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Abstract. A novel method for automated annual layer count-
ing in seasonally-resolved pal eoclimate records has been de-
veloped. It relies on algorithms from the statistical frame-
work of hidden Markov models (HMMs), which originally
was developed for use in machine speech recognition. The
strength of the layer detection algorithm liesin the way it is
able to imitate the manual procedures for annual layer count-
ing, while being based on statistical criteriafor annual layer
identi cation. The most likely positions of multiple layer
boundaries in a section of ice core data are determined si-
multaneously, and a probabilistic uncertainty estimate of the
resulting layer count is provided, ensuring an objective treat-
ment of ambiguous layers in the data. Furthermore, multiple
data series can be incorporated and used simultaneously. In
this study, the automated layer counting algorithm has been
applied to two ice core records from Greenland: one display-
ing adistinct annual signal and one which is more challeng-
ing. Thealgorithm shows high skill in reproducing the results
from manual layer counts, and the resulting timescale com-
pares well to absolute-dated volcanic marker horizons where
these exist.

1 Introduction

An accurate chronology is of fundamental importance for
the interpretation of a paleoclimatic record. For some ice
cores, the temporal resolution of the records is suf ciently
high to preserve seasonal information. Indeed, with the in-
creased resolution presently being achieved in many ice core

measurements (e.g. Bigler et al., 2011), an annual signal is
preserved in an increasing number of different data records
and spanning much longer time intervals. Absence of snow-
fal over an extended time, layers lost by wind reworking,
diffusion processesin rn and ice, limited measurement res-
olution, etc. may act to decrease the number of layersthat can
be recognised in the ice core data, whereas small or larger-
scale folds in the ice sheet may cause some layers to occur
twice. Nevertheless, when the conditions are ful lled for an-
nual layersin the ice core to have survived the archiving and
measurement processes in stratigraphic order, annual layer
counting represents the most accurate method to produce a
chronology for the core.

Yet, manua layer counting is a tedious and sometimes
subjective method. The Greenland Ice Core Chronology
2005 (GICCO05) was developed over severa years and in-
volved the efforts of many researchers: counting, compar-
ing, and re-counting the annual layers recorded in multi-
ple data records from several Greenland ice cores (Ander-
sen et al., 2006b; Rasmussen et al., 2006; Svensson et al.,
2006). The chronology extends back to 60 kyr b2k (kyr be-
fore 2000 CE) (Svensson et a., 2008). Decreasing annual
layer thicknesses causes the annua signal in most ice core
parameters to weaken and eventually disappear with depth.
As reliable layer recognition becomes more challenging, a
manual approach increasingly relies on subjective interpre-
tation of the available data. Thus, time-wise and potentially
also quality-wise, much may be gained by an automated and
therefore reproducible approach for annual layer identi ca-
tion in ice core records.
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Many attempts have been made to develop automated
methods of annual layer counting in paleoclimatic archives
(McGwire et d., 2008; Rasmussen et al., 2002; Smith et al.,
2009). These have generally had limited success where the
annual signal in the data is inherently ambiguous, leaving
manual layer counting to still be considered the most accu-
rate. In comparison to these previous attempts, the method
developed here is quite similar to the manual approach of
layer counting; multiple layer boundaries in an entire data
section are determined simultaneously, while allowing for a
very exible denition of an annual layer signature in the
record. Furthermore, the method allows for multi-parameter
counting, using the annual information in multiple data
records at once (athough this is yet to be implemented).
As the approach is based on statistics, it aso allows for ob-
jectively inferring an uncertainty estimate of the resulting
timescale. Such uncertainties are generally very hard to as-
sess manually. It has hitherto proven dif cult to incorporate
these properties in automated |ayer-recognition methods.

The annua layer detection algorithm has here been ap-
plied to two ice core records. a stable-isotope record from
DYE-3, Southern Greenland, and visua stratigraphy data
from NGRIP, Central Greenland, as obtained from line-scan
images (Svensson et al., 2005). The seasonality is very dis-
tinct in the selected section of the 80 record from DYE-3,
and annual layers caused by the seasonal variation in temper-
ature can be manually identi ed with high certainty. More-
over, theice core contains several absol ute-dated age markers
in form of volcanic horizons, which provide an independent
data set against which the resulting timescale can be evalu-
ated. The NGRIP ice core, on the other hand, has particu-
larly high temporal resolution with depth, and therefore has
the potential to be dated by annual layer counting far back in
time. The oldest part of the GICCO5 chronology was based
exclusively on data from this core. For the depth interval in
consideration, the line-scan data displays a clear banding of
dark and bright layers, which essentially provides a proxy
for dust content in the ice core. The data is at such high
resolution that it may resolve individual precipitation events.
From modern-day ice core data it is known that the dust in-
put to Greenland has a signi cant seasonal variation (Alley
et a., 1997; Hamilton and Langway, 1968). Assuming this
relationship to hold back in time, the grey-tone intensity of
the line-scan images should also display a seasona pattern.
More often than not, however, the annual signal in the data
is ambiguous, and when considered in isolation these are not
easy to usefor layer counting. Nonethel ess, due to the ability
of the line-scan data to resolve annual layering in sections of
thin annual layers, it has potential for being utilised to extend
the GICCO5 chronology further back in time.
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2 A hidden Markov modelling approach to annual
layer recognition

The layer detection routine is based on the statistical frame-
work of hidden Markov models. A hidden Markov model
(HMM) is a stochastic signal model that can be used for
modelling the output of a system displaying Markovian be-
haviour, i.e. a stochastic system which transitions between
states, and where the next state of the system dependsonly on
the current state. By comparison to observed data, knowledge
of the nature of the underlying signal can then be obtained
(Rabiner, 1989). The concept of hidden Markov models was
originally introduced in the late 1960s (Baum and Petrie,
1966), and has successfully been applied to pattern recogni-
tioninthe eld of machine speech recognition since the mid-

70s (Jelinek et al., 1975). The rich mathematical structure of
hidden Markov models can form the theoretical basis for a
wide range of signal modelling applications, spanning from
magnetic resonance imaging (MRI) brain mapping (Faisan et
al., 2005) to the analysis of nancia time series (Bulla and

Bulla, 2006). Here it will be applied to annual layer recogni-
tioninice core records.

An annua layer recognition algorithm based on hidden
Markov modelling is inherently of Bayesian nature. The an-
nual layers are obtained based on prior knowledge on for
example the general layer thickness probability distribution,
which is updated based on observed data, and the resulting
layer boundaries are given as probability distributions, both
in depth and layer number. When cal cul ating these probabil-
ities, an entire observation sequence is taken into account at
once. Thelikelihood that a given observation segment repre-
sents an annual layer istherefore judged not only by its own
resemblance to a typica annual layer, but is judged in con-
junction with the likelihood of the resulting layering on ei-
ther side. Determination of layer boundaries in data sections
with poorly-resolved annual layering is therefore primarily
based on the positioning of surrounding clearly discernible
annual layer boundaries. Sections containing missing data
are treated much the same way: an appropriate number of
layersis tted into these regions, with the appropriate num-
ber based on knowledge of the layer thickness probability
distribution in combination with the most likely positions of
layer boundariesin the surrounding data. Simultaneously, the
spread of the probability distribution of counted annual lay-
ersis generaly enlarged, corresponding to increased uncer-
tainty in thetotal number of counted layers. Thisisvery simi-
lar to what isimplicitly done when counting layers manually.

The method can relatively easily be extended to allow the
incorporation of multiple data series containing an annual
layer signal and infer the most likely annual layering based
on al of these data series simultaneously. It therefore pro-
vides the necessary statistical framework to allow for an au-
tomated multiple-parameter counting algorithm. This prop-
erty of the algorithm is important because misinterpretation
of the annual layering in any single ice core record is likely

www.clim-past.net/8/1881/2012/
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to occur due to variability of the annual layer signal and oc-
currence of non-annual features. For the current purpose, in-
formation has been incorporated based on the derivative of
the data series as well asthe observed data itself.

2.1 Hidden Markov models

In a hidden Markov model (HMM), the system under con-
sideration is alowed to be in a nite number of states. The
state of the system corresponding to any index t (e.g. time)
is considered a stochastic variable S; with the allowed state
outcomes “j, j 2f1; 2; :::; Jg. For the purpose of annual
layer detection, “; will represent alabel corresponding to the
annua layer number. The use of t for indexing (t spanning
from1to T ) isowed to hidden Markov modelling usually be-
ing applied on time series; for the current purpose it will be
used as an index for observation number, i.e. depth. The state
of the system is assumed to change stochastically in such
away that the state sequence, Syyt, is a rst-order Markov
chain, i.e. the next state of the system is only dependent on
the current state.

If adirect outcome of the state sequence can be observed,
it is easy to characterise the statistical nature of this signal.
Very often, however, thisis not possible. Instead, it may be
possible to observe the in uence of the state sequence on
another stochastic process, the outcome of which is seen as
a sequence of observations, oyt . The model hereby has a
two-level structure, with the state sequence providing the un-
known truth, and each observation by itself only providing
incomplete information on the current state. Algorithms de-
veloped for hidden Markov models alow for the statistical
inference of the underlying hidden Markovian state sequence
(Rabiner, 1989).

Similar algorithms have also been developed in case of
so-called hidden semi-Markov state sequences, in which the
changes in state are endowed with a Markov property, but
with holding times of each state distributed according to a
prescribed probability distribution p.d/, with the duration d
given in terms of number of observations covered by each
state. Such a process can be envisioned as a doubly em-
bedded Markov chain, with generalised states consisting of
both the state label and state duration. Allowing the under-
lying stochastic process to be semi-Markov, this variant is
sometimes known in the literature asa hidden semi-Markov
model (HSMM) (Yu, 2010), or depending on the speci ¢
assumptions of the model, its application area and the author

a segment model (Ostendorf et al., 1996).

The sequence of encountered years in a seasonaly re-
solved data record, when assuming the associated annual lay-
ersto occur in sequential order without any skipping, can be
viewed as a degenerated Markov chain. Hence, the observa-
tions corresponding to a succession of annual layers in an
ice core record can be regarded as the output of a hidden
semi-Markov process, in that each individual data point can
be labelled with a corresponding state (i.e. the layer number)

www.clim-past.net/8/1881/2012/
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Fig. 1. Illustration of the two-level structure of the hidden semi-
Markov model used for annual layer detection. The states of the
system are layer numbers , which have been endowed with alayer
thickness parameter d. Changes in state are described by state tran-
sition probabilities. Each state emits a segment of observations cor-
responding to one layer. In this case, the observations are grey-tone
intensity values from line-scan images from the NGRIP ice core
(bottom). Based on the entire sequence of observations, the HMM
algorithm can be used to infer the most likely state sequence (i.e. the
depth-age relationship) along with its corresponding uncertainty.

as well as a duration (i.e. the layer thickness), see Fig. 1.
The desired depth-age relation is then the most likely state
sequence given the observations.

The application of HMMs for annual layer counting in an-
nually laminated paleoclimate archives differs from their ap-
plication in most other areas. The changes in state are sim-
ple, with one year simply following the previous. However,
thissimplicity is often combined with large inter-annual vari-
ability in the annual layer expressions, thereby giving rise to
a rather challenging pattern-recognition problem. The gen-
eral HMM algorithms must therefore be adapted to these
conditions.

2.2 Characterising an annual layer

Mathematically, the layer detection algorithm works by re-
ducing the complex issue of simultaneous pattern-matching
of multiple successive layersto a given template, to the much
simpler question concerning how likely aparticular data seg-
ment is to represent asingle annual layer. Thelikelihood of a
given observation segment forming an annual layer is partly
determined by the probability of the resulting annual layer
thickness, and partly by the resemblance of the segment to
an annual layer signal. These probabilities provide the cri-
teria used by the layer detection algorithm for subsequently
retrieving the most likely annual layer sequence based on the
entiredatarecord. Therelative weighting of thesetwo criteria
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can be adjusted as desired. In thisway the layer detection al-
gorithm employs the same principles as used in manual layer
identi cation.

Empirical data shows that for a given depth interval, the
annual layer thicknesses in an ice core are approximately
log-normal distributed (Andersen et a., 20064). The assumed
probability distribution of the layer durations is therefore
taken to be a log-normal distribution described by the two
parameters gand g:

p.d/DInN ¢ 2 :

The parameterswill betermed thelocation ( g) and scale pa-
rameter ( 4) of the distribution. The mean annual layer thick-
ness, ,isafunction of both of these parameters. The con-
tinuous probability density function is discretised and nor-
malised to provide duration probabilities corresponding to a
nite integer number of data points.

Resemblance of a given observation segment o, to a
typical annua layer signal can be assessed in a variety of
ways. The likelihood that the segment forms an annual layer
will here be determined by regression of the segment to a
layer template. This so-called emission probability is for-
mally de ned as the conditional probability of observing a
given sequence of observations when assuming these to form
an annual layer. Following Yu (2010), we will use the short-
hand notation Sy, it,) = “j to signify that layer j (i.e. state out-
come “j) starts exactly at t; and ends exactly at t, (both data
points included). Using this notation, the emission probabil-
ity can be written as follows:

P oy, S[tl\/tz] D% @)

The inferred layer boundaries depend critically on the ap-
plied annual layer template and the model parameters herein,

, used for judging how well the segment of observations
Ot,1t, exhibits the characteristics of an annual layer.

Annua layersin especialy the NGRIP line-scan data dis-
play signi cant variability in shape from one year to the next,
and the annual layer template must be able to capture this
diversity. To ensure such exibility of the layer detection al-
gorithm, the annual layers are modelled based on a generic
layer template, which consists of an appropriate selection of
analytical basis functions (X1, X2, X3, ...) that each describes
an aspect of the shape of the layer signal. The basis func-
tions are normalised with respect to the annual layer thick-
ness such that their resulting shape is independent on this.
Layer trgjectories are then formed by linear combinations of
these basis functions, and assumed to be observed with an
additive Gaussian white noise component. By forming the
matrix X =Tx1; X2; Xz; :::U, the signal for layer j can be
described as the noisy output of alinear system:

b Ot]_\/tz

yj D Xaj C"jZ

For a speci ¢ annual layer, the weightings corresponding to
the individual basis functions are contained in the vector a; .
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These weightings are assumed to be multivariate Gaussian
distributed. Mean value (*) and covariance (8) of thisdistri-
bution are regarded as model parameters and are included in

, alongwith thevariance ( #) of the additive Gaussian white
noise component, "j  N.0; #/.Inaddition, containsthe
parameters describing the layer thickness probability distri-
bution( gand ).

By using the above formulation, the description of an
annual layer is divided into average layer characteristics
(), and random effects pertinent to each individual layer,
ri N.O; 8/, that cause it to differ from the average. An
annual layer can therefore also be described as

yiDXajC"jDX “Crj C"jDX”CXrjC"j: (2

This model for the annual layers represents a two-level hier-
archical model, and the emission probabilities can be evalu-
ated by Bayesian linear regression (Bishop, 2006). See Win-
strup (2011) for a more detailed description of how these
computations are carried out. The employed moddl is an
extended version of the linear trgjectory models used by
Gish and Ng (1996) and Russell and Holmes (1997), and
bears many similarities to the one used for e ectrocardio-
graphic waveform detection by Kim et al. (2004) and Kim
and Smyth (2006).

The explicit modelling of the allowed range of inter-annual
variability in layer shape permits the developed layer detec-
tion algorithm to address this general problem faced by any
annual layer counting routine. Therange of year-to-year vari-
ability inlayer shapes becomes an integrated part of the layer
detection algorithm, and enables it to better handle observa-
tion sequences in which the annual layer signal is noisy and
irregular.

A principal components analysis (PCA) wasinitialy con-
ducted on the data series to constrain the allowed variability
of individual layer shapes. This analysis was based on re-
sults from manual layer picking. For the NGRIP line-scan
data, the rst two principal components describing the lay-
ering in the cold period (Fig. 2c) and the warm period (not
shown) explain respectively 73% and 57 % of the variance
in layer shapes from the mean. With three principal compo-
nents the numbers increase to 84 % (cold period) and 68 %
(warm period). The difference in the amount of variance ex-
plained indicates aless distinct annual signal in the line-scan
data during the warm period, which can aso be seen by vi-
sual comparison of the two data series. In the following, we
have employed analytical functions that mimic the variabil-
ity described by the principal components as basis functions,
and regression to these is performed on the deviation of an
observation segment from the calculated mean annual layer
signal.

Observe that oyt is alowed to be a sequence of vec-
tor observations, and hence each data point may, for exam-
ple, contain a collection of measured chemistry data. Asthe
assessment of the probability b.ot,y,/ can be made based on
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Fig. 2. (A) Section of line-scan data with manually counted annual
layers indicated by aternating bright and dark grey bands. White
dashed layer boundaries are regarded as uncertain. Prior to analysis,
data were treated by taking the logarithm of the grey-tone intensity
values and normalising according to minimum/maximum values.
(B) Mean annua layer trajectory and (C) the rst three principa
components of the deviation from the mean trajectory during the
cold period GS-13 (depth: 2225 2240 m). 4th order polynomial ts
to the mean and principal components are shown as dashed lines.

multiple data sets, it alows for the annual layer signal in all
of these to be taken into account simultaneously.

We have here considered both the observed data series
as well as its derivative as two separate, yet related, obser-
vation sequences. Although the two data sequences essen-
tially contain the same information, the noise component on
the derivative data series is generally whiter , but has the
caveat that the signal-to-noise ratio is smaller. Consequently,
by combining information from both data series, the underly-
ing assumption is relaxed that al variance of an annual sig-
na not explained by the layer template can be considered
white noise. Indeed, the noise corresponding to successive
data points is correlated, and when applied to the line-scan
data in particular, much better estimates of the annual lay-
ering were obtained when utilising also the derivative of the
observed sequence of grey-tone intensities.

2.3 Inference of amost likely layer sequence and its
uncertainty

Having calculated the emission probabilities (Eq. 1) for all
possiblelayer start and ending positions, themost likely layer
a any given location can be inferred. Consider the option of
using brute force to examine all possible state sequences, one
a atime, calculating the respective probabilities, and adding
up the contributions from those that give rise to the same
state “j at each t. In this way, the most likely layer at t can
be found, and the result will be based on the entire observa-
tion sequence in consideration. In reality such an approachis
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rarely feasible, but the same probabilities can be ef ciently
calculated by recursion by the forward-backward algorithm,
which routinely is applied to HMMs, and hereis used in the
extended version applicable for HSMMs (Yu, 2010).

The name forward-backward algorithm is derived from
the way the algorithm makes the judgment of a most likely
state sequence in a rigorous yet ef cient manner by execut-
ing a double pass of the observation sequence: a forward
pass, which passes on the information included in al previ-
ous data, and a backward pass, containing information from
all subsequent data. The best estimate of the hidden state se-
quence is then found by combining the two sources of in-
formation. In this way, the entire data sequence is used for
inferring the most likely layering, and aso the involved un-
certainties can be evaluated. These provide an estimate of the
counting error relatively similar to that of the manually layer
counted GICCO05 chronology, in which uncertain layers were
counted as 1/2  1/2yr (Andersen et al., 2006b; Rasmussen
et al., 2006).

In the forward message pass, theforward variable ¢.j; d/
is calculated. It is de ned as the joint probability of ending
state “j with duration d at t and observing the partial obser-
vation sequence 01y . It can be recursively calculated by

t-J;d/ P Sit gcuey D ‘$;<01Vt
D p.d/b.ot gcin/ tdd Ld: 3
q?
Similarly for the backward message pass, a backward vari-
able ¢ isdened as the probability of observing the partial
observation sequence oicyt When conditioned on state *j
ending at t. Using the shorthand notation Sy = “; to indicate
that layer j ends at t, without providing any information on
where the layer begins, the backward variable can be calcu-

lated as
> )
t P owcurjSu D “j D
] d

p.d/b.otcincd/ tca: (4)

Asinitialisation condition for the two recursive passes of the
data series, the rst observation is assumed known to be in
state “1, whereas the state corresponding to the last obser-
vation is considered unknown, and thus all possible states
have equal probability. Dueto the exibility of the forward-
backward algorithm to allow for inter-annual variations in
layer thickness, the algorithm is not very strongly dependent
on the speci c¢s of the applied initialisation conditions.

These equations can be derived from the general equations
of the forward-backward algorithm for HSMMs, as given for
examplein Yu (2010), when using the following simplifying
assumptions. encountered layers are assumed to occur in se-
quential order without any skipping, the thickness of alayer
is assumed independent on thickness and label of the previ-
ous layer, and al layers are assumed to be an outcome of the
same process, implying that the layer signal (shape aswell as
thickness) isindependent on the layer number. Previous stud-
ies (Andersen et al., 2006a; Fisher et al., 1985) point to the

Clim. Past, 8, 1881 1895, 2012



1886

existence of aglightly negative correlation between the thick-
ness of successive layers, and such correlation is not taken
into account in the above simpli ed formulation. Also the
agorithm does not impose any restrictions regarding conti-
nuity of the tted layer trgjectories across layer boundaries:

for each layer, the best layer trgjectory is determined inde-
pendently from those of its neighbours. In practise, however,
none of these shortcomings represent a major limitation of
the method. A formal derivation of the appropriate formula-
tion of the forward and backward variables, and a more ex-
plicit description of the initialisation conditions used, can be
found in Winstrup (2011).

By multiplying the forward and backward variables
(Egs. 3and 4), one obtainsthe posterior probability of ending
layer j with duration d at t, based on the entire observation
sequence (Yu, 2010):

t-J;d/ P St gcaw D “j;0ur D ¢.j;d/ 0 (5)

Summing over al values of d givesthe probability of ending
layer j at t regardless of its duration:

) <
-/ P SuD ‘j;0ur D t.j; dr:

d
The probability of beinginlayer j at t can then be calculated

recursively asthe probability of beinginlayer j att 1, sub-
tracting the probability of ending layer j att 1, and adding
the probability of starting the layer at t:

tj/ P St D ‘j; onT D t 1j/ Qt ]_j/C Qt ]_.j 1/ (6)

This recursive formulation quanti es the probability of be-
ing in layer j at point t in the observation sequence. In the
forward-backward agorithm, the most likely state sequence
is understood as the state sequence in which each state in-
dividually has maximum posterior probability when condi-
tioned on the entire observation sequence. The maximum a
posteriori (MAP) estimate of the state corresponding to the
observation at t is therefore:

argmax PS¢ D “j oyt

“‘map.t/ D argmaxf ;.j/9: (7)
j i

This is the most likely layer at t. The corresponding layer
boundaries can be found as locations where “map.t/ shifts.
Furthermore, as the full probability distributions are com-
puted, the uncertainty associated with inference of the most
likely layer at a given position can be estimated by consid-
ering the width of the derived distributions. A chronology
consisting of both a best estimate (“map-.t/, the mode of the
distribution) and an uncertainty estimate (here taken as dis-
tribution percentiles) can therefore be derived.

However, it must be stressed that the validity of these un-
certainty estimatesis contingent on the annual layer template
and corresponding model parametersto bevalid. The derived
uncertainty estimate does not take into account possible in-
accuracies in these, and should therefore always be regarded
as alower bound estimate.
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Fig. 3. Layer detection algorithm applied to line-scan data from
NGRIP. (A) and (B): the posterior probabilities (t.j/

P.Syy D “j; oyr) and t.j/ P.St D “j; oyr). Probabilities
corresponding to individual layers are drawn in different colours.
All probabilities are plotted to the same scale, but shifted dlightly
downwards with increasing layer number to enhance visibility.
(C) Line-scan datafrom NGRIP (black ling). The alternating bright
and dark grey banding shows the annual layers in the GICC05
chronology, an uncertain layer boundary is marked with white
dashes. Superimposed (red lines) are the most likely layer bound-
aries as inferred from the forward-backward agorithm. These
are found as those places where the most likely layer number
i.e. mode of the t.j/ distributions with t xed, see examples in
(D) changes with depth. (D) Inferred probability distributions of
the annual layer number ( ¢.j/) at the positions | V, indicated with
red barsin (A) and (B).

Figure 3 shows the output of the layer detection ago-
rithm when applied to a small section of line-scan data from
NGRIP. The computed values of (;.J/ (Fig. 3a) estimate the
probability of ending layer j att, and thus peaksarelocations
of highly probable layer boundaries. A general decrease in
peak height with distance from the beginning of the data se-
riesis caused by an increasing uncertainty as to which layer
the boundary belongs. The total probability of ending any
layer at agiven location t can be calculated by summing the
individual contributions from al layers. By subsequent con-
version to .j/, the probability of being in each layer at a
given position can be assessed (Fig. 3b). The further away
from the beginning of the data series, the less certain the
layer number can be determined. As a result, the maximum
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probabilities corresponding to a given layer j dowly de-
crease asthe spread of the distribution of possible annual lay-
ers at aspeci ¢ location (Fig. 3d) increases. The most likely
annual layering (Fig. 3c, red lines) can be determined from
the changing mode of these distributions (Eq. 7) down the
core.

For the line-scan datain Fig. 3, several interesting features
of the output of the layer detection algorithm can be noted.
First observe how well the inferred most likely layer bound-
aries correspond to those in the manually obtained GICCO05
chronology (Fig. 3c), despite this chronology being based on
the annual layer signal in multiple data series. Only one ex-
tralayer boundary (depth: 2228.04 m) is reconstructed by the
agorithm. Considering the datain thisinterval, it is seen that
indeed the annual layer signal in the line-scan data here is
ambiguous:. the line-scan data displays a distinct peak, but
the distance to the surrounding layersis relatively small.

When considering in detail the inferred values for (;.j/,
peaks in this probability variable is seen to correspond to
peaks in the line-scan data which may or may not indicate
an annua layer. In general, only some of these peaks give
rise to an inferred layer boundary, while others act to in-
crease the uncertainty estimate of the counted number of lay-
ers. Uncertain positioning of a speci ¢ layer boundary may
aso occur, in which case a broad peak is observed in (;.j/
(see e.g. around 2228.12 m). Also observe how an ambigu-
ous layer boundary at onelocation (e.g. at 2228.04 m) results
in Q;.j/ having multiple peaks down core for agiven layer j .

The annua layering in the rst part of the data series
is relatively distinct, and the algorithm recovers the manu-
aly deduced annual layering with high con dence, which
can be seen from the inferred very spiky :.j/ probabil-
ity distributions (Fig. 3d, 1). The equivocal interval around
2228.04 mispicked out by the algorithm as containing a pos-
sible layer boundary, which is judged to be more likely than
not: comparing Fig. 3d, | and Fig. 3d, Il, it is seen that after
2228.04m, there is about 1/3 chance of still being in layer 3,
and 2/3 chance of now being in layer 4. The probability dis-
tribution is subsequently slowly broadened in a non-trivia
way asthe algorithm encounters other uncertain layer bound-
aries (Fig. 3d, 11 V).

2.4 Layer detection in successive batches of data

It is not feasible, nor desirable, to run the forward-backward
agorithm on several hundred metres of ice core data at once.
While also increasing the computational complexity, doing
so would require a homogeneous data series, in which the
layer thickness distribution as well as the annual layer sig-
nal is essentially stationary. Neither of these conditions are
satis ed: the mean annual layer thickness changes down the
ice core as the combined result of climate-induced variations
in past accumulation rates and a general thinning of layers
with depth dueto ice ow. Furthermore, in different climate
regimesthe seasonal in ux of dust and other impuritiesto the
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ice sheet may differ, hereby altering the general annual layer
signal in theice core data (Andersen et al., 2006b).

A better strategy is to divide the total data series into
smaller batches, apply the layer detection algorithm to one
of these at atime, and subsequently stitch them together by
convolving the resulting layer probability distributions. Each
of these batches must be suf ciently long to fully exploit the
HMM'’s optimal estimation of layer boundaries, while being
short enough that the assumption of a xed layer thickness
distribution and layer signal is reasonable. Here, we have
run the layer detection algorithm on batches of data cov-
ering approximately 50yr each. During fast climatic shifts,
however, the mean annual layer thickness may display sig-
ni cant changes even more abruptly than this (Alley et al.,
1993; Steffensen et al., 2008).

By dividing the full observation sequence into batches and
running the layer detection algorithm on each of these indi-
vidually, some of the information contained in the full data
seriesislost. Closeto the edges of each batch, thelack of sur-
rounding data will in general cause the annual layer bound-
aries here to be placed less accurately. To a large extent,
however, such knowledge can be recovered by choosing data
batches in consecutive order and in an overlapping fashion.
Furthermore, some of the information inferred from the lay-
ering in one batch of data may be incorporated into the next.
Thiswill be discussed in Sect. 2.5.

25 Optimisation of applied model parameters

The outcome of the forward-backward algorithm is an eval-
uation of the layering in a data series when given a set of
model parameters () to describe the annual layer signal. In
addition, however, the forward-backward algorithm can be
utilised for evaluating the likelihood of the employed set of
model parameters based on the appearance of inferred lay-
ers in the observation sequence (Rabiner, 1989; Yu, 2010).
This is possible because the computed posterior probabili-
ties, Egs. (5) and (6), are joined with the probability of the
entire observation sequence and though not always explic-
itly stated in the preceding equations conditioned on the
model parameters. By normalising the posterior probabili-
ties, the likelihood of the applied model parameters can be
determined (see e.g. Winstrup, 2011).

This feature of the annual layer detection algorithm pro-
vides the opportunity to implement alearning process, which
can select the model parameters best suited for modelling the
observations. In other words, the model is ableto improve on
aninitial guess of the appropriate model parameters based on
how the data actually appear. By doing so, the model is able
to continuously adjust itself to temporal changes in annual
layer appearance aswell aslayer thickness probability distri-
bution, and it gives rise to high performance of the algorithm
even when only imperfect knowledge on the appropriate pa-
rameter values is available. The abruptness of some climatic
events (Steffensen et a., 2008), in uencing both the mean
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annua layer thickness and the annual layer signal recorded
in the ice core records, makes this a very important issue.
The opportunity of such training of the annual layer detec-
tion algorithm is a major advantage of the hidden Markov
modelling approach.

The optimisation has here been performed using the
expectation-maximisation (EM) agorithm (Baum et al.,
1970; Dempster et a., 1977; Guptaand Chen, 2011). TheEM
agorithm presents an ef cient iterative method for obtaining
a point estimate of the (possibly local) maximum likelihood
set of parameters. See Appendix A for update eguations of
the respective model parameters.

Due to this optimisation procedure, it isin principle pos-
sible to determine the annual layering in an observation se-
guence without any prior information on the appearance of
layers in the data. However, given the relatively high noise
level in the line-scan data, it was found that these data by
themselves did not contain suf cient information to produce
robust statistics and adequately constrain the layer detection
agorithm. Thus, when employed on the line-scan data, some
model parameters ( 4, 8, and ) were estimated based on
manual layer counts within a smaller data section and sub-
sequently held xed. Other parameters (¢ and ) were al-
lowed to change with depth and were determined separately
for each batch of data

Another option for constraining the algorithm is to incor-
porate prior knowledge on the appropriate parameter values.
In this case, a modi ed version of the EM agorithm can be
used to retrieve the set of parameter values of (possibly local)
maximum posterior probability (see e.g. Gupta and Chen,
2011). Including prior knowledge on parameter values will
generally act to stabilise the performance of the layer detec-
tion algorithm by lessening its demand on data quality and
volume. Prior information may consist of knowledge derived
from layering in previous data batches and/or be driven by
information based on, for example, the 80 record, which
can provide the algorithm with information on the current
climate regime. The high correlation between climate and ac-
cumulation rate (Dahl-Jensen et al., 1993) impliesthat 180
data may be used for quantifying prior knowledge on relative
changesin mean annual layer thickness over shorter depth in-
tervals, within which the ice- ow induced layer thinning can
be assumed reasonably constant. By incorporating priors, the
layer counting algorithm will be allowed to continually ad-
just itself to tempora changes in annual layer signaturein a
more controlled, yet till very exible, manner.

The potential advantages of incorporating prior knowledge
will be explored in future studies, but has here been avoided
in order not to guide the layer detection algorithm unneces-
sarily. The maximum likelihood solution, as employed here,
represents the most transparent implementation of the al-
gorithm, which is an important property when assessing its
performance.
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Fig. 4. Test of layer detection algorithm on ensembles of two types
of synthetic data. Left panel: example data series. Grey banding in-
dicates the origina layer boundaries, based on which the data has
been produced. Dark grey bars signify the location of inferred layer
boundaries. Right panel: differences between inferred (Njnferred)
and true (Ntrye) number of layersin the data based on an ensemble
of 200 data series with approximately 50 layers each. (A) Data is
produced as a sequence of sinusodials generated by the parameters
>=1,8=05% and =05 (Eq. 2). (B) As (A), but with higher
amounts of noise and variability in the layer signal (* =1, 8 =1,
»=1).

3 Sensitivity tests

The layer detection algorithm was rst tested on synthetic
data containing a recurring annual signal simulating that
in the observed data. These data series were constructed as
a succession of sinusoidal layer shapes displaying varying
amounts of inter-annual variability in amplitude and added
Gaussian white noise. Two such data series are shown in
Fig. 4. Based on ensembles of synthetic data series, statis-
tics on the performance of the algorithm could be assessed.
The algorithm was observed to work very robustly, and no
bias towards either too thick or too thin annual layers was
noted. It should be no surprise that the annual layers are eas-
iest to identify when individual layer thicknesses are fairly
similar, the layer shapes relatively identical, and the signal-
to-noise ratio is high. However, even with individual layers
displaying a wide range of amplitudes and containing much
noise, the outcome of the layer detection algorithm was very
accurate. Consider, for example, an ensemble of synthetic
data series, each consisting of approximately 50 layers, in
which the annual layer signal displays a moderate amount
of noise and inter-annual variability (an example is shown
in Fig. 4a). Based on the inferred distribution of error in the
resulting most likely layer estimates, the maximum counting
error (takenas2 of the distribution) was found to be 1.4yr,
i.e. <3%. When increasing the noise and inter-annual layer
variability further (e.g. Fig. 4b), the maximum counting error
grows, but in none of the considered scenarios did it exceed
6%. Some of the synthetic data series hereby produced were
so noisy that it would be problematic to reliably identify the
annual layers by eye. The automated counting algorithm, on
the contrary, is able to count these in an unbiased manner
due to knowledge of the annual layer thickness probability
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Fig. 5. Evolution of the derived layer thickness parameter ¢ as
function of the number of EM iterations, when given incorrect in-
put values of this parameter. Median of the resulting layer thick-
ness distribution is calculated asexp. ¢/. Data points are based on
ensembles of 200 synthetic data series (sinusoidals produced with
parameters > =1, 8 =052, and #=0.5%) that each contains ap-
proximately 50 layers. Error bars signify the resulting 1  spread
within ensemble members. For the considered range of initial val-
ues, the derived value of 4 converged to the original input value of
d= 4.25dfter just afew iterations.

distribution in combination with a robust statistical measure
for judging what is most likely to be an annua layer.

Inherent to the forward-backward algorithm is the simul-
taneous derivation of a con denceinterval for the number of
annual layers within a data section. The accuracy of this un-
certainty estimate was evaluated by counting the number of
ensemble members for which the true number of annual 1ay-
ers in the data series was outside the estimated uncertainty
bounds. For this simple case of synthetic data with known
annua layer template and model parameters, the estimated
uncertainties were found to be obtained very reliably.

We also tested the capability of the layer detection algo-
rithm to iteratively nd a best set of model parameters based
on the appearance of layers in the data. For an ensemble of
synthetic data series with a moderate amount of inter-annual
variability and white noise, and asensible choice of initia pa-
rameter values, the number of iterations required before con-
vergence was reached was generally 5 or less (Fig. 5). More
details are available in Winstrup (2011). However, the ability
of the algorithm to swiftly converge towards an appropriate
set of parameter valuesis highly dependent on the overall dif-

culty of recognising the annual layersin the data as well as

on the appropriateness of theinitial parameter input to the al-
gorithm. In unfavourable conditions, correct estimates of the
parameters may indeed be impossible to infer. Yet, in all in-
vestigated cases, the algorithm quickly converged to the set
of parameters used for constructing the data, with a prob-
ability distribution as expected when using relatively small
samples containing just 50 layers.
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Fig. 6. (A) Example of the DYE-3 180-record. The data was
measured with approximately 8 samples per year. (B) Evolution in
mean layer thicknesses for the upper 800 m of the record, spanning
approximately the last 2000yr (1979 79 CE). Annual layer thick-
nesses are cal culated over 10 m sections. The 95 % con denceinter-
val derived for the automated counting is shown as a (very narrow)
red shaded band. Uncertainties for the manual counting are negli-
gible. The depth of three historically dated volcanic reference hori-
zons (Graefajokull, Hekla, Vesuvius) are indicated with grey bars.
Red numbers denote automated layer counts within each section,
which are to be compared to the historically known time durations
(given in black).

4 Results

The layer detection algorithm was implemented for two
data sets. a stable-isotope record from DY E-3, displaying a
distinct seasona pattern, and visual stratigraphy data from
NGRIP, in which the annual layer signal may sometimes be
ambiguous, but is maintained to great depths.

For DY E-3, the algorithm was run over the depth inter-
val 0779.99m, which covers the time period 1979 79 CE
(Vesuvius eruption). The accumulation rate at DY E-3 is suf-
ciently high that rn diffusion has not signi cantly altered
the annual oscillations in the stable-isotope record, and al-
though melt layers occasionally obscure the annual signal,
the core can be manually layer counted with high con dence.
In addition, the record contains several historically dated vol-
canic horizons (Clausen et al., 1997). Using such reference
horizons for synchronising individual ice cores, the manual
dating of this core was not only based on the stable-isotope
data considered here, but also included data from GRIP and
NGRIP (Vinther et al., 2006). Together, these data consti-
tuted the basis for the upper part of the GICCO05 chronol ogy.

Before analysis, the 180 record was normalised with re-
spect to the data variance over an interval covering approx-
imately three years (Fig. 6a). As previously discussed, the
observed data and its derivative were employed as two sep-
arate data series. The derivative was calculated based on
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Table 1. Results from automated and manual annual layer counts. For the automated counting, the 95% con dence intervals (numbers in
parentheses) are given based on the derived annual layer probability distributions. Note that these distributions are not necessarily symmetric
around the most likely annual layer count. For the manual counting, the 95 % uncertainty estimate is based on the maximum counting error
(MCE) from the GICCO05 chronology. For DY E-3, the ice core section is delimited by two absolute dated horizons (top of core, Vesuvius
eruption), and hence no uncertainty is associated with the total number of layersin the interval.

Data Automated counting Manual counting Difference
DYE-3 (1919) 1926 (1932) 1900 14%
NGRIP, GI-12 (882) 894 (905) (792) 839 (886) 6.6%
NGRIP, Onset of GI-12 (284) 291 (298) (266) 278 (290) 47%
NGRIP, GS-13 (1234) 1249 (1265)  (1142) 1204 (1266) 37%

Table 2. Comparison of time intervals between three historically dated volcanic eruptions that are visible as marker horizons in the DYE-3
ice core. Depths are from Vinther et al. (2006). 1 Thig arethe historically known timeintervals, 1T indicates the calculated timeintervals

and the inferred 95 % con dence intervals.

Eruption DepthTml  Historical  1Tpig TyrU  Calculated 1 Tggc Tyrl
age (CE) age (CE)
Graefajokull 326.70 1362 1336
258 (254) 256 (257)
Hekla 429.24 1104 1080
1025 (1022) 1026 (1031)
Vesuvius 779.99 79 54

a smoothed version of the observed record as obtained by
applying a rst-order Savitzky-Golay Iter (Savitzky and
Golay, 1964).

Given the generally very well-de ned annual signal in the

180 record, the layer detection algorithm was run in the
most autonomous way possible, in which all parameters in-
cluded in the layer model (i.e. those de ning the layer thick-
ness probability distribution as well as those de ning layer
shape and itsinter-annual variability) were allowed to change
with depth. These were optimally chosen by the algorithm
according to the layer signal in the data (Appendix A). The
algorithm was allowed to perform ve iterations for each
batch of data, at which point it was assumed that convergence
had been reached. The resulting set of model parameter val-
ues was subsequently used as input to the next batch.

In Fig. 6b, the inferred evolution in mean layer thickness
with depth is compared to that manually obtained. The al-
gorithm performs very well: over the entire depth interval,
the layer detection algorithm infers a total of 1926 7 lay-
ers (compared to the actual number of 1900yr) (Table 1).
It is a discrepancy of merely 1.4%, most of which arises
within a short interval in the upper part of the core (200-
270 m depth). This interval coincides with the upper part
of an anomalous increase in layer thicknesses with depth
caused by upstream depositional effects (Reeh et al., 1985;
Vinther et al., 2006), which may be the cause of an excep-
tionally large inter-annual variation in layer thicknesses ob-
served within this section. The detailed similarity of the two
layer counts can be seen from the two records of mean layer
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thicknesses, which share most of the short-period variability.
Over the considered time interval, three historical eruptions
occurred, and these were used as tie-points in the manually
counted GICCO5 chronology. A comparison of the inferred
time intervals between the three volcanic reference horizons
shows excellent agreement with discrepancies of just 1 and
2yr, respectively (Table 2).

Note, however, that the inferred uncertainty of the auto-
mated layer estimate is very small (0.4 %) and does not in-
cludethetrueage. There are several reasonsfor this. Onerea
sonisthat the algorithm has not been allowed to fully include
the uncertainty that lies within the range of parameters that
might reasonably describe an annual layer signal in the data
series: the algorithm isallowed to select the most likely set of
model parameters, but for the derivation of the correspond-
ing con dence intervals, the uncertainty associated with this
choice is assumed negligible. Additionally, the layer count-
ing algorithm is assumed not to be biased towards counting
either too few or too many layers. An extralayer at one posi-
tion is therefore likely to be counteracted by a missing layer
later. With the individual uncertainties for each layer being
allowed to partly compensate for each other, the resulting un-
certainty estimate will grow increasingly slowly with depth.
Consequently, when applied to a long data section, a rela
tively narrow uncertainty interval is inferred. However, the
small uncertainty bounds resulting from the assumption of
unbiased counting are likely to be optimistic when dealing
with real data.
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The maximum counting error (MCE) estimate of the
GICCO05 chronology is a conservative estimate of the in-
volved uncertainties (Andersen et a., 2006b). Although
MCE can be regarded as a2 -error bound, it takes into ac-
count that the manual counting procedure may be biased, and
the uncertainty estimates of individual layer boundaries are
simply summed up ( 1/2yr per uncertain year). This leads
to an aimost linear increase in uncertainty with depth. Un-
der the assumption of unbiased counting, for comparison, the
variance of the annua layer distribution will grow approxi-
mately linearly with depth, and the 1  uncertainty bounds
will accordingly grow with the square root.

The algorithm was then tested over three sections of line-
scan data representative for the deeper part of the NGRIP
ice core: awarm period (Greenland Interstadial 12 GI-12,
depth 2200 2220 m, duration approx. 1200yr), the preced-
ing cold period (Greenland Stadial 13 GS-13, depth 2225
2240 m, duration approx. 840yr), and the transition between
the two. The associated time interval is approximately 45.9
48.3kyr b2k. The inferred layering is compared to the man-
ualy counted layers in the GICCO5 chronology. For this
depth interval, the GICCO05 chronology is mainly based on
the high-resolution records of electrolytic melt water conduc-
tivity, ECM (an acidity index) and visual stratigraphy from
the line-scan data. During the interstadial, increased layer
thicknesses also permitted records of water-soluble ion con-
centrations, particularly Na©, to be employed (Svensson et
a., 2008). The manual counting uncertainty was estimated
to be around 5 %.

Before application of the layer detection algorithm to the
line-scan data, the data was treated with the aim of increasing
the similarity of individual layers. Thiswasdoneby rst log-
transforming the data (to stabilise the peak heights of individ-
ual years) and subsequently normalising data according to its
minimum and maximum values (to remove the differencesin
peak heights between different climate regimes). The win-
dow length used for normalisation was 10 cm and hence con-
tained several annual layers. An example of the transformed
grey-tone intensity datais shownin Fig. 2a.

Climate conditions were relatively stable during both the
stadial and interstadial period under investigation (Fig. 7a).
Most of the parameters describing how an annual layer isex-
pressed in the line-scan data are therefore expected to stay
more or less unchanged throughout each of the two periods.
For each depth interval, several of the model parameters ( g,
8, ) were estimated based on manual layer counts in the
upper 25% of the data section and maintained as xed val-
ues throughout the interval. The location parameter for the
annual layer thickness distribution, ¢, and the vector pa-
rameter ” describing the mean layer trgjectory, were allowed
to change with depth and chosen according to appearance of
the data.

During the cold GS-13, the algorithm performs very well
(although certainly inferior to when applied to the much
moreclearly de ned layer signalsinthe DYE-3 180 record).
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Fig. 7. Evolution of 20-yr meansof (A) 180 and (B) manually ob-
tained annual layer thicknesses () over the selected NGRIP depth
interval. Note the similarity of the two curves. Yellow area is the
selected section from the warm period Gl-12. Blue areais the con-
sidered part of the previous stadial GS-13.

The most likely duration of the selected period is by the al-
gorithm inferred to be 1249 yr, which isto be compared to an
estimated duration of 1204 yr in the GICCO05 chronology (Te-
ble 1). It corresponds to arelative discrepancy of just 3.7 %,
and the obtained layer count is within the uncertainty of the
manual layer count. The similarity between the manual and
automated layer counts can again be observed from the gen-
eral evolution in layer thicknesses with depth (Fig. 8c) that
displays the same decreasing trend as the manually obtained
annual layer thicknesses.

From the mean layer thicknessesin Fig. 8c, it is seen that
only in two small sections are the inferred layer counts out-
side the maximum counting error on the manual layer es-
timate. In particular a spike without manual counterpart oc-
curring around adepth of 2233 m is evident. The existence of
such spikesis at least partly due to the algorithm being neg-
ligent of prior information from previous batches and deter-
mining the most likely model parameters (describing e.g. the
mean annual layer thickness) separately for each batch. If by
chance the layering within a batch is particularly ambigu-
ous, the algorithm may therefore be led astray here. Manual
counting within a section is guided by experience from pre-
vious data on how layers appear, and hence not affected as
much by ambiguities within a con ned interval. More data
series than the line-scan data were employed for the man-
ual layer counting, which helps to stabilise the performance
of the manual counting procedure too. These differences be-
tween the manual and automated approach can aso explain
the dlightly higher degree of variability in mean layer thick-
ness between successive intervals observed in the automated
layer count.

If comparing in details the layer boundaries obtained from
the automated counting algorithm to those of GICCO5, it be-
comes clear that, to a large extent, disparities are caused by
genuine ambiguities in the annual layering of the line-scan
data. Furthermore, most of the ambiguouslayersdoin uence
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Fig. 8. The evolution in mean annual layer thicknesses during three
climatic periods: (A) the warm interstadia Gl-12, (B) the onset of
Gl-12, and (C) the cold stadial GS-13, asinferred by the automated
layer detection algorithm (red) and manually counted annual layers
(black). The corresponding approximate 2 -uncertainty bounds are
shown asgrey and red shaded areas, respectively. Mean annual layer
thicknesses are taken over sections of 50 cm. Note the different y-
axesin theindividua plots.

the inferred number of counted annual layers by broadening
the annual layer probability distribution. Disagreements in
inferred total number of counted layers are mainly caused by
differencesin how many of these ambiguous layers are being
counted as years.

Given that the annual layer signal in the line-scan data is
most distinct during cold periods, the annual layer detection
algorithm is likely to work best here. When applied to data
from theinterstadial Gl-12, the performance of the algorithm
is indeed weaker. Nevertheless, the percentage-wise devia-
tion from the number of manually counted layers within the
considered data section is still just 6.6 %, and the two asso-
ciated 95% con dence intervals are overlapping, athough
only with their respective tails (Table 1). To some extent, the
inferred layer thicknesses does match those of the GICC05
chronology (Fig. 8a), but not as closely asfor the cold period.
Generally, the algorithm seems to be dightly too optimistic
in its layer detection for this section, with most of the layers
deemed uncertain in the manually counted chronology here
being counted as actual layers. In future work, this issue will
be addressed by careful investigation of the nature of non-
annual featuresin the data series, and it can be dealt with by
simply alowing a higher degree of white noise in the indi-
vidua layer signals, leading to fewer ambiguous layers being
counted as annual layers.

Clim. Past, 8, 1881 1895, 2012

M. Winstrup et al.: An automated approach for annual layer countingin ice cores

Finally, the layer detection algorithm was run over the data
section containing the onset of interstadial GI-12. Asfor the
previous data sections, the algorithm was run downwards
through the core, starting in ice deposited during the warm
interstadial (with large annual layer thicknesses), and going
towards the older and deeper ice deposited during the sta-
dia (small layer thicknesses). Based on manual layer counts,
the mean layer thicknesses across the transition is known to
change with more than a factor two (Fig. 7b), and aso the
appearance of the line-scan data changes dramatically over
the transition.

To some extent, the changes in appearance of the line-
scan data over the onset of the interstadial was dealt with by
the previously described normalisation procedure applied to
the grey-tone intensity pro le. However, the annual signal in
thevisual stratigraphy changes more with climate, and hence
with depth, than can berecti ed by merely adjusting the peak
height of the signal. We have here allowed the mean annual
layer signal to change down theice core, but al other changes
in annual layer signal have not been taken into account. The
generally enhanced amount of noise in the annual layer sig-
nal during warmer periods is, for example, neglected. Esti-
mates for the non-varying model parameters were again de-
termined based on line-scan data in the upper 25% of the
section.

Despite the abrupt change in mean layer thickness and
annual layer signal, the layer detection algorithm is able to
adapt to the changing environment and nd an appropriate
value of the mean annual layer thickness throughout the tran-
sitional zone (Fig. 8b). The resulting number of counted lay-
ers within the transitional period differs just 4.7 % from the
manual layer counts, which is within the uncertainty of the
manual counting (Table 1).

We also tested the performance of the layer detection algo-
rithm on the line-scan data when describing the annual layer
signal with three instead of two principal components. In this
case, thediscrepancy in annual layer count during GS-13 was
reduced to just 0.3 %, and resulted in near perfect layer iden-
ti cation throughout the interval. However, using three prin-
cipal components led to signi cantly larger discrepanciesin
layer counts for the interstadial and the onset of the intersta-
dia period ( 89%), wheretheincreased exibility in annua
layer template allowed a larger number of ambiguous layers
to beidenti ed as annual layers.

5 Conclusions

For paleoclimate archives with suf cient resolution to re-
solve sub-annual variability, annual layer counting provides
ameans of obtaining a very accurate chronology. Establish-
ing such chronologies has so far predominantly been accom-
plished manually. The algorithm devel oped here represents a
rst step towards a high-quality automated method of annual
layer counting. Based on the statistical framework of hidden
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Markov modelling, originally developed for machine speech
recognition, it presents a mathematically rigorous yet ef -
cient method to determine the most likely layering in a data
series and its associated uncertainty. The agorithm imitates
the manual procedures, while being based on objective yet
exible criteriafor annual layer recognition.

The layer detection algorithm has been applied to astable-
isotope record from DY E-3 and to visual stratigraphy data
from the NGRIP ice core, Greenland, in which the annual
signal appears to be maintained to great depths. This data
series may therefore potentially be used for extending the
manually counted GICCO5 chronology further back in time.
However, for the current purpose of demonstrating the in-
tegrity of the algorithm, it has been run over data sections
where manual annual layer counting has aready been car-
ried out.

The agorithm shows high skill in reproducing the man-
ualy counted timescales. For the DYE-3 stable-isotope
record, which displays a very clear annual layer signal, the
total number of inferred layers is just 1.4% higher than
the correct number, which is known based on the Vesuvius
eruption (79 CE) reference horizon in the core. The inferred
timescal e al so shows excellent agreement with the timeinter-
val between other historically dated volcanic horizons. In the
NGRIP line-scan data, the annual layer signal is more am-
biguous. Nevertheless, for a data section from a cold climate
period, the resulting number of inferred annual layers devi-
ates just 3.7% from the manually counted timescale. Dur-
ing warm climate regimes, the annual layer signal in the vi-
sua stratigraphy is even less apparent. Consequently, the al-
gorithm was less con dent in identifying the annual layers
here, but it still obtained an annual layer count within 6.6 %
of the manual layer count. The algorithm was also run over a
short line-scan data section experiencing the onset of an in-
terstadial. It showed high skill adapting to the changing en-
vironment while passing over this transitional period, during
which the annual layer thicknesses were halved over merely
ve metres.

Although the layer detection agorithm was developed
with ice core datain mind, it has been developed in ageneral
setting which allowsiit to be adapted for use with other kinds
of annually laminated data. When applied to ice core records,
one of the most interesting prospects may be the possible de-
velopment of the algorithm into a multi-parameter method
that will be undertaken in future studies.

Appendix A

Update equations for the model parameters

By means of the EM algorithm, the forward-backward
algorithm may be trained by successive updates of the

model parameters used in the characterisation of an annua
layer. An initial set of parameters is used as input to the
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forward-backward algorithm, and a rst segmentation of the

observations into annual layers is proposed. The obtained
segmentation along with the observed data is then used for
computing the set of parameter values having the highest
conditional likelihood. This set of parameter values incorpo-
rates knowledge from the appearance of the data, and it can
be shown (see e.g. Gupta and Chen, 2011) that its likelihood
will always be equal or higher than that of the previous set of
parameter values. By iteratively computing thelayer segmen-
tation probabilities with the forward-backward a gorithm and
updating the annual layer parameters, the algorithm is able to
learn the appropriate parameter values, and it will converge
towards a (local) maximum likelihood of these.

In the (k +1)-th iteration, the maximum likelihood re-
estimation equations for the forward-backward algorithm,
when applied to annual layer detection based on the de-
scribed annual layer template (Eq. 2), are given below.

Layer thickness distribution parameters:

t.j; d/Ind

j:d/ Ind  0gq°2

t-J; d/

tj:d
In the update equations of the remaining model parameters,
the following notation is introduced: the set of maximum
likelihood parameter values obtained during the k-th iteration
isdenoted /. A proposed layer segment isdenoted Oj, and
isavector consisting of both the observed data as well asits
derivative. The design matrix X is correspondingly appended
to contain not only the applied basis functions used for char-
acterising the annual layer signal in the line-scan data, but
also the derivative of these. The residuals of layer segment
Oj relative to the layer template are collected in the vector
Ej. Thedifferencein variance of the white noise component
in the two data seriesis given by the2d  2d diagonal ma-
trix W, with d being the duration of alayer. The vector rj is
the random component previoudly introduced in Eqg. (2).

An updated value of the mean annual layer signal param-
eter (7), the random component covariance matrix (8), and
the variance of the added white noise component ( £) can

then be calculated by
!

> 1
9D ej; d/XTw X

t;j:d
h i
ej;d/XTw to; x rjoj; Mo

t;j;d

! h i

. td;d/orj ro 0j; ¥
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t-J; d/
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and

h i

tizd/ EJW 'Ej Oj; M
t;j;d
02D P :
2 t.j; d/d
t;j:d

with the expectation values in the equations above given as

ho Soh i h ST
rjr; Oj; - D ri Oj; ri Oj; -
h |(/i
Ccov rj Oj; -
h Ty 1 /i h k/i T
EjW Ej Oj; D O; X 0C ri Oj; -
h i
wtoj xoc rjoj; ¥
h i

ctr XTW Xcov rj Oj;

See Winstrup (2011) for a derivation and more detailed re-
view of the above equations.
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