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Generic Graph Grammar: A Simple Grammar for Generic Procedural Modelling

Asger Nyman Christiansen� Jakob Andreas Bærentzeny
Department of Informatics and Mathematical Modelling, Technical University of Denmark, Denmark

Figure 1: Examples of objects created by Generic Graph Grammar.

Abstract

Methods for procedural modelling tend to be designed either for or-
ganic objects, which are described well by skeletal structures, or for
man-made objects, which are described well by surface primitives.
Procedural methods, which allow for modelling of both kinds of
objects, are few and usually of greater complexity. Consequently,
there is a need for a simple, general method which is capable of
generating both types of objects. Generic Graph Grammar has
been developed to address this need. The production rules con-
sist of a small set of basic productions which are applied directly
onto primitives in a directed cyclic graph. Furthermore, the basic
productions are chosen such that Generic Graph Grammar seam-
lessly combines the capabilities of L-systems to imitate biological
growth (to model trees, animals, etc.) and those of split grammars
to design structured objects (chairs, houses, etc.). This results in
a highly expressive grammar capable of generating a wide range
of types of models. Models which consist of skeletal structures or
surfaces or any combination of these. Besides generic modelling
capabilities, the focus has also been on usability, especially user-
friendliness and ef�ciency. Therefore several steps have been taken
to simplify the work�ow as well as to make the modelling scheme
interactive. As proof of concept, a generic procedural modelling
tool based on Generic Graph Grammar has been developed.
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1 Introduction

Modelling of 3D digital content, especially for the entertainment
industry, is a severe economic challenge due to an increasing de-
mand for realism and a boom in size and number of virtual models
[Fletcher et al. 2010]. Automated or at least semi-automated con-
tent generation would increase the ef�ciency of a designer which
would enhance the output quality and quantity.

For this reason, there has been an increasing interest in the semi-
automated modelling approach called procedural modelling. The
idea is to design procedures or rules which generate virtual models
automatically, instead of designing models explicitly. Procedural
modelling tools are therefore based on rules which, for example,
could be de�ned in production systems or grammars.

Procedural modelling schemes have been developed for decades,
but almost all are specialised in generating a single type of model,
primarily vegetation or buildings. Some research seeks to develop
a more general purpose grammar e.g. [Paoluzzi et al. 1995][Tobler
et al. 2002][Havemann 2005][Ganster and Klein 2007][Krecklau
et al. 2010]. This tendency has resulted in some expressive, but
rather complex modelling schemes, which are often hard to utilise
for people with little technical insight. Another trend in recent
research is to focus on developing user-friendly procedural mod-
elling tools [Smelik et al. 2010][Lipp et al. 2008][Lintermann and
Deussen 1999][Ijiri et al. 2006]. The primary instrument to make



procedural modelling user-friendly is to make it entirely interactive.

The main contribution of this research is a simple procedural mod-
elling scheme which is simple yet quite general. The scheme con-
sists of a novel grammar, Generic Graph Grammar presented in
Section 2, for simple and ef�cient procedural modelling of a wide
variety of 3D models. Furthermore, an interactive modelling tool
called GraphGen, which is based on Generic Graph Grammar, has
been developed as proof of concept. Some of the abilities of Graph-
Gen are described in Section 3.

The ideas which distinguish Generic Graph Grammar from ex-
isting procedural techniques and enable general purpose and user-
friendly modelling are: Representing an object by a directed cyclic
graph (Section 2.1), using �ve basic graph manipulating operators
called commands (Section 2.2), saving each derivation step in a
new generation of the graph (Section 2.2.2) and using conditions to
choose which parts of the graph a command is applied to (Section
2.2.3). Furthermore, Generic Graph Grammar is able to procedu-
rally generate a diverse set of skeletal models, in addition to the
more traditional surface models. Previously, procedural creation of
skeletal structures has only been utilised to model botanical objects.
Finally, as with other procedural methods, subdivision of a surface
model towards a smooth or fractal limit surface is supported.

1.1 Related work

One of the most fundamental grammars used in procedural mod-
elling is due to Lindenmayer and Prusinkiewicz. Lindenmayer de-
veloped a parallel string-based grammar in 1968 called L-systems
[Lindenmayer 1968] as a theoretical framework for studying the
development of simple multicellular organisms. Prusinkiewicz was
the �rst to use L-systems in computer graphics [Prusinkiewicz
1987] and together Prusinkiewicz and Lindenmayer showed that
L-systems can give impressive results when generating geometric
plant models [Prusinkiewicz and Lindenmayer 1996].

Another fundamental grammar for procedural modelling is the se-
quential shape grammars introduced by Stiny in 1975 [Stiny 1975].
Shape grammars develop visual models called shapes and Stiny
thereby introduces grammars to the �eld of modelling. The shape
grammar approach often results in complex derivations. Nonethe-
less, the idea of letting shapes replace shapes in the same manner as
symbols replace symbols in traditional string-based production sys-
tems has been used in a large variety of later developed grammars.
Examples of variations of shape grammars are set grammars [Stiny
1982], split grammars [Wonka et al. 2003] and CGA shape gram-
mars [M¤uller et al. 2006] which are suited for creating structured,
often man-made, objects.

Another relevant extension of string-based production systems is
graph grammars [Ehrig et al. 1991]. Graph grammars work directly
on graphs, as the name suggests, by using the production rules to
replace a part of the graph. This type of grammar has been applied
in many areas since graphs are common in a wide range of applica-
tions. However, graph grammars have not yet been applied in the
area of procedural modelling.

2 Generic Graph Grammar

In this section the different parts of Generic Graph Grammar (G3)
will be de�ned and explained along with motivations for the design
choices. Consequently, it is then possible to de�ne G3 .

(a) Skeleton (b) Fractal skeleton

(c) Surface (d) Fractal surface

Figure 2: Shows four examples of graphs created by G3 . The graph
in Figure 2(a) represents the topological skeleton of a botanical tree
while the graph in Figure 2(b) is a fractal skeleton called a Koch
snow�ake. Figure 2(c) displays a surface, in the form of a house,
and a fractal surface, which resembles terrain, is seen in Figure
2(d).

2.1 Object representation

Procedural methods have been applied in automatic generation of
a wide variety of virtual models and effects. Examples are terrain,
water, vegetation, road networks, gasses, liquids, �re, buildings and
whole cities [Smelik et al. 2009][Ebert et al. 2002]. As mentioned,
the aim of this work is to be able to create a variety of these models.
In addition, models which have not previously been generated pro-
cedurally such as animals and furniture are sought included in the
modelling capabilities of G3 . These capabilities can be achieved by
being able to model two types of geometry, skeletal structures and
surfaces, and combining these geometries. This claim is supported
by the diversity of types of models displayed in Section 4. The ge-
ometries are illustrated in Figure 2 and described in the following.

Skeletal structures The natural illustrative example of a topolog-
ical skeleton [Blum 1967], also known as the medial axis, is
replacing the bones in a human with connected line pieces,
which thereby constitute the shape of a human. Skeleton mod-
els are suited for representing organic shapes, such as trees,
animals etc.

Surfaces Traditionally, a surface, usually in the form of a poly-
gon mesh, has been used to represent a virtual model. This is
a useful representation when modelling human-made objects,
eg. houses and furniture. An important type of surface in com-
puter graphics is fractal surfaces [Mandelbrot 1975]. The def-
inition of fractal geometry is usually simpli�ed in computer
graphics to be an object which has a self repeating pattern.
This means the pattern is similar at all scales. An example
is the serrated look of a mountain, which is more or less the
same from a distance, to close zoom on a piece of rock. Frac-
tal geometry describes natural phenomena well and is there-
fore essential to model terrain and clouds, for example.



(a) Acyclic graph (b) Model

(c) Cyclic graph (d) Model

Figure 3: Examples of conversion from graph to mesh. The skeletal
structure in Figure 3(a) is converted into the mesh in Figure 3(b)
by the SQM method. The cyclic graph in Figure 3(c) is directly
converted into the mesh in Figure 3(d).

A directed cyclic graph G (de�ned in De�nition 1) is chosen to rep-
resent an object. The main reason for this is its ability to describe
the desired types of geometry. Edges can describe skeletons, while
faces are able to represent surfaces. Furthermore, an important fea-
ture of the graph representation is its ability to naturally combine
these different types of geometry.

De�nition 1 A directed cyclic graph G = hP i consists of a set of
primitives P . A primitive contains both topological and geometric
information and is a common term for:

Nodes A node n 2 G contains a list of neighbouring edges, as
well as the position p 2 R3 and the radius of the node r 2 R.

Directed edges A directed edge e 2 G connects the node’s tail n t

and head nh ; e = ( n t ; nh ). For the sake of fast lookup, it
also contains a list of the faces which it is a part of.

Faces A face f 2 G, representing a closed loop, de�ned by a set
of ordered nodes f = f n0 ; n1 : : : ; nn g, where two consec-
utive nodes are connected by an edge; (n0 ; n1) or (n1 ; n0)
. . . (nn ; n0) or (n0 ; nn ). Note that a face is not enforced to
be planar.

It is chosen that all nodes in a graph are connected via a set of
edges. This means, for any pair of nodes n i 2 G, n j 2 G, there ex-
ists at least one set of edges; f (n i ; n1); (n1 ; n2); : : : ; (n j �1 ; n j )g,
which connects n i with n j .

Another reason for choosing a graph representation is the relatively
straightforward conversion from object to model. All acyclic parts
of the graph are converted using, for example, the SQM method
[Bærentzen et al. 2012] or the B-mesh approach [Ji et al. 2010].
These methods use the topological information as well as the ge-
ometric information (the position and radius of nodes), where the
radius of the nodes is used to determine the thickness of the model.
The cyclic parts of the graph are directly convertible into mesh by
using the topological information and the position of the nodes.
Note that in this case, the radii of the nodes are not used. The con-
version of both acyclic and cyclic graphs to meshes is illustrated in

Figure 3.

2.2 Productions

A directed cyclic graph is able to represent a wide range of models.
It is, however, also necessary to be able to develop the topology
of this graph in such a way that the wide range of models can be
created procedurally. The strategy is to combine the abilities of L-
systems [Lindenmayer 1968] in imitating biological growth and the
abilities of split grammars [Wonka et al. 2003] in generating struc-
tured objects. Combining L-systems and shape grammars has been
attempted before, both in the mesh-generation approach by Tobler
et al. [Tobler et al. 2002] and in the Generalized Grammar frame-
work by Krecklau et al. [Krecklau et al. 2010]. However, these at-
tempts have not succeeded in a seamless integration and especially
L-systems have been applied in an unnatural environment. As an
example the Generalized Grammar approach uses cylinders as a
replacement for line pieces when imitating L-systems.

To achieve a seamless imitation and combination of both modelling
schemes, G3 is applied directly onto the primitives of the graph.
Furthermore, a set of productions which consists of both grow and
split rules is chosen. The grow rules make it possible to model bio-
logical growth of organic objects, whereas the split rules allow for
easy construction of models of man-made objects as well as natural
phenomena such as terrain. These productions are called commands
which is a basic notion of G3 . Commands are very basic opera-
tors, much like the Euler operators used by Havemann [Havemann
2005]. They are chosen such that they are the minimal set but still
allows for general and simple development of skeleton structures
and surfaces.

Commands are applied in parallel to all primitives of a speci�c type
in G. For example, if the command Split edge is applied, it is ap-
plied to all edges in G simultaneously. The commands thereby re-
semble the productions of graph grammars [Ehrig et al. 1991] with
the signi�cant difference that the productions are applied to primi-
tives only, not sub-graphs. All of the commands add new primitives
to the graph and may change its topology, but they will not change
the geometric information contained in the existing primitives.

To understand how the commands operate, one has to know the
terms parameters, conditions and generations of graphs. These top-
ics are described in the following, followed by a formal de�nition
of the �ve commands and a description of how these commands are
used for the derivations of G3 .

2.2.1 Parameters

A set of parameters u = f r; H; L; U; l; � r ; � � ; � � ; � � ; � l g is given
as input to each of the commands. These parameters are the same
for all commands and consist of:

Radius r Determines the radius of the node created when applying
the command.

Headings H , L and U The turtle representation in three dimen-
sions [Prusinkiewicz and Lindenmayer 1996][diSessa and
Abelson 1981] is adopted in this research, which is the rea-
son for using a directed graph. The idea is that the turtle has
a heading H , a direction to the left L and a direction up U .
These directions are represented by unit vectors, which are
perpendicular to each other and incorporated into the edge
data structure. The headings are used when a command cre-
ates a new edge, both to determine the headings of the edge
and to determine the position of the new head node.

Length l This is used to determine where to position the new node
created by the applied command. The position is determined



Figure 4: Illustrates how the parameters are selected interactively
by drag and drop. The dark green sphere represents the point of
origin p0 , where the green, turquoise and blue edges represent
the headings H , L and U respectively. The length l and radius
r parameter can be determined by the position and radius of the
turquoise sphere. In addition, the bottom �gure illustrates how to
set the variation parameters. The variation in radius � r is shown
by three opaque spheres, where the medium size is a sphere with
radius r , the largest is a sphere with radius r + � r and the smallest
is a sphere with radius r � � r . The variation in length � l is illus-
trated by a blue edge having minimum and maximum highlighted by
a blue sphere. The variations in roll � � , pitch � � and turn � � are
illustrated by blue, green and turquoise parts of circles respectively.

by p = p0 + H � l , where p0 is some starting point which
depends on the command.

Variation in radius � r Introduces random variation in the radius
r by utilising a uniformly distributed random variable r =
U(r � � r ; r + � r ) for each operation on a primitive.

Variations in roll � � , pitch � � and turn � � Introduce random
variations in the headings H , L and U . A uniformly
distributed random variable is utilised to �nd the roll
� = U(� � � ; � � ), pitch � = U(� � � ; � � ) and turn
� = U(� � � ; � � ). The headings are then rotated � around H ,
� around L and � around U .

Variation in length � l Introduces random variation in the length
l by utilising a uniformly distributed random variable l =
U(l � � l ; l + � l ).

How these parameters are set interactively is shown in Figure 4.

Sometimes it is preferred to de�ne parameters of a command rel-
ative to the preceding primitive, instead of de�ning the parameters
in an absolute manner. This is especially useful when imitating
biological growth. For example the radius r 1 of a new node n1 cre-
ated by a command with parameter r , can be determined relative
to the radius r 0 of the preceding node n0 . This is calculated by
r 1 = r � r 0 instead of absolute calculation r 1 = r . How to de�ne
r 0 and other preceding parameters is sometimes straight-forward
and sometimes not obvious. In this implementation, a choice of av-
eraging the parameters of the preceding primitives has been made,
if several primitives precede the new primitive. Figure 5 illustrates
the difference between absolute and relative parameters.

2.2.2 Generations of graphs

The term generation is a very simple and intuitive concept. The
derivation of G3 simply starts with a graph of generation zero G0 .

Figure 5: The parameters of a Grow edge command applied to the
green and the two dark gray nodes are set in an absolute (top) and
relative (bottom) manner with respect to the green node. Notice
that choosing relative headings can be used to grow the model in a
fashion resembling L-systems.

Then, each time a command is applied to a graph of generation
g; Gg , this graph is copied into a new generation of the graph
Gg+1 . The operations are then performed only on graph Gg+1 ,
where graph Gg is used to determine which primitives obey the
conditions v. Therefore, n steps of a derivation of G3 consist of a
list of generations of graphs; G0 ; G1 ; : : : ; Gn .

The generations of graphs are necessary to avoid order dependency,
when applying conditions. Applying a command to a primitive
a 2 Gg , which ful�ls the conditions v, may change a neighbouring
primitive b 2 Gg , resulting in bno longer ful�lling the conditions v.
This will result in not applying the rule to b, even though it ful�lled
conditions v. The resulting derivation would thereby be dependent
on the order of application. These kind of problems are eliminated
using the generation terminology and commands can thereby be ap-
plied in parallel.

2.2.3 Conditions

Conditions are introduced to be able to select to which primitives a
command is applied. A condition is a Boolean statement that tells
whether a primitive obeys some property (geometric, topological
etc.). The types of conditions v are different for each primitive and
is therefore divided into three sets: one for nodes vn , edges ve and
faces vf . Only if a primitive obeys all of the selected conditions
will the command be applied to it. Furthermore, saving generations
of the graph has made it possible to condition on primitives as they
appeared in another generation of the graph Gg�i ; i � 1 than the
current generation Gg . Examples of conditions are given below and
illustrated in Figure 6.

Node conditions vn : random r , age a, number of neighbouring
edges # ene , number of faces # f , number of outgoing edges
# eou , number of incoming edges # ein , position p.

Edge conditions ve: random r , age a, number of neighbouring
edges # ene , number of faces # f , number of outgoing edges
# eou , number of incoming edges # ein , position p, heading
H .

Face conditions vf : random r , age a, number of nodes # n, num-
ber of edges # e, position p.

One should notice that the sets of conditions are not considered
complete and, presumably, other conditions are needed to achieve



(a) CCE (u;vn = fg ) (b) CCE (u;
vn = f # ein > 0;
H y > 0g)

(c) CCE (u;
vn = f a < 3g)

(d) CCE (u;
vn = f # eou = 0
2 Gg�3g)

(e) CSE (u;
ve = f H x = 0 g)

(f) CSF (u;
vf = f # n = 6 g[
vn = f a = 0 g)

Figure 6: A command is applied simultaneously to all primitives
which ful�l all of a set of conditions v. These primitives are col-
ored dark gray, while the primitives that do not ful�l the chosen
conditions are colored red. The new primitives, added to the graph
after applying the command in the caption, is colored light gray.
Figure 6(d) illustrates how to condition on the primitives in Gg�3

instead of Gg . Figure 6(f) shows that it is necessary to condition
on both nodes and faces, when applying a Grow face or Split face
command.

easy and generic modelling. Also, the conditions are currently lim-
ited to condition on local properties, but could be extended to be
able to condition on the geometry or topology of larger parts of the
graph. This is possible since all geometric and topological infor-
mation are available. Consequently, G3 would be able to imitate
geometric matching as found in shape grammars.

2.2.4 Commands

Finally, it is possible to give a formal de�nition of a command.

De�nition 2 A command C is a parametric and conditional pro-
duction, which transforms a graph from generation g to generation
g + 1 :

C(u; v) : Gg ! Gg+1

A primitive a 2 Gg , which obey the conditions v, are con-
verted to a set of connected primitives B � Gg+1 , ac-
cording to the type of command and the parameters u =
f r; H; L; U; l; � r ; � � ; � � ; � � ; � l g.

This is a very general de�nition and may not give the best intuition
to how the �ve commands are applied in practice. Therefore, the
�ve commands are described in detail below and illustrated in Fig-
ure 7. In the following, the set of parameters u will be as described
in Section 2.2.1 and the set of conditions vn , ve and vf are as de-
scribed in Section 2.2.3. To simplify the description, variation in
parameters is omitted.

Create edge Assume graph Gg contains a node n0 situated at po-
sition p0 and a Create edge command CCE (u; vn ) is applied
to Gg . If the node n0 obeys the conditions vn , a node n1 at
position p1 = p0 + H � l with radius r 1 = r and an edge
e = ( n0 ; n1) are created.

Create face Assume graph Gg contains an edge e0 = ( n0 ; n1)
where the position of n1 is p1 and a Create face command

Figure 7: Simple examples of all of the �ve basic commands. No-
tice that a command is applied to all primitives in a graph simulta-
neously, which is illustrated by the Split edge command. This �gure
also illustrates the concept of rules, since a rule consists of a set of
commands applied in sequence. For example Create edge, Create
face and Grow face could be a rule called Create square.

CCF (u; ve) is applied to Gg . If e0 obeys the conditions ve , a
new node n2 is created at p2 = p1 + H � l with radius r 2 = r .
Furthermore, two new edges are created e1 = ( n1 ; n2) and
e2 = ( n2 ; n0) as well as a face f = ( n0 ; n1 ; n2).

Grow face Assume graph Gg contains a face f =
(n0 ; : : : ; n i ; n i +1 ; : : : ; nn ) where the position of n i is
pi and a Grow face command CGF (u; vn [ vf ) is applied to
Gg . If f obeys the conditions vf , then for each node n i which
obeys the conditions vn , a node nn +1 is created at position
pn +1 = pi + H �l with radius r n +1 = r . Furthermore, an edge
ei = ( n i ; nn +1 ) is created and the edge ei +1 = ( n i ; n i +1 )
is changed to ei +1 = ( nn +1 ; n i +1 ). Also, the face f is
changed to f = ( n0 ; : : : ; n i ; nn +1 ; n i +1 ; : : : ; nn ).

Split edge Assume graph Gg contains an edge e0 = ( n0 ; n1)
where the position of n0 is p0 and the position of n1 is
p1 and a Split edge command CSE (u; ve) is applied to Gg .
If e0 obeys the conditions ve , a new node n2 is created at
p2 = p0 + p1

2 + H � l with radius r 2 = r . In addition, an edge
e1 = ( n2 ; n1) is created and e0 is changed to e0 = ( n0 ; n2).

Split face Assume graph Gg contains a face f =
(n0 ; : : : ; n i ; : : : ; nn ) where the position of n i is pi

and a Split face command CSF (u; vn [ vf ) is applied to
Gg . If f obeys the conditions vf , a node nn +1 is created at
position pn +1 = 1

n

P n
i =0 pi + H � l with radius r n +1 = r .

If n i obeys conditions vn , then an edge ei = ( n i ; nn +1 ) is
created. Furthermore, the face f is replaced by a set of new
faces. The number of new faces is determined by the number
of nodes which obey the conditions vn . Each of the new faces
is de�ned as f i = ( n i ; : : : ; n i + m ; nn +1 ) where n i and n i + m

obey vn and the nodes n i +1 ; : : : ; n i + m�1 do not obey vn .

2.3 Grammar

It is now possible to de�ne G3 .

De�nition 3 Generic Graph Grammar G3 = hP; G0 ; SC i con-
sists of a set of primitives P and an initial graph G0 , which often
consists of a single node G0 = f n0g. Furthermore, G3 consists of
the set of the �ve parametric and conditional commands SC .

Notice that G3 does not include any terminals, since the primitives
(nodes, edges and faces) to which the commands are applied, are
always non-terminals.



(a) G0 (b) G3 (c) G9 (d) G10 (e) G13 (f) G15 (g) Tree

Figure 8: Illustrates a derivation of G3 which results in a skeleton model of a tree (note that the displayed skeleton model is not the same as
the rendered. However, the same derivation has been used to create both models).
Derivation: [[R3�CE (u3 ; v3) : G0 ! G3 ]; [R6�CE (u6 ; v6) : G3 ! G9 ]; [CCE (u; vn ) : G9 ! G10 ]; [R3�CE (u3 ; v3) : G10 !
G13 ]; [RSE;EN (u2 ; v2) : G13 ! G15 ]]

In practice, a derivation of G3 consists of an initial
graph G0 and an ordered list of commands L C =
[[C0(u0 ; v0)]; [C1(u1 ; v1)]; : : : ; [Cn (un ; vn )]] . To automati-
cally generate the �nal graph Gn , the commands in L C are applied
in sequence to G0 ; [[C0(u0 ; v0) : G0 ! G1 ]; [C0(u1 ; v1) : G1 !
G2 ]; : : : ; [Cn (un ; vn ) : Gn�1 ! Gn ]]. The initial graph G0 is
prede�ned in the grammar, but the type and order of commands as
well as the parameters and conditions for each of these commands
are speci�ed by the user. It is these speci�cations that determine
how the �nal graph Gn (and model) will look like. The work�ow
for developing this type of derivation will be elaborated in Section
3.2.

It is worth noticing that G3 is deterministic since the ordered set
of commands and appurtenant parameters and conditions, uniquely
de�nes the derivation.

2.4 Rules

To de�ne each of the commands, parameters and conditions
in a derivation can be trivial, even though the number of
commands needed is usually low (n is small) and the pa-
rameters can be set interactively. Therefore, the notion of
rules is introduced. A rule L C is simply a derivation or a
part of a derivation, i.e. an ordered list of commands L C =
[[Cg (ug ; vg )]; [Cg+1 (ug+1 ; vg+1 )]; : : : ; [Cg+ m (ug+ m ; vg+ m )]]
where 0 � g � g+ m � n. This highly simpli�es the construction
of derivations, which is best illustrated by an example. If it is
desired to create a derivation which generates a model of a house,
then a derivation which generates a window can be created and
saved in a rule. This rule can then be applied in the creation of
different types of houses and consequently one does not need to
apply the set of commands making up a window more than once.
A formal de�nition of rules is given in De�nition 4 and a example
of a derivation utilising rules is displayed in Figure 8.

De�nition 4 A rule R is a parametric and conditional production
which transforms a graph from generation g to generation g + m:

R(um ; vm ) : Gg ! Gg+ m

A rule consists of m commands applied in sequence

[[C1(u1 ; v1) : Gg ! Gg+1 ]; [C2(u2 ; v2) : Gg+1 ! Gg+2 ];

: : : ; [Cm (um ; vm ) : Gg+ m�1 ! Gg+ m ]]

where vi 2 vm and ui 2 um for i = 1 ; ::; m .

3 GraphGen

Interactive manual modelling is very intuitive, even though it often
requires training to use the manual modelling tools existing today.
Designing procedures on the other hand, is not intuitive and thereby
requires even more training if the procedural tools are not imple-
mented in a user-friendly manner. At worst a procedural tool is us-
able by persons having deep technical insight only, eg. if designing
procedures involves grammar notation. An example of such a tool is
the Generalized Grammar framework [Krecklau et al. 2010] which
is usable by a programmer, but not by a designer. However, focus
has recently been on usability of procedural tools and especially
interactive procedural modelling has been a popular topic [Smelik
et al. 2010][Lipp et al. 2008].

To show that G3 is useful in practice, a modelling tool called
GraphGen has been developed and is described in this section.
When developing this tool, focus has been on usability and there-
fore interactive modelling has been incorporated. This implies that
no grammar notation is necessary, but is still possible via editing of
saved rules which may be preferred by users having technical in-
sight. Interactive modelling is introduced in the form of drag and
drop capabilities. This is used to set the parameters of commands,
as described in Section 2.2.1, as well as to apply geometric editing,
described in the following section. It is worth noticing that inter-
active modelling could not be achieved if the generations of graphs
were not saved.

3.1 Geometric editing

Besides the grammar, which changes the topology of the graph, it
is convenient to have geometric editing tools. Two such tools are
a part of the implementation of G3 ; one for manual editing and
one for procedural editing. Both of these tools edit the geometric
information, the position and the radius, of the nodes of the graph
only.

The manual editing tool is an advantage since procedural modelling
is inef�cient when designing unique details in the model, in the
same manner as manual modelling is inef�cient when designing re-
peating patterns. Furthermore, when modelling procedurally, the
user does not always have full control of local details in the model
and some things may therefore be impossible to model satisfactory.
Manual editing is therefore an easy and ef�cient way to create the
�nishing touch. Manual editing is implemented such that it is pos-
sible to drag and drop nodes to a new position and to set the radius
of individual nodes interactively by again applying drag and drop
To ensure consistency, manual changes are overwritten if the cur-
rent or preceding commands are edited which is not a sustainable



solution. Instead one could use instance locators as proposed by
Lipp et al. [Lipp et al. 2008].

The procedural editing tool consists of a procedure called Edit node,
which resembles a command in how it is applied. The difference is,
however, that no topological changes are made when applying this
tool. This tool is essential when subdividing a curve and, in ad-
dition, useful when creating a wide range of models. Since Edit
node resembles a command, it is described in much the same man-
ner. Furthermore, it can also be applied in an absolute or relative
manner.

Edit node Assume graph Gg contains a node n0 situated at
position p0 with radius r 0 and an Edit node procedure
CEN (u; vn ) is applied to Gg . If the node n0 obeys the con-
ditions vn , the node changes position p0 = p0 + H � l and
radius r 0 = r .

3.2 Work�ow

The basic concept behind modelling using GraphGen is to choose
which commands to apply and in which order. Additionally, the
parameters and conditions of the applied commands are chosen.
These selections are made manually by the user to develop the de-
sired model.

Since all generations of the graph, i.e. the whole derivation, are
saved, it is possible to edit parameters and conditions in any deriva-
tion step. When a derivation step has been altered the derivation is
regenerated from this step and onward which ensures fast and con-
stant visualisation. Furthermore, saving the generations allows the
user to jump through the growth of the model, thereby visualising
any derivation step. This results in a detailed overview of all of the
modelling steps.

The introduction of rules infers using a hierarchical modelling ap-
proach, which means to apply rules in sequence before saving the
derivation in a new rule. This can be repeated to make an increas-
ingly larger model, while still applying only few rules at a time. A
rule can therefore both be a procedure, which generates a, possibly
repeating, part of a model (e.g. a window) or an entire model (e.g.
a house). This eliminates the need for time-consuming remodelling
when a model or a part of a model is reused.

It is also possible to delete derivation steps, making it possible to
edit which commands to apply or the order of applied commands.
If a derivation step is deleted, all of the subsequent derivation steps
are also deleted, which ensures the consistency of the model. This
is a disadvantage, since, if the designer desires to delete a deriva-
tion step in the beginning of a derivation, the whole derivation has
to be redesigned. This problem is minimised by the hierarchical
modelling approach, since this scheme limits the number of rules
to apply before the derivation is re-established.

4 Results

Results are depicted in Figures 1, 8 and 9. All graphs are gen-
erated using GraphGen and all images are rendered using Blender
[Blender Foundation 2002]. Some graphs have been converted from
graph to polygon mesh using the SQM method by Bærentzen et al.
[Bærentzen et al. 2012] and all other graphs have been directly con-
verted to a mesh as described in Section 2.1.

The generation of graphs, as well as the conversion from graph to
mesh, is fast. The whole derivation, of even the most complicated
structures, only takes a couple of seconds to generate and it takes
less than a second to apply a new command to a complex graph,
which enables interactive modelling.

Figure 9: Objects which are created by Generic Graph Grammar.

5 Conclusion

A novel grammar G3 for general purpose and user-friendly proce-
dural modelling has been presented and the usefulness of this gram-
mar has been shown in practice by the capabilities of the procedural
modelling tool GraphGen.

Concerning the generic modelling capabilities, the presented results
clearly show that a wide range of different types of models can be
procedurally generated using G3 . G3 therefore combines the mod-
elling abilities of several specialised tools. In addition, the ability to
procedurally generate some models, which cannot be procedurally
generated by any existing specialised tool. Most generic tools can
of course compete on this subject, but often these tools are not as
simple as G3 and the ability of G3 to procedurally generate a large
selection of varying skeleton models is quite unique.

The simple work�ow and the interactive controls make GraphGen
an overall user-friendly tool which primarily has one �aw only,
namely conditions. These are cumbersome to apply in their current
version and in some cases they even limit the expressiveness of G3 .
These troubles are primarily due to the local nature of conditions,
i.e. it is currently only possible to condition on local properties. Ex-
panding the set of conditions to be able to also condition on parts
of the graph, instead of just primitives, is therefore a key issue in
future development of G3 .

The effectiveness of GraphGen in terms of modelling time is not at
the level of specialised tools. This weakness is due to the manual
selection of commands and setting of parameters and conditions for
each command. This is obviously not as ef�cient as specifying the
few parameters which are necessary to create a model using a spe-
cialised tool. It is, however, worth noticing that when a derivation
of G3 has been created and saved in a rule, this rule can be reused
by changing only few, if any, parameters. The effectiveness in terms
of runtime, on the other hand, is high since it takes a few seconds
to generate large and complex models.

6 Future work

A limitation to G3 is the lack of its ability to generate volumes.
However a relatively straight-forward addition to the set of com-
mands would make this possible. To follow the structure of the
commands, these additions should include Create volume, Grow
volume and Split volume commands. It is of course also necessary
to expand the data structure to feature a volume primitive, which
naturally would be a polyhedron.

Another limitation of G3 , which has already been mentioned, is the
notion of conditions which are tedious to use in practice and lim-



its the expressiveness. Adding the possibility to apply conditions
globally instead of just locally would resolve this limitation. Note
also that this will make G3 able to imitate shape grammars, since
this extension of conditions is equivalent to geometric matching.
Furthermore, making the process of selecting conditions interactive
would improve the usability of GraphGen immensely.

Other improvements of G3 include preventing self-intersections
and modelling additional properties such as normals, texture etc. In
addition to the improvements of G3 , the improvements of Graph-
Gen are plenty since GraphGen is proof of concept and not a fully
developed commercial tool. Here, an interesting improvement is
to optimise for speed, for example by utilising parallel computing,
which possibly would make real-time editing feasible.
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