measure, two measures for non-Gaussianity ath a bias mea-
sure have been presented with the aim of providing means of asssing
the validity of these assumptions.

The non-linearity measure has been demonstrated to vary caosistently
with the non-linearity of the set-up. The EnKF handles the nonlinearity
well, leaving only a minor bias, whereas procedures based @entral fore-
cast have signi cant biases for more non-linear set-ups. Th correspon-
dence between the nonlinearity and nonGaussianity has beemeri ed.
The MAP interpretation of the estimated state must be discredited in
the case of strong nonlinearities or lack of Gaussian nois@put. Finally,
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Figure 15: Forecast ES false run water level bias [m] using TOEnkF
with a time constant of 10° and a spatial correlation scale of 0 km.

it has been demonstrated how wrong error structure assumptins may
severely hamper the results. This is particularly true for data sparse
regions.

For the simple test case examined in this paper, the wind drien coastal
circulation does not require data assimilation schemes, wich handles
strongly non-linear dynamics for assimilation of tidal gauge data. This
might not be the case for all bathymetries and thus it is recommended to
employ non-linearity measures to assess the applicabilitf the various
schemes. The non-Gaussianity measures provide complimeary mea-
sures that simultaneously guides the user to a proper interpetation of
the results. In many real case applications, the bias introdiced by non-
linearity is not the dominating source of bias. Rather the farcing induced
bias will often be larger. A general bias measure, which is ey to calcu-
late, has been formulated. This measure indicates the presee of bias,
but not whether the source is model non-linearity or biased ércing. How-
ever, in combination with the non-linearity measures, the ontribution

from each can be approximately assessed. Hence work can pead to
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take the bias properly into account in the data assimilation scheme. In
any case, the presence of bias indicates that the lter is wdking under
the wrong assumptions and therefore is not optimal in a leastsquare
sense. Another prerequisite of optimality of the estimatoris a correct
error structure description. It is demonstrated that the speci cation of
a correct error structure is important in practical applica tion and wrong
assumptions can induce severe errors in data sparse regions
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Towards an operational data assimilation system for a
three-dimensional hydrodynamic model

Jacob V. Tornfeldt S rensen®2, Henrik Madsent, and Henrik Madser?

Abstract

A data assimilation system is developed for both a three-
dimensional and a two-dimensional hydrodynamic model for lys,

estuaries, coastal areas and shelf seas. A sequential timary-

ing assimilation method based on the Kalman Iter to assimilate

water level measurements is implemented. The method utilies
an ensemble Kalman Iter based on a Monte Carlo approach for
propagation of model errors (EnKF). Further approximation s,

which will speed up the calculations and thus enable operatinal

use of the system, are considered. A simple approach, usingre

averaged Kalman gains from the time varying lter, is imple-

mented (Steady Filter). The state considered in the approabes
consists of the two-dimensional elds of water levels and ho-

zontal depth averaged velocities in each grid point. The thee
dimensional horizontal velocity eld is updated by using a con-

stant prede ned pro le constrained by maintenance of dynamical

balance. The idea of this is to reduce the computational cost
by using a simpli ed one-layer dynamics in the two-dimensinal

model to propagate the error-covariance matrix.

1 Introduction

Reliable data assimilation methodologies, applicable fofow budget com-
puter facilities, are consultancy and management needs ofomorrow.
During the past decade data assimilation has emerged in the[3 hydro-
dynamic modelling community and has been developed into aplable
tools for research in coastal and shelf seas. However, onlgrfmodels that
have very low computational costs, is data assimilation ushle in prac-
tical operational modelling systems without requiring high performance
computing (HPC) facilities.

1DHI Water & Environment, DK-2970 H rsholm, Denmark
2Informatics and Mathematical Modelling, Technical Univer sity of Denmark, DK-
2800 Lyngby, Denmark
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For 2D models on the other hand, Kalman lter based data assinilation

has been demonstrated to be applicable even for more advanteset-ups
(Canizares et al. 2001). Here, an operational approach bad on physi-
cally justi ed error assumptions was devised. A similar appgroach is also
applicable in 3D models, (S rensen, Madsen & Madsen 2001), ut its use
is time consuming and has large memory requirements. The pte paid
in the 2D models is the lack of vertical structure. This paperpresents an
operational approach to Kalman Iter based data assimilation in a 3D
model run, by using physical information from the 2D model in the as-
similation of data in the 3D model. This makes the set-up of the system
endurable and maintains the vertical structure.

2 The hydrodynamic models

The two hydrodynamic models used in the present study, MIKE 2L and
MIKE 3 developed at DHI Water and Environment, are applicable in
coastal and continental shelf seas. In this study both model are used
assuming constant density.

MIKE 21 is a 2D depth averaged model that solves for hydrodynanic ow

on a rotating sphere. MIKE 3 solves the same problem, but inaldes full
vertical structure in the calculations. Both models have the same time
stepping scheme and horizontal grid including a dynamic tweway nesting
facility and can thus be executed on the same bathymetry and drcing
inputs. However, the models have lived each their lives and eparate
codes exist. This means that small di erences exist, e.g. irthe details
of the bottom drag and turbulence closure formulation. Further, the
algorithms are optimised after di erent criteria, which to gether with a
change in computer precision makes MIKE 21 a factor 4 times fster
than MIKE 3 in a one-layer setting for the particular set-up of this paper.
Similarly, MIKE 21 is 8 times faster than MIKE 3 in a 10-layer set-up.

Both MIKE 3 and MIKE 21 contain surface elevation, , and depth av-
eraged velocity, Uy,Uy) in their state representation. In MIKE 3 the
full 3D velocity eld together with surface elevation constitute the state
vector needed for the model to be uniquely de ned. However,fia cor-
rection of the depth averaged velocity is needed, then this arrection
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can be distributed in the vertical by assuming a uniform distribution.
This maintains the vertical structure but shifts the mean. T he vertical
velocity is calculated from the hydrostatic balance equaton. Following
this approach a sub space of the state vector in MIKE 3 that comains
information about the variability is ( , Uy,Uy). If an average estimate of
the vertical structure is available, a correction in this sub space can be
redistributed to the full MIKE 3 state vector by means of the r ule above.

The MIKE models can be expressed as,
Xm (ti+1) = M (xn (ti); u(ti))

wheret; is time indexed by i, xy is the model state vector andu is the
external forcing in terms of open boundary conditions and mésorological
forcing.

3 The state estimator

Model and measurements give two independent estimates of thoceanic
state. Both are uncertain and are thus best described as stdastic vari-

ables. Assuming the distribution of both the model and the olservation

are known, a best linear unbiased estimate (BLUE) of the modkstate

can be achieved. This is the estimator used in the Kalman Ite and

is carried over to state estimation in non-linear models as wil. Let the

observational vector, y?, at time t; have a linear relation to the state
vector and have additive noise,

y? = Hixm (ti) + "

where " is an i.i.d. random variable with zero mean and covariance
matrix, Rj. Further, assume the error covariance matrix,P;, of xj (t;)

to be known. Then at a given time step, the BLUE estimate of the
system state, x2(t;), is,

x4(ti) = xm () + Ki(y? Hixwm (1))

Ki=PiH] HPHT +R;
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4 The Ensemble and Steady Kalman lIter

The main bottleneck in large scale Kalman Iter based data asimilation

techniques is the estimation of the model error covariancepP;, which
needs to be propagated in time. Its dimension isn  n, wheren is the
size of the state vector, which typically is of the order 16-10’. The
main feature of the Ensemble Kalman Iter (Evensen 1994) is b es-
timate P from an ensemble ofg model states, thus reducing the time
requirements by a factor n/q, while simultaneously capturing the full

non-linear propagation of the system state probability dersity function.

In practical applications q of the order 1¢ is su cient to provide good

results.

When propagating the ensemble, a model noise assumption nge to be
made. In the present set-up open boundary level forcing and imd forcing
are assumed to be the dominant sources of uncertainty and thel other
sources are ignored or rather assumed embedded in the modal errors.
An outline of the implemented ensemble Kalman lter can be faund in
(Madsen & Canizares 1999) and (S rensen et al. 2001).

If the Kalman gains, K, based on the time varying Ensemble Kalman
Iter approach shows fairly little time variation, it is tem pting to time

average the gains over a su ciently long period and then use he constant
Kalman gains in the future, which completely omits the error covariance
propagation (Canizares et al. 2001). This is how the SteadyKalman

Filter works. However, the constant gains need to be generad by a
time varying lIter, thus still requiring these runs to be fea sible for the
system to be set up.

5 Dynamical approximations

If it is assumed that the main errors in velocity and surface devations are
barotropic, then MIKE 21 might be as good as MIKE 3 at modelling the
error propagation all though it lacks the vertical represertation of the
complete ow eld. Thus, steady Kalman gain vectors can be oltained
from a MIKE 21 simulation which is signi cantly faster than t he MIKE
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3 because of the simpler dynamics.

Seen in the light of error covariance propagation, the idea busing En-
semble Kalman lter based MIKE 21 gains in MIKE 3, combines rank
reduction and dynamical approximation in the generation of the Steady
gains and applies the cheap steady assumption for operati@h use.

6 Experimental design

The purpose of the experimental design is to demonstrate thepplica-
bility of using Kalman gains derived from a MIKE 21 run to assimilate
water level in MIKE 3 in an idealised bay set-up. The basic ide is to
perform a twin test in a well understood idealised bay. First, the set-up
for the MIKE 3 base run will be presented. Thereafter, some ralistic
errors are incorporated to mimic the situation encounteredin reality,
where both wind and boundary forcing have non gaussian erra (per-
turbed runs). MIKE 21 is similarly executed in a set-up with t he realistic
errors. Finally, the di erent assimilation runs in the stud y are described.

6.1 Base run

The bathymetry of the idealised bay, in which the twin test is situated,
is shown in Figure 1. It covers a 200 km x 200 km area, has a linea
variation from land to 100 meters depth and an open northern loundary.
MIKE 3 was run with a 12-hour period and one meter amplitude shu-
soidal level forcing at the boundary and a west to east movingcyclone
with maximum wind speeds of about 35 m/s. The solution is a cytoni-
cally moving Kelvin wave perturbed by the cyclone. The modelhas a
10 km x 10 km horizontal resolution and a uniform 10 meter vertcal
resolution. Each time step is 15 minutes. Thus, it is a fast mael to run
and thus allows for many repetitions of even quite expensivassimilation
schemes.

Time series from the base run were extracted from the three piats indi-
cated in Figure 1. The base run is taken to be the truth and the® three
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Figure 1: Idealised bay bathymetry. The three dots indicate measure-
ment positions, (1,16), (8,1) and (20,12) counter clockwis.

Figure 2: Surface elevation in (1,16) for the base run (solid and the
perturbed run (dashed).
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time series will be considered observations and are the onlypformation
from the true run in the perturbed runs.

6.2 Perturbed runs

In the perturbed runs all settings are the same apart from thebound-
ary and wind forcing. The sinusoidal boundary forcing has a ae-hour
phase lag and the cyclone has a time varying error in both stregth and
direction. This yields a quite severely distorted solution To exemplify,
Figure 2 shows the time series of surface elevation for the Isa and the
perturbed set-up of MIKE 3.

6.3 Description of runs

1. Base run. MIKE 3 with base forcing. This run is taken as the
truth. Run (3), (4), (6), (7) and (8) assimilates the three ti me
series of surface elevation extracted from the base run.

2. MIKE 3 perturbed run. MIKE 3 with perturbed forcing and no
data assimilation.

3. MIKE 3 Ensemble Kalman lter. MIKE 3 with perturbed forcin g
and data assimilation. The ensemble Kalman lIter is used with
100 ensembles.

4. MIKE 3 Steady Kalman Iter. MIKE 3 with perturbed forcinga nd
data assimilation. The steady Kalman lter is used with average
Kalman gain matrices calculated from (3).

5. MIKE 21 perturbed run. MIKE 21 with perturbed forcing and n o
data assimilation.

6. MIKE 21 Ensemble Kalman lter. MIKE 21 with perturbed forc ing
and data assimilation. The ensemble Kalman lIter is used with 100
ensembles.

7. MIKE 21 Steady Kalman Iter. MIKE 21 with perturbed forc-
ing and data assimilation. The steady Kalman lIter is used with
average Kalman gain matrices calculated from (6).
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8. MIKE 3 with Steady Kalman lIter based on MIKE 21. MIKE 3
with perturbed forcing and data assimilation. The steady Kalman
Iter is used with average Kalman gain matrices calculated fom

(6).

7 Results and discussion

Since the entire state of the truth is known, the performance of the
various runs can be measured by a root mean square error estate
calculated for the last 24 hours and averaged over the entirelomain,

p
RMSE = 1

N w ater

W . .
N1 ) ( itrue (J;k) ipert(J;k))z
fj;k jpos(j;k ) iswater g i=1

Nwater iS the number of water points in the domain andN is the num-
ber of time steps over the last 24 hours. Only the surface elefion is
included. The superscripttrue indicates base run water levels and super-
script pert indicates the various perturbed run water levels. The RMSE
measure captures both the variance and the bias. The resultir run (2)
to (8) are shown in Figure 3.

Figure 3: RMSE's for run (2) { run (8). Values are shown as well

A number of remarks need to be made. As expected the RMSE of run
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(2) and run (5), with no data assimilation is signi cantly la rger than in
all other runs. Run (5) on the MIKE 21 engine gives a smaller RMSE
than the similar run (2) on the MIKE 3 engine. This is mainly du e to
a smaller sensitivity to the perturbations. The Ensemble Kaman lter
runs, (3) and (6) both give signi cant reductions in RMSE of surface
elevation. The Steady runs, (4) and (7) both maintain or evendecrease
this low value despite the fact that further approximations are made.
This is due to the fact that the optimal gains in the test case atually
are quite constant in time. Hence, the steady formulation at¢s to stabilise
the lIter, by reducing the stochastic noise through the time averaging.

Finally, pay attention to run (8). This run is the cheapest of all the 3D
assimilation runs and yet it gives an equally low RMSE, whileestimating
the full three-dimensional solution. Using MIKE 21 to generate the gains
makes the approach operational, since it only requires abdul/10 of the

time needed in MIKE 3. The set-up of any operational data asginilation

system requires some tuning and occasional recalculationHence, the
factor of 10 becomes even more essential.

MIKE 21 and MIKE 3 do not in general produce the same results be
cause of their somewhat di erent formulations. It is interesting to note,
however, that the sensitivity to the forcing, which is expressed in the
Kalman gains shows su cient similarity for the MIKE 21 gains to be
applied in the MIKE 3 assimilation scheme. Further tests arerequired
to see whether this carries over to shallow water applicatias with more
complicated bathymetries where the model di erences play amore im-
portant role.

8 Conclusions

A 2D model has been used to calculate Kalman gains that relata dif-
ference between model and measurement estimate of surfadeation at
a given point to a correction of surface elevation and depth ntegrated
velocities at all points in the model domain. These have beemveraged
in time with the purpose of using them in an assimilation schene that
assumes time constant gains. A scheme for extrapolating thre® gains to
the partly similar variables of a 3D model has been implemertd based
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on the assumption of a barotropic error. Finally, it was assuned that

a 2D model together with the extrapolation scheme gives a suciently

good representation of the 3D model Kalman gains. The entir&eombined
approach gives very good results for a simple bay test case.hEse results
are promising for application in complicated state-of-the-art operational

systems of coastal seas without the use of HPC-facilities. fie approach
can thus be applied for a range of low-budget purposes. Futw work
will test the applicability of the approach in an operational system of
the North Sea/Baltic Sea system.
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Data assimilation in an operational forecast system of the
North Sea - Baltic Sea system

Jacob V. Tornfeldt S rensen®2, Henrik Madsent, Henrik Madser?,
Henrik Rere Jensert, Peter Skovgaard Rasch, Anders C. Erichsert,
and Karl Iver Dahl-Madsen?

Abstract

The operational service the "Water Forecast" gives daily faecasts
for the North Sea, Baltic Sea and interconnecting waters. The

basic computational units include a 3D hydrodynamic module

a 3D environmental module and a wave module. An ongoing
development is focused on data assimilation of tidal gauge rad

SST data. A cost-e ective Kalman Iter based procedure that

uses a regularised constant Kalman gain is applied for the dal

gauge data. For assimilation of SST data a simplied Kalman

Iter procedure is adopted. The combined approach gives an
acceptable computational overhead for operational appliations.

Performance of the modelling system is evaluated.

1 Introduction

During the last decades a number of complimentary developmes within

oceanographic modelling and monitoring have been taking plce. Numer-
ical modelling has advanced to the stage where operationalystems are
now run on a routine basis, predicting an ever-increasing nmber of phys-
ical and biogeochemical properties (Pinardi & Woods 2002)(Erichsen
& Rasch 2002). Simultaneously, a growing amount of observaons of a
wide range of these properties in the shelf and coastal seaseabecom-
ing available in real or near-real time. Hence with the advare of data
assimilation schemes suitable for shelf and coastal sead potential of
an integrated approach has become clear. It is now possibletestimate
the state of the sea as a composite of on-line observations dnrmodel
results through the use of data assimilation techniques. Irthis way, the

1DHI Water & Environment, DK-2970 H rsholm, Denmark
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relatively precise but sparse data can in essence be interfated by the
theoretical knowledge embodied in the physically consistet model.

DHI Water and Environment is operating a forecast system of he North
Sea { Baltic Sea system called the Water Forecast (WF). This ontri-
bution demonstrates the application of cost-e ective data assimilation
schemes for assimilation of tidal gauge and SST data into thehigh-
resolution model, which provides the computational compomnt of the
WEF.

2 The Water Forecast operational system

In 1999 the development of an end-user oriented web based ap¢ional

modelling system of the North Sea - Baltic Sea was initiated & DHI

Water & Environment, (Jensen, M ller & Rasmussen 2002). Since June
2001, the system has produced operational forecasts. The rdel area is
depicted in Figure 1. It includes two open boundaries in the Nrth Sea
and stretches to cover the entire Baltic Sea. An area of partular interest
is de ned, which surrounds Denmark and southern Sweden as slwn in
Figure 1. The basic computational engine is composed of a twway
dynamically nested 3D baroclinic hydrodynamic module (MIKE 3 HD),
a 3D environmental module (MIKE 3 EU) as well as a 2D wave modué
(MIKE 21 SW). Every 12 hours a 4 days forecast is provided, préicting
a range of physical and environmental parameters. These ihgde water
level, currents, salinity, temperature, wave height, perbod, spectra and
swell as well as chlorophyll-a, oxygen and algae growth. A tbhrough
description of the system can be found in (Erichsen & Rasch ZlR).

3 The data

In principle all data, which can be assimilated at an acceptéle cost and
yet provide an improvement to the ocean state estimation sKi, ought

to be considered. For the WF system two data sources are cortsered
initially: Tidal gauge water level observations and satelite sea surface
temperature (SST) observations from the Ocean Path nder AVHRR sen-
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Figure 1. The WF model area. The dotted line between Scotlandand
Norway indicates an open boundary whereas the dashed squahows
the area in focus.
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SOrs.

3.1 Tidal gauge data

Tidal data from 14 stations in the focus area have been seleetl for
the present study. Eight of these will be assimilated and sixused for
validation. Figure 2 shows the positions of these stations ad whether
each station acts as a measurement (M) or a validation (V) stéion. Data
are provided from the Danish Meteorological Institute and the Danish
Coastal Authority.

Figure 2: Tidal gauge measurement (M) and validation (V) stations.

3.2 SST data

The Path nder AVHRR SST data was obtained from Collecte Localisa-
tion Satellites (CLS), who has pre-processed the data into Q-day interval
products as part of the EU funded project, GANES. For the purpose of
assimilation it is essential to notice that the SST elds are derived from
composit images and are therefore not snapshots in time. Dat from
22/9, 2/10 and 12/10 1994 was used for assimilation. The SST eld
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from the 22/10 1994 was used for validation. Figure 3 shows th data
coverage by the SST data. Further, all available temperatue data from
the ICES database in the given period was used for validation These
are highly sparse in time and space. Their spatial distribufon is shown
in Figure 4.

4 The data assimilation approach

The nal aim is to utilise data assimilation techniques that can have a
widespread use in engineering and scienti ¢ applications d thus it is
essential to develop schemes, which are both cost-e ectivand robust.
We de ne this as model execution time and memory requirementless
than ve times that of a pure model run and preferably below a factor
of two. The following two approaches comply with these constaints
while retaining a robustness and e ectiveness caused by thedvanced
data assimilation approaches on which they build and the coresponding
physical error assumptions. Thus both are applicable for oprational
systems.

4.1 Tidal gauge assimilation

The implemented assimilation scheme for tidal gauge data isa hybrid
scheme that combines the ensemble Kalman Iter approach (Eensen
1994) with a barotropic dynamical approximation (S rensen et al. 2002),
a steady gain assumption (Canizares et al. 2001) and a rearisation of
the gain matrix. A one-layer barotropic version of the three-dimensional
hydrodynamic model is run over a three days period with an enemble
Kalman Iter using 100 ensembles. Errors are assumed to origate solely
from the open boundaries and the wind eld. The time varying Kalman
gain is averaged over the last two days of the run and saved fapplication
in the steady Kalman Iter approach. This two-dimensional K alman
gain basically assumes the model errors to be barotropic antdence for
application of the gain in the three-dimensional baroclinic model the
same assumption can be followed to relate the full velocity eld to the
depth averaged velocities. Thus, an update of the full veloity eld based
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on a depth averaged gain will merely shift the mean of the verical pro le,
not the structure. For further detail refer to (S rensen et al. 2001).

Figure 3: Data coverage for every 10 day period of the AHVRR S$
data.

Due to spurious correlations in the ensemble Kalman lIter, which have
not diminished in the averaging process, rather large Kalma gain val-
ues can be observed in data sparse regions even when such etations
have no physical interpretation. Also the correlation between water level
and velocity is dominated by noise in large parts of the area. Thus,
in order to ensure robust results a rough manual regularisaon of the
gain is performed. This practically sets velocity gains to 2ro and cuts
o0 water level gains at the 0.01 contour. More advanced regudrisation,
which allows the velocity to re-enter and signi cant negative correlations
to remain must be considered as a future improvement. Howeve the
present implementation is an important rst step.
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Figure 4: Positions of in-situ temperature measurements fom the ICES
database during the validation period.
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4.2 SST assimilation

A module for cost-e ective data assimilation of SST data (Annan &
Hargreaves 1999) has been implemented in MIKE 3 HD. Based on a
few simple dynamical assumptions imposed on the Kalman lte ap-
proach the data assimilation module is able to correct the tenperature
eld above the mixed layer. It is assumed that horizontal correlations
are small enough to be ignored. Further, it is assumed that tke areas
above and below the mixed layer are each well mixed. This yiel a
one-dimensional gain vector for each SST data point approxnating the
Kalman gain. The SST data are interpolated in time to provide an ob-
servation at every time step. This represents the fact that the SST elds
are averages over a longer period of time. The base of the migdayer
can be de ned in a range of di erent ways. Note that the mixed layer is
merely a theoretically constructed concept. In the presentapproach, it
is taken to be the highest grid point with a di usion coe cien t of 10 4
or lower. However, the exact threshold value is a calibratio factor.

5 Results and discussion

For the purpose of testing the developed water level data agsilation

schemes, the period 3 to 27 February 2002 was selected, whasea pe-
riod between 20 September and 22 October 1994 was considerfmt the
SST assimilation. The di erent periods were chosen to matchthe avail-
able data for assimilation and validation. In both periods the model
was run both with (assimilation) and without (model) the app ropriate
assimilation scheme.

5.1 Tidal gauge results

The performance of the model with assimilation of tidal gaug data is
compared to a pure model execution in Figures 5 and 6, which siw
the root mean square error of the validation points and the masure-
ment points respectively. The mean values are also shown. Tdre is a
clear improvement in all stations with an average of a 35% ineased
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performance in validation points and 58% in measurement paits. This

signi cant improvement can be obtained at an overhead in exeution time

of less than a factor of two. All stations here are located in @ta dense
regions. In more data sparse regions, performance convegy that of a

normal model execution. When the regularised gain is not usga signif-

icant bias can be introduced from spurious correlations in he ensemble
Kalman Iter. Thus, an assimilation scheme has been implemated which

meets the constraints of fast execution and robust improveraents.

Figure 5: Root mean square error of water level results in vadlation
points with (white bars) and without (dark bars) assimilati on.

Figure 6: Root mean square error of water level results in meaurement
points with (white bars) and without (dark bars) assimilati on.
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5.2 SST results

The performance of the model with assimilation of SST data iscompared
to a pure model execution in Table 1, showing the root mean sgare error
of the 10 days forecast and the validation SST eld from the 220ctober
1994. Also shown is the root mean square error compared to thie-situ
measurements from the ICES database. The latter is dividednto two
bins above and below 20m in an attempt to roughly look at resuis above
and below the thermocline. The assimilation scheme clearlymproves
the results, where expected. It was assumed that no informabn was
available below the thermocline and thus it is consistent tomaintain the
performance below 20m. Above 20m we see an 18% reduction ofeh
RMSE. However a more signi cant reduction must be expected b be
obtainable if the SST data was assimilated timely. The 10 dag forecast
gives a 30% RMSE reduction. These are encouraging resultsubalso in
the forecast statistics, a further improvement must be expeted when the
validation is done timely, since movements of fronts and rajdly changing
atmospheric conditions will be more accurately captured.

RMSE CLS ICES ICES

(m) 10 days fore-| Above 20m | Below 20m
cast

Model 0.74 0.66 1.27

Assimilation 0.52 0.54 1.28

Table 1: Root mean square error (RMSE) of temperature resuk with
(Assimilation) and without (Model) assimilation.

6 Conclusions and future work

The successful assimilation of tidal data and satellite deived SST data
have been demonstrated in a model of the North Sea { Baltic Sedor
operational use. For the assimilation of water level data a jpoper regular-
isation of the Kalman gain will be considered for further improvement.
The SST assimilation scheme will be developed to use data tigly in
cloud free areas leaving the propagation of the informatiorto the model
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dynamics. In the near future simple optimal interpolation schemes for
the assimilation of chlorophylla and dissolved oxygen willalso be imple-

mented.
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E cient Kalman Filter Techniques for the Assimilation of
Tide Gauge Data in Three-Dimensional Modeling of the
North Sea and Baltic Sea System

Jacob V. Tornfeldt S rensen®2, Henrik Madsent, and Henrik Madser?

Abstract

Data assimilation in operational modeling systems is a disipline

undergoing a rapid development. Despite the ever increasm
computational resources, it requires e cient as well as rohust
assimilation schemes to support on-line prediction produts. The
parameter considered for assimilation here is water levelérom

tide gauge stations. The assimilation approach is Kalman Hier

based and examines the combination of the Ensemble Kalman Fi
ter with spatial and dynamic regularisation techniques. Further,

both a steady Kalman gain approximation and a dynamically
evolving Kalman gain is considered. The estimation skill ofthe
various assimilation schemes is assessed in a four week hoadt
experiment using a setup of an operational model in the NorthSea
and Baltic Sea system. The computationally e cient dynamic

regularisation works very well and is to be encouraged for wizr
level nowcasts. Distance regularisation gives much imprad re-
sults in data sparse areas, while maintaining performanceni areas
with a denser distribution of tide gauges.

1 Introduction

Marine operational forecasting systems are being increasgly applied
for a number of engineering and public service purposes, e.gPinardi &
Woods 2002), (Erichsen & Rasch 2002). The products are valude for
both hindcast, nowcast and forecast situations and in all caes there is a
need for higher precision simulation of the physical variates. In order to
increase the predictive skill, the numerical models have ben continuously
improved during the past decades. Better numerical methodshave been

1DHI Water & Environment, DK-2970 H rsholm, Denmark
2Informatics and Mathematical Modelling, Technical Univer sity of Denmark, DK-
2800 Lyngby, Denmark
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developed, smaller scales resolved and improved parameizations im-
plemented. The developments in the numerical models have lem carried
over to the operational systems as robustness has been pralie Along
with this development, attention has been paid to including an increas-
ing number of physical variables in the models. Hence the pdiolio of
products has been expanded from the hydrodynamic and thermaynamic
parameters to include estimation and prediction of waves, Ibgeochem-
ical parameters and sediments. All together these developents have
taken us to the stage we have reached today.

A number of model errors remain despite the clear improvemets of the

predictive skill that the present operational systems have experienced
during their life time. However, the measurements that demastrate this

error are often available on-line and can potentially be usd to update

the estimation of the ocean state in real-time. Methods thatpursue this
line of thought are referred to as operational data assimiléion techniques.

Data assimilation is a cross disciplinary eld with a range o uses, e.g. the
engineering community and meteorological sciences have arlg history

of successful applications. Data assimilation in ocean maals for hindcast
studies has also been rather widespread during the past dede.

However, the methodologies are computationally demanding@nd hence,
the use of assimilation approaches has only been applied to lasser ex-
tend in the operational modeling community. Examples are the MERCA-
TOR project, (Bahurel, Mey, Provost & Traon 2002), and the MF STEP
project, (Pinardi, Auclair, Cesarini, Demirov, Umani, Gia ni, Montanari,
Oddo, Tonani & Zavatarelli 2002). In common for these and sinilar
developments is the accessibility of high performance comyational re-
sources and assimilation of a large range of satellite and isitu mea-
surements into three-dimensional regional or global model For more
widespread application, techniques must be applicable onhe moder-
ate computational resources available to project engineearand scientists
working in applied modeling. For the assimilation of tide gauge data,
operational storm surge forecasting has been one of the taegs. Here
smaller geographical areas and simpler two dimensional mads have of-
ten been considered, which gives some reduction in the reqed com-
putational resources. Simultaneously, cheap assimilatio methods have
also been proven successful, hence encouraging its implemtegion, e.g.
(Vested et al. 1995), (Gerritsen et al. 1995) and (Canizarg et al. 2001).
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A less computationally demanding assimilation approach baed on the
steady solution of the Riccati equation and subsequent usenia Kalman
Iter was suggested by (Heemink & Kloosterhuis 1990). This gproach
reduces the computational demands to the same order of magtide as
a standard model execution. (Verlaan & Heemink 1997) suggésd the
improved reduced rank square root (RRSQRT) extended Kalman lter,
with successful application for storm surge prediction almg the Dutch
coast. (Bertino, Evensen & Wackernagel 2002) similarly usé a RRSQRT
Kalman Iter for water level assimilation in the Odra Lagoon . (Madsen
& Canizares 1999) demonstrated an implementation of the RBQRT and
the Ensemble Kalman Iter (EnKF), (Evensen 1994), in an idealised bay.
They showed that the two schemes have similar computationademands
and performance. However, computational times are of the ater 10
times greater than a standard model execution. (Canizaregt al. 2001),
demonstrated a successful application in the North Sea and &8ltic Sea
system of a steady Kalman lter using a gain obtained as a timeaverage
of the gain produced by the EnKF. Interestingly, spurious carelations
caused the results to get worse in data sparse regions, shawithe limita-
tion of the Kalman Iter approach. Based on ideas from (Houtekamer &
Mitchell 1998), (Hamill, Whitaker & Snyder 2001) discussedthis artifact
of the EnKF and suggested that a distance function can be usetb con-
trol the e ect of uncertain ensemble estimates. (Evensen 203) argued
that such an approach should be avoided because it no longergerates
updated ensembles as linear combinations of the forecast sembles.

The main computational issue in Kalman lter based data assimilation

is the propagation of the system error covariance matrix. The EnKF
and RRSQRT schemes along with e.g. the SEEK, (Pham et al. 1997
and the SEIK lter, (Pham et al. 1998), attempt to save comput ational

resources by constructing a low rank approximation of the malel error
covariance. The Steady Iter assumes no time variation, butstill requires
a solution of the Riccati equation or a more elaborate schemdor the
generation of the gain. (Dee 1991) suggested using a simpldynamical
model propagator for the error propagation. (Fukumori & Mal anotte-
Rizzoli 1995) presented a scheme which employed a coarselidyfor the

error propagation, hence reducing the dimension of the stat space but
simultaneously simplifying the dynamics.

The objective of the present study is to investigate the postility of
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combining a range of approximate Kalman Iter based techniques to
the assimilation of tidal gauge data in the North Sea and Balic Sea
system. The techniques are selected in order to provide an dimally
e cient scheme for this case, but their nature is discussed in a general
regularisation perspective. This framework acknowledgethe violation of
underlying assumption in the elaborate assimilation scheras and enables
the incorporation of prior independent knowledge in the estmation of the
ocean state.

Within the regularisation framework we describe four approakimations to
the EnKF. These are temporal smoothing of the Kalman gain, the steady
Kalman gain, a barotropic model error approximation and a distance
dependence of the Kalman gain. The performance of the techques is
presently examined in a hindcast scenario of the North Sea ah Baltic
Sea system, but the goal is to develop schemes that can be usé@dan
operational forecast setting.

In Section 2 the two- and three-dimensional hydrodynamic malels em-
ployed in this study are presented along with the available tde gauge
measurements. Section 3 provides the theoretical basis ohé assimi-
lation approaches considered. This encompasses a generasalssion of
the estimation technique used in Kalman Itering along with a discussion
of model and measurement uncertainties. The EnKF is also desibed
in Section 3 as are four regularisation techniques leadingat a Kalman
gain smoothing, a Steady Kalman Iter as well as a barotropic and a
distance regularisation. Section 4 presents the design ohe numerical
experiments. The results are shown and discussed in Sectids, while
Section 6 concludes the paper. The nomenclature suggested {Ide et
al. 1997) is followed throughout this work, where applicabé.

2 Description of Models and Measurements

The Water Forecast is an operational forecasting system caring a large
part of the North Sea, the Baltic Sea and the interconnecting waters,
(Erichsen & Rasch 2002). The hydrodynamic model has run oper
tionally as part of the Water Forecast service since June 20D. While
the system provides four-day forecasts of hydrodynamic, war quality
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Figure 1: Bathymetry and available tide gauge stations, induding 10
measurement stations (M1-M10) and 7 validation stations (V1-V7).

and wave parameters every 12 hours, this study restricts agntion to
water levels in a hindcast setting.

The hydrodynamic model of the forecast system is the three-tinensional
MIKE 3, (DHI 2001), which handles free surface ows. It solves the
primitive equations making the hydrostatic and the Boussinesq approxi-
mations. The turbulence closure scheme adopted is thk- model in the
vertical and Smagorinsky horizontally. The area covered bythe model
is shown in Figure 1. Tidally varying water levels are prescibed at the
two open boundaries, which are situated in the English Chanel and
in the Northern North Sea between Stavanger in Norway and Abedeen
in Scotland. Wind elds and sea surface pressure are deriveffom the
Vejr2 commercial weather service, (Rogers, Black, FerrierLin, Parrish
& DiMego 2001), and force the momentum equations at the sea stace.
The vertical resolution is two meters within the top 80 meters. Larger
depths are contained in the model bottom layer. The model is ested as
displayed in Figure 1 and the horizontal resolution varies fom 9 nautical
miles to 1 nautical mile in the inner Danish waters and one thrd nautical
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mile in a few narrow straits. A two-way nesting technique is anployed
securing a dynamic exchange of mass and momentum between dsi

The numerical model mentioned above attempts to express thérue state
of system in discrete space and time. The model space is spaguh by
water level, |, velocity, v, temperature, T, and salinity, S, averaged over
spatial volumes at discrete times. Letx,;(tj 1) 2 R"™3 be the model
estimate of the true state at time t; 1. Hence, the one-time-step-ahead
model operation, M,; provides the model estimate at timet; as,

Xma(ti) = Mys(Xus (ti 1);u(ti 1)) 1)

whereu(t; 1) is a vector containing the model forcing.

For the purpose of this study the barotropic two-dimensiond model
MIKE 21, (DHI 2002), was setup on the same horizontal grid andwith
the same forcing. The model has a smaller state space dimensi and
simpler dynamics excluding density variations and collap@ég the verti-
cal axis. Only water level, |, and depth averaged velocities,V, enters
the state, Xy (ti 1) 2 R"™ 21, The model propagator, M,,,; provides the
model estimate at time t; as,

Xzt (i) = My (Xae (L 1); u(ti 1)) (2

Both in terms of state space dimension and execution times th barotropic
model is signi cantly cheaper.

For the purpose of this study, 17 tide gauge stations were setted. These
are displayed in Figure 1. All stations are situated in Danish or Swedish
waters. The 10 tide gauge stations used for assimilation wilbe referred
to as measurement stations and indicated by an 'M'. The 7 statons used
for performance assessment will be referred to as validatiostations and
indicated by a 'V'. The stations in each of these groups are nmbered
consecutively and the corresponding station names can be ad from
Figures 2 and 3.

A much better data coverage than what is used in this constrilution is
needed for improved storm surge predictions in the North Sea How-
ever, the Water Forecast model does not have storm surge motieg as
a sole objective. The objective also lies in transports as Weas ecosys-
tem parameters and the aim is to apply a uni ed consistent mocel for
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all purposes. Hence, we employ a three-dimensioanl model drit would
be appropriate to also validate results against the velocy. However,
very little representative velocity data has been at our digosal in the
considered period and we follow a more traditional storm suge model
validation approach in a restricted area, which should be rgarded only
a partial validation for the full purpose of the system. In this respect, it
is important that there are validation stations (V6 and V7) f ar from as-
similation stations to examine aspects of the consistencyfahe employed
techniques.

3 Assimilation Approach

The schemes used for the assimilation of water level data inhte present
study can be categorized as sequential estimation techniags. The theory
can basically be divided into two parts. One is an estimationof the true
state based on the distributions of the model and measured véables,
respectively. The standard approach is to assume no bias andse the
best estimator in a minimal variance sense. This estimator $ presented
in Section 3.1. The other part is a speci cation and a subsegant propa-
gation of the stochastic model state in between measuremeriimes. The
observational error also needs to be quanti ed. The speci ation of an er-
ror model for the numerical model as well as for the observatins is build
on a number of assumptions. A discussion of these and a degation of
the error models employed in the present study is presentedni Section
3.2. In a dynamical model the model error is continuously alered by the
model dynamics and hence the error description needs to be ppagated
in time. A Markov Chain Monte Carlo approach is followed hereleading
to the Ensemble Kalman Filter (EnKF) described in Section 3.3.

The ensemble approach is an e cient way of making the work loa of the
model error propagation tractable, by reducing the degreesof freedom
in the description dramatically. However, the resulting scheme is still
too expensive for many operational systems, which are typiglly pushed
close to the limit in terms of computational resources in orcer to resolve
as many processes as possible. Further, the EnKF scheme maytrioduce
spurious correlations in data sparse regions due to an inaacate model
error description and the stochastic nature of the scheme. Ence, despite
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risking introducing non-dynamical modes in the system, vaious forms
of regularisation of the gain is proposed. Section 3.4.1 peents a simple
temporal smoothing of the Kalman gain matrix, Section 3.4.2describes
a Steady Kalman gain approach, while Section 3.4.3 presents dynamic
regularisation based on the assumption that the errors are hrotropic.

Finally Section 3.4.4 describes a distance regularisatiotechnique.

3.1 BLUE Estimator

In this section the estimation of the state of the system is umler con-
sideration. This is often referred to as the analysis step. Te state
is essentially a multivariate continuous four-dimensiona eld. Observa-
tions are noisy samples from this eld and are typically integral measures
over some spatial and temporal scale. Similarly, model vagbles repre-
sent per de nition spatial averages of the true state. The smtial and
temporal representation of the three-dimensional model istaken as a
common reference frame and the state is described in terms @6 projec-
tion onto it, x'(t;) 2 R". Heret; denotes time indexed byi and x!(t;) is
further restricted to include the model variables, water level, |; and ve-
locity, vi, hence excluding temperature and salinity. This approximdion
is due to later time savings in the EnKF error propagation and in order
to facilitate the barotropic regularisation in Section 3.4.3. Next, let the
prediction by a numerical model, x’ (t;), describe the rst moment of the
stochastic state and assume its error covariance matrixPf (t;), known.

Now, let the observation at time t;, y° 2 RP be related to x!(t;) through
the linear measurement equation,

yP = Hix'(ti) + €))

The matrix H; 2 RP " is a linear operator projecting the state repre-

sentation onto the measurement space and the measurement ise term
i iIs assumed to be an i.i.d. random process. Assume the rst andthe

second moments of this noise to be known, respectivel§) and R;.

When information from the true system becomes available in he form
of measurements an improved state estimate can be obtainedOne pro-
cedure for doing this is to assume a linear combination of thainbiased
model prediction and the observation that gives the minimum variance



E cient Tide Gauge Assimilation 147

estimate, x2(tj). This approach is called the Best Linear Unbiased Es-
timate (BLUE). A derivation can be found in (Jazwinski 1970) yielding
the following estimator,

x3(t) = x" () + Kiy? Hix" (1)) (4)
The Kalman gain matrix, K; 2 R" P, is given by,
Ki=PI(t)HT (HiPT(t)H] + R;) * (%)

The error covariance, P2(t;j), of x2(t;) will always be less than or equal
to P’ (tj) and can be calculated as,

Pa(t) = P (t) KiH{P'(t) (6)

The set of equations (4) and (5) supplies the variance mininging anal-
ysis among the class of linear equations and (6) the a postemii error
covariance, if R; and P (t;) indeed were the real a priori error covari-
ances.

3.2 Error Descriptions

The optimality of the BLUE estimator for the analysis relies on a correct
speci cation of the model and measurement error covariance Hence,
any misspeci cation of these will make the scheme suboptimia This
section takes a closer look at model and observation errorsna how they
are quanti ed in the scheme.

3.2.1 Measurement Error

The error, ¢, in the measurement equation (3) includes both an instru-
mental error and a representation error and is thus properlyrefered to as
a measurement constraint error as suggested by (Fukumori eal. 1999).
Depending on the observation considered, either instrumetal or rep-
resentation error can be the dominating source. The instrunental er-
ror refers to the actual error in measurement of the physicalproperty
under consideration. Often such statistics can be assessadther pre-
cisely. However, the instruments may be badly calibrated ad electronic
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or mechanical malfunctioning may induce systematic errors Hence, an
elaborate quality check on the data must be performed.

The other contribution to the measurement constraint error is due to
the fact that the state estimation is done in the model space.(Fukumori

et al. 1999) provide a nice discussion of this, arguing that he result-
ing measurement representation error contributes to the masurement
constraint error. A measurement typically represents a phyical prop-
erty averaged over a di erent spatial and temporal scale than the model
representation. As an example, the measured water level in aorner of
a harbour needs not be representative of the water level avaged over
an area of 1 1 km?2. If we had retained the continuous reality as the
space in which we estimate the state, then the spatial disciisation of
the model should have been described as a model error. Howaydhe

adaption of the discrete model space as the state space movie error to

the measurement equation, now expressing that the measureamt only
approximately represents the spatial average adopted by tB model.

Similarly, observed signals that are caused by processes nimcluded in

the numerical model can be described as a representation . The

only di erence is that we now consider the dynamical subspae spanned
by the model rather than the spatial subspace. It must be stressed that
the adoption of the model space as the state space is a choicé/e could
have chosen another projection of reality, but important in either case is
that the error process description is formulated accordingto this choice.

When using the state de nition discussed above, a white noie error does
not provide a good description of the expected error and herethe entire
premises of the Kalman lter is violated. The representation error must
be expected to be colored and it should be described as such.hik can
be done by augmenting the state space by its colored componenof a
suitable measurement error model. This is however a di cult task and
the rather crude approximation of merely increasing the whte measure-
ment error standard deviation is taken here, as suggested byFukumori

et al. 1999).

The measurement error is usually given some prede ned valueby con-
sidering instrumentation errors and representation erros as discussed
above. The measurement error can easily be time varying if jsti ed by
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such considerations. In the present implementation, the eror at a given
tide gauge station is assumed independent to all other statins. For the
instrumental errors this is true, but for representation error this might
be violated.

3.2.2 Model Error

Let x!,(t;) de ne the true state represented in the space of the model at
time t;. A system equation can then be formulated as,

Xu(ti) = Mu(xy(ti );ulti D)+ (@)

Thus, the model error, ., describes the error imposed by the model
operator, M, at time tj. This error must be described along with the
error covariance of the state at an initial point in time in or der to provide
a stochastic description of the system.

The description of model error is a complex task. The exclusin of pro-
cesses at the very level of the de nition of the mathematicalmodel and
the spatial discretisations used in the state description a model er-
rors, but described in terms of the representation error as gcussed in
Section 3.2.1. Errors in the mathematical formulation of processes we
wish to describe (including feedback from undescribed pragsses!) and
the numerical methods used to solve the equations as well asumerical
truncation errors and parameter speci cations, all imposeerrors in the
model simulation. Finally, incorrect forcing terms are potentially major
sources of model error. The model error has a complex spatiglvarying
structure and is dynamically altered throughout its propagation in time.
It is thus presently intractable to describe accurately. However, an ap-
proximate second order description of its statistical properties is not out
of reach.

When looking at the sources of model error in a well calibratd hydrody-
namic model of a coastal area, it is a good rst approximationto assume
that the main error source at each time step comes from the faring
terms. The system is quite strongly driven by its forcing and these are
known to be inaccurate. Atmospheric forcing is provided by neteoro-
logical forecast or hindcast models and open boundary watelevels are
typically described by a model of harmonic constituents. Inthe present
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implementation it is assumed that all other model errors areneglectable
and hence, a model error description can be provided if the eor sources
in the forcing terms can be propagated throughout the system The er-
rors in the forcing terms are assumed to be colored processdgscribed
by an autoregressive model with a spatially co-varying erro driving it,
ie.

i = Mary (i 13 )= A 1t (8)

whereA = diag( ). For the sake of simplicity, the noise process ; is as-
sumed Gaussian with zero mean and error covariance matribxQ; 2 R" ".
Hence,x!(t;) is augmented with the open boundary water level and wind
velocity error description and an extended operator,M = (My; M axrp)T,
is introduced. This leads to a system equation with additivenoise, which
will be used in the remainder of this work,

#
t(t.
XM(.tl) = x'(t)= M(X'(t suti 1); )= M Dsult )+
hoi ho ©)

The error covariance of ° isQi= g o . The determination of the

I
error covarianceQ; is based on experience and theoretical considerations.

3.3 Ensemble Kalman Filter

The Kalman Iter based data assimilation schemes used todayare all
based on the BLUE estimator. They di er mainly in the way they prop-
agate the stochastic state representation. The foundationof the En-
semble Kalman Filter (EnKF) is to approximate the propagati on of the
full pdf using a Markov Chain Monte Carlo technique, (Evensen 1994).
While the deterministic model in Eq. (1) or Eq. (2) propagates the
state assuming the model and forcing to be perfect, the EnKF &ékes the
stochastic nature of the model prediction and the non-lineaities explic-
itly into account.

An ensemble ofq state realizations is de ned at an initial point in time.
In the approach presented here, the same initial state de ns all ensem-
bles with zero variance at the beginning of a spin-up period During this
period the forcing errors are propagated throughout the sygem to pro-
vide the initial mean state estimate and model error covariance matrix.
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Each ensemble member is propagated according to,
><,T (t)= M(X{(t 1);uti 1) i) §=1;559 (10)

The model error, ; is randomly drawn from a prede ned distribu-

tion with zero mean and covariance,Q; 2 R" ". With each ensemble
propagated by Equation (10), the mean state estimate and modl error
covariance estimate are provided by the following equatios,

xa
SOEFEEH0 (12)
j=1

Pi(t)=S'(S)T; ¢ = pﬁ(x{(ti) gty 12

The vector, sjf;i 2 R", is the j &h column of S| 2 R" 9. The update can
be performed by Equations (4) and (5), when given the propernterpreta-
tion in an ensemble setting. For computational e ciency an algebraically
equivalent set of equations are used.

In order to maintain correct statistical properties of the updated ensem-
ble, each ensemble member must be updated rather than the eamble
state estimate. For the same reason an ensemble of measuremntg must
be generated and used for each ensemble member update acdagly
rather than the measurement itself, (Burgers et al. 1998). Hnce,

Y = yiE gis b =15ug (13)

Randomly generated realizations, j;, of ; are added for each mem-
ber. The update scheme presented here speci cally uses thenoorre-

lated measurement structure to assimilate simultaneous masurements
sequentially. The updating algorithm for every ensemble menber, j,

reads, (Chui & Chen 1991),

X (6) = XPm 1(t) + Kim (Vim  DimXPm 1(ti)); m=1;:5p (14)

and x2(ti) = xJf (t). In (14) yfim is the m%h element in ypi and him

is the m&h row of H;. Treating one measurement at a time the Kalman
gain is a vector, ki.m , given by,

K = M Cirm = ( sa )T hT (15)
im C;I;-m Ci;m " i2;ml i;m m 1 i;m
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The m%h diagonal element inR; is denoted 2. The matrix S%, in
(15) is calculated as

1
Sfn = [S3im S3imls Shim = pﬁ(xj"’;‘m (i) Rp(t)  (16)

form =1;:5pand &) = Sif. Now, (14), (15) and (16) provides the
update equations of all ensemble members, one measuremeritatime.
The time consumption of the EnKF is of the order of qtimes a standard
model execution.

3.4 Regularisation

In the EnKF most of the computational e ort is used for provid ing an
estimate of the Kalman gain matrix, K;. This matrix contains n p ele-
ments which are calculated based o ensembles. This leads to uncertain
estimates which in particular can have an unwanted e ect in data sparse
regions with large model variability. Such areas are suscdible to erro-
neous updates from spurious correlation estimates, (Hanlilet al. 2001).
However, even forq = 1 , the gain estimate will only have a limited
accuracy because of the simplistic nature of the models used describe
measurement and model error. Propagating an approximate &or source
gives an approximate error covariance matrix.

Regularisation methods allow the expression of a prior knovedge about
the elements inK; and their interdependence to be taken into account,
(Hastie, Tibshirani & Friedman 2001). The techniques can usially be
cast in a Bayesian framework, e.g. if a prior information abait the model
error covariance, PP | is available for Pf, then the posterior estimate,
pposterior ’ is

(Pposterior ) 1_ ( Pprior ) 14 ( Pf) 1 (17)

Such an approach is not tractable in the high-dimensional sate space
under consideration. However, the line of thought can still provide a
useful angle at Kalman ltering. Is there knowledge about the model
error covariance that clearly con icts with the estimates provided by e.g.
the EnKF? Regularisation methods deliberately makes biasg estimates
in order to lower the variance of the estimated elements. Bemuse of the
approximate error models and structural model errors the eSmates of
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the Ki-elements will typically be biased anyhow, so it makes sensto
express this in order to lower the total prediction error of the elements,
which is a sum of squared bias and variance.

3.4.1 Smoothing of Kalman Gain

Not to be confused with Kalman smoothing for the state vectorestimate,
a temporal smoothing factor, s, is introduced. It is used to regularise
the EnKF derived gain matrix in (5) and implemented in (15). W ith the
instantaneous Kalman gain still being denotedK j, a smoothed Kalman
gain, K 3, which replacesK ;, is obtained as,

KS=(@1 s)KZ +sKi;s2[0;1] (18)

This approach reduces the stochastic variability of the gan estimate
at the cost of leaving out high frequency signals in the gain a well as
introducing a phase error. In general the use of a smoothingactor gives a
good performance even for insu cient ensemble sizes, (S resen, Madsen
& Madsen 2003b). Thus, it allows a smallerq to be chosen for the same
performance, implicitly saving computational time. This proves the need
for regularisation techniques for e cient ltering. It can be regarded as
an intermediate method in between the ensemble Kalman lIterand the
Steady Kalman lter described subsequently.

3.4.2 Steady Approximation

The Steady Kalman lIter can be regarded as an ad-hoc regulasation
method. Instead of calculating the Kalman gain at every measrement
time, it can be assumed that the state and measurement erroravariances
are the same at every update, which yields a constant Kalmanain. This

gain is calculated as a long time average of Kalman gains estiated by
the EnKF. Since the gain actually is varying, this introduces a bias in
the gain, but the time averaging that creates the steady gainsmoothes
the gain and lowers the variance. This variance reduction pssibly lowers
the prediction error of the gain elements if the time varying bias indeed is
not too big. Using a snapshot of the gain from the EnKF would similarly
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be expected to make the estimate worse, since it still wouldesult in an
increased bias without lowering the variance.

The Steady Kalman Iter uses (9) for the model propagation with ;, =0
x'(t) = M(x*(ti 1);u(ti 1)) (19)

Subsequently (14) is used for the analysis, wheré& is calculated as a
time average from an execution of the EnKF,p = 1 and yj?i;m = yj?i .
The time consumption of the Steady Kalman lter is of the order of a
standard model execution.

The Kalman gain is calculated as a long term average of the gaifrom an
EnKF, where the error has been assumed to lie in the wind velaty. The

noise is thus included as a quadratic term in the momentum egations.
On average this leads to an overestimation of the values in th Steady
Kalman gain, but in periods with strong winds it is underestimated. This
is the approximation made by the steady assumption.

3.4.3 Barotropic Approximation

The method described in this section belongs to the group of mthods
that apply simpli ed dynamics for calculating the model err or covari-
ance and hence the Kalman gain. The idea is that since the watdevel
response to variations in tides and wind forcing is mainly baotropic,
its error covariance due to errors in open boundary conditios and wind
velocity can be well modelled by a depth averaged barotropionodel.
The forecast step is composed of an ensemble forecast stefngsthe 2D
model and a single forecast of the 3D model according to (19).

The rst component of the analysis step consists of the EnKF analysis
for the 2D model. The other component is to update the full 3D frecast
based on the ensemble statistics from the 2D model. The augmeed
AR (1) error model part of the state space has the same size and tir-
pretation in both model spaces and hence it can be carried dactly over
from 2D to 3D. Depth averaged velocity, V and water level | also have
similar interpretation and hence in the corresponding subpace the 2D
Kalman gain can be applied directly in 3D.
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However, temperature, T, salinity, S, and the three-dimensional velocity,
v, are not included in the 2D state space and thus additional asumptions

must be imposed. The error covariances betweed and S and water

levels in the measurement points are all assumed to be zero.his means
that the thermodynamic variables are una ected by the analysis. The
velocity, on the other hand needs to be updated. WhenV is updated,

then for consistencyv must be updated as well, sinceV is the depth

average ofv. A vertical structure, s(zx), must be chosen under the
constraint that its depth average is not zero. Let V2 be the updated
depth averagedx-velocity component in the 3D model. Let v (z¢) and

v2(zx) be the forecast and analysis of the x-velocity in the 3D modkat

depth z,. Now, the updated full velocity eld can be found by solving

the following equations for v& = (Vg(z1);:::; VE(Zk e )) @nd the zonal

structure scaling parameter .

V2 = (v3)Tdz (20)

vi=vl+s (21)
where v; = (vf((zl);:::;vf((szax ), S = (S(z1); 5 8(Zk e )) @nd dz =
(dz(z1); 5 dz(zk .. )) IS @ vector of layer depths.

The solution to (20) and (21) is,

va  (vi)Tdz
= s$dxz) (22)

V2 (vi)Tdz
sTdz

A similar set of equations can be solved for the other velocit component.

The vertical velocity is updated by the mass conservation eqgation. In

the present study s was chosen to bes = (1;:::;1). This corresponds to

simply moving the entire forecast velocity pro le to match t he updated

depth averaged velocity.

vi=vl+s (23)

In the light of regularisation, the scheme assumes all elenms in K; that
are used for updatingT and S to be zero and elements for updating the
velocity components to be related through (23). Again, this certainly
may introduce a bias, if the assumption of no correlation to he ob-
served water levels or the vertical interdependence of theelocity errors
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break down, but a much lower variance has been obtained. And st
importantly, a huge time reduction has been gained in the moe! error
propagation.

(Srensen et al. 2002) compared the barotropic approximaton applied
to the Steady Kalman lIter to the standard EnKF as well as the Steady
Kalman Iter with no barotropic approximation in an idealis ed bay setup.
All methods showed similar performance, but the barotropicapproxima-
tion has the lowest computational requirements both in terms of time
and memory demand.

3.4.4 Distance Regularisation

The use of distance regularisation comes down to a trade-o0 btween ac-
cepting inaccurate elements in the Kalman gain and introdudng spurious
or non-dynamical modes in the analysis. The model error covdance is
modelled dynamically by assuming errors in the forcing terns. There
are many good reasons for doing so, but it may lead to correlans in
the error of the state that con icts with our prior knowledge and hence
a regularisation can be performed taking this into account.

The distance regularisation is an ad-hoc procedure for ex@ssing that we
do not believe any tide gauge observation should be used forpalating
state variables that are positioned far away. This is implenented by
constructing a vector, with coe cients between 0 and 1, which are a
Gaussian function of their geographical distance,dy, to observation,

m, according to,
2

d
(dm) = exp( 575 (24)

The parameter, D speci es the spatial decorrelation scale. This regulari-
sation can be used in either the EnKF or the Steady Kalman Iter (p = 1)
presented above, by modifying the analysis equation (14) amwrding to

X (1) = X2 1)+ Kim (Vom  himX3n 1(t)); m=1;:5p (25)

1 1
ki;m (1) (dm)

: X = %

Qi;m (n) Kim (n) (dm)

Qi;m 1)
Qi;m = % :
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4 Description of Experiments

The main objective of this study is to demonstrate the hindcast per-
formance of the time e cient barotropic approximation for a Steady
Kalman lter in the Water Forecast model. Further, the impac t of ap-
plying a time varying EnKF with barotropic and distance regu larisation
is investigated. No comparison is made with an ensemble Kalan I-

ter in the full three-dimensional setting, because it is notoperationally
feasible. Further, (S rensen et al. 2002) demonstrated tha the dynamic
regularisation has similar performance to the full three-dmensional im-
plementation of time varying EnKF in a simple test case.

All experiments span the period: 00:00 January 1 to 00:00 Jamary 29,
2002. The initial state is obtained from the data base of the perational
system. The steady gain employed in the study is based on the griod
00:00 January 2 to 00:00 January 6, 2002. Figure 8 shows thathts
period includes a single storm surge event and average winteonditions
the rest of the time.

The results will be compared to a reference run, which is obtmed from
a hindcast execution of the Water Forecast system. All assinfation
runs make use of the barotropic approximation and hence do rnohave
higher demands to the computational hardware than the Water Forecast
itself and has operational execution times less than 2.5 tiras that of the
reference run. The model runs can be summarized as:

Reference run . Standard 3D Water Forecast model execution
with no use of data assimilation.

Steady . 3D Model execution with the Steady Kalman lIter. The
gain is obtained from the 2D model using the EnKF with temporal
smoothing.

Steady Dist . 3D Model execution like Steady, but with distance
regularisation used in the 3D environment.

EnKF . 3D Model execution using a time varying gain is obtained
from the 2D model employing temporal smooting. Distance reg-
larisation is enabled in the 3D execution.
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When adopting the barotropic regularisation in all assimilation runs, it
is implied that the central model forecast (19) is employed ér the 3D
model, while the ensemble forecast (10) and (11) is employetbr the
calculation of 2D steady and time-varying Kalman gains.

In any assimilation approach it is important rst to correct the measure-
ment datum such as to approximately represent model datum inorder
to allow proper inter-comparison between observed and modied quanti-

ties. Model datum is determined by the open boundary levels ad a long
term average dynamical balance. In order to assess the modeatum,

the water levels at all measurement stations were extractedrom a one
year simulation spanning all of 2002. The time average was ¢eulated for

each station, and the corresponding measurement was adjustl to match
this average. Note that the model error may have a seasonal gendence,
and hence the datum corrected measurements may still contai an o -

set in January, where the study is performed. The measuremds were
adjusted to the model datum for both the 2D and the 3D model.

A number of parameters need to be specied in the ltering schemes.
The assimilation system is too complex for statistically besed parameter
estimation and hence rst guesses based on experience anddbretical
considerations are used. For tide gauges, the measuremergpresentation
error is in general dominating over the instrumentation error. The water
level readings can be expected to measure the truth projecteonto the
model space with an accuracy around @5 m. Hence, the tidal gauge
measurement errors are assumed to have mutually uncorrelatl, unbiased
Gaussian distributions with a standard deviation of 0:05 m. However,
sometimes less trust is put in the measurement in order to costrain the
model less. This is the case in M1, Esbjerg, M9, R nne and M10Kalix,
where the standard deviations were assumed to be:D5, 008 and Q15,
respectively.

The model wind error was assumed to have a temporal correlatn scale
of 5.7 hours and a spatial correlation scale of 300 km. The standar
deviation of the white noise in (8) was assumed to be 3@ m/s leading
to a standard deviation of 3.0 m/s for the wind. The model error in
open boundary water levels was assumed to have a temporal aetation
scale of 17 hours and a spatial correlation scale of 95 km. The standard
deviation of the white noise in the boundary error was assume to be
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0:05 m. This leads to a standard deviation of 027 m for the water level.

An ensemble size of 100 and a smoothing factor of @ was used for the
EnKF runs of the study. Measurements were available every 3@ninutes.

These were linearly interpolated in time and the model was uplated from

the interpolated time series every 10 minutes. The distanceparameter,

D, in the distance regularisation was set to 250 km.

As a measure of the Iter performance, the root mean square eor
(RMSE) of water levels, |, calculated over the 28 day simulation pe-
riod for each measurement and validation station is used,

v
p X
|

i=1

RMSE = (lobs(ti) Ipredicted (t))? (26)

5 Results & Discussion

The performance of the reference run and the three assimil&n runs are
summarized in Figures 2 and 3 for measurement and validatiorstations
respectively. For the reference run,RMSE is in the range Q10m to
0:15m for most stations with M1-Esbjerg peaking above 020m.

The RMSE can be decomposed into a standard deviation and a bias
component. Such an analysis shows that the datum correctiormethod
equating one-year averages discussed in Section 4 leavesaiability at
monthly time scales with biases in the range 0:12 to 0:07 for the refer-
ence run. This might be due to long term variability in meteorological
error (the boundaries can not explain such long term variablity) or long
term error components in the model (biases in annual cycle ahe density
modeling etc.). However, at present, the bias is accepted abe working
conditions, adhering to the bias correction properties of Iters using a
colored noise implementation, (S rensen et al. 2004a).

Figure 2 also shows that all assimilation runs signi cantly reduce the
RMSE in measurement points. The remaining error is in fair agreenant
with the standard deviation of 0:05 m assumed in most stations. Fig-
ure 3 shows similar good performance in stations close to msarement
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Figure 2: RMSE performance in measurement stations
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Figure 3: RMSE performance in validation stations
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Figure 4. Water level part of the Steady Kalman gain for M3-Skagen

points. However, in the Baltic Sea (V6 and V7) far from measuements,
the Steady Kalman Iter without distance regularisation si gni cantly
degrades the results.

Figures 4 to 7 show examples of the water level part of the Staty Kalman
gain for the measurement stations, M3-Skagen and M9-R nnewith and
without the distance regularisation imposed. In the M3-Skagen station
the gain is clearly a ected by the error assumed in the tidal sgnal, while
the M9-R nne station is dominated by the wind driven dynamics. In
this latter case the gain without distance regularisation sows large cor-
rections in the entire southern part of the Baltic. This can in part be
explained by the assumed wind error model, which has spatiatorrelation
scale of 300 km. The distance regularisation of the M3-Skagestation
e ectively lters the gain structure in the North Sea, which constrasts
our prior understanding of the system and our modelling capaility.
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Figure 5: Water level part of the distance regularised Steagl Kalman
gain for M3-Skagen
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Figure 6: Water level part of the Steady Kalman gain for M9-R nne
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Figure 7: Water level part of the distance regularised Steagl Kalman
gain for M9-R nne
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Figure 8: Time series of water level in V1-Geteborg. The thin black line
is the measured level. The thick black line shows the referese solution.
The thick gray line shows the solution with the barotropic and distance
regularised Steady Kalman lter.

The model water level has a large variance far from observatins in the
Baltic, and hence even a small covariance will provide an imact of the
update in this area. The stochastic variability of the gain is Itered out
in the Steady approach and thus does not contribute signi cantly to the
gain structure. The distance regularised gain structure danpens the ef-
fect of distant correlations by imposing the assumption tha such error
correlations does not exist despite its prediction by the lter. As is evi-
dent in Figure 3 this signi cantly improves the results in th e data sparse
Baltic. The distance and barotropic regularised Steady Kaman lter
adds signi cant state estimation skill in all measurement and validation
points at a very low computational cost both for the generation of the
gains and for execution, enabling use in an operational settg.

A time series plot of measured water level in the validation ation, V1-
Geteborg, is displayed in Figure 8 along with estimates by the reference
run and the distance and barotropic regularised Steady Kalnan Iter.
This plot shows the good performance previously expressedylthe sta-
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tistical RMSE measure in a visually interpretative form.

The use of a time varying gain from the EnKF with the barotropi c ap-
proximation and distance regularisation was compared withthe success-
ful Steady approach. Figures 2 and 3 show the results as the $a hor-
izontally striped bar. The performance is similar to that of the Steady
distance regularised scheme. However, its implementatioris more de-
manding on computational time, although the 2D EnKF execution with
100 ensemble members has a similar speed as a single 3D modeatcal-
tion, and hence still can be applied in operational settings

Figures 9 and 10 show the variance of the EnKF derived gain fothe
water level portion of the gain for the M9-R nne station with and with-

out smoothing in the ensemble run. The variability of the non-smoothed
Kalman gain shows its maximum values far from the station itself in-

dicating spurious correlations. This also explains the moeél problems
that has been encountered when applying the standard EnKF wihout

distance regularisation. In this case, the analysis may impse a state
estimation which is not a likely outcome in the real system depite the
fact that the EnKF always produces its analysed ensemble melvers as
linear combinations of the forecast members (an example isuling wa-

ter out of a shallow region until a water point is dried out). A spurious
correlation can last over a dynamically signi cant length of time due to

the colored noise implementation.

The variability near M9-R nne is quite similar with and with out smooth-
ing in the EnKF gain calculation and in both cases the variablity is small
compared to the actual size of the Steady gain in Figure 6. Tis small
Kalman gain variability in regions where the update is also hrgest ex-
plains the similar performance of the Steady Iter and the EnKF.

6 Conclusions

The water level estimation problem has been discussed and éhwell
known Ensemble Kalman Filter technique presented for solvig the prob-
lem. In this sequential setting the estimation of the water levels requires
an estimation of the elements of the Kalman gain matrix as an mterme-
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Figure 9: Standard deviation of M9-R nne water level part of the
Kalman gain derived using smoothing.
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Figure 10: Standard deviation of M9-R nne water level part of the
Kalman gain derived without using smoothing.
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diate step, which is important for understanding the behaviour of the
scheme. The estimate of the gain elements possess both a biasd a
variance, because of inaccurate measurement and model errdescrip-
tions and the stochastic variability in the EnKF. This uncer tainty is
discussed from the viewpoint of regularisation techniquesnd a Kalman
gain smoothing, a Steady Kalman lIter, a barotropic approxi mation and
a distance regularisation is discussed in this light.

These technigues are combined and tested for the assimilath of water
levels in the Water Forecast operational system. The Steadyand the
barotropic approximations show the best performance at thdowest cost.
The use of distance regularisation has been demonstrated twe important
for data sparse regions, while maintaining performance in eas with
denser data coverage. The dierence in theRMSE of the various lter

algorithms is moderate in the Inner Danish Waters and it must be kept
in mind that the sensitivity to parameter values is likely on the same
scale.

The distance and barotropic regularised Steady Kalman lIter has a good
estimation skill in all areas of the model. Further, its low computational
cost enables easy operational implementation.

Future developments will investigate the use of regularisdon techniques
for controlling the bias-variance trade-o together with a ttempting to

improve model error description. Also, more work needs to balone on
estimating the bias of the measurements when applied in a maal datum
frame work. Most important in an operational setting is the forecast
skill. This will be addressed in a future study.
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Water level forecast skill of a hybrid steady Kalman Iter
- error correction scheme

Jacob V. Tornfeldt S rensen®2, Henrik Madsent, and Henrik Madser?

Abstract

The forecast skill of a Steady Kalman Iter alone and combined
with a simple autoregressive error correction model is demo
strated in the North Sea, Baltic Sea system. Any practical
Kalman Iter estimate will in general provide a sub-optimal state
estimate, if for no other reasons, then because of approxinta
model and measurement error descriptions. The state estima
tion problem is reviewed with a close consideration of the in
terconnection between representation error and error modang.
This leads to an interpretation of innovation auto-covariance and
suggests a hybrid data ASsimiation - Error correction Predction
scheme (ASEP) for the forecast. In this scheme a modi ed sys-
tem equation is assumed with an autoregressive model prediag
the innovation, which is assimilated with a Steady Kalman | ter.
Compared to a hydrodynamic forecast the ASEP scheme gives an
improved prediction skill for 10-11 hours on average. Recdly, a
distance regularised Kalman gain has been shown to signi aatly
improve ltering performance in areas with sparse data coveage.
The forecast skill of a distance regularised Steady Kalman Iter
is tested. This gives an improvement for several days, but tk
ASEP scheme no longer gives a signi cant further improvemen

1 Introduction

A large part of the world's population lives close to the ocea and is
a ected by the coastal environment. Storm surges, toxic alg@e and oil
spill pollution are a few examples of events with harmful cosequences
for people and whose prediction can help take proper actiond minimize
human harm and economic expense. Therefore, forecasting &ky pa-
rameters in the coastal ocean has been on the agenda for deesdand in

1DHI Water & Environment, DK-2970 H rsholm, Denmark
2Informatics and Mathematical Modelling, Technical Univer sity of Denmark, DK-
2800 Lyngby, Denmark
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many countries warning systems are being operated for seled key pa-
rameters, e.g. (Vested et al. 1995), (Gerritsen et al. 1995and (Erichsen
& Rasch 2002).

More recently, with continual improvements of the modeling systems
encompassing forecasts of an increasing number of physicahd biogeo-
chemical parameters, the operational services have matuceto a degree,
where more and more needs of governmental agencies and prigaenter-
prises are met at an a ordable price. For most forecast produats, the
forecast skill is of prime importance. Since numerical modéng is only
slowly improving and has fundamental limitations, the present on-going
development also focuses on the on-line assimilation of alable data.

The basic idea in most assimilation systems with a forecastig objective,
is to provide the best possible estimate of the ocean state athe time
of forecast. Such an approach was implemented by (Heemink 88) in
a storm surge model for the Dutch coast. He used a Steady Kalmma
Iter and showed an improved skill relative to a standard forecast model
at both a three and six hour forecast horizon. (Vested et al. £95) and
(Gerritsen et al. 1995) also investigated the forecast skilin the Southern
North Sea. They similarly found that Kalman Iter based init ialisation
improves the forecast skill at short time scales. However, talonger time
scales the skill deteriorates for a while before convergingp that of the
standard forecast model. (Canizares et al. 2001) appliedhe Steady
Kalman Iter for assimilating tide gauge data in the North Se a, Baltic
Sea system, where they showed a good ltering performance iareas of
fairly dense data coverage. However, far from observationthe Itering
skill was degraded. This problem was treated in (S rensen, Mdsen &
Madsen 2004) and a regularisation technique (distance redarisation)
introduced to solve it. The e ect on forecast skill of applying distance
regularisation is investigated in this paper.

A di erent approach to provide improved forecast skill is to use error
correction schemes. These provide an o -line forecast of aector of nu-
merical model residuals in points of observation by constrating data
driven models that relate the residuals to the residuals at pevious time
steps, state variables predicted by the numerical model andorcing vari-
ables. (Babovic, Canizares, Jensen & Klinting 2001) demastrated a
successful application of a neural network based error coection scheme
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for the prediction of current speeds in resund strait betwe en Sweden
and Denmark. Another error correction approach was taken by(Babovic

& Keijzer 2001), who used a Gaussian process model to improvferecast
skill of water level in a model of the Venice lagoon. All of these methods,
however, only provide local predictions. Any spatial distribution of the

predicted residuals must rely on assumptions about spatiatorrelations,

(Babovic & Fuhrman 2002).

When using data assimilation to improve the initial eld att ime of fore-
cast, the improved prediction skill is limited to a time hori zon, at which
initial conditions are washed out. Error correction methods do not have
this constraint, but they only provide forecasts in measuranent points.
Spatial distribution of the predicted correction rely on simple statistical
assumptions rather than system dynamics. Note that error corection is
a post processing procedure. It does not in uence the fores made by
the numerical model.

In this study a hybrid data ASsimilation Error correction Pr ediction
(ASEP) scheme is suggested, where the error correction metiuology is
applied as an integrated part of a sequential model state updte using
the Kalman lter. It is shown that data assimilation methods have a
colored innovation sequence in practice. Error correctionis applied to
forcast the one-step-ahead errors of the numerical model imeasurement
points and subsequently distributing this forecast in spa@ according to
the Kalman Iter update scheme.

Section 2 reviews the system description of the ocean and thelassical
augmentation approach for model construction in the case o€olored sys-
tem noise. Also included in Section 2 is a discussion of the dice of state
space de nition when using numerical models for the state popagation
and its relation to system error and representation error ircluded in the
measurement equation. Section 3 investigates the nature dhe innova-
tion in a ltering scheme for correct and incorrect model and measure-
ment error descriptions, while the adapted lters (Ensemble and Steady
Kalman Iters) are brie y outlined in Section 4. Section 5 de scribes the
hybrid approach taken for data assimilation, while Section6 describes
the setup of the North Sea, Baltic Sea forecasting system anthe assim-
ilation schemes. The results of the numerical experimentsra presented
and discussed in Section 7 and Section 8 concludes the work.
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2 System description and state estimation

2.1 System

The physical system under consideration is the ocean in gena&. Our
focus is on coastal and continental shelf areas with the Noftt Sea, Baltic
Sea and interconnecting waters providing our test grounds.The prop-
erties of this system are composed of a wide range of interdog, dy-
namically evolving components usually classi ed as hydrognamic, wa-
ter quality, wave and sediment variables. In the theoreticd treatment we
retain the full system in a rather general discussion about gstem models.
However, in the numerical experiments, we restrict our attention to the
mass and momentum distribution and hence the pressure and \ecity
components.

Our inability to perfectly observe and predict the ocean naturally leads us
to put error bars on our predictions, and more elaborately to make the
state variables and system evolution stochastic. Howeverreality only

provides a single realisation of the actual state trajectoy. Thus, the

perception of the actual ocean state having a probability dstribution is

just a theoretical device - at least in the realm of Newtonianphysics. It

is however, a very useful device, which allows us to expressioimposed
imperfections and thus estimate the ocean state based on senal sources
of information.

Let x'(t; 1) 2 R" be the true ocean state de ned in discrete space and
timetj 1. Let M be a one time step ahead model propagator of this state.
Now assume that the error imposed in this ocean state propaden is
an unbiased white noise process,;, with covariance Q;. This gives the
following system equation

x'(t)= M(X'(ti 1);u(ti 1))+ 1)
where u(t;) is the external forcing.
Let y? 2 RP be a an observation of a subspace of the state. This mea-

surement is assumed to be unbiased and its error,j, to be white noise
with covariance R;. This gives the following measurement equation

yP = Hix'(ti) + | (2
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where H; is a linear operator, which projects the state space onto the
measurement space.

2.2 State estimation

Now assume the ideal case that (1) and (2) constitute the comct stochas-
tic descriptions of the state propagation and the measuremats. If we
know the probability density function (pdf) of the state at s ome initial
time to, then the nonlinear model operator,M , and the error distribution,

i, can be used to predict the a priori pdf of the state at a subsegent
time t;. Denote the prior expectation of this state x (t;) and the prior
covariance P (t;). If a measurement becomes available at time;, the
prior information embedded in the measurement can be combiad with
the model prior to give an improved a posteriori estimate. The Minimal
Variance (MV) estimator is given by,

xMV(ti) = Efx!(t)iyPg ®)

The prior model state estimate does not need to be Gaussian fd3) to

hold. Nor does the measurement error. For a nonlinear modelrad hence
a non-Gaussian distribution of x!, the estimate of xMV does not need
to be linear in y°. However, assuming this and solving the minimisation
problem under this constraint, gives the Best Linear Unbiagd Estimate
(BLUE), x2, as

x3(ti) = xT(t) + Ki(y? Hix"(t) (4)

where
Ki = P{t)H] (HiP{(t)H] + R)) * (5)

The error covariance of the updated state estimatex?, is given by,

Pa(ti) = P'(t) KiHiP"(ti) (6)

2.3 Model and state space

For now it is assumed that some perfect technique is used forrppagating
the pdf of the state and estimating P'; for a givenM . A numerical model,



182 Paper F

My , is chosen for the prediction of the dynamical evolution of he model
state, xn . This enables us to use our basic theoretical knowledge abbu
the ocean dynamics for constructing the model. However, in pactically
all real ocean models, the model operator contains severatrer sources,
which can not be described as white noise processes like assed in (1).
Thus, the starting point when a numerical model is used for tre state
propagation, is the presence of colored noise in the systengeation.

When using a numerical model as the corner stone of the prediar,

the model state space is simultaneously adopted as the caai of the

system state space. We have to make a choice about the exact ape
in which we wish to estimate the state and de ne our error pro@sses
according to that. (Fukumori et al. 1999) provide a nice disassion of
representation error and emphasises that the error descrifon in the

measurement equation is a measurement constraint error rdter than a

measurement error. Their basic assumption is that the Itered reality,

which we adopt as the state space, is de ned as the model rangeoth

in terms of projection onto spatial and temporal averages aswell as
dynamical projections.

Adapting the model state space allows a decomposition of thérue con-
tinuous ocean state into this model solution space, y, and the cor-
responding null-space, ,'\’,l . It means that the limitation of the model

de nition is embedded in the state space. They do not give a rjorous
de nition of the meaning of such a dynamical projection, but empha-
sises that model errors are based on 'truncation and/or appoximation
in physics'. Such a state representation makes sense. We de@twant to

reinitialise the model with a state, whose further propagaion is unsup-
ported. In this way we suppress signals, which are not solutins to the

model operator, at least in the ideal Itering case.

However, the de nition of the dynamical model projection is a matter
of de nition. No matter what dynamical projection is chosen within
the same spatial and temporal averages, then as long as therers in
the resulting system equation are well described, it provigs a stochastic
model within the chosen projection of the system. A good de rition
leaves small and uncorrelated model errors. To obtain thisthe processes
deliberately left out in the model de nition should be represented as
representation error, while feedback from these processdmck into the
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modelled processes should be described as model errors tibge with
unwanted approximations such as numerical errors as well agncertain
parameters and forcing.

Measurements are usually averages over di erent length andime scales
than the numerical model. Also, signals from all physical pocesses that
remain after the averaging operations employed in the meagement ac-
quisition are present. Such incompatibilities are usuallytreated in geo-
statistics through the use of so called change of support maals, (Bertino
et al. 2002). However, a more rudimentary approach is to inoease mea-
surement error by considering the representation error. Dspite the fact
that it is the model, which is unable to represent the true sysem state,
then having adapted the model state space projection, the pion of the
observation that lies in the null-space must be accredited ® measure-
ment representation noise. With this noise description, ttre measurement
constraint error can easily be colored and will generally dgend on the
state. The measurement matrix that projects the model spaceonto the
measurement space is denoted y; .

It is important to note in this respect that most validation p rocedures,
including the one employed in this paper, look for the best t with mea-

surements and hence the model is validated in measurement ape, while
the estimation was performed in model space. Hence, if spatitemporal

correlations exist among the null-space projections of theneasurements,
an overly t state estimate may yield better prediction skil | than the

ideal Iter. An overly t model attempts to pull the state int o the model
null-space. Particularly, close to observations, this mayprovide a state
estimate closer to reality despite the erroneous error assuptions. How-

ever, the subsequent propagation of the estimated state is a longer
guaranteed to be well described by the model operator. This ray either
be due to neglected dynamics or due to numerical schemes, wieethe
valid regimes are exceeded by the state estimate.

With colored noise components, the BLUE estimator no longermprovides
the optimal state estimate. The classical way to solve this poblem in
time series modeling is to augment the model state with varidles that
descrobe the autocorrelation and leave an error that ful lls the white
noise assumption in (1). So far, we have simply assumed somehiie
model error with known mean and covariance. However, analyis of the
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model equations suggests that this is not the case, e.g. domant model
errors can be expected to come from a colored error in the foiregs or
slowly varying parameters. Errors derived from the numeri@l methods
will generally be state dependent and hence colored, e.g. wanted nu-
merical damping.

This knowledge about the error sources can be used to develapbetter
model of the system. This is done by augmenting the state spacand
model operator with elements,x , and functions, M , needed to model
the error of the numerical model, which we assume to know the perties
of. The error models need to be expressed as Markov procesges/ing
white noise errors themselves. Time dependencies with laggeater than
one can be included through an additional state augmentatio. We in-
troduce an extended numerical model operatorMy, , which includes the
numerical model operator, My, and the forcing of the model statexy

with the errors, x .

Similarly the state can be augmented with the colored measwement er-
rors, X , the time evolution of which is described by M . All together
this leads to the following system equation,

X (i) !
x'(t) = @ xt(t;) A (7)
x(ti)
Mm (XK (6 D;uti 1);x (i 1))+ Gm mi 1 !
=@M (x'(ti 1)) + i1 A ®)
M (x'(ti 1)) + i1
=Mt );ulti )+ G 9

where Gy is a transformation matrix of the state space, in which the
white noise model is de ned, onto the numerical model state pace and

0 1
Guw 0O

G=@ 0 |1 0A (10)
0 0 I

is the general noise-to-model-space transformation opetar. The gener-
alised model error ; is composed of the white numerical model error,
wm:i » the error in the colored model error description, ., and the error
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in the colored measurement and representation error desgtion, ;.
The measurement equation now reads,

yP = Him X () + x'(t) + i = Hx(ti) + (11)

The two equations (7) and (11) outline the standard framewok for han-
dling colored model and measurement errors, by augmentatio of the
space to include the colored components.

3 Innovation autocorrelation

In this section the whiteness of the innovation sequence foperfect er-
ror assumptions and a linear modelM , will be demonstrated leading to
an expression for the auto-covariance when approximated eor assump-
tions are used. The information in the one-step ahead forecd error of
the observation is contained in the innovation, d; = y? Hx f(t;). Let
xf(t) = xU(t;) + f and consider the expected lag-one auto-covariance
of the innovation sequence,
Cov(d(ti+1);d(ti))

= Cov(y%; HxT(tiwa)y? Hx' (1))

= COV( i+1 hH if+l; i H If)|

= CovHM '+Ki(; HH +H sH T )

= HM (I KiHRPif;t HT HMK iR|

= HM PM'HT HP'HT + R! '

h i ¢ h i

PIHT HPIHT + R! HP " HT + R!

(12)

Pf;t and R} are the true model and measurement error covariance matri-
ces, Whilels{ and R; are those assumed and derived from the assimilation
scheme. In order to simplify the expression, we have used thassump-
tion that ;41 and ,,; are uncorrelated with previous measurement and
model errors, or at least that these terms are much smaller tan the
other terms.

Equation (12) shows that the autocorrelation is only zero inthe ideal case
with correct error assumptions and error propagation, i.e. I5f = Pf;t
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and R! = R!. In all other cases the auto-covariance of the innova-
tion sequence is given by the propagation of the di erence bveen the
estimated and the true Kalman gain matrices projected onto he mea-
surement space and multiplied by the true covariance of therinovation.
This means that in most real case applications of approxima¢ Kalman
Iters using suboptimal error modeling, the innovation sequence has a
predictable component. Further, it can be used to test for carect error
assumptions.

The innovation sequence is potentially a result of the compsite model-

measurement error signal. If the colored components are du pure

model error then the model error description should be impreed. The

assumption then is that the model structure is capable of pralucing

results that overlap the measurements, but due to improper eor de-

scription the analysis fails to do so. In this respect a suggsion for

error model improvement is to use the innovation sequence t@onstruct

a model, M , of the model error, x in measurement space. This can
then be distributed to the entire model space by imposing preer covari-

ance assumptions. A simple rst guess is to use the Kalman gai for

this purpose, all though this assumes that the previously nglected error

component has the same covariance as the modelled error commpent.

This corresponds toMy, in (8) with no measurement error model to be
given by,

M (xR (t);uti); ' (t)) = M (X (t);u(t) + Kix' (ti) (13)

Once the model is changed in this way, the resulting innovatn series
will change as well and there is no guarantee that the procedgads to an
improved model error description and hence a more e cient eéimate, but

it is an obvious way to attempt to implement the information ¢ ontained
in the original innovation sequence to improve the system dscription.

If the colored components are due to pure measurement constint er-
ror, i.e. lies in the model null space, then the measurementreor model
should be improved. Remember, that such measurement error od-
els also encompass models of the structural model errors. T, if the
model imposed measurement error dominates, a subsequentrézast of
the measurement error actually predicts the true physical gstem and not
an instrumental error. This estimate, which is de ned in measurement
space can be used to estimate the state of the null space thrgh impos-
ing additional error covariance assumption, hence leavingo an improved
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estimate of the true state composed of the sum of the estimatin

2
and .

4  Assimilation scheme

So far we have merely assumed perfect propagation of the rsand second
moments of the model probability distribution. Obviously, this is not

possible and much work has been put into deriving proper propgation
schemes for data assimilation. In this study we use the SteadKalman

Iter approximation with the steady Kalman gain calculated o -line by

the Ensemble Kalman Filter, (Evensen 1994). Its descriptim and details
about its implementation in the present setup can be found in(S rensen
et al. 2004), which also describes the distance regularisan based on
ideas in (Houtekamer & Mitchell 1998). The adoption of a subgtimal

scheme and particularly the steady approximation imposes awumber of
errors in the Kalman gain estimation, and hence a colored comonent in

the innovation sequence according to (12). However, the mgpeci cation

of model and measurement errors most likely imposes equallgrge errors
and their impact has been much less studied. Hence, the theetical

discussion has focused on the latter, while acknowledgindhe importance
of proper state and error covariance propagation.

5 Hybrid prediction scheme

It is well known that model residuals can be modelled very wdlby data
driven models, e.g. (Babovic et al. 2001), and thereby impree the pre-
dictive power. This is usually done o -line by superimposing error fore-
casts to the model simulation and allows the use of informatn contained
in measurements to be used for the prediction of observed viables. In
a data assimilation system this additional information is used to update
the entire system state, hence leaving no information in theinnovation.
However, as discussed above, this is not the case for subomial Itering
and a reminiscent signal is left in the innovation sequence.This can be
modelled by a suitable data driven model,M 4, which subsequently can
be used to forecast the innovation. This approach, where thgresence of
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imperfection in the assimilation approach is acknowledgednd modelled,
is referred to as the hybrid data ASsimilation Error correction Prediction
scheme (ASEP).

The lIter analysis step (4) can be rewritten,
x2(t) = x"(t)+ Kidi + Ki(y? Hix"(t) @) (14)

whered; is the predictable part of the innovation in an imperfect assm-
ilation scheme. Hence, the analysis is split into a term assiilating only
the unpredictable projection of the measurement and an updee based
on the predictable part of the innovation. The closest apprximation to
this in a forecast setting is to maintain the rst two terms in stead of just
the rst term. Hence, in forecast the model propagation is changed to,

x"(tisr) = My (X" (ti);u(t)) + K@ (15)

div1 = Mg(@i) (16)

Following (15), K i, is the Kalman gain used in the estimation of the error
model. However, this is based on assimilating measuremengnd not pre-
dicted innovations, which will be more uncertain. Hence, alernatively
the K to be used in the forecast setting can be estimated by considieg
the innovation estimate as an additional source of informaton and mod-
eling its error statistics. This would result in smaller corrections. The
approach adopted in the present study is to use a steady Kalma gain
both for hindcast and for forecast.

In the present study a very simple data driven model was useddr the
innovation prediction, namely a univariate AR(1) model. Much more
elaborate models such as arti cial neural networks, localinear modeling
or genetic programming can be derived, but for the present ptpose of
demonstrating the feasibility of the approach, the simple aitoregressive
model was chosen.

dic1 = Mg(di) = AQ (17)

where A = diag( 1;:5; p)andj jj< 1, i=1;:;5p.
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Figure 1: Bathymetry and available tide gauge stations, induding 10
measurement stations (M1-M10) and 7 validation stations (V1-V7).

6 Design of experiments

The area under consideration is the North Sea, Baltic Sea andnter-

connecting waters. We restrict our attention to the barotropic hydrody-
namics and hence employ the depth averaged numerical modeMIKE

21, developed at DHI Water & Environment, DHI (2001). The area and
bathymetry is shown in Figure 1 with the available tidal gauge mea-
surement points indicated. The gauges were divided into mesurement
stations (M) used in the assimilation and validation stations (V), which
were only used for performance assessment. The spatial régtion varies
from 9 to 1=3 nautical miles through a two-way dynamic nesting tech-
nique. The temporal resolution is 2.5 minutes and measurenmés are
available every 30 minutes. The measurements are linearlynterpolated
and assimilated every 10 minutes, i.e. every fourth model the step.

The period of January 2002 was used in the study. A steady Kalran
gain was estimated as an average of the gain calculated in arxecution
of the EnKF in a three day period from 1 January to 4 January. All
measurements were adjusted to have the same average as a siard
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model prediction in January 2002 to diminish datum problems

The experiments were designed to test the forecasting perfmance of
ve prediction schemes:

A standard model execution
A Steady Kalman lIter

A Steady Kalman lter until time of forecast and the ASEP ther e-
after

A Steady Kalman lIter using distance regularisation

A Steady Kalman Iter using distance regularisation until t ime of
forecast and the ASEP thereafter

Twenty forecasts were performed with one day intervals. Eala model
run included one day of hindcast and a four day forecast. Hindast wind
elds were used for forecast.

In the assimilation schemes, the model error was assumed teedve solely
from errors in the wind velocity and open boundary water leve forcing
terms. These errors were assumed to be colored with temporalorre-
lation scales of 57 and 17 hours, respectively, and to have spatial cor-
relation scales of 300 and 95 km. All measurements constréirerrors
were assumed to have a standard deviation of:05 m. See (S rensen et
al. 2003b) for a more detailed description of the Kalman Iter settings
and their e ect on hindcast performance.The spatial decorelation scale
of the distance regularisation was set to 250 km.

The steady Kalman lter was run for the full month of January b oth
with and without distance regularisation and the resulting innovation
sequences were used to construct their respective AR(1) med in each
measurement point. The autoregressive parameters was seb tthe lag
one autocorrelation of the corresponding innovation serig. The parame-
ters are shown in Table 1. The innovation sequences look qutdi erent
in di erent locations indicating a heterogeneous model eror structure.
Figure 2 and 3 show two examples of the innovation time seriesvith-
out using regularisation in M4-Ballen and M6-Gedser, respetively. As
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expected from their relatively high and low auto-correlation values, M4-
Ballen has a rather smooth variability, while the M6-Gedser innovation
sequence is more high frequent. M6-Gedser also seems to hawdime
varying variance. Clearly, in an elaborate implementation of the ASEP
approach, a more complex error correction model must be deleped.

Station No regularisation | Distance regularisation
Esbjerg (M1) 0:95 0:96
Hanstholm (M2) 0:84 0:88
Skagen (M3) 0:96 0:97
Ballen (M4) 0:95 0:96
Korsr (M5) 0:98 0:99
Gedser (M6) 0:87 0:85
Hornb k (M7) 0:94 0:92
R dvig (M8) 0:93 0:94
R nne (M9) 0:96 0:93
Kalix (M10) 0:98 0:998

Table 1. Estimated innovation lag one auto-correlations inJanuary 2002
for a standard Steady Kalman Iter (no regularisation) and i mposing
distance regularisation

The performance of the schemes were assessed as root mearesqerrors
RMSE of the A = 20 forecasts for each forecast horizont;j, and tidal
gauge station, s,

X

<

RMSE (t;;s) = (y2(s) H(s)xa(t))? (18)

a=1

1
A

For each station the time horizon, over which the assimilatbn approaches
improve the forecast according to theRM SE -measure, was derived by
visual inspection. Further, bulk performance measures wer constructed
as averages of measurement and validation stations.
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Figure 2: Time series of the innovation in M4-Ballen for the rst four
days of February 2002

Figure 3: Time series of the innovation in M6-Gedser for the rst four
days of February 2002
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Figure 4. Aggregated RMSE of the reference run (thin black),the Steady
run (thick black) and the ASEP run (thick grey) in all measure ment
points. The horizontal axis is time (h) relative to time of forecast.

7 Results and discussion

In the case of the non-regularised steady Kalman lter, the tulk RMSE
statistics are shown in Figures 4 and 5 for measurement and Vigation
stations respectively. The overall picture is that while the data assimila-
tion clearly improves the state estimate in hindcast, this improved skill
on average only lasts 6-8 hours without the hybrid scheme andl0-11
hours with it. After this period of improved predictive skil | a period
follows with degraded water level predictions.

In order to understand this behaviour, the spatial distribution of im-
proved predictive horizon is shown in Figure 6 with values anl relative
ASEP improvement listed in Table 2. Large dierences exist and it is
clearly evident that M1-Esbjerg in the Southern North Sea ard stations
south of the Danish straits have the worst performance, whi¢ stations
in the Skagerak and Kattegat improve prediction 18-36 hoursand even
up to 55 hours for the hybrid scheme.

The areas with short prediction horizon lies close to areasfesparse data
coverage. The Steady Kalman Iter has been shown to provide hd
state estimates in these areas, (Srensen et al. 2004), and ven data
no longer is available to constrain the solution, the errorsin these areas



194 Paper F

Figure 5: Aggregated RMSE of the reference run (thin black),the Steady
run (thick black) and the ASEP run (thick grey) in all validat ion points.
The horizontal axis is time (h) relative to time of forecast.

Station Steady | ASEP | Improvement

(hours) | (hours) (%)
Esbjerg (M1) 2 3 52
Hanstholm (M2) 18 18 0
Skagen (M3) 28 31 11
Geteborg (V1) 32 55 72
Sj llands Odde (V2) 30 34 13
Ballen (M4) 28 37 32
Kors r (M5) 15 17 13
Spodsbjerg (V3) 14 16 14
Gedser (M6) 7 10 43
Hornb k (M7) 31 34 10
Drogden (V4) 5 8 60
R dvig (M8) 5 8 60
Hesn s (V5) 5 9 80
R nne (M9) 5 8 60
Marviken (V6) 0 0 0
Spikarna (V7) 0 0 0
Kalix (M10) 8 13 63
Average 14 18 29

Table 2: Forecast horizon (hours) in all tide gauge stations
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Figure 6: Schematic view of the spatial distribution of the forecast hori-
zons for the Steady initialisation (grey) and the ASEP approach (black)
listed in Table 2.

ush into the observed regions. This dynamic propagation ofthe errors is
damped, re ected or redirected before it reaches Skagerakral Kattegat

where prediction performance hence is good. An example of wex level

hindcast and forecast for the validation station, V2-Sjll ands Odde is
shown in Figure 7.

The averageRM SE of Skagerak and Kattegat stations is shown in Fig-
ure 8. An important observation is that there is no subsequetly de-
graded performance in these stations, where good performas is ob-
served. Thus, when an assimilation scheme is used, which mmizes the
estimation errors everywhere in hindcast, then the assimition based
forecast is also to be trusted even on longer horizons.

It turns out that the ASEP improvement over the Steady lasts t he longest
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Figure 7: Example of improved forecast skill of the referene run (thin
black), the Steady run (thick grey) and the ASEP run (thick li ght grey)
in the validation station V2- Sj llands Odde in the Southern Kattegat.
Observations are in thick black. Time of forecast is at 00:002002-01-12.

Figure 8: Aggregated RMSE in of the reference run (thin blach, the
Steady run (thick black) and the ASEP run (thick grey) the Skagerak
and Kattegat stations. The horizontal axis is time (h) relative to time

of forecast.
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in stations, where the Steady performs rather well by itself It is the
same gain that is used to assimilate the observations and théorecast
innovation and hence the predicted innovation in the ASEP isdistributed
according to a gain, which provides good forecast and thus aohger
lasting e ect. On the other hand, the best relative improvement is found
in the stations with modest prediction skill because of the n uence by
the erroneous state estimate in the Baltic. This implies lager actual
corrections relative to error imposed in every forecast. Inother words,
the error correction method corrects more, when there is ma error to
correct.

A closer analysis reveals that the innovation sequence hasdth periodic

and higher order autoregressive components. Thus, an AR(1)nodel

will give phase errors and an improved error correction modeshould

be applied. However, this present study is meant as a rst stp in the

direction of applying hybrid data assimilation - error corr ection schemes
in a forecasting scenario. In actual implementations a desion must also
be made about the purpose of the model. For example, if stormwge

prediction is the ultimate goal of the scheme, then the errorcorrection

component of the scheme should be trained under such condins.

Many future challenges and developments remain. A rst stepwould
be to include a stochastic error in the error correction modéduring the
forecast. The predicted innovation does not have the same eor as the
real innovation. Hence it should be modelled and a correspating gain
calculated for merging the predicted innovation and the nurrerical model
estimate of the state.

Alternatively, the presence of the innovation time correlation suggests
an improved system model. Such an improvement could be inspad
by the innovation sequence itself, hence trying to use the hgrid model

presently employed in the forecast in hindcast as well. Thischanges the
entire state space and system description, but may nevertbess provide
an improved model. Such an approach was pursued for bias estation

in (Dee & da Silva 1998).

Now we consider the results of the experiments using distarecregular-
isation. Figures 9 and 10 show aggregateRMSE measures for mea-
surement and validation stations respectively. The most stiking feature
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Figure 9: Aggregated RMSE of the reference run (thin black),the Steady
distance regularised run (thick black) and the corresondig ASEP run
(thick grey) in all measurement points. The horizontal axis is time (h)
relative to time of forecast.

Figure 10: Aggregated RMSE of the reference run (thin black) the
Steady distance regularised run (thick black) and the corrsonding ASEP
run (thick grey) in all validation points. The horizontal ax is is time (h)
relative to time of forecast.



Hybrid steady Kalman lIter - error correction 199

here is the impressive e ect of distance regularisation on e water level
forecast skill, which now exceeds 24 hours. ThR&MSE measure levels
out to that of the reference run after 2-3 days and no deterioation is

observed at any forecast horizon for any station. In this cae the ASEP

scheme does not improve results further. A smaller error isdft to correct

by the hybrid scheme and hence no signi cant improvement is bserved.
The distance regularisation makes an improved global statestimate and
hence no erroneous signals are set free to propagate in therdain at time

of forecast.

8 Conclusion

This paper has highlighted the general problem of properly stimating

model and measurement errors in sequential data assimilatin schemes.
Since the imposed error model typically contains an error inreal data
assimilation applications in coastal seas, then any schemwill be subop-
timal for this reason alone. We have shown that sub-optimally leaves
predictability in the innovation series and suggested a corhined data
assimilation - error correction scheme for prediction in this case. The
scheme contains the predictable part of the combined forecd-analysis
in the assimilation scheme.

The performance of the scheme was investigated in an operathal model
of the North Sea, Baltic Sea and interconnecting waters. Foecast ini-
tialisation by the Steady Kalman Iter gave an improved pred iction for a
period of 5-32 hours in the Region stretching from Skagerakd the West-
ern Baltic. The hybrid scheme improves this improved forecat horizon
to 8 to 55 hours.

An interesting observation is the lack of a subsequent degmation of
the performance on longer time scales in the Skagerak and thKatte-

gat. In areas, which are dynamically in uenced by regions ofsparse data
coverage and poor state estimates, the longer time scale mietion skill

of the Steady Kalman lter initialisation is hampered by the propaga-
tion of these errors. This longer time scale degradation islghtly more

pronounced when using the Hybrid scheme.
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The use of distance regularisation signi cantly improves te forecast skill
and is to be encouraged for operational forecasting purpose
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Parameter estimation in a hydrodynamic model of the
North Sea and Baltic Sea

Jacob V. Tornfeldt S rensen®2, Henrik Madsent, and Henrik Madser?

1

Abstract

This report brie y reviews the initial work done on parameter
estimation and calibration in DHI's hydrodynamic models of the
marine environment. In a setup of MIKE 21 in the Water Forecast
area covering the North Sea, Baltic Sea and Inner Danish Wates,
an optimisation of bed friction maps and wind friction parame-
ters, which minimises the standard deviation of model residals
is performed. This is done in an approximate weak constraint
formulation, where the model assimilates tide gauge data adh
in a strong constraint formulation, where a standard determin-
istic model is employed. Generally, a rather poor performane
is obtained in a validation run. However, the approximate weak
constraint formulation using data assimilation in the parameter
estimation gives a better performance, because this attempg to
estimate the parameters, while acknowledging model errorsPart
of the generally poor performance can be ascribed to the fact
that the calibration was only done over a ve day period. Also,
bathymetry variations were not included as controls in the qoti-
misation. The weak constraint formulation further imposed its
own errors. One of the tide gauge stations that enter the opti
misation objective lies in an area that is erroneously updagd by
the Kalman lter, thus severely a ecting the optimisation.

Introduction

Throughout the advance of numerical models in ocean sciensethe prob-
lem of determining the model parameter values has been an iergrated
part of every application. To this date, the most widespreadtechnique

in

ocean and coastal sea applications is a manual trial-and reor ap-

1DHI Water & Environment, DK-2970 H rsholm, Denmark
2Informatics and Mathematical Modelling, Technical Univer sity of Denmark, DK-

2800 Lyngby, Denmark
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proach. This allows the modeller to employ a complex physickunder-
standing based on theoretical considerations and experie®. However,
every modeller will have a di erent approach and criteria for good per-
formance. The objective of the modeller is typically rather vaguely to
make the model trajectory come close to observations. Furthr, in many
cases the nonlinear nature of the parameter estimation prolem makes
the calibration task very di cult.

Another approach is to cast the problem in an optimisation framework.
This mathematical inverse problem was presented and discisgd rather
elaborately by (Evensen et al. 1998). Here, a weak constrainformu-

lation is suggested, which leaves a well posed inverse praoh. If the

formulation is relaxed to be strong constraint, the problem may be ill-

posed and leave non-unique and noisy parameter estimatesn the strong
constraint formulation, a cost function of model residualsis minimised
with respect to a set of chosen control parameters. In the wda con-
straint formulation, penalty functions are added to the cost function for

the deviation of the parameters from an initial parameter guess as well
as deviation from the model propagator, the boundary conditon and the
initial conditions, respectively.

The size of the state vector in oceanographic studies usingumerical

models is large (16-10"). Hence, the most tractable approach of solving
this problem is in a variational setting, employing a gradient based nu-
merical optimisation algorithm together with an implement ation of the

adjoint equations. In the case of multiple local optima, the adjoint solu-

tion should be combined with a global optimisation algorithm in order

to increase chances of nding the global optimum. Generallythis is not

pursued and a local quasi-Newton or conjugate gradient metbd is used,
(Heemink et al. 2002).

The combination of local, gradient based optimisation algeithms and
solving the adjoint equations has been employed in a numberf@revious
studies for two- and three-dimensional numerical hydrodyramic models.
(Lardner, Al-Rabeh & Gunay 1993) used this approach to calilvate bot-
tom friction coe cients and water depth in a barotropic tida | model of
the Arabian Gulf over a 29-day period. In order to stabilise the method,
they introduced a penalty for strong parameter variations. The calibra-
tion was consistent in a 100-day validation run. In (ten Brummelhuis,
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Heemink & van den Boogaard 1993) an extended approach was afad
to calibrate a numerical model over a one-day period while aplying a
Steady Kalman lter for assimilating tide gauge data assuming uncertain
boundary conditions. This provided smoothed estimates of bundary el-
evation corrections, which were applied iteratively in an @timisation of
water depth and bed friction. (Heemink et al. 2002), appliedthe ad-
joint approach for estimating tidal constituents, depth, b ed friction and
viscosity parameters in a three-dimensional model solvinghe shallow
water equations on the European Continental Shelf. They deronstrated
signi cant improvements in areas of prime interest.

The success of the gradient based studies above proves thataglients
are well de ned. However, the assumption that a local optimisation

techniqgue is su cient, has mainly been con rmed by the relatively real-

istic values of the obtained parameter estimates. The nonihear nature
of the problem may give a cost function with several local minma. In all

cases above the cost functions are based on square error magas in the
observational space. Other alternatives, such as phase enr measures
may be more relevant in certain cases. A major drawback for agint

techniques is the need for an adjoint model operator. Despd the de-
velopment of automatic adjoint compilers, (Giering & Kamin ski 1998),
most models do not have adjoint codes developed and no autortieally

generated adjoint codes are known to have been compiled forallow
water ow computations in coastal areas.

An alternative parameter estimation approach was taken by Heemink
1986), who demonstrated the use of a Kalman Iter to estimate model
parameters in a one-dimensional along-coast setting. Withthe advance
of sequential estimation techniques capable of handling nelinearities,
(Evensen 1994) and (Verlaan & Heemink 1997), a similar apprach should
be applicable even in two and three dimensional models. Hower, no
such application has been found in literature for coastal oean modelling
despite its appeal.

In hydrological literature the parameter estimation problem has been
more extensively studied. Here, non-linearities often reders gradient
based local optimisation insu cient and hence, focus has ben largely on
developing global methods that are not gradient based. Amog the de-
velopments are the Shu ed Complex Evolution (SCE) algorith m, which
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has been proven successful in handling strong non-lineairés and multiple
equilibria, (Madsen 2003). However, compared to e cient Quasi-Newton
or conjugate gradient schemes the SCE has a slow convergencihe is an
expression of the general trade-o between e ciency and e ectiveness.
Further, the method is not gradient based and hence, it can no take
advantage of the adjoint technique.

In any optimisation scheme, the inverse problem itself is dened by the
cost function and hence the calibration data and model paranaterisation.
In a particular case, the cost function should re ect the application of
the model. Thus, a great deal of knowledge is nevertheless gaired to
select these parameters of the problem in a manual way. This mst be
done such as to allow identi ability of the the parameters and typically
results in a spatial grouping of a eld of parameters. This isin fact an
ad hoc regularisation of the problem and more elaborate redarisation
techniques might be explored in this context.

The objective of the present study is to explore the applicaton of param-
eter estimation techniques, which do not require the develpment of an
adjoint solver, to a depth averaged hydrodynamic model. Usig a sim-
plex optimisation algorithm, bed and wind friction coe cie nts of a depth
averaged two-dimensional model are estimated for optimal prformance
in the inner Danish waters. The parameter estimation is perbrmed in
both a strong constraint and a quasi-weak constraint contex The re-
sults are validated in both settings as well.

2 Parameter estimation framework

The de nition of and the solution to a parameter estimation problem
consists of a number of elements. First the model of the syste under
consideration must be speci ed. The model can either be deteninistic
or stochastic in nature. Next, the notion of model performarce must be
quanti ed in a cost function expressing the t or mist of a mo del esti-
mate with observations. This includes selecting a calibraion period and
data as well as functional relationships. It is well known that hydrody-
namic models are typically over parameterised and thus notdenti able
by the observational data. Therefore, a subset of the paramter space
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Figure 1: Bathymetry and tide gauge stations, including 12 nmeasurement
stations (M1-M12)

needs to be selected as control parameters. Finally, havinge ned the
inverse problem, an optimisation algorithm must be chosen ¢ provide a
solution.

2.1 Model setup and data

The numerical model employed in this study, is the widely use MIKE
21 developed at DHI Water and Environment, (DHI 2002). The model
solves the depth averaged mass and momentum conservation wations
on a staggered grid using nite di erences. Thus, it simulates the evolu-
tion of the water level, i, and horizontal uxes, Vy; and Vy;, discretised
in time (t; indexed i) and space. It is setup in a region covering the
North Sea - Baltic Sea system with bathymetry shown in Figurel.

The model is forced by winds and surface pressure from the \ig} weather
service, (Rogers et al. 2001), as well as tidal surface elgi@ns at the
Northern and Southern boundaries in the North Sea. Initial water levels



210 Paper G

Station Cost function | Assimilation
Esbjerg (M1) + +
Hanstholm (M2) + +
Skagen (M3) + +
Ballen (M4) + +
Kors r (M5) + +
Gedser (M6) + +
Hornb k (M7) + +
R dvig (M8) + +
R nne (M9) + +
Kalix (M10) - +
Lowestoft (M11) + -
Wick (M12) + -

Table 1: Tide gauge stations and their usage in the optimisabn

and uxes are obtained from the Water Forecast Service, (Erchsen &
Rasch 2002). The model is calibrated and validated against aaumber
of tide gauge stations, providing water level measurements gps;i. These
are listed in Table 1 and their position plotted in Figure 1. T he stations
have the densest distribution in the inner Danish water, which is the
area of prime focus in this study. However, we maintain a few Nrth Sea
stations in an attempt to avoid parameters that give unrealistic results
there. No attempt has been made here to scale the contributio from the
North Sea stations with the much larger tidal range in these psitions.
The Baltic is not similarly constrained. Ideally, an independent set of
tide gauge stations should be used for the validation procedre. This is
not done at the present stage of development.

2.2 Steady Kalman lItering

In the deterministic model above, the model equations themslves are
considered perfect and the optimal parameters will be soughfor under
that assumption. This will provide parameter estimates which are t to
compensate for other model errors as demonstrated by (ten Brmmelhuis
et al. 1993). Alternatively, the model simulation can attempt to correct
model errors unrelated to parameter values by using a Kalmanlter,
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which takes these errors into account.

In a previous study of (Canizares et al. 2001) the Steady Kahan I-

ter was tested in a similar model set-up of MIKE 21 in the North Sea,
Baltic Sea area for assimilating tidal gauge data. In the praent study,
uncertain boundary and wind forcing is assumed to be the solesources
of model error. Table 1 lists the tide gauges used for assingtion. The
Steady Kalman Filter is described in detail in (S rensen et d. 2004).
The distance regularisation proposed in that paper is not ued in this
study and hence regions far from measurements might have a teio-
rated performance.

If the approximations of the Steady Kalman Filter are ignored for the
sake of simplicity, then the Itered model solution is the state estimate
with the lowest variance within the stochastic model adopted. Hence, as-
suming errors in the open boundaries and the wind velocitiesthe Kalman
Iter provides the solution corresponding to the variance minimizing real-
isation of the error sources, assuming the model parametets be perfect.
The parameter estimation using the Steady Kalman Filter then ideally
seeks parameters that minimise the cost function while allwing the |-
tered solution to estimate the independent errors sourcesssumed by the
Iter.

2.3 Cost function

De ning the cost function is a crucial step in de ning the inv erse problem
itself. In a given application, the modeller will attempt to express a cost
function that re ects the aim of the model calibration. It co uld be a

balanced trade-o of all error types, a bias measure, a standrd deviation

or a phase error measure. In fact any kind of measure which expss a
deviation from observations or prior knowledge can be inclded in the

cost function.

In the present set-up, a composite measure of standard deuians of
model residuals over a ve days period ranging from 1 Januaryto 6
January is chosen. All stations are given equal weight. Here, more em-
phasis is put on improving performance in areas with dense aervation
coverage. Due to di culties of assessing model datum, the sindard de-
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viation rather than the mean square error is used in the measte. A very
simple penalty, J, is added for parameter values diverging from the ini-
tial guess. Parameter values outside an initially de ned aceptable range
are given in nite penalty, while, parameters inside the range have zero
contribution to the cost function. Thus, the cost function w ithout using
the Steady Kalman lter is,

Y
Xe
.

(Copsi “ops) (i N2+ Jp 1)
i=1

where T. is the number of observations in the calibration period. The

optimisation with and without the Steady Kalman lter can be regarded

as solutions to a strong and a quasi-weak constraint inversgroblem

formulation. Let over-line denote a time average. The cost tinction

using an ideal lter is

((obsi “obs) (7 "3)2+ Jp 2
i=1

where 2 is the element of the model state space which is the expectatn

of the model state conditioned on all previous measurementThe Steady

Kalman imposes a large number of approximations such as a gin error

model, stationarity of model correlations at time of update and a lin-

ear estimator, but without these simpli cations, the optim isation would

become intractable.

2.4 Calibration parameters

Any model simulation requires a number of parameters to be geand

hence their value to be assessed in some way. A coastal oceandahel, like

MIKE 21, has many free parameters. These include bathymetryspatial

bed friction maps, viscosity parameters and wind frictions parameters
and can easily count of the order 10 parameters. They are however not
all independent - two neighbouring bed friction values will most likely

be almost equal. Hence, the e ective dimension of the paramter space
is much smaller.

In the present study the optimised parameters are wind stres parameters
and bed friction maps according to prede ned patterns that srongly
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reduces the dimension of the parameter space. The wind fricdn, =
( x; y), is calculated from the the two wind components, W = ( Wy; Wy),
according to,

= Cu——jWjWw 3)
water
where 4y and waer are air and water density respectively. The param-
eter C,, is a piecewise linear function ofW as shown in Figure 4 and is
speci ed by four parameters that are assumed constant in spee. Default
values areCymin = 0:0016, Cyy:max = 0:0026, Wew:min = 0 m=s and
Wew:max =24 m=s yielding the solid line in Figure 4.

The bed friction map (of Manning numbers) consists of approxmately
10° points and a strong space reduction is required for many opthisation
algorithms in Section 2.5 to be tractable. The approach take here is in
an ad hoc way to let the Manning map be a sum of a limited number 6
independent contributions. These are constituted by

a spatially constant background value
A depth dependent map

A Gaussian bell centered at Wick with spatial decorrelation scale
of 300 km.

A Gaussian bell centered at Lowestoft with spatial decorrehtion
scale of 300 km.

A Gaussian bell centered at Esbjerg with spatial decorrelaibn scale
of 300 km.

A Gaussian bell centered at Hanstholm with spatial decorrehtion
scale of 300 km.

The depth dependent map has a zero crossing at 30 m and is a ndimear
function of depth with -800 m and 0 meters being of equal size il oppo-
site sign. The Gaussian bells at Wick, Lowestoft, Esbjerg ad Hanstholm
were chosen at measurement point to allow a local impact and amooth
variation. Traditional alternatives are to divide the doma in into zones
or use triangularisation. In (Heemink et al. 2002) a triangularisation
was made based on a parameter sensitivity estimate by the adjnt of an
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initial guess. This is not feasible in our case and the Gausan bells were
adopted.

All together 10 parameters were calibrated in the optimisaton.

2.5 Optimisation method

The previous subsections have de ned the inverse problem tbe solved.
The objective is to nd the set of parameters de ned in Section 2.4, that
minimises the cost function (1) or (2) for the numerical modd implemen-
tation and set-up described in Subsection 2.1.

The solution to this inverse problem can be found using a numbr of tech-
niques with each having their advantages. The most frequentapproach
in hydrodynamical modelling is to combine a gradient baseddcal search
algorithm, such as a quasi-Newton technique or conjugate @dient, with

a solver of the adjoint equations belonging to the inverse poblem. The
great advantage of this approach is the e cient calculation of the gradi-
ents of the cost function with respect to parameter values povided by the
adjoint solution. This advantage increases with the numberof param-
eters to be optimised. The disadvantage is the costly devefament and
maintenance of the adjoint solver. Further, for potentially rough (highly

variable) cost functions a gradient based algorithm is undsirable in any
case.

So far the adjoint, gradient based approach has seemed likhé only vi-
able solution to the problem for large scale ocean models. kever, by
taking full advance of recent developments in parallel highperformance
computing (HPC), optimisation techniques that do not require the imple-
mentation of the adjoint gain increasing interest because btheir highly
parallisable algorithmic structure.

Previous studies have shown successful application of graht based op-
timisation algorithms and hence these will be used in a futue implemen-
tation. However, due to the code history for the optimisation package at
DHI, these techniques are still at the stage of implementatbn and the
existing Simplex and Shu ed Complex Evolution (SCE) algori thms are
used in the present study. Neither of these are gradient base The Sim-
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Figure 2: Optimised bed friction Manning map for the non-assmilating
model operator (noDA)

plex is a local search algorithm, while SCE is a global searchlgorithm,
(Duan, Sorooshian & Gupta 1992). A parallel implementation have been
developed for the SCE optimisation algorithm. A coarse pardlisation
strategy was taken, in which the performance of a heterogermis cluster
was optimised.

3 Results and discussion

Two parameter estimation procedures are tested in the setupf MIKE 21
described in Section 2.1 with particular focus on the Inner anish Waters.
The bed and wind friction parameters are estimated in both the strong
constraint and quasi-weak constraint data assimilating famulation. In
either case the calibration is performed in the ve-day perod from 1
January to 6 January 2002. This is a short period, but enablesthe
technique to be tested despite the lack of a parallel clusteat present and
it does provide some insight into the performance of the estnations.
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Figure 3: Optimised bed friction Manning map for the assimilating model
operator (DA)

The cost function, J, is presented in Table 2 for the calibrated and ref-
erence runs in the case of both quasi-weak (DA) and strong (rdA)

constraint optimisation. Figures 5 and 6 provides a detailel view of the
contribution to the cost function from each tide gauge station. First of

all, note that the calibrated parameters do not improve the model in all

stations. Actually, in both calibration runs the main absol ute improve-
ments are in the North sea - Esbjerg for noDA and Lowestoft forDA.

Closer inspection further reveals that the reference usin@ssimilation is
actually worse than with no assimilation in Lowestoft. This station is

situated quite far from assimilation points and poor performance in data
sparse regions has previously been noticed, (S rensen et.&2004). In a
parameter optimisation context this actually means that we are optimis-
ing parameters to minimize the error introduced by the assinilation.

The estimated Manning maps and Wind friction coe cient func tion are
shown in Figures 2, 3 and 4. Clear di erences are evident, s&ssing the
di erent nature of the optimisation in a quasi-weak and strong constraint
formulation. Also included in Figure 4 is the default wind drag coe cient
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Figure 4: Wind drag coe cient. Solid line: Default values used in refer-
ence run. Dot-dashed line: Optimised values in the noDA caseDashed
line: Optimised values in the DA case.

Reference| Optimised
no DA 1.31 1.25
DA 0.58 0.49

Table 2: Cost function values in the calibration period for the optimised
parameter sets and the reference parameters excluding anddluding the
Steady Kalman lter, respectively
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Figure 5: Cost function contributions, Strong constraint (noDA) calibra-
tion
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Figure 6: Cost function contributions, Weak constraint (DA ) calibration
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Reference| Opt. no DA | Opt. DA
no DA 2.14 2.17 2.08
DA 1.09 1.25 1.06

Table 3: Cost function values in the validation period for parameter sets
optimised with and without assimilation and the reference parameters.
Each parameter set is validated in both the no assimilation he assimi-
lation setting. the Steady Kalman lter, respectively

for the reference run. The default Manning number is 32 throghout the
model. These express an experienced based good rst guessiarbitrary
model application.

The performance of the two estimated parameter sets are asssed in
a one month model execution spanning February 2002. Table 3om-
tains the validation performance statistics for an assimihting and non-
assimilating February model execution respectively. Figues 7 and 8
provides a detailed view of the contribution to the cost fundion from
each tide gauge station. Wick should be disregarded due to esneous
data in the validation period. It does not a ect the relative performance.

In the strong constraint setting, the performance is worse han the ref-
erence. Even performance in the Esbjerg station, which hadhe domi-
nating reduction in the calibration period is now degraded. It must be
concluded that the parameters have been tuned to correct othr error
sources over an insu cient length of time. In the quasi-weak constraint
setting the assimilation error correction is still dominating. Only the
the North Sea stations, Lowestoft and Esbjerg, a ected by this have a
notably improvement in the validation period. However, desite this a
better performance is obtained in the noDA validation run, indicating
that the weak constraint is a more robust approach than strorg con-
straint.

Obviously, a number of changes should be made to the optimigen
setup.

The bathymetry should be included in the optimisation. This has
been noted to be one of the most important parameters in prevous
studies, (ten Brummelhuis et al. 1993).
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Figure 7: Cost function contributions. Strong constraint (noDA) valida-
tion
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Figure 8: Cost function contributions. Quasi-weak constrant (DA) val-
idation
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A more thorough selection of calibration stations and the cat func-
tion de nition should be considered. E.g. a relative improvement
of standard deviation as compared to the reference run starard
deviation would put more emphasis on the stations in the Inne
Danish Waters.

A quasi-Newton optimisation scheme should be used and apmd
in a parallel cluster allowing a longer calibration period.

The distance regularisation scheme devised in (S rensen etl. 2004)
must be applied if stations far from assimilation stations ae to be
included in the optimisation.

Di erent space reductions of spatially varying parameters should
be investigated.

A two step calibration procedure should be investigated. Sep
one estimates the bathymetry, bed friction and possibly tidal con-
stituents in a purely tidal setting. Step two estimates wind friction
parameters.

4 Conclusion

This study has presented a parameter estimation framework dr two-
dimensional hydrodynamic models of coastal and shelf sea @as. The
main di erence from previous work in the eld is to perform th e op-
timisation without requiring the development of an adjoint code. The
approach supports current developments in parallel cluste technology,
which exploit the computational resources of PC's in an o ce grid. The
optimisation framework included both a strong constraint and a quasi-
weak constraint formulation and was demonstrated to estimae bed and
wind friction parameters in a model application in the North Sea, Baltic
Sea and Inner Danish Waters. The quasi-weak constraint sethg seemed
more robust, but a combination of factors calls for further experiments
for rm conclusions to be drawn.

The use of a formalised parameter estimation framework in DHs hydro-
dynamic models has been initiated and fair results obtainecconsidering
this being a rst attempt with many improvements all ready id enti ed.
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