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Abstract

With the growing interest towards �ber Bragg grating sensors and the grow-
ing ability in manufacturing polymer optical �bers, the development of
polymer �ber Bragg sensors has catched the attention of industries with
the goal of developing high performance sensors.

This thesis presents the development of �ber sensors based on polymer
optical �ber Bragg gratings. The whole process from the preform to the
device is discussed and reported. A presentation on the �ber drawing tech-
nique used is given. Issues encountered when working with polymer �bers
and solutions concerning �ber cleaving and gluing of polymer to silica �bers
are discussed. The realization of gratings in polymer �bers is shown with
two di�erent techniques: the UV phase mask technique and the direct writ-
ing technique reported here for the �rst time for polymer �bers. Realization
of gratings in PMMA step index �bers and in microstructured �bers made
of PMMA and TOPAS is reported. The gratings have been written at both
1550 nm, to take advantage of components made for telecommunications,
and 850 nm, to exploit the lower loss of polymers and the fast acquisition
electronics at this wavelength. A technique for writing multiplexed grat-
ings is shown and temperature compensation of strain sensors, by using
two adjacent gratings, is demonstrated. Humidity insensitivity in a strain
sensor based on a TOPAS �ber is also shown.

In order to investigate the possibility of using viscoelastic materials,
such as polymers, in dynamic sensors, dynamic mechanical characterization
of polymer �bers was made and it is presented.

The investigated and produced �ber Bragg gratings in microstructured
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polymer optical �bers were used to produce optical accelerometers. The
accelerometers and their characterization are reported. Finally the real-
ization of an optical microphone based on polymer �ber Bragg gratings is
reported.



Resum�e (Danish abstract)

Med den voksende interesse for �ber Bragg-gitter sensorer og forbedringen
i fremstilling af polymer optiske �bre, har udviklingen af polymer �ber
Bragg sensorer fanget opm�rksomheden af industrier som �nsker at udvikle
h�jtydende sensorer.

Denne afhandling pr�senterer udviklingen af �bersensorer baseret p�a
polymer optisk �ber Bragg sensorer. Hele processen fra pr�form til sen-
sor diskuteres og redeg�res. En pr�sentation gives af den anvendte �b-
ertr�kningsteknik. Udfordringer i arbejdet med polymer�bre og l�sninger
vedr�rende �berkl�vning og limning mellem polymer og silikatglas �-
bre diskuteres. Realiseringen af gitre i polymer�bre demonstreres med
to forskellige teknikker: UV-fasemaske teknikken og direkte-skrivning
teknikken. Fremstilling af gitre i PMMA trinindeks�bre og i mikrostruktur-
erede �bre lavet af PMMA og TOPAS pr�senteres. Gitre er fremstillet til
b�ade 1550 nm, for at drage fordel af komponenter lavet til telekommunika-
tion, og til 850 nm, for at udnytte polymerers lavere tab og den hurtigere
detektionselektronik ved denne b�lgel�ngde. En teknik til at skrive mul-
tipleksede gitre vises og temperaturkompensering af t�jningssensorer ved
brug af to tilst�dende gitre demonstreres. Uf�lsomhed overfor fugtighed i en
t�jningssensor baseret p�a en TOPAS �ber vises ogs�a. For at unders�ge mu-
ligheden for at bruge et viskoelastisk materiale s�asom polymer i dynamiske
sensorer, er der udf�rt og pr�senteret en dynamisk-mekanisk karakteriser-
ing af polymer�bre.

De unders�gte og fremstillede Bragg gitre i mikrostrukturerede poly-
mer optiske �bre er blevet brugt til at producere optiske accelerometre.
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Accelerometrene og deres karakterisering rapporteres. Til sidst beskrives
realiseringen af en optisk mikrofon baseret p�a polymer �ber Bragg gitre.
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Chapter 1

Introduction to the thesis

The recent developments of microstructured polymer optical �bers
(mPOFs), after their �rst fabrication in 2001 [1], and the subsequent suc-
cess in writing �ber Bragg gratings (FBGs) in this type of �bers [2] have
opened new possibilities towards sensor development. Taking advantages
of material properties of polymers providing high sensitivity to both strain
and temperature, exploiting di�erent behaviours of di�erent polymers in
terms of water and biomolecule a�nity, together with the advantages of
microstructured �bers in terms of dispersion optimization, accessibility to
the propagating �eld and endlessly single mode guidance, microstructured
�bers appear to be optimal candidates for Bragg grating sensors. Neverthe-
less the high material loss of the most commonly used polymers, together
with a technology that just started to develop, poses severe problems and
limitations to it.

1.1 Main contribution and thesis organization

This work presents the development, realization and characterization of sen-
sors based on microstructured polymer optical �ber Bragg gratings. During
the project the design and fabrication of mPOFs in various materials was
carried out. Solution to practical issues in handling polymer �bers, such as
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2 Chapter 1. Introduction to the thesis

cleaving and gluing, were also considered. FBG writing and process opti-
mization in various polymer �bers and with di�erent techniques has been
done. Finally the mPOF FBGs have been used as the active sensor device.
Basic strain and temperature sensors have been characterized. Moreover
the mPOF FBGs have been employed as sensing element in more complex
sensor designs for accelerometers and microphones.

The thesis is organized as follows: �rst, a background introduction on
state of the art and basic concepts in polymer �bers, Bragg gratings and
�ber sensors is given. The background introduction is followed by a presen-
tation of the work done during the project. The work is presented through
the description of the relevant publications produced during the project
with the explanation of the connection between them and by additional
sections for the description of the unpublished work. Finally conclusions
and outlooks are given.



Chapter 2

Background introduction

2.1 Polymer optical �bers

In the history of the development of optical �bers, polymer optical �bers
(POF) �nd their �rst appearance at the very beginning. In fact already
some of the earliest �bers in the '50s were made out of polymers [3]. The
need and goal to achieve lower transmission loss pushed silica �bers for-
ward compared to polymer �bers, which have an intrinsically higher loss.
In fact for silica �bers the limiting factors are Rayleigh scattering at short
wavelengths (UV and visible), impurities and absorption due to water vi-
brational levels at long wavelengths (visible and near infrared). The loss
mechanisms in optical �bers are listed in Table 2.1. For polymer �bers the
absorption bands given by the C-H vibrational levels limit transmission in
the long-wavelength (> 800 nm) region. Towards shorter wavelengths the
C-H absorption diminishes, but the Rayleigh scattering increases (propor-
tional to � � 4) creating a region of minimum loss around 550 nm. Since
carbon-hydrogen bonds are basic constituents of polymers, overcoming the
limit of the absorption given by their presence in the material seems to
be impossible. A way to solve the problem is by substituting the hydrogen
atoms with heavier elements. A heavier constituent will shift the excitation
of vibrations towards higher wavelengths, reducing the loss and increasing

3



4 Chapter 2. Background introduction

Type of mechanism Mechanism Origin

Intrinsic

Absorption
Vibration modes
Electronic transitions

Rayleigh scattering
Density 
uctuations
Orientation 
uctuations
Composition 
uctuations

Extrinsic

Absorption
Organic pollutants
Dust

Scattering
Micro-fractures
Bubbles

Out-coupling loss Micro and macro bends

Table 2.1: Loss mechanisms in optical �bers as outlined in Ref. [7].

the usable range of wavelengths. Both deuterium [4] and 
uorine [5] have
been used for substitution of hydrogen. However the production of such
materials is not trivial, it's expensive and, in the case of 
uorine, creates
hydro
uoric acid as a by-product, which complicates the safety of the man-
ufacturing process. For these reasons, and for the di�culties in purchasing
them, these materials are not the most used for fabrication of polymer op-
tical �bers. In fact, �bers made of poly(methyl methacrylate) (PMMA)
are more widely used [3]. In Fig. 2.1 a comparison of loss of silica �bers,
PMMA �bers and �bers made with a 
uorinated polymer (CYTOP) is
shown. The lowest loss measured in a polymer �ber is about 10 dB/km
around 1100 nm in a graded index �ber made with CYTOP [5]. The theo-
retically predicted minimum loss is 0.3 dB/km at 1300 nm [6] and is almost
two orders of magnitude lower than what has been experimentally achieved.
This value is close to the loss of silica �bers and would change completely
the perspectives on polymer �bers if achieved.

Two processes can be used for fabrication of polymer optical �bers:
drawing from a solid preform or directly from liquid (which could be un-
polymerized material or the polymer in a melt state). The �rst is also the
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Fig. 1.1. The transmission of “bres made from silica, ”uorinated polymer (the
proprietary material CYTOP), and PMMA. After Murofushi [1996].

1.2 Fabrication Considerations For Polymer And Glass
Optical Fibres

Fabrication methods may not initially seem an important point of compari-
son between polymer and glasses, but in fact there are signi“cant di�erences
between them which impact strongly on their applications. These are more
than simply cost related as the fabrication methods also de“ne what kind of
“bres can be made using the two platforms. Understanding these constraints
is particularly signi“cant for microstructured “bres, as in some cases these
allow the production of “bre types that would be very hard to produce by
any other means.

There are two general approaches to making optical “bres. In most cases,
particularly in silica, “bres are drawn from a •preformŽ … a short, fat version
of the “bre which contains the desired radial structure (see Chapter 5). In
other cases, the “bre is drawn directly from liquid material. In glasses, this
liquid is simply molten glass [Palais 1992], but for polymer “bres it may either
be molten polymer, or unpolymerised material [Daum et al. 2002].

Glass “bres are normally produced using preforms. The desired refractive
index pro“le is usually produced by doping with small amounts of materi-
als such as germanium or boron. The most important doping methods are
based around vapour deposition, in which layers of the desired material are
successively deposited and oxidised by a ”ame. This can be done in a very
controlled manner to produce a wide range of index pro“les with very high

Figure 2.1: Transmission loss of �bers made of silica, PMMA and CYTOP

uorinated polymer, as in Murofushi et al. [8].

one more commonly used for silica �bers and the �ber guiding properties are
determined when producing the preform. The desired refractive index pro-
�le in a preform for all-solid POF has been realized by centrifuging during
polymerization, by interfacial gel polymerization, by using dopants (usually
dyes) or by using di�erent polymers with similar mechanical properties [3].
The latter is the easiest and more used technique. It produces step-index
�bers with a high refractive index di�erence. This factor strongly in
uence
the acceptance and con�nement properties of the �ber. For a step index
�ber the numerical aperture ( NA ) is determined by the di�erence between
the refractive index of the core (ncore) and that of the cladding (ncladding ):

NA =
q

n2
core � n2

cladding : (2.1)

The numerical aperture together with the dimension of the core determines
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the guiding properties of the �bers. Directly related to the NA is the
V parameter (normalized frequency), which is strictly connected to the
number of modes propagating in the �ber, and it's given by:

V =
2�a
�

NA; (2.2)

wherea is the �ber core radius and � is the free space wavelength. Both high
NA (high refractive index di�erence) and a large core would be preferred
in the manufacturing process. The �rst because it's more controllable, the
second because it reduces the loss due to scattering at the interfaces. The
drawback is that both factors contribute to make the �ber multi mode (the
single mode behaviour is achieved forV < 2:405). Working against the
single mode operation is also the wavelength. Due to the lower loss region,
it would be better to work at lower wavelengths, which again increases the
normalized frequency and poses even more strict geometrical and manufac-
tural limits when single mode behaviour is required.

Single mode behaviour is anyway not always required. In fact, there is
a big interest towards low loss highly multimode polymer �bers for short
range communications, where the need for lower costs compensates for the
lower data transmission capability. These �bers are generally thick (from
0.5 to 1 mm) and have a graded index core pro�le. However, communica-
tions is not the only �eld of interest for polymer optical �bers.

There have been several reasons for keeping the interest in polymer
optical �bers even after silica �bers have improved and the di�erence in
loss between the two reached a practically unbridgeable di�erence. The
two most important reasons are the lower cost of production and the higher

exibility of the material itself compared to silica. Other material properties
that make polymer appealing are: the lower density that makes it lighter
than glass; the higher elasticity, quanti�ed in a lower Young's modulus (3
GPa compared to 72 GPa of silica); the higher elastic limit (maximum 10%
strain compared to 1% in silica); and the higher thermal expansion and
thermo-optic coe�cients [3].

With these characteristics polymer �bers �nd applications as the basis
for sensors, where the material advantages can be exploited even when
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Figure 2.2: Schematic representation of a solid core photonic crystal �ber
(left) and of a hollow core bandgap �ber (right). In the �gure, d is the hole
diameter and � is the hole to hole distance (pitch).

the �ber has high loss. Moreover, sensor performance can be improved by
modifying the �ber through functionalizing the cladding, by increasing the
evanescent �eld with a tapered section, by inscribing long period gratings
(LPGs) and FBGs. Further improvement could be achieved by single mode
behaviour and by introducing a microstructure in the �ber [3,9].

2.1.1 Microstructured polymer optical �bers

Microstructured optical �bers (also called photonic crystal �bers, PCFs)
have been �rst demonstrated in silica in 1996 byKnight et al. [10]. They
can be roughly divided in two classes based on the guiding principle: those
that guide using total internal re
ection and those where con�nement is due
to the absence of a solution to Maxwell's equations for the electromagnetic
�eld in the cladding (a so called photonic bandgap). An example of each
type of �ber is shown in Fig. 2.2. Major advantages given by the photonic
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crystal structure are the possibility to control/tailor the dispersion, and
the exceptional endlessly single mode guiding principle [11]. This not only
means that the same �ber can be used for single-mode guidance over a broad
range of wavelengths, but also that the dimensional restrictions required for
single mode guiding at low wavelengths are relaxed.

In this dissertation only microstructured �bers guiding by total inter-
nal re
ection are considered. In these �bers the microstructure acts as a
mechanical \doping" of the cladding, which e�ectively reduces the cladding
refractive index. In a microstructure with holes organized in a hexagonal
lattice the endlessly single mode guiding is obtained with the ratio be-
tween the hole diameter,d, and the pitch (hole to hole distance), �, being:
d=� < 0:42 independently from the �ber material [11]. Fig. 2.3 shows the
guiding regime depending on the hole to pitch ratio and the wavelength to
pitch ratio [12].

Microstructured �bers have not only been made with silica, but also in
other materials, like soft glasses [13] and polymers. In 2001 van Eijkelenborg
et al. [1] reported the �rst fabrication of a microstructured polymer optical
�ber. The preform for an mPOF can both be a stack of tubes (as in the
case of silica PCFs) or it can be a bulk cylinder of plastic in which the hole-
pattern is extruded, casted or drilled [3]. This particular feature gives the
possibility of obtaining any kind of hole-pattern, enabling the development
of speci�c �bers for each application. Many di�erent microstructure designs
have been developed and used up to now. The most used is a uniform
hexagonal structure with equally spaced holes, all with the same dimension
(as in Fig. 2.2). A di�erent number of rings has been used depending
on the �nal application. More rings decrease the con�nement loss, but
reduce for example the accessibility to the core from the side. Some other
mPOF structures fabricated until now are: graded index mPOF (GImPOF)
[14, 15], hollow core mPOF (HCmPOF) [15, 16], high birefringence �bers
[15, 17], rectangular core [15], twin cores [15], multi core [18], suspended
core [19, 20] and randomly microstructured [21]. The use of dopants as
dyes has also been shown [18,22]. As for POFs di�erent materials have been
used for mPOFs: polycarbonate (PC) [23], TOPAS [19,20], biodegradable
materials [24] and the most commonly used PMMA [3].
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Fig. 1. (a) Single-mode –multimode phase diagram. The
solid curve shows the phase boundary of Kuhlmey et al.18

[expression (6)], and the circles indicate solutions to
� ��� � � � � � � [Eqs. (4) and (5)]. (b) Numerical results
for PCFs with varying hole diameter (from the bottom,
� �� � 

��, 0.44, 0.45, 0.475, 0.50, 0.55, 0.60, 0.65, 0.70).
The curves show results for the � parameter [Eq. (4)],
the circles indicate the corresponding cutoff wavelengths
[expression (6)], and the dotted line shows � ���

� [Eq. (5)].

this Letter we point out that the problem is not a mat-
ter of def ining a core radius; rather, one should look
for the natural length scale of the problem, the air-hole
pitch �. This choice was also suggested in Ref. 7, al-
though it was considered an arbitrary choice. Regard-
ing the second-order cutoff, it was suggested in Ref. 14
that � ���

� � �
�, but it was also concluded that the
arbitrary choice of the length scale means that the
particular number for � ���

� also becomes somewhat
arbitrary. In this Letter we demonstrate that this is
not the case and that a very simple and elegant solu-
tion exists.

To show this, we introduce the following � parame-
ter for a PCF

� ��� ��� �
���

�
�� �

� ��� � � ��
� ���� 	 �� � (4)

where � � ��� � � � �� is the “core index” associated
with the effective index of the fundamental mode and,
similarly, � �� ��� is the effective index of the funda-
mental space-f illing mode in the triangular air-hole
lattice. The second-order cutoff occurs at a wave-
length � � , where the effective transverse wavelength,
� � � �� �� � , allows a mode with a single node (see

the schematic in Fig. 2) to f it into the defect region,
i.e., � �

� � ��. When Eq. (4) is written in terms of
� � the corresponding value of � ���

� easily follows:

� ���
� � � �

� � �
��
� �

� � � � 
 (5)

Although this derivation may seem somewhat heuris-
tic, we shall compare it with numerical results and
show that the very central number � is indeed the cor-
rect value.

For the numerical comparison we need to calculate
both � ��� ��� and the second-order cutoff, � � . For
the � parameter we use a fully vectorial plane-wave
method 21 to calculate � � ��� and � �� ��� for various
air-hole diameters. For the material refractive index
we use � � 	 for the air holes and � � 	
��� for the
silica. Ignoring the frequency dependence of the
latter, the wave equation becomes scale invariant, 22

and all the results to be presented can thus be scaled
to the desired value of �. Regarding the cutoff,
one of us recently suggested a phase diagram for
the single-mode and multimode operation regimes, 17

which was subsequently followed up in more detail
by Kuhlmey et al.18 From highly accurate multipole
solutions of Maxwell’s equations, it was numerically
found that the single-mode –multimode boundary can
be accounted for by the expression 18

� � �� � 	 �� �� � � � ��� 
 
 (6)

Here, 	 � �
�
 � 

	�, 
 � 

�� � 


�, and � � �� �


�
�. This phase boundary is shown by the solid
curve in Fig. 1(a) and was recently confirmed experi-
mentally based on cutoff measurements in various
PCFs.23 For � �� � � � �� the PCF has the remark-
able property of being so-called endlessly single mode, 7

and for � �� 
 � � �� the PCF supports a second-order
mode at wavelengths ��� � � � �� and is single mode
for ��� 
 � � ��.

In Fig. 1(b) we show numerical results for various
values of � ��. The solid curves show results for the
� parameter, Eq. (4); the circles indicate the corre-
sponding cutoff wavelengths, expression (6); and the
dotted line shows � ���

� , Eq. (5). First we notice that
the cutoff results of Kuhlmey et al.,18 expression (6),
agree with a picture of a constant � value � ���

� below
which the PCF is single mode. This similarity with
SIFs indicates that the cutoff in SIFs and PCFs rely
on the same basic physics. Furthermore, it can also
be seen that the cutoff points are in excellent agree-
ment with the value � ���

� � � , Eq. (5), and this also
supports the idea of � as the natural length scale for
the � parameter. We emphasize that the extremely

Fig. 2. Schematics of the cross section of a PCF. The dot-
ted curve illustrates the f ield amplitude of a second-order
mode with a single node.

Figure 2.3: Single-mode{multimode phase diagram, as in Mortensenet
al. [12].

Microstructured polymer �bers have not only been used for optical
wavelengths but also as waveguides for THz radiation [25,26].

Aside from the loss, the practical use of polymer optical �bers, and
particularly of thin microstructured �bers, is reduced by the di�culties in
handling these �bers. For example cleaving is a quite relevant issue. The
hot blade technique has been found to have the best results [27], but, even
if the knowledge is there, many current and potential users �nd themselves
�ghting to have good cleaving results. Another issue is connectorization
and bonding with standard components made of silica.
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2.2 Fiber Bragg gratings

Fiber Bragg gratings consist of a modulation of the refractive index of the
�ber along the propagation axis. Each refractive index variation produces
a re
ection of the propagating radiation. If the modulation and the wave-
length are so that all the re
ected components interfere constructively a
mirror for speci�c wavelengths is created (Fig. 2.4). The constituent rela-
tion for a homogeneous grating (with a constant periodical index modula-
tion) is:

� B = 2nef f � (2.3)

where � B is the re
ected Bragg wavelength, nef f is the e�ective refractive
index and � is the period of the refractive index modulation.

FBG 

��B 
��B �� 

�� 

�� 

Figure 2.4: Fiber Brag grating working principle.

What mainly in
uenced the interest and ability of writing gratings into
�bers is the photosensitivity of the material to UV light. This was discov-
ered in 1978 by Hill et al. [28], but even though the impact of the discovery
was immediately understood, it took about a decade before it was put
into practical use [29]. The photosensitivity of the �bers can be enhanced
with various techniques, but the standard procedures are the increase of
the amount of Germanium (and other dopants) content in the core and
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hydrogen loading of the �bers before exposure [29]. The technique that is
commonly used for grating inscription is the phase mask technique, which
uses UV light radiation for exposure. Interferometric techniques are also
often used in order to have more 
exibility on the resulting grating wave-
length [30]. A third technique, that as well allows 
exibility in the deter-
mination of the pro�le of the refractive index change and does not require
photosensitivity since it is based on a two photon absorption process, is the
point by point writing technique [31].

Various types of gratings [30] and many refractive index modulation
pro�les can be obtained and are used nowadays [29,32].

Fiber Bragg gratings have been written also in microstructured �bers
[33]. The grating is written by illuminating the �ber with light coming
from the side, but the light is di�racted due to the microstructure, which
complicates the writing process [34]. Nevertheless the photosensitivity of
silica �bers and the use of techniques, as hydrogen loading and doping of
the core, to enhance the photosensitivity are su�cient to compensate for
it.

Fiber Bragg gratings �nd applications as �lters, mode converters, laser
mirrors, chromatic dispersion compensators and sensors [29,32].

2.2.1 Fiber Bragg gratings in polymer optical �bers

Photosensitivity of polymers was �rst reported by Tomlinson et al. in
1970 [35]. The refractive index change was induced by irradiation with
325 nm UV light produced with a HeCd laser. Despite this early discovery,
the �rst report of Bragg gratings in polymer optical �bers dates to 1999 [36].
The physical mechanism behind polymer photosensitivity has been the
cause of discussions and speculations. In fact, starting from the work of
Tomlinson et al. it was supposed that the increase in refractive index could
have been caused by extra cross-linking and polymerization due to the UV
light exposure. A detailed study on UV light e�ect on PMMA has been
done and it well explains the processes involved in refractive index modi�-
cation [37]. However, this study explains the consequences of material-light
interaction limited to short irradiation wavelengths (193 nm and 248 nm).
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It also reports about the use of 308 nm as exposure wavelength, but with
this wavelength no refractive index change was documented. Most of the
reported FBGs in polymer �bers were written with exposure at 325 nm. It
should be considered that the material preparation and composition and
the �ber fabrication process might change the �ber properties, leading to
uncertainties in the interpretations of the results. It is indeed widely ac-
cepted that the refractive index change is given by the polymerization of
the unreacted monomers, see, e.g., Ref. [38] and references therein.

As with silica �bers, Bragg gratings have been demonstrated in polymer
�bers of both the solid type and microstructured type [2]. In the latter, the
�ber is made of only one material, so some of the factors that can change
from experiment to experiment are eliminated. The reported gratings have
been inscribed using HeCd continuous wave (CW) UV radiation at 325 nm
wavelength with 30 mW power. The inscription times for mPOFs are on the
order of several tens of minutes to hours [7]. In order to reduce the writing
times or increase the grating strength the use of dopants or co-polymers in
the core was successfully reported [39{41].

Typical applications of Bragg gratings in polymer optical �bers are:
tunable �lters [38], laser mirrors [42] and sensors. Various Bragg wave-
lengths have been written up to now in polymer �bers, going from the
wavelength where there are commercially available cheap components:
1550 nm [2]; to lower wavelengths where the losses of polymer �bers are
lower: 927 nm [43], 827 nm [44].

2.3 Optical �ber sensors

The development of �ber optics has been mostly driven by the telecommu-
nication sector. At the same time, optoelectronics has quickly improved
both related to optic communications and as a self sustained sector (e.g.
with the development of displays, disc players, etc.). The �ber sensor in-
dustry has taken advantage of these two factors. Because of the high costs
of the components, �ber optic sensors have tried at �rst to �ll the gaps
left open by other types of sensors, more than competing with them. As
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the costs reduce over time, the advantages of optical �bers sensors over
conventional ones make them suitable also to cover other market areas and
consequently the research driving them forward is intensi�ed. The main ad-
vantages of �ber optic sensors are their light weight, high sensitivity, high
bandwidth and environmental ruggedness. The big interest in the �eld is
also given by the ability of �ber sensors to cover a wide range of applica-
tions. In fact they can be used to sense rotation, acceleration, electric and
magnetic �eld, temperature, pressure, sound, vibrations, position, strain,
humidity, viscosity, chemical and biological agents, and many other sensor
applications [45].

Fiber sensors use many di�erent con�gurations, working principles and
materials. They can be all-�ber or integrated with components of di�er-
ent nature, detect based on amplitude variations, polarization or spectral
detection, be con�gured as interferometers, be multiplexed, localized or dis-
tributed, embedded, and they can be made with �bers of di�erent materials
(e.g. silica or polymer) [45].

2.3.1 Polymer optical �ber sensors

More than any other �eld, the �eld of optical �ber sensors exploits the ma-
terial properties of polymers, rather than just their reduced cost compared
to other materials. The automotive sector is probably the major user of
polymer �ber based sensors, but it is not the only one. POF sensors have
been demonstrated and used for numerous applications. As already men-
tioned the thick multimode polymer �bers are the most used, for their easy
handling properties. They �nd many applications also in the sensors �eld
ranging from stress, temperature, humidity, chemical sensors to wind speed
sensors and so on [9, 46, 47]. Works on single mode POF have also been
reported for strain sensing [48,49], temperature sensing [50] and for ultra-
sound sensors [51,52]. All are reported in an interferometric con�guration.
Also Bragg grating POF sensor have been developed and will be discussed
later on, in section 2.3.3.
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Microstructured polymer optical �ber sensors

Two main advantages lead the development of mPOF sensors: the possi-
bility of having a single mode �ber and the accessibility to the evanescent
�eld in the microstructure. The �rst is mainly used for �ber Bragg grating
based sensors. Sensors not based on Bragg gratings usually do not need
the �ber to be single mode. MPOFs sensors for: gas detection [53, 54],
aqueous solutions analysis [55, 56], pH determination [57], Raman spec-
troscopy [58], biosensing [19,20,59], hydrostatic pressure and temperature
measurements [17, 60]; were reported. Some of the working principles are
evanescent �eld [61], plasmonic resonances [62], 
uorescence [19,20,59], and
change in birefringence [17,60].

Taking advantage of the possibility of having single mode �bers, grating
based sensors �nd numerous applications when based on microstructured
polymer optical �bers. A �rst category is long period grating sensors.
This type of sensors bene�t of the possibility of tailoring the dispersion of
microstructured �bers, to which the sensitivity is related [63]. Moreover
the possibility of in�ltrating the holes with liquids and gases in
uences
the mode propagation both in the core and in the cladding, giving several
parameters that can be optimized for speci�c applications. Long period
grating sensors in mPOFs were demonstrated for strain sensing [64, 65],
to be sensitive to water content and surrounding medium refractive index
[66,67], to humidity and temperature [68].

2.3.2 Fiber Bragg grating sensors

One class of �ber sensor which is widely used and which allows detection
of a large number of parameters is �ber Bragg grating sensors. Bragg grat-
ing sensors provide localized sensing, but through the possibility of being
multiplexed, which is one of their strongest advantages, they can also pro-
vide quasi-distributed measurements. The sensing principle consists in the
detection of a shift of the Bragg wavelength. The shift imposed could be
due to a modi�cation of the grating physical properties (such as length) or
of the e�ective refractive index experienced by the radiation. Given these
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considerations, the use of Bragg gratings �nds applications for mechani-
cal and environmental parameter measurement. What is considered the
most important use of FBGs sensors is the creation of so called \smart
structures". Embedded in various materials, multiplexed and able to de-
tect various parameters, they produce a network of sensors which gives
full information of structures such as buildings, roads, bridges and dams.
Such a network would give more information on the history and status
of the structure under examination, making possible immediate repairs,
but also reducing costs and improving safety preventing structural dam-
ages and collapses [45]. The same principle of smart structures can also
be applied in sectors di�erent from structural engineering, e.g. healthcare
monitoring [69]. FBG based sensors have been demonstrated for strain,
temperature, pressure, acceleration, vibrations, electric and magnetic �eld
and chemicals detection [32,45,70,71].

When compared to other kinds of sensors FBG based sensors have the
advantages of multiplexing possibilities, of being small and compact, inex-
pensive, insensitive to optical power 
uctuations and with direct relation
between what is measured and what one wants to quantify.

Although the �bre gratings are themselves inexpensive and easy to pro-
duce, the systems for monitoring the grating are often expensive and com-
plicated. Di�erent ways to monitor FBGs have been proposed, but in gen-
eral a broadband light source and a wavelength detection system is used. A
second disadvantage of FBG sensors is the simultaneous dependence of the
grating on more than one parameter at the same time. Typically the in
u-
ence of temperature needs to be removed for detection of other parameters
which have the same time scale of temperature variation (e.g. quasi-static
strain). Also for this purpose many con�gurations have been proposed. The
most common implies the use of an extra reference grating [72]. Adding
one extra grating consequently increases the complexity of the system.

Also Bragg gratings in microstructured optical �bers have been widely
used as a base for sensors. Having the same basic characteristics of solid
�bers, but also having the advantages of tailored dispersion and accessibility
to the optical �eld, sensors based on this kind of �bers can cover all the
previous applications and �nd some new ones in the �elds of gas and liquids
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detection and composition determination [30].

2.3.3 Polymer optical �ber Bragg grating sensors

The same way as for silica �ber Bragg gratings, polymer �ber Bragg grat-
ings can be used as base for sensors, cover the same range of applications
while taking advantage from the material, and encounter the same systemic
problems. Solid POF FBGs have been reported for strain, bend, tempera-
ture and humidity detection [73{75].

In structures with low Young's modulus (as for example textiles) it is
possible to see an advantage of using FBG sensors based on polymer �bers
instead of those based on silica �bers. In fact, the silica �ber would a�ect
the structure itself by sti�ening it [76].

2.4 Microstructured polymer optical �ber Bragg
grating sensors

MPOFs are very interesting for Bragg grating based sensors because they
combine the advantages of POF FBG sensors with the advantages given
by the microstructure, in particular the endlessly single mode guidance.
Given the only recent ability of writing gratings in microstructured polymer
�bers and the handling problems with them, only a limited amount of
publications on sensing applications of the mPOF FBG can be found despite
the numerous potential applications. In fact, the only demonstration of
applicability of mPOF FBG for a sensor previous to this work was reported
by Carrol et al. [77].
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Thesis contributions

This dissertation is based on journal publications that have been produced
during the doctorate. Contributions to the entire process that leads to the
realization and characterization of a sensor were reported. This chapter
reports a description of the main results and contextualization of the papers
and of some unpublished results.

3.1 Polymer optical �bers fabrication

DTU Fotonik has one of the few university based polymer �ber drawing
towers in Europe. The possibility of utilizing this facility has been of ut-
most importance to this project. Fiber fabrication has a fundamental role
towards the realization of �ber components and sensors, even if it is not
always possible to see it directly from the publications.

3.1.1 The drawing tower

A picture of the drawing tower and a schematic of the main components
are shown in Fig. 3.1. Fibers are drawn in a two step process. In the �rst
step a preform generally of 6 cm of diameter and 8 to 10 cm length, in
which the desired structure is contained (Fig. 3.2) is drawn to a 4 to 6 mm

17
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diameter �ber, termed a \cane". At this stage the �ber has the correct
dimensions for waveguiding THz radiation [25]. The cane is sleeved with
tubes to create a secondary preform. The outer diameter of the secondary
preform depends on the primary preform design, on the cane diameter
and on the desired �ber diameter. It is usually between 10 and 40 mm.
The secondary preform is then drawn to �ber. The preform is placed in
the furnace, where it softens and the bottom part slowly drops out of the
furnace due to gravity. The �ber is then pulled with either the cane puller,
if the primary preform is drawn, or with the �ber puller, if the secondary
preform is drawn. The preform is lowered in the oven during drawing. The
feeding speed and the pulling speed determine the �nal diameter following
mass conservation (this is the ideal case in which the neck down area is in
a �xed position in the furnace). In the second drawing stage the �ber is
collected and spooled with a pick up system.

3.1.2 Fiber design

The structures to be drawn have been designed with the support of nu-
merical simulations. To simulate the guiding properties, such as number of
modes, birefringence and guiding loss, a �nite element method implemented
in the commercial software COMSOL was used. To evaluate con�nement
loss, the softwareFibre, part of the package CUDOS MOF Utilities [78],
which uses a multipole method, was also used.

3.1.3 Preform preparation

The technique used to produce the primary preform is based on drilling
holes in a rod of solid material. An example of preforms is shown in Fig. 3.2.
The drilling is made by a computer numerically controlled (CNC) drilling
machine. This allows the realization of any hole pattern with high precision
and repeatability. Due to bending of the drill bit small holes (< 2 mm)
cannot be drilled su�ciently deep into the preform. For this reason holes
with diameter bigger than 2 mm are usually made. The fabrication of
a preform is the �rst step to the production of a �ber. Even seemingly
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Preform holder  

Furnace 

Cane puller 

Fiber puller 

Pick-up system 

Hot zone 

Figure 3.1: DTU Fotonik drawing tower (left) and schematic of the tower
main components (right).
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Figure 3.2: Example of PMMA and TOPAS preforms.

small changes to the procedure at this stage are important to reduce the
causes of optical loss in the �ber. Water assisted drilling and the use of
di�erent drilling bits are some of the major improvements on this matter
that this project bene�tted from. Although optical losses are of course
very important for any application of an optical �ber, the current losses
are not preventing the application of mPOFs for Bragg gratings, especially
because of the short length of �ber needed; the loss reduction approaches
are therefore not considered in more detail here.

3.1.4 Drawing parameters

The critical parameters during polymer �ber drawing are temperature, ten-
sion, feeding speed and pulling speed. An in-depth analysis of these pa-
rameters is outside the scope of this dissertation, but they a�ect the �nal
properties of the �ber and consequently of the sensor. One of them is par-
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ticulary important and deserves to be mentioned: the �ber tension. Tension
is not an active parameter, because it can't be changed directly, but de-
pends on the other parameters and can therefore be indirectly controlled.
Tension during drawing determines the alignment of the polymer chains
and frozen-in stress. A �ber drawn with high tension has mechanical prop-
erties di�erent from one drawn with low tension [7]. The performance of
the sensor is therefore indirectly determined by the tension under which
the �ber was drawn. A �ber drawn with high tension can be taken to a low
stress status through annealing. Annealing is further discussed in section
3.3.1.

3.1.5 Fiber characterization

After drawing, characterization of the �bers is necessary. Apart from the
basic visual investigation of the microstructure cross-section in a micro-
scope, to verify that the air-holes have the desired diameter and spacing,
the �bers have been characterized for their guiding properties. A �rst test
is made by coupling light into the �ber to verify that it actually guides. In
a second stage cut-back loss measurements are performed to determine the
�ber total loss. Loss measurements are reported inPaper 3 . In particular
cases mechanical tests of the �bers are performed, but this will be further
discussed in section 3.4.

3.2 Handling of polymer optical �bers

One of the main problems when working with polymer optical �bers is
cleaving. The importance of this procedure is that it re
ects on any suc-
cessive result, up to the point of compromising them, nullifying any other
technological e�ort. Various techniques have been proposed and investi-
gated [27,79,80]. The technique found to be the most e�cient and easiest
to use is the hot blade technique. Due to material transition from brittle
to ductile, both the �ber and the blade need to be heated to a certain tem-
perature to obtain an optimum cleave [27]. However temperature is not the
only parameter to be considered. Moreover the optimum parameters vary
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from material to material. In Paper 1 an investigation and optimization
on cleaving is made for �bers made of the commonly used POF material,
PMMA, and for the �rst time for �bers made of the cyclic ole�n copolymer
TOPAS. Supporting the paper and the importance of this process for the
entire project an automated cleaver was built. Other than the �rst time
investigation of the hot blade technique for TOPAS �bers, the paper di�ers
from previous contributions by doing a graphical quality analysis of the
cleaved �ber end-facet based on an image recognition software in order to
identify and reduce the cleaving induced deformation. Particularly impor-
tant is the identi�cation of the shift of the core, which creates a bend in
the initial part of the �ber, and causes coupling loss. In the optimization
process the dependence of the quality on the blade thickness is investigated
for the �rst time, resulting in the best result for the thinnest blade available
with a 
at edge on one side. Investigation on blade and �ber temperature
showed that the optimum temperature of both blade and �ber for cleav-
ing PMMA �bers is 77 :5 � C, which is in agreement with what is previously
reported, and 40� C for TOPAS �bers. Another relevant result from a prac-
tical point of view is the reduced time needed for cleaving. It was found
that only a few seconds are necessary for the whole cleaving process in order
to obtain high quality cleaves for thin mPOFs. From a practical point of
view the short cleaving time, together with the automation of the process,
which increased the reliability of the cleaves to the point of almost not hav-
ing any bad cleave, gave an important contribution towards the expansion
of the polymer �bers �eld.

A second handling issue that has been investigated is connection of
polymer �bers to silica �bers. Splicing has been tried unsuccessfully in col-
laboration with a group from the National Institute of Telecommunications
in Warsaw. The technique that showed the best results is gluing. There
are two requirements for the connection: low loss and mechanical stability.
In order to satisfy these parameters a two step gluing process was used. At
�rst, an optical glue with refractive index matching to that of the polymer
�ber ( Norland NOA 78) was used. After alignment the glue was cured. For
solid POF the process did not induce signi�cant extra loss compared to just
butt-coupling the two �bers and in some cases it actually reduced them.



3.2. Handling of polymer optical �bers 23

 

Polymer 
fiber 

Silica 
fiber 

Glue 

(a)

mPOF 
FBG 

mPOF/silica 
connection 

(b)

Figure 3.3: Glued polymer to silica �ber connection on the mechanical
support used to strengthen the connection (a) and mPOF FBG installed
on a wind mill model in the OFS21 Exhibition in Ottawa to show vibrations
detection (b).

For microstructured �bers the glue in�ltrates in the air holes reducing the
guiding in the initial section of the �ber, creating extra loss. To reduce
this problem a glue with refractive index matching that of silica �bers and
with high viscosity has been custom ordered (My Polymers MY-145V2000).
Unfortunately it hasn't been possible to test this glue yet. Once the optical
\bonding" is ensured (with curing the optical glue), the mechanical sta-
bility of the bonding has to be checked. The optical glue provides enough
mechanical strength for leaving the �bers free standing, but not for moving
the �bers around. In order to improve the mechanical strength a second
UV curable glue (Epotek OG116-31) was applied. This glue does not have
good optical properties, but creates a very strong mechanical bond. The
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strength of the bonding given by the glue was su�cient to carry the �bers
around in the lab, but to give extra stability the bonding region has been
included in a rigid plastic support. The result is shown in Fig. 3.3 (a). The
�ber was taken to Ottawa, where it was installed at the OFS 21 Exhibition
in the stand of Ibsen Photonics A/S, where the grating was used to show
vibration measurements on a wind mill model (Fig. 3.3 (b)). No impact on
the grating performance in both transportation and installation was found.

3.3 Polymer optical �ber Bragg gratings writing

Two di�erent techniques for grating writing have been successfully inves-
tigated during the project: phase mask UV writing and direct (or point-
by-point) IR femtosecond writing. The �rst technique was already demon-
strated for microstructured polymer optical �bers [2], while the second was
never used for polymer �bers and only described once for microstructured
silica �bers [81]. Other than the implementation of a grating writing facility
and optimization of the process, the work described here involved di�erent
�bers, made of di�erent materials, di�erent Bragg wavelengths and grating
multiplexing.

3.3.1 Phase mask technique

The system implemented for UV phase mask writing has the same con�g-
uration as described in Ref. [2]. The writing technique is mainly presented
in Paper 2 , but also in Paper 3-5, 8-9 . The set-up used is shown in
Fig. 3.4.

The UV light beam from a HeCd laser with emission at 325 nm is �rst
expanded in one direction with a cylindrical lens creating a line beam. The
beam is redirected with a periscope and then focused, in the short axis,
with a second cylindrical lens. In this way the beam is focused in the core
of the �ber. The phase mask is placed in the beam path right on top of the
�ber.



3.3. Polymer optical �ber Bragg gratings writing 25

13/01/10  Development of fiber -optical accelerometers 
and microphones  

6 DTU Fotonik, Technical University of Denmark  

UV writing  

HeCd laser 
325 nm  
30 mW (CW)  
 

Phase mask  

Polymer 
Optical 
Fiber  

Cylindrical 
lens  

Cylindrical 
lens  

Figure 3.4: UV phase mask writing set-up, picture (top) and schematic
(bottom).
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Gratings in solid polymer optical �bers

At �rst gratings have been written in commercial step index polymer op-
tical �bers and with a Bragg wavelength around 1550 nm. Avoiding the
microstructure simpli�es the writing, since the extra factor of scattering due
to the holes is not there. The wavelength choice has been made because of
the availability of optical components, because of the possibility of having
a better phase mask (the shorter the period, the phase mask becomes more
expensive and has lower e�ciency towards the� 1 di�raction orders) and
because of the �ber being single mode at this wavelength and not at lower
wavelengths. The ability of writing gratings in polymer optical �bers was
the �rst step towards the implementation of working sensors.

E�ect of annealing the �bers

Since one of the �nal goals of the project was to build strain based sensors
and to characterize the performance, a �rst study on how to improve such
performances was done. InPaper 2 it is shown how annealing a�ects and
in particular improves the performance of the gratings in terms of strain
and temperature dependence. The annealing process consists in placing
the �ber in the oven at 80 � C for two days. It was found that annealing
expanded the linear temperature working range by almost 15� C (from 60
to 75) and improved strain performance (linear response without hystere-
sis) from less than 3% to almost 7%. The improved performance and the
con�rmed linear dependence of wavelength shift on both temperature and
strain, demonstrated this POF FBG to be suitable for sensing applica-
tions. The characterization of the gratings resulted in measurements of a
temperature sensitivity of about � 100pm= � C and of a strain sensitivity of
1:13 pm=�" .

Gratings in PMMA microstructured polymer optical �bers

The commercial step index POF has a very high loss, especially in the
1550 nm region. In order to improve the possibilities and the perfor-
mance, together with exploiting the �ber drawing facility, grating writing
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in microstructured �bers was done. Gratings were written �rst in PMMA
mPOFs with a Bragg wavelength around 1550 nm. Some results (mostly
in terms of strain sensitivity) using PMMA mPOF gratings at 1550 nm are
presented inPaper 3 and Paper 8 .

Grating writing at 850 nm

In order to work in a lower loss region and with the advantages of using the
electronics window, where fast detectors are available, work was also done
on producing gratings at 850 nm. A previous result of grating inscription
at this wavelength used a large core multi mode mPOF in order to facilitate
the writing. The use of a multi mode �ber leads to a broad re
ection spec-
trum [44]. Paper 3 presents the results about inscription of gratings in
this wavelength window both in POF and mPOFs. The few-mode charac-
teristic of the �bers leads to a narrow grating, more suitable and important
for sensing applications. The paper also presents a comparison of strain
sensitivities between gratings with wavelengths of 1550 nm and 850 nm.
This is relevant when the gratings are intended for strain/elongation based
sensors because the choice of a shorter wavelength reduces the FBG strain
sensitivity.

Gratings in TOPAS microstructured polymer optical �bers

PMMA has high water a�nity. This can be an advantage or a disadvantage
depending on the application. If the interest is towards the use of the �ber
for a sensor which bene�ts of water a�nity, PMMA is the perfect candidate.
If instead water a�nity is undesired, as for example in the case of a sensor
working in an environment with varying humidity, a material with low
water a�nity would be desired. For this reason and for the interest in
using it also for biosensors, the possibility of writing grating in TOPAS
mPOF was also investigated. Paper 4 reports about grating writing in
these �bers. The grating reported here was written with a wavelength of
1568 nm. Subsequently gratings with wavelengths around 850 nm were also
written in TOPAS �bers and they were used for the results in Paper 8 .
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Grating multiplexing

The demonstration of multiplexing possibility of mPOF FBGs is shown in
Paper 5 . Multiplexing of FBGs in mPOFs was already shown before [82],
but with a di�erent technique. In fact the technique used is an important
point presented in the paper. The �nal grating wavelength was accurately
controlled by writing on the �ber in an elongated state. This technique
provides the possibility of writing gratings with various well de�ned wave-
lengths with a \rigid" technique like the phase mask technique. Moreover
the material properties make possible a tunability of the inscribed wave-
length as high as 12 nm.

3.3.2 Direct writing technique

Next to the more conventional and commonly used UV phase mask tech-
nique, a second approach for grating writing has been investigated.Pa-
per 6 describes the realization of a Bragg grating in a microstructured
polymer optical �ber using direct writing. Direct writing allows more 
ex-
ibility compared to the phase mask technique in Bragg wavelength and
grating pro�le design. There are also some problems and limitations con-
nected to this technique. The main problem is that, having a two-photon
absorption process involved, there is a need of high intensity in the core.
This factor is limited by the presence of the microstructure and by the ma-
terial absorption. Not much was possible to be done about the material,
while a �ber with a special structure was designed and fabricated in order
to create a \scattering free" corridor to the incoming light. This structure
together with the optimization of the laser parameters made possible the in-
scription of a 4th order grating with resonance wavelength around 1520 nm.
There are other issues related to this technique, which don't make direct
writing look like a valid alternative to phase mask writing. The limitation
given by the writing laser spot size requires that high order gratings are
written, reducing the e�ciency and the ability of writing short wavelength
gratings. Another issue is related to the light con�nement given by the
�ber specially designed microstructure. On the other side this technique
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gives a huge reduction in grating writing time from minutes or hours, to
seconds. One more advantage related to this technique is that it doesn't re-
quire photosensitivity. Photosensitivity is an issue for, e.g., per
uorinated
�bers. Photosensitivity has been show in the �ber material [83], but no
Bragg grating writing has been reported yet in these �bers. In addition
these �bers present low loss at 1550 nm not requiring short wavelength
gratings.

3.4 Mechanical characterization of polymer opti-
cal �bers

One of the intended applications of the polymer �ber Bragg gratings is
for sensors such as accelerometers and microphones, where it is required
to detect dynamic variations of the parameters to be measured. The vis-
coelastic nature of polymers limits the possibilities in terms of frequency
and strain that can be used. For this reason a characterization of the dy-
namic mechanical properties of the �bers was done.Paper 7 reports on
the dynamical analysis of polymer �bers in the low strain regime. The
choice is related to the potential applications, which do not require large
elongations. In the paper a quasi-elastic behaviour, meaning a frequency
independent Young's modulus, is found for low strains and for the inves-
tigated range of frequencies (10 to 100 Hz). A closer investigation of the
temporal response shows that viscoelastic e�ects increase with strain and
with frequency as expected. It was observed that, when a sinusoidal exci-
tation is applied, the response is a slightly distorted wave which contains
high harmonic components. The number and amplitude of these compo-
nents increase with frequency and strain. These implications are to be kept
in mind when designing a sensor working in dynamic conditions. The paper
also reports on the stress-relaxation time of the �ber to a constant strain.
Time constants of about 5 and 6 seconds are reported for excitation and
relaxation, respectively.
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3.5 Polymer optical �ber Bragg grating sensors

The �nal goal of the project was to demonstrate sensors. The feasibility of
temperature and strain sensors has already been shown in the previously
described papers, with high sensitivities and linear responses.

3.5.1 Temperature compensated strain sensor

One of the problems when working with Bragg grating sensors is the simul-
taneous sensitivity to more than one parameter, in particular environmental
ones. If it is also considered that POF FBGs show a high temperature sen-
sitivity, which is positive in the case of using them as a temperature sensor,
but not when temperature 
uctuations are not the desired target of the
measurement, and if considered that PMMA has high water a�nity and
consequently humidity sensitivity, which again is an advantage only if the
sensor is made to sense humidity, an independent measurement of, for ex-
ample, strain could become quite complicated in a real situation. InPaper
5 we show a temperature compensated strain sensor (the sensor compen-
sates also for humidity, since the two gratings are exposed to the same
environment, but since no independent humidity compensation is shown,
this is not stated). The compensation technique is the use of two gratings
written next to each other, only one of which is subject to strain.

3.5.2 Humidity insensitive strain sensor

As already mentioned, the method described inPaper 5 should compen-
sate for humidity as well, nevertheless the possibility of having a sensor
that is insensitive to humidity would reduce one of the problematic vari-
ables of sensors working in unstable environments. For this reason a hu-
midity insensitive strain sensor is reported inPaper 8 . The insensitivity is
achieved through the choice of material, TOPAS. Opposite to PMMA that
has a strong and linear dependence to humidity, and is a good candidate
for humidity sensors [84], TOPAS presents a 50 times smaller response.
Sensitivities of 0.26 pm/% at 850 nm and -0.59 pm/% at 1550 nm were
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measured, which make it almost insensitive to this factor.

3.5.3 Accelerometer

Some of the bigger advantages of optical sensors over conventional ones are
given by their insensitivity to electro-magnetic �elds, atmospheric interfer-
ence and to the capability of multiplexing. These reasons bring interest on
optical sensors for covering the areas conventional sensors would not work
in [85].

The main application of mPOF FBGs studied and developed during
the Ph.D. is an optical accelerometer. Its development was achieved by
merging the various techniques described previously in this work. A silica
FBG based accelerometer was developed by the partner companyBr•uel &
Kj�r Sound & Vibration Measurement A/S [86]. In order to improve the
performance of the sensor the silica FBG was substituted with an mPOF
FBG. The working principle and the results are reported in Paper 9 . The
accelerometer is found to have resonance frequencies of around 3 kHz and

at frequency responses up to more than 1 kHz. Moreover the sensitivity,
dependent on the grating wavelength, improved almost 4 times compared to
the silica counterpart. A �gure of merit is used to characterize accelerome-
ters: it is the product between sensitivity and resonance frequency squared.
It was measured that the reduction of the frequency working range caused
by the �ber being more compliant was compensated by the gain in sensitiv-
ity. In fact the �gure of merit for polymer �ber based accelerometers was
found to have a higher value compared to the one of silica based accelerom-
eters. The response of the accelerometers was also measured to be linear
for accelerations up to the maximum of the measurement range (15 g).
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3.5.4 Microphone

With a similar working principle of the accelerometer, in which the accel-
eration was transduced by means of a mechanical fork, in elongation of the
Bragg grating, an optical microphone was realized. A membrane is placed
in contact with the mechanical fork, which transduces the sound pressure
into an elongation of the grating. Sound frequency and pressure amplitude
can then be detected in the form of a wavelength shift.

The realized microphone is shown in Fig. 3.5. The interrogation system
used is the same as for the accelerometer and consists of an I-MON 850-
FW ( Ibsen Photonics). The Bragg grating used was realized with the UV
phase mask technique. It was written in a PMMA three rings mPOF. The
resonance wavelength is in the 850 nm wavelength window, where the fast
electronics allows detection of audio frequencies. The grating length is just
above 4 mm.

Figure 3.5: Optical microphone based on mPOF FBG.
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The microphone was tested as proof of concept with a calibrator. The
calibrator produces a sound pressure at a single frequency: 1.01 kHz. The
FFT of the wavelength shift was recorded with the calibrator o� and on,
respectively. The result is shown in Fig. 3.6.

Some noise contributions appear in the situation of no sound pressure
applied as well as with sound pressure. They were found to be due to
the electronics and to the �tting software. To test the functioning of the
optical microphone for detecting and recording a human voice, a simple
voice message was recorded. For the test the distance from the microphone
was about 30 cm, and a normal conversation voice loudness was used. In
Fig. 3.7 the recorded time trace of the wavelength shift for the sentence:
\A good weekend to all of you" is reported. The measured wavelength
shift can then easily be used to play back the recorded audio using simple
software and a speaker.



34 Chapter 3. Thesis contributions

(a) Calibrator o�

(b) Calibrator on

(c) Calibrator o� (d) Calibrator on

Figure 3.6: FFT of the FBG wavelength shift before ((a) and (c)) and after
((b) and (d)) turning on the calibrator. Figures (c) and (d) are a zoom of
the frequencies around 1 kHz.



3.5. Polymer optical �ber Bragg grating sensors 35

0 0.5 1 1.5 2
855.7805

855.781

855.7815

855.782

Time (s)

W
av

el
en

gt
h 

(n
m

)

Figure 3.7: Detected wavelength shift for the sentence: \A good weekend
to all of you"





Chapter 4

Conclusions

In this thesis the development of �ber Bragg �ber sensors in microstruc-
tured polymer optical �bers was investigated and demonstrated from the
�ber fabrication to the sensor testing. A discussion on a process that goes
from manufacturing the �bers, handling them, writing gratings in di�er-
ent �bers and at di�erent wavelengths, characterizing the �bers and the
gratings to realizing and testing the sensors was presented.

More speci�cally, the optimization of the hot blade cleaving technique
for polymer �bers made of PMMA and TOPAS was presented. A �ber
cleaver was built. It allows to have repeatable high quality cleaves and
within a very short time. A qualitative analysis based on image recognition
was presented and used to determine the optimum cleaving parameters by
the minimization of the cleaving induced core shift. An optimum temper-
ature of both �ber and blade of 77:5 � C for PMMA and 40 � C for TOPAS
was found, respectively. The use of a thin blade with a 
at edge showed to
improve the quality of the cleaved �bers.

A UV writing facility was implemented. Bragg grating writing with
the phase mask technique was done in step index polymer �bers and in
microstructured polymer optical �bers made of PMMA and TOPAS. The
inscription of Bragg gratings in annealed POF �bers is also reported and
the performance of such gratings is compared to that of gratings in non-

37
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annealed �bers. An improvement in both thermal and strain performance
is reported and in particular an improvement of about 15� C of the linear
working range with no hysteresis, and with a maximum working temper-
ature of 75� C is reported. The strain performance has been improved by
about 4 percentage points, bringing the hysteresis free regime from 3% to
almost 7%.

Bragg grating writing with a bandwidth below 0.3 nm has been achieved
in the lower loss region of 850 nm in both step index and microstructured
PMMA polymer optical �bers. The strain sensitivity of such �ber Bragg
gratings was measured to be 0.71 pm/�" and it was compared to that
of gratings written in the same �bers, but for a resonance wavelength at
1550 nm, and the strain sensitivity was found to be 1.3 pm/�" .

The possibility of writing gratings in TOPAS �bers at both 1550 nm
and 850 nm was also demonstrated. The temperature sensitivity of the
�ber was measured to be -36.5 pm/� C, which is opposite in sign to what
was previously reported for this material [87], indicating a possible error in
the previously reported result.

A fabrication technique for tuning the wavelength of the Bragg grating
by still using the phase mask technique has been demonstrated. The tech-
nique consists in having the �ber in an elongated state during writing, so
that when, after writing, the �ber is released the �nal period will be shorter
resulting in a lower Bragg wavelength. The tunability of the gratings was
demonstrated up to 12 nm due to the high elasticity of the �ber. This tech-
nique was used to controllably inscribe multiplexed gratings on the same
�ber. The possibility of having two close gratings in the same �ber was
used to demonstrate temperature compensated strain measurements.

Other than the more commonly used UV phase mask technique, grating
writing was demonstrated with the direct writing technique. A �ber was
designed and fabricated for this purpose. Writing of a 4th order grating
at a resonance wavelength of 1520 nm has been reported. This is the �rst
demonstration of this technique in polymer �bers.

Mechanical characterization of polymer �bers from a dynamic strain
point of view was performed. The dynamic Young's modulus of PMMA
�bers was measured and it was found to be constant at least for frequen-
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cies from 10 to more than 100 Hz, showing negligible viscoelasticity for
a strain level of 0.28%. The study of single frequency excitation showed
a response of the stress in phase with the applied elongation, again con-
�rming a small loss component due to viscoelasticity for both PMMA and
TOPAS. However, high harmonic frequency components can be observed,
and they increase in strength with frequency but in particular with strain
for both materials. A stress relaxation experiment with a stress of 2.8%
was also reported for PMMA and time constants of about 5 and 6 seconds
for elongation and release, respectively, were measured.

A TOPAS based Bragg grating was used to demonstrate a humidity
insensitive sensor. The humidity sensitivity of TOPAS FBGs was mea-
sured with gratings at both 850 and 1550 nm. The measured sensitivity is
0.26� 0.12 pm/% in the 850 grating and -0.59� 0.02 pm/% in the 1550 nm
grating. The results take more value when considering that temperature
variation of 0:3 � C could give a higher shift of the maximum variation mea-
sured. Moreover if compared to the sensitivity to humidity of PMMA,
TOPAS is more than 50 times less sensitive to this factor.

Optical accelerometers were demonstrated and characterized. Ac-
celerometers working with either 850 nm or 1550 nm gratings were reported.
For both, a resonance frequency of about 3 kHz is measured and a 
at fre-
quency response for frequencies over 1 kHz is shown. The accelerometer has
a sensitivity of 19 pm/g when using a 1550 nm grating and 7.6 pm/g when
the grating has a resonance wavelength of 850 nm. In both accelerometers
the �gure of merit (sensitivity times resonance frequency squared) is higher
than the corresponding accelerometer based on silica �ber and the same
Bragg wavelength.

An optical microphone based on a 850 nm mPOF FBG has also been
built. The response to a calibrator and a voice recording have been shown
as proof of concept.
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4.1 Discussion and outlook

The results achieved and the technological improvements show an increas-
ing possibility for polymer optical �ber sensors and in particular for those
using microstructured �bers. Nevertheless polymer �ber optics is still a
young �eld and has important issues to be solved before it can reach full
potential and break into the industry market. The �rst issue is given by
the high loss of �bers made of polymers. Even if for sensing applications
only a short section of �ber is required, the implications of not being able
to have an all-polymer �ber system complicates the picture. The necessity
of gluing polymer to silica �bers introduces extra loss and creates stability
and robustness issues. Another problem with handling is given by the lack
of knowledge and technology for people who don't work with polymer �bers
on a regular basis. This factor limits development and interest towards ap-
plications that could bene�t from using polymer �bers, because the experts
in the speci�c application are not used to handling the �bers. For these
reasons, combined with development and improvement on the �nal result,
i.e. the sensors, and with continuous e�orts in trying to achieve lower loss,
a development of the basic working technology in order to make it e�ective
and accessible to everybody would be necessary. Although �ber design and
drawing is at the moment quite reliable and repeatable, the process is still
a�ected by small factors that sometimes compromise a successful drawing.
These factors are not of real interest in this discussion, but the possibility
of improving this aspect would de�nitely help to move the production of
sensors towards commercialization.

Regarding grating writing, the main issues for the phase mask technique
is the time necessary to write gratings, even if doping techniques have al-
ready demonstrated time reduction [41]. In order to make POF FBGs ready
for mass production the writing time should be reduced even more. De-
spite this the results are very promising in terms of grating quality. Further
improvements on the grating strength could also be important to address,
for example for multiplexing (propagation along more �ber is needed) and
to increase the performance of dynamic sensors which require short acqui-
sition time to have a larger dynamic range. Bene�ts could come from writ-
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ing gratings at wavelengths where the �bers have minimum loss. For this
purpose the phase mask technique starts to be inadequate, so considering
alternative techniques like interferometer con�gurations could not only lead
to the achievement of this goal but also to the realization of a more 
exible
technique. Flexibility is given also from a technique such as direct writing.
The technique has several disadvantages compared to the UV writing (e.g.,
higher order gratings, alignment complexity, limitation in minimum period
of the modulation and necessity of a special microstructure) but the few
advantages make it unique, interesting and probably worth more investi-
gation: �rst of all the possibility of writing gratings in non-photosensitive
�bers, then the extremely short time necessary for writing and �nally the

exibility in grating design.

The viscoelastic nature of polymer poses some limitations in the appli-
cations where the bigger advantages of polymer �bers seem to be. However
the possibility of tuning mechanical properties (such as Young's modulus,
yield strain and failure strain) with the fabrication parameters such as ten-
sion and the possibility of designing the applications with these limitations
in mind, for example low strain if high dynamic range is required, will still
allow to exploit the bene�ts given by this material.

Although sensors made in polymer �bers are only in a preliminary re-
search stage and they may need extra tests especially on stability and long
term life time, the results achieved show a big potential for practical appli-
cations. Probably more �eld tests could give a real idea of the potential.
Moreover tests on embedding the sensors in composite materials and re-
search towards polymer �bers made of materials that can withstand higher
temperatures and that are already existent could have a big impact on the
smart structures sector.
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We fabricated an electronically controlled polymer optical � ber cleaver, which uses a razor-blade guillotine
and provides independent control of � ber temperature, blade temperature, and cleaving speed. To determine
the optimum cleaving conditions of microstructured polymer optical � bers (mPOFs) with hexagonal hole
structures we developed a program for cleaving quality optimization, which reads in a microscope image
of the � ber end-facet and determines the core-shift and the statistics of the hole diameter, hole-to-hole
pitch, hole ellipticity, and direction of major ellipse axis. For 125 � m in diameter mPOFs of the standard poly-
mer PMMA we found the optimum temperatures to be 77.5 °C for both blade and � ber. For 280 � m in diam-
eter mPOFs of the humidity insensitive polymer TOPAS® (grade 8007) the optimum temperature was 40° for
both blade and � ber. A 100 � m thick � at-edge blade was found to minimize the core-shift by the cleaving to
only 298 nm or 5% of the pitch for the PMMA mPOF at the optimal temperature.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The � rst microstructured Polymer Optical Fiber (mPOF) was fabri-
cated in 2001 by van Eijkelenborg et al. at the Optical Fibre Technol-
ogy Center (OFTC) in Sydney, Australia [1] . Since then mPOFs with a
large variety of hole structures and thus speci � c optical properties,
have been fabricated at the OFTC, including endlessly single-mode
mPOFs [2…3], multi-mode graded-index mPOFs (GImPOFs) [2,4] ,
hollow-core photonic bandgap guiding mPOFs [2…3,5], highly bire-
fringent mPOFs [2] , twin-core mPOFs, [2] , rectangular core mPOFs
[4] , and solution-doped mPOFs [3,6] . All these mPOFs have been
made of conventional PMMA, which is commercially available in
optical-grade quality granulates and low industry-grade solid rods.

Multi-material mPOFs with layers of PMMA and polystyrene or
polycarbonate, have been used for making bandgap air-guiding
mPOFs in the form of hollow polymer Bragg Fibers [7] . Other mate-
rials, such as cellulose butyrate, has been used to fabricate multi-
functional biodegradable mPOFs [8] .

Recently TOPAS® Cyclic Ole� n Copolymer (COC) is also increas-
ingly being used [10…14] due to its unique properties for localized
biosensing [10…11], humidity insensitive sensing [12…13] , and low-
loss terahertz (THz) guidance [14] . Unfortunately, like optical-grade
PMMA, TOPAS® COC only comes in granulate, which has to be pro-
cessed. Nevertheless, TOPAS® and PMMA are together now the pri-
mary materials for mPOF fabrication.

Applications of mPOFs were initially hoped to be wide-ranging
due to a number of advantageous material properties of polymer
over silica in biosensing and strain sensing, the shear number of poly-
mers to choose from, and the fact that polymers are drawn at low
temperature, typically below 250 °C, making it possible to dope poly-
mer � bers without destroying the dopant [6] . However, the high loss
of PMMA (and TOPAS®) outside the visible wavelength regime and
issues with splicing and cleaving, have severely hindered their appli-
cations. At present the main applications of mPOFs are within biosen-
sing [10…11,15…17] and Fiber Bragg Grating (FBG) based strain
sensing [12…13,18…23] , even though early work has been done on
Long Period Gratings (LPGs) in mPOFs also [24…25] . Polymers, such
as PMMA and TOPAS®, are intrinsically photosensitive and thus
mPOFs require no doping before an FBG can be UV-written into
them, typically around 325 nm [12,18] . In contrast, silica � bers typi-
cally require Ge-doping and hydrogen loading, before an FBG can be
UV-written into them. For an excellent review of polymer � ber FBGs
we refer to [20] and for an excellent overview on the mPOF technol-
ogy we refer to [26…27].

The advantage of mPOFs in biosensing depends on the material.
PMMA is for example highly biocompatible and thus biomolecules
may be immobilized directly onto PMMA [19] , in contrast to silica,
which requires de � nition of several intermediate layers [28…29] .
TOPAS® does not allow direct binding of biomolecules to it, but it en-
ables one to use special UV-activated linker molecules to de � ne local-
ized biosensing capture layers in well-de � ned sections along the � ber
[10…11] . Common to all polymers is that they remain � exible and do
not produce shards when damaged, which makes them suitable also
for in vivo applications.
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Within strain sensing polymer � bers have a clear advantage over
silica � bers because of their low Young's modulus and their ability
to be stretched much more than silica without breaking [20,27…28].
PMMA mPOFs have for example a Young's modulus of 2 …3 GPa,
depending on the drawing conditions [30,9] , in contrast to the
about 72 GPa of silica [26] . This means that much higher sensitivities
can be achieved with mPOFs, if one can live with their lower operat-
ing temperature and higher loss [20] . Exactly due to the high loss of
PMMA around 1550 nm there has been a strong push towards writing
FBGs for operation around 850 nm [21,23] , where CMOS components
are available.

One of the major issues with mPOFs is their handling, such as
cleaving and connectorization to silica � bers and other polymer � -
bers. Today, gluing is typically used to connect polymer � bers to a
low-loss silica � ber in sensor applications, but care has to be taken
when using mPOFs, in order to avoid too much glue going into the
holes.

Canning et al. were the � rst to report on mPOF cleaving in 2002,
where they used a 193 nm ArF laser to cleave 200 � m in diameter
PMMA mPOFs, which had multiple cores distributed in a random
air…polymer structure with thin bridges, surrounded by a thick solid
region [31] . They found that ideally the rep. rate should be below
2 Hz to avoid damaging the � ber end-facet due to thermal build-up
because of too long exposure to UV light. However, the cleaving
time scales with the rep. rate and it was found that 4 Hz and an inten-
sity of 1.6 J/cm 2 gave satisfactory cleaves in a reasonable time [31] .
UV laser cleaving was again used several years later to cleave 400 …
500 � m in diameter highly porous PMMA mPOFs with high air- � ll
fraction and no outer solid region [32] . This study con� rmed that
UV laser cleaving gave clean end-facets and it showed that rotating
the mPOFs by 3.6°/s during the cleaving process signi � cantly im-
proved the end-facet [32] . In this later study a 20 Hz rep. rate was
used to shorten the cleaving time to about 270 s, but as expected
this high rep. rate leads to thermal build-up and degrading of the
� ber end-facet [32] .

In view of the results of [31…32] it appears that UV laser cleaving
consistently gives good cleaves of PMMA mPOFs with even the most
complicated hole structures. Focussed Ion Beam (FIB) milling can
also be used to cleave PMMA mPOFs [32] and solid single-mode
PMMA � bers [33] and provides even better end-facets. However, FIB
milling is very expensive and time-consuming, with reported cleav-
ing times of 17.5 h [32] .

Clearly price, portability, and cleaving time speak against UV laser
cleaving and FIB milling, as was realized early on by Law et al., who
instead developed the hot razor-blade/hot- � ber cleaving technique
in a series of papers in 2006 [34,30,9] . In all these investigations the
studied � ber was a PMMA GImPOF, typically with a diameter of
around 400 � m and a thick solid layer around the hole structure.
The GImPOF has a range of hole sizes, which makes it ideal for the
testing of cleaves.

In the � rst work of Law et al. they found that the PMMA used in
their GImPOF, had a brittle-to-ductile phase-transition close to
60 °C, which prevented good cleaves to be obtained above 60 °C
[34] . The brittleness of PMMA is known to depend strongly on its vis-
cosity molecular mass (M v) with brittle behaviour occurring for
Mv b104 and ductile behaviour for M v >10 5, where the particular
grade of PMMA used by Law et al. had M v =7.2×10 4 [34] . The cleav-
ing dynamics of PMMA is quite different in the brittle and ductile re-
gions, with crack front propagation providing the cleaving in the
brittle region and interfacial shearing by the blade itself providing
the cleaving in the ductile region. Given that the mPOF hole structure
forms a crack-stopping structure, it is not surprising that good cleav-
ing could not be obtained above 60 °C.

Law et al. � rst used a very simple hand-operated cleaver to cleave
580 � m in diameter GImPOFs and found that above 60 °C acceptable
cleaves could be obtained with the best and most consistent results

being for a � ber temperature of 85 …95 °C and a blade temperature
of 50…80 °C [34] . Another cleaver was then built, which had indepen-
dent control of the cleaving speed, the position of the blade, and the
� ber and blade temperature. A subsequent study of a different
400 � m in diameter GImPOFs (drawn at 220 °C and 45 g tension)
with a blade temperature of 60 °C showed that the optimum � ber
temperature had now increased to 70 …80 °C [34] . It was also found
that an equilibration time of at least 40 s should be used between
placing the � ber on the plate and cleaving it, with 60 s being used
in the study [34] . The condition of the blade was found to be extreme-
ly important, with the optimum being to move the blade between
each cut to use a clean pristine section for each cleave [34] . Finally
the best cleaving speed was found to be below 0.5 mm/s, with the
necessary speed increasing with temperature due to the softening
of the � ber [34] .

Further studies of identical PMMA GImPOFs showed in more de-
tail the nature of the damage done by the cleaving and considered
the correlation between the drawing conditions, the mechanical
properties, and the optimum cleaving temperature [9,30] . Measure-
ments on solid � bers of the same PMMA showed that the room tem-
perature Young's modulus increased with increasing draw tension
(decreasing temperature) and that the loss modulus had peaks at
two characteristic temperatures, which both increased with increas-
ing tension (decreasing temperature) [9,30] . The medium tension
GImPOF was shown to have an optimum cleaving temperature close
to the � rst peak in the loss modulus and it was conjectured that this
correlation was in fact a general phenomenon [9,30] .

The hot-blade/ � ber cleaving technique was also used for the
cleaving of 110 � m in diameter commercial single-mode solid step-
index polymer � bers of PMMA with a slight doping of polystyrene
in the core. From visual inspection of the roughness of 1275 cleaves
it was found that in addition to the optimum about 80 °C of both
blade and � ber found by Law et al., a region of even better cleaves
existed for � ber temperatures decreased to 30 …40 °C [33] . Whether
this different optimum region is due to the � ber being doped with
polystyrene, due to the � ber being made from a different PMMA or
drawn at different conditions, or due to the � ber being all-solid,
thereby only allowing end-facet roughness as a measure of the qual-
ity of a cleave, is uncertain.

Not all mPOF hole structures allow cleaving with the hot-blade/
� ber technique. It has for example been reported that highly porous
mPOFs with a high air- � ll fraction and almost no solid material
around the microstructure, cannot be cleaved satisfactorily with the
hot-blade/ � ber technique [32] . These exotic � bers are, however,
only of interest for THz guiding and not for � ber-optical sensing or
optical transmission � bers. Other failed cleaving attempts of these
highly porous THz � bers include using a semiconductor dicing saw
[32] .

The conclusion to make from the studies of PMMA mPOF cleaving
with the hot-blade/ � ber technique is that the optimum cleaving pa-
rameters depend signi � cantly on the material properties of the
drawn � ber, and thus also on the speci � c drawing conditions and
the � nal hole structure. In PMMA mPOFs the optimum cleaving tem-
perature was thus just above the brittle-to-ductile phase transition.
However, what are the optimum cleaving parameters of the emerging
TOPAS® mPOFs for example and can one further optimize the blade?

Only one study has so far been published on the cleaving of
TOPAS® mPOFs, which was on the highly porous mPOFs for THz guid-
ing [32] . The authors � nd that neither the hot-blade/ � ber technique,
nor FIB milling or the semiconductor dicing saw, allows good cleaving
of 400…500 � m in diameter highly porous TOPAS® mPOFs [32] . They
further argue that this is due to the low glass transition temperature
(Tg) of TOPAS®. We would like to note that the TOPAS® used in
[32] is in fact grade 8007 with T g=80 °C, whereas other grades
have glass transition temperatures higher than that of standard
PMMA, such as TOPAS® grade 6017 with Tg=180 °C.
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Here we present a thorough study of the cleaving of TOPAS®
mPOFs with a triangular hole structure surrounded by a thick solid re-
gion. Such mPOFs can easily be made single-mode and even endlessly
single-mode, which is why they have the best prospects for applica-
tion in, e.g., � ber-optical sensing. The cleaving of such TOPAS®
mPOFs has not been considered before. We further study the cleaving
of in-house fabricated mPOFs made of industry-grade PMMA, in par-
ticular considering how the blade can be improved.

All studies of mPOF cleaving have so far relied on visual inspec-
tion. In order to have a repeatable process and minimizing the impact
of the human eye, we developed a program for cleaving quality opti-
mization, which reads in a microscope image of the � ber end-facet
and determines the statistics of the hole diameter, hole-to-hole
pitch, hole ellipticity, and direction of major ellipse axis. The program
also calculates the core-shift relative to the � ber center imposed by
the cleaving, which is an important parameter for minimizing the
coupling and splicing/gluing loss.

For repeatable cleaving we fabricated the electronically controlled
cleaver shown in Fig. 1, which provides independent control of � ber
temperature, blade temperature, and cleaving speed, just as the
cleaver originally used by Law et al. [9,30,34] .

Investigating several different blades of different thicknesses and
shapes, we � nd the optimum blade to be a custom-made � at-edge
blade with a thickness of 100 � m, which was the smallest thickness
we had available.

For 125 � m in diameter mPOFs of the standard polymer PMMA our
results show that the optimum cleaving temperature is 77.5 °C for
both blade and � ber, thereby con � rming that the temperatures
found by Law et al. also hold for mPOFs made of industry-grade
PMMA with the standard telecom diameter 125 � m. With the
100 � m thick � at-edge blade the core-shift due to the cleaving had
also its minimum at the optimum temperature, which was only
298 nm, or 5% of the pitch.

For 280 � m in diameter TOPAS® mPOFs (grade 8007) we found
the optimum cleaving temperatures to be 40 °C for both blade and
� ber.

2. mPOFs under investigation

In our investigation we use the two mPOFs with hexagonal hole
structures shown in Fig. 2: a PMMA 3-ring � ber and a TOPAS® 2-
ring � ber. The PMMA � ber has been drawn in a two-step process
from a D=6 cm in diameter preform, with 3 rings of holes with a
hole-to-hole spacing, or pitch, of � =6 mm and a hole diameter of
d=3 mm drilled into it. The preform was drawn to a 5 mm in diam-
eter cane. The cane was then sleeved with two PMMA tubes, achiev-
ing a secondary preform with a 2 cm outer diameter. The secondary
preform was drawn to a 125 � m � ber (standard telecom diameter)

with average hole diameter d=2.76 � m and average pitch
� =5.92 � m (see Fig. 5).

The � ber has been drawn at 30 m/min with a set-temperature of
290 °C and a tension of about 24 g. According to the de � nition of
low (5 …8 g), medium (65 g), and high tension (130 …150 g) used in
[9] this places our � ber in the mid-low regime and thus it should
have a lower Young's modulus and require a higher cleaving speed
and lower cleaving temperature than the 0.5 mm/s and 80 °C found
for the medium tension GImPOF used in [9,30,34] .

The TOPAS® mPOF has been drawn with the same procedure, but
starting from a 2 ring preform (D=6 cm, d/ � =3/6 mm) of grade
8007 TOPAS® and using a 3 cm secondary preform. The secondary
preform was drawn to a 280 � m � ber with 8.4 � m average pitch and
2.9 � m average hole diameter.

The TOPAS® mPOF has a hole diameter to pitch ratio of d/ � � 0.35,
which is well below the threshold of 0.42 that ensures endlessly
single-mode operation of microstructured optical � bers of arbitrary
base material [35] . The PMMA mPOF has a hole diameter to pitch
ratio of d/ � � 0.47, which is just above the cut-off and thus it becomes
multi-moded below a short wavelengths cut-off, which for d/ � � 0.47
is approximately � cut-off � 0.2� =1180 nm [36] .

3. Cleaving parameters

All cleaves presented here have been made with a blade speed of
5.6 mm/s and with an equilibrium time (time allowed to the � ber to
reach thermal equilibrium) of about 20 s before cleaving the � ber.

The blade speed is over 10 times higher than the maximum of
0.5 mm/s used for 400 � m GImPOFs in [9,30,34] , re� ecting the com-
parably low tension and high temperature used in our drawing, as
discussed in Section 2. At low speeds the 5 � m step length of our
motor produces steps on the end-facet of the � ber, while this is not
a problem at 5.6 mm/s. We note that in fact Law et al. also observed
that a high speed was good when cutting at temperatures of 70 ûC or
more [34] .

The equilibrium time is 3 times less than the 60 s used in [30,34] ,
which is mainly because our � bers are about 3 times thinner with less
holes and thus reach thermal equilibrium faster.

With a � xed cleaving speed and equilibrium time we focus on de-
termining the optimum temperature of � ber and blade for cleaving
TOPAS® and PMMA mPOFs. Furthermore we investigate the in � uence
of blade thickness.

In order to judge the quality of a cleave a code for analyzing the
end-facet images of the cleaved � bers has been implemented in
Matlab, which analyzes the outer � ber shape and the statistics of
the hole structure. The program � ts the contours of all the holes in

Fig. 1. Polymer � ber cleaver with independent electronic control of cleaving speed and
temperature of blade and � ber.

Fig. 2. Fibers under investigation: (left) PMMA 125 � m mPOF with 3 rings of holes with
average pitch � =5.92 � m and average hole diameter d=2.76 � m; (right) TOPAS®
280 � m mPOF with 2 rings of holes with average pitch � =8.4 � m and average hole
diameter d=2.9 � m (right).
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the image with ellipses using the least squares approximation. From
the � t we obtain the desired parameters of each ellipse: the length
of the major and minor axes (a and b in Fig. 3), the position of the
center and the main axis direction with respect to a given direction,
which we choose as the cleaving direction ( � in Fig. 3). From now
on the main axis direction is also denoted the hole direction.

We de� ne the ellipticity as the ratio between the major and minor
axes, a/b. A circular hole will have an ellipticity of 1, whereas an ellip-
ticity larger than 1 implies a deformed hole. The de � nition of the dif-
ferent parameters is shown in Fig. 3. The hole diameter is calculated
as the arithmetic mean of the ellipse axes (a+b) /2. The average
hole diameter is then calculated as the arithmetic mean of all the
hole diameters. The pitch is calculated as the distance between the
centers of two adjacent holes. The � ber average pitch is then calculat-
ed as the arithmetical average between all the pitches.

The same elliptical � t is also done for the outer circumference of
the � ber with the � ber diameter being calculated in the same way
as the arithmetic mean of the ellipse axes. With this data we will
also be able to calculate the shift of the microstructure (or core-
shift) because of the cleaving.

We � nally note that the use of the numerical code for cleaving in-
spection is limited to a parameter regime in which the hole structure
is intact after cleaving (no broken bridges), so that it can be analyzed.

4. Cleaving analysis —good cleave

In Fig. 4 we show an example of two good cleaves of the same
� ber, but with two different cleaving directions with respect to the
hole structure orientation. The cleaving direction is determined by
the � ne line structure on the bottom left side of the � ber images,
where the blade enters, because this is a signature of the blade, as
also observed in [34] . Both cleaves have been made with a tempera-
ture of 77.5 °C for both blade and base using a standard 130 � m
thick wedge-shaped blade (see Fig. 8).

Visually both cleaves seem to be equally good and corresponding-
ly we see that the spread in the pitch (84 counts) and the hole diam-
eter (36 counts) is small. From the ellipticity graph it is found that the
holes are almost circular after the cleave, with an average ellipticity of
only 1.0421 in cleave A and 1.0602 in cleave B. Given that the holes
are almost circular in such a good cleave, the major and minor axes
will have almost identical lengths and thus the hole direction is
expected to � uctuate quite much and be strongly dependent on the
cleaving direction with respect to the hole structure. This is also the
case, as seen in the graphs for the hole directions.

For cleave B the hole direction seems to have some correlation
along the cleaving direction (zero degrees), with 18 holes out of 36
being in the cleaving direction ±18°. However, given the very small
average ellipticity of 1.0602, the tendency is not strong enough to
make a de� nite conclusion.

Given these parameters it appears that we can conclude that the
cleave A is slightly better than the cleave B, and that both cleaves
are very close to ideally preserving the structure.

However, in order for a cleave to be really good, it also has to re-
sult in a small separation between the center of the hole structure
(the core) and the center of the � ber, which is marked with a white
star in the images in Fig. 4. If the separation is too large, this will
lead to signi � cant coupling losses when coupling to, e.g., a commer-
cial silica � ber with a nicely centered core. This shift has not been
considered in the hitherto published papers on mPOF cleaving
[9,30…34]. From Fig. 4 we � nd that the shift is 3.5308 � m for cleave
A and 3.8161 � m for cleave B.

For both cleaves A and B the separation is thus a bit more than half
a pitch in the opposite direction to the cleaving direction, which
means that neither cleave A, nor cleave B, in reality can be character-
ized as good, even though their average ellipticity was close to 1.

In Fig. 5 we investigate the dependence of the shift on the cleaving
direction by considering cleaves with near optimal temperatures
(77.5 °C for both blade and base) made with 4 different directions.

The shifts are measured to be 2.7272 � m, 3.3341 � m, 2.2306 � m,
and 3.508 � m, clearly demonstrating that the amount of shift depends
on the cleaving direction with respect to the hole structure. We will
look more into this shift when considering a •bad cleaveŽ and when
optimizing the blade and cleaving parameters in the following.

5. Cleaving analysis —bad cleave

In Fig. 6 we show the result of a bad cleave C of the PMMA mPOF,
comparing the statistics of the ellipticity and hole direction with that
of the good cleave A. Cleave C has been done with the same parame-
ters as cleave A, except that we have decreased the temperature to
60 °C for the blade and 70 °C of the base.

From the image we clearly see how the microstructure has now
been squashed by the blade, with the core (red star) being shifted
by 8.3633 � m or about 2 pitches opposite to the cleaving direction
(4 times the shift for cleaves A and B). The average ellipticity has in-
creased to about 1.7086, with even the most circular hole of the
cleave C being more elliptical than any hole of for cleave A. The
holes, are now concentrated around 90° with respect to the cleave di-
rection, which, given the high ellipticity, means that the � ber has
been squeezed by the blade. These observations imply a quite big
change in the � ber structure itself and leads to the conclusion that
the cleaving is •badŽ.

Let us look a bit closer at the huge shift of the core observed for
this bad cleave C. In Fig. 7 we show a microscope image taken from
the side of the PMMA mPOF and cleave C. Here we see that the bend-
ing of the microstructured region actually starts about 30 � m into the
� ber. Due to the two-step sleeving process used in the � ber drawing
(5 mm cane sleeved to a 2 cm secondary preform) the central part in-
side the white regions in Fig. 7 corresponds to the original cane.

From Fig. 7we see that it is not the whole cane region, but only the
air-hole microstructure that is being squeezed. This should mean that
the amount of shift is depending on the cleaving direction with re-
spect to the symmetry of the hole structure, which was also what
we observed in Fig. 5.

6. Blade thickness and shape

The best cleaving conditions for PMMA mPOFs have been found to
be in the temperature regime where the material has a ductile behav-
ior, just above the transition temperature to being brittle [34] . In this
situation the blade is continuously in contact with the � ber material
and is separating the � ber sides while passing through it. The � ber
gets, consequently, moved apart following the blade shape, which
gives the � ber end-facet about the same angle as the blade. The con-
tinuous contact and friction between blade and � ber is also

Fig. 3. De� nition of elliptical � t: a is the major axis, b the minor axis, the dashed line
represents the cleaving direction, and � is the angle between the main axis (hole direction)
and the cleaving direction.
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responsible for inducing the observed shift of the structure in the
cleaving direction. In this section we therefore investigate the in � u-
ence of blade thickness and shape on reducing the contact and
friction.

In Fig. 8 we show cleaves of the same piece of an old PMMA mPOF
which had too many holes in the cane-sleeving tube interface and
was thus never used. We have � xed the cleaving parameters to
80 °C for both blade and base, but used blades of different shape
and thickness (130, 200, 250, and 300 � m), given in the respective
insets.

The � rst cleave, shown in Fig. 8(A), is with a 130 � m thick and
470 � m long wedge-shaped blade, which thus has a tip- or wedge-
angle of 15.7°. This gave an average ellipticity of 1.28 and a core-
shift of 2.42 � m. Increasing the thickness to 200 � m gives an increased
wedge angle of 24.0°. As expected this resulted in a worse cleave with
a larger average ellipticity of 1.50 and a larger core-shift of 7.60 � m, as
shown in Fig. 8(B). The 300 � m thick and 630 � m long blade used for
the cleave shown in Fig. 8(D) has the largest wedge angle of 26.8°.
Correspondingly, the cleave is very poor.

The cleave shown in Fig. 8(C) is interesting. It is made with a
250 � m thick and 1000 � m long blade, whose wedge angle of 14.3°
is about 1° smaller than the wedge angle of the 130 � m blade and
should thus result in a slightly better cleave. As expected the average
ellipticity of 1.23 is slightly lower than the 1.28 for the 130 � m cleave.
However, the shift of 4.66 � m is much larger than the 2.42 � m
obtained for the 130 � m blade. The reason for this unexpected result
might be that the 250 � m blade is a non-standard blade with a size
of only 0.7×2.5 cm=1.7 cm 2, which is much smaller than the
2.2×3.8 cm=8.4 cm 2 of the other three blades and thus much harder
to handle in a stable manner.

In general, the tendency is that when the � ber diameter is much
smaller than the length of the wedge-shape at the tip of the blade,
then the best cleaving quality is obtained with the smallest wedge
angle.

We therefore acquired a large quantity of the custom-made blade
shown in the inset of Fig. 9, which is only 100 � m thick and has one
� at side. The length of the angled region is 700 � m, giving it a
wedge angle of only 8.1°. In Fig. 9 we show a cleave of our PMMA

Fig. 4. Two cleaves of the PMMA mPOF made with the same settings (77.5 °C for both blade and base, 130 � m thick wedge-shaped blade) but with a different direction (black
arrow) with respect to the hole structure. Cleaves A (left) and B (right) are represented by solid and dashed lines, respectively. The x-axis is divide d into bins and the y-axis
shows the number of counts with a given parameter value in the bin. The curves are then the center of the bins connected with a line. In the pitch, hole diam eter and ellipticity
graphs the vertical lines represent average values. The white star on the images marks the center of the � ber.
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mPOF from Fig. 2, made with the new custom-made blade at the op-
timum temperature of 77.5 °C for both blade and base (see next sec-
tion). As expected the cleave is of very high quality, with an average
ellipticity of 1.0811 and a core-shift of only 298 nm, corresponding
to about 5% of the pitch.

7. PMMA mPOF —optimization

Here we present an optimization of the cleaving temperature of
the PMMA mPOF using the � ber end-facet analysis code. We used a
cleaving speed of 5.6 mm/s, an equilibration time of 20 s, and the
custom-made � at-edge blade presented in Section 6. Only cleaves

that have been considered to be acceptable after a quick visual in-
spection have been processed with the code.

The average hole ellipticity has been used as the quality criterion
for judging the cleaves. In particular a threshold of 1.1 in ellipticity
has been used to distinguish acceptable from not acceptable cleaves
and a level of 1.09 to distinguish between acceptable and optimum
cleaves. The results of this investigation are shown in Fig. 10. Accept-
able cleaves are generally achieved with a blade temperature be-
tween 70 and 77.5 °C and with a base temperature between 75 and
80 °C. The optimum temperature setting is found to be 77.5 °C for
both blade and base, which is the only one satisfying the criterion
for optimum cleaving.

Fig. 6. Cleave of PMMA mPOF with a 60 °C blade and 70 °C base temperature (same 130 � m wedge-shaped blade as for cleaves A and B). Comparison of ellipticity and hole direction
between cleaves A (solid) and C (dashed), with curves obtained as in Fig.4. The red star marks the center of the � ber.

Fig. 5. Four cleaves of the PMMA mPOF made with the same parameters as cleaves A
and B (77.5 °C for both blade and base), but different orientations. The white ellipse
is the program � t to the contour and the cross is the center of the � tted ellipse. Fig. 7. Microscope image from the side of cleave C of the PMMA mPOF, showing a core-

shift of 8.3633 � m starting about 30 � m inside the � ber.
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For the optimum temperature setting the cleave and its statistics
are shown in Fig. 9, from which we � nd an average ellipticity of
1.0811. This is actually larger than the average ellipticities of 1.04
and 1.06 observed in Fig. 4 for cleaves A and B with the 130 � m
blade with a larger wedge angle than our supposedly better � at-edge
100 � m blade. However, all these ellipticities are so low that the quality
of the microscope focusing becomes a determining factor. A bad focus
will, e.g., give rise to shades that will be picked up as ellipticity changes
by the program. If we inspect closely cleaves A in Fig. 4 and the opti-
mum cleave in Fig. 9, then cleave A indeed seems to be focused better.

What makes the cleaves with the new � at-edge blade used in the
optimization better is their very small core-shift. In Fig. 11 we show
how the core-shift depends on the base temperature for a � xed
blade temperature of 77.5 °C. The graph shows a clear minimum at
the optimum cleaving settings of 77.5 °C for both base and blade,
where the core-shift is only 298 nm or 5% of the average pitch of
6.0 � m. The existence of a minimum core-shift is also apparent
when the temperature is slightly off the optimum, as seen in Fig. 11
for a � xed base temperature of 75 °C. The optimum temperatures of
the minimum correspond nicely to the transition from brittle to duc-
tile behavior of PMMA observed in the work of Law et al. [30,34] .

Fig. 8. Microscope images of the •old PMMA mPOFŽ cleaved with different blades,
whose pro � les are shown in the insets. The � bers have been cleaved with 80 °C for
both the blade and base.

Fig. 9. Microscope image of PMMA mPOF cleaved with a 100 � m thick and 700 � m long � at-edge blade at the optimum temperature of 77.5 °C for both blade and base. The statistical
graphs below the image are generated as in Fig. 4. Red vertical lines mark the average pitch 6.00 � m, hole diameter 2.91 � m, and ellipticity 1.0811.
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8. TOPAS® mPOF—optimization

We now look at the optimum cleaving temperatures of the
TOPAS® mPOF using the same blade, cleaving speed, and equilibra-
tion time as for the PMMA mPOF. The properties of TOPAS® grade
8007 are much different than PMMA. For example, the glass transi-
tion temperature is only T g=80 °C (see www.ticona.com ). It is thus
to be expected, that the optimum cleaving temperatures are lower
than those for the PMMA mPOF.

The cleaving results are shown in Fig. 12, from which we see that the
optimum temperature is 40 °C for both the blade and the base. A range of
temperatures between 25 and 40 °C, for both the blade and the base, can
be used to obtain acceptable cleaves. For this analysis the ellipticity value,
below which a cleave has been considered acceptable, is 1.21, while op-
timum cleaves have an ellipticity below 1.19. At 40 °C, for both the blade
and the base the average ellipticity is the lowest at 1.16. Here the core-
shift is 4.288 � m, which is 51% of the average pitch 8.4 � m (see Fig. 2).

One more observation about TOPAS® grade 8007 can be made:
being so soft it is really easy to create scratches on the end-facet of
the � ber, which makes it more sensitive to blade imperfections and
damages. Moreover this is probably the reason for which the hole el-
lipticity is larger in TOPAS® � bers than in PMMA � bers. Other grades
of TOPAS® have higher glass transition temperatures and are thus
expected to have higher optimum cleaving temperatures.

In general the same cleaving quality variation applies to TOPAS®
grade 8007, as PMMA, which could suggest that a brittle to ductile
phase transition also exists for the TOPAS®.

The quality of the cleaves of TOPAS® � bers could be improved by
modifying the instrument (for example by using a motor with a dif-
ferent step size). In fact, until now this kind of cleaver has only
been implemented for PMMA � bers and then used for TOPAS® � bers.

9. Conclusion

In this article we have studied cleaving of 125 � m thick industry-
grade PMMA and 280 � m thick TOPAS® grade 8007 mPOFs with a
standard hexagonal hole structure. In the study we have used a statis-
tical numerical tool, which reads in an image of the end-facet of the
cleaved � ber, and provides a statistical analysis of the hole structure
and, as a novel parameter, the core-shift.

The numerical code and the variation of the core-shift, has allowed
us to identify a 100 � m wide and 700 � m long � at-edge blade as the
optimum of the blades we considered (conventional razor blades
are purely wedge-shaped). With a wedge angle of only 8.1° at the
tip, this blade provided very small core-shifts of only 298 nm or 5%
of the pitch for the PMMA mPOF and 4.288 � m or 51% of the pitch
for the TOPAS® mPOF, at their respective optimum cleaving
temperatures.

The optimum cleaving temperature was identi � ed using the code
and considering the average hole ellipticity as the quality parameter.
With the � at-edge blade the optimum temperature was 77.5 °C for
the PMMA mPOF and 40 °C for the TOPAS® mPOF, for both � ber
and blade. The settings gave average ellipticities of 1.08 and 1.16 for
the PMMA and TOPAS® mPOFs, respectively.

Fig. 11. Core-shift for cleaves in Fig. 10. Left: core-shift vs. base temperature for a � xed blade temperature of 77.5 °C. Right: core-shift vs. blade temperature for a � xed base tem-
perature of 75 °C.

Fig. 10. Cleaving quality versus blade and base temperature for cleaving of the PMMA mPOF with the 100 � m � at-edge blade at a speed of 5.6 mm/s and an equilibration time of 20 s.
Optimum cleaves have an average ellipticity below 1.09 and acceptable cleaves have an average ellipticity between 1.09 and 1.10.
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While the temperatures of 77.5 °C for acceptable cleaves for the
PMMA mPOF are within the regimes found in the original work by
Law et al. on graded-index mPOFs of optical-grade PMMA [34] , we
have now found the optimum temperatures for this type of
industry-grade PMMA mPOF and quanti � ed its structural statistics.
In particular, it was found that the core-shift had a minimum at the
optimum setting, clearly relating to the known brittle-to-ductile
phase transition of PMMA at these temperatures [34] .

The lower cleaving temperature of only 40° of the new type of
TOPAS® mPOF grade 8007 re� ects the low glass transition tempera-
ture of 80° of this particular grade, which is also the reason why the
average hole ellipticity was higher than for PMMA. The result empha-
sizes the fact the different mPOFs of different polymers require different
cleaving temperature.
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We report on a detailed study of the inscription and characterization of � ber Bragg gratings (FBGs) in
commercial step index polymer optical � bers (POFs). Through the growth dynamics of the gratings, we
identify the effect of UV-induced heating during the grating inscription. We found that FBGs in annealed
commercial POFs can offer more stable short-term performance at both higher temperature and larger strain.
Furthermore, the FBGs' operational temperature and strain range without hysteresis was extended by the
annealing process. We identi � ed long-term stability problem of even the annealed POF FBGs.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Fiber Bragg gratings have been written in many types of POFs, for
example polymethyl methacrylate (PMMA) POFs [1…14], � uorinated
POFs[15,16] , and TOPAS POFs[17] , by using various methods such as
phasemask [1…5], direct writing [6] , or a combination of phase mask
and interferometry [7…16] . 325 nm has been employed as a
mainstream wavelength for writing grating in PMMA POFs [1…5,8…
15]. Other wavelength such as 355 nm obtained from a frequency-
tripled Nd:YAG laser has been used to write grating in CYTOP � ber
developed by Asahi Glass Co. and Keio University [15,16] . On the other
hand, 800 nm femtosecond pulses from Ti:Sapphire laser or its double
frequency was mainly used for point by point direct writing [6] or
grating writing with a phasemask [7] .

However, the mechanism of index change does not appear to be
fully understood [5,13,18…20]. It is believed that more than one
process is involved in the photo-induced refractive index changes and
hence in the grating formation dynamics [18…20] . The widely
accepted point is that the principle mechanism of index change is
an increase due to the photo-induced polymerization of the unreacted
monomers [5,18…20], while laser-induced heating in the irradiated
region during the inscription may also contribute to the index change
[5] . Previous reports indicated that annealing of the POF before FBG

inscription can relieve the frozen-in stress induced by the � ber
drawing process [21] and increase the linear operation temperature
range of FBGs [22] . However, the effect of annealing on the strain
sensitivity performance was not yet considered.

Polymer optical FBGs have shown great potential for sensor
applications to sense for example temperature and strain with higher
sensitivity and wider tunability than its silica counterpart [1…14].
Those advantages are due to the lower Young's modulus and higher
thermo-optic coef � cient of POFs [23,24] . In addition, polymers are
clinically acceptable, which along with the � exible, non-brittle nature
of the � bers make these gratings an important candidate for in-vivo
biosensing applications [25…28]. Despite of these promises not many
commercial applications have been realized yet due to the high
material loss of POFs. Here we consider � ber-optical accelerometers
and microphones from a commercial point of view. In our applications
we need a short length of POF to increase the sensitivity-frequency
range product of the transducer and we opt for a commercial single
mode POF to potentially have a reliable supply. This means that we are
interested in both the strain sensitivity and the temperature stability
of POF FBG and how to improve the operation regime.

In this paper we report on an investigation into UV-written FBGs in
commercial step-index POFs. The formation dynamics, the tempera-
ture response, the thermal stability, and the tensile strain features of
the gratings in both annealed and non-annealed POFs are studied and
compared. We show that the FBGs in the annealed POFs can offer
more stable short-term performance at both higher temperature and
larger strain. Furthermore their operational temperature and tensile
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strain range without hysteresis can be extended using the annealing
process. We also reveal the thermal effect of UV-induced heating
during the grating formation. Finally the temperature stability
measurements show that even the annealed POF FBGs have the
long-term stability problem, when operated at high temperature.

2. Experiments

2.1. POFs and FBGs writing

The gratings in this study were fabricated in PMMA single mode
POF with a core doped with Polystyrene (MORPOF02 from Paradigm
Optics). The � ber has an outside diameter of 115 � m and an average
core diameter of 4 � m. The numerical aperture (NA) of this POF at
1300 nm is about 0.27 according to the specs. The annealing is carried
out by placing the POF in an oven at 80 °C for two days. The � ber
length decreased to (98.7±0.5) % of its original value over the 48 h
period and the diameter of the � ber increased to (104.3±1) % of its
original value. So its V value at 1300 nm changed from 2.2 to 2.3 by the
annealing.

The gratings were inscribed using a 30 mW CW HeCd laser
operating at 325 nm (IK5751I-G, Kimmon). The � ber was supported
by v-grooves on both sides with a gap in between to avoid re � ection,
and it was appropriately stretched to ensure that the � ber did not sag.
A circular gauss laser beam was expanded from diameter 1.2 mm to
1.2 cm in one direction along the � ber by a cylindrical lens. The laser
beam was then focused vertically downwards into the � ber core using

another cylindrical lens to expose the � ber through a phasemask
customized for 325 nm writing with a uniform period of 1048.7 nm
chosen for 1550 nm grating inscription (Ibsen Photonics). A grating
length of 3 mm was de � ned by a pinhole underneath the focus lens to
control the beam width. The laser irradiance at the � ber was about
10 W cm � 2 and the exposure time was usually over 60 min. The
resulting grating wavelength was around 1553 nm.

The growth of the 3 mm gratings were monitored in re � ection
during the inscription using a silica � ber circulator, a superK Versa
broadband source (NKT Photonics) and an optical spectrum analyzer
(Ando AQ6317B). A standard SMF-28 silica � ber was butt-coupled to
the POF using an angle cleaved end-facet and a small amount of
refractive index matching gel in order to reduce the Fresnel
re� ections, which manifested themselves as background noise. The
ends of the POF were prepared using a homemade hot blade cleaver
equipped with � at side blade, which gives a high quality end-facet,
e.g., avoiding the problem of � ber core shifting [29] . Short lengths of
POF (b10 cm) were used due to the high attenuation of the POF,
which is about 3 dB/cm at 1550 nm. The high loss around this
operating wavelength makes the monitoring of the gratings in
transmission extremely troublesome. The typical re � ection spectra
of a 3 mm grating fabricated in the annealed POF with different
exposure time is shown in Fig. 1(a). The grating re � ectivity cannot be
very exactly estimated since the material loss and coupling loss
between POF and SMF28 cannot be precisely measured. A rough
estimation is that the re � ectivity of the grating with 70 min exposure
is about 70% by taking into account the loss of the � ber and comparing

Fig. 1. (a) Re� ection spectra of a 3 mm FBG in an annealed POF at different writing time. (b …d) Growth dynamics of the 3 mm FBG in non-annealed POF (squares, dashed line) and
annealed POF (circles, solid line). (b) Grating wavelength shift, (c) normalized peak intensity, and (d) grating bandwidth. Measurements preforme d in re � ection.
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the level of the re � ected grating peak to the Fresnel re � ection from
the � at end of the glass � ber. This would give a refractive index
modulation of approximately 3×10 � 4 or bigger. It was also found
that the side-lobes started to appear in the re � ection spectrum at
70 min. This may mean that the grating was partly apodized before
70 min.

The growth dynamics of the gratings, i.e. the time dependent
resonance wavelengths, peak intensity, and bandwidth, are shown in
Fig. 1(b…d). We found that the gratings inscribed into both the
annealed and non-annealed POF follow an almost similar growth
procedure. Both gratings begin with a growth in strength accompa-
nied by an almost constant grating bandwidth. After a certain time
threshold, which is around 60 min, the grating strength saturates
while the grating bandwidth increases rapidly. This would because of
a much larger n eff (DC) change than the � n (AC) change happened
and it con � rms the known Type-I and Type-II FBG writing regimes
[13] . In Ref. [13] , Liu and his colleagues indenti � ed that a threshold of
exposure exists on growth dynamics of POF gratings, and below which
the � n grows linearly (Type-I); when above the threshold point,
bandwidth increases dramatically due to the catastrophic failure of
the polymer � ber (Type-II). Simultaneously, the resonance wave-
length was shifting to the blue side, until after about 120 min, where a
stable resonance wavelength was reached.

The refractive index increase in PMMA induced by a 325 nm laser
is mainly due to the material compaction or density increase in the
laser-irradiated region, which results from the photo-induced
polymerization of unreacted monomers [18…20] . UV-induced heating
in the irradiated region during focused laser inscription may
contribute to a permanent index increase [5] , but this happens only
when the local temperature is beyond some shrinking threshold,
which is determined by the thermal history of the POF. At the
threshold temperature, the length of � ber starts to shrink, which is
mainly due to the release of the frozen-in stress induced in the � ber
drawing process [22] . This shrinking effect is an irreversible process
[22] . Temperature increase below the threshold can only result in a
reversible decrease of the refractive index due to the negative
thermo-optic coef � cient (TOC, � 1.1×10 � 4/°C) of PMMA [24] ,
which can be reversed to the original state once the temperature
decreases[22] .

Our experiments show that the blue shift of the resonance
wavelengths, as shown in Fig. 1(b), were reversible once the writing
was stopped. Besides the grating bandwidth didn't change after the
laser was turned off. From the grating growth dynamics in both
annealed and non-annealed POF, the refractive index increase

induced by the material compaction will always be companied by a
local temperature increase, which actually decreases the refractive
index because of the negative TOC of PMMA. Taking into account the
refractive index change by UV-induced polymerization, UV-induced
heating should increase the local temperature of POFs by approxi-
mately 15 °C in order to have the � 0.15 nm blue shift of the
resonance wavelength after 120 min of UV irradiation which was
observed in Fig. 1(b). This scale of temperature increase is still far
below the shrinking threshold [22] and will not result in any
irreversible shrinking effect. The lack of further blue shift of the
resonance wavelengths after 120 min can be explained by the POF
reaching thermal equilibrium. The most signi � cant difference be-
tween the POFs is the faster shift in resonance wavelength for the
annealed POF. No signi� cant change in photosensitivity of the � ber
was observed after the annealing.

2.2. Temperature characterization of FBGs

The temperature response of the gratings was studied with the
same monitoring setup as the one used during the grating inscription.
The grating section of the polymer � ber was heated up with a resistive
hot stage (MC60+TH60, Linkam). A thermo couple was used to
measure the temperature as close to the grating as possible with an
uncertainty around 0.3 °C. One end of the POF was clamped and butt-
coupled to a silica � ber circulator, and the entire length of the POF
with grating was attached to the surface of the heater by several layers
of lens papers on the top. All gratings were fabricated with an
exposure time of 60 min and they have similar peak intensity of about
� 25 dB.

Twenty minutes was allowed for the temperature of the grating to
stabilize at each new setting before readings of the resonance
wavelengths and peak intensity were taken. Firstly the gratings in
the normal POF and the non-annealed POF were heated up separately
from room temperature to 85 °C stepwisely in a single cycle, as shown
in Fig. 2(a) and (b). In both gratings we saw the variation of resonance
wavelength and peak intensity, but no obvious bandwidth change
was found. To investigate the operational temperature regime
without hysteresis, the gratings were cycled 2 times by increasing
the temperatures stepwisely up to 55 °C (non-annealed POF) and
75 °C (annealed POF) at the � rst cycle and to the temperature 85 °C
(both) at the second cycle, which was followed by stepwisely cooling
down to room temperature after each cycle. The variation of the Bragg
wavelength and peak intensity of the gratings with temperature for
each cycle is shown in Fig. 3.

Fig. 2. Re� ection spectrum variation of Bragg with a consecutive heating cycle of temperature in the annealed POF (a) and the non-annealed POF (b).
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Hysteresis of the wavelength shift was observed once the
temperature was taken to above the threshold, i.e., 75 °C for the
annealed POF grating and 55 °C for the non-annealed POF grating. The
temperature threshold is largely explained by the � ber shrinking and
related to the thermal history of the � ber [10,22] . This hypothesis is
supported by the different thermal thresholds of the annealed and
non-annealed POF.

When comparing with the non-annealed POF grating, the FBG in
the annealed POF showed a higher operational temperature. This
improvement is well-known and is mainly due to the releasing of the
drawing-induced frozen-in stress by the annealing process [22] .
Importantly, the annealed POF grating can provide much more stable
peak intensity during the temperature cycle below the threshold
temperature, as shown in Fig. 3(b). In contrast, the FBG in the non-
annealed POF experienced a constant yet reversible decrease of the
peak intensity when the temperature was still lower than the
threshold, as shown in Fig. 3(d). The results indicate that in the case
of non-annealed POF grating the temperature increase would not only
decrease the refractive index of the POF, as indicated by the
temperature response of resonance wavelength, but also probably
decrease the index modulation of the FBG, which determines the
strength of the grating, i.e., the peak intensity of its re � ectivity. As
shown in Fig. 3(a) and (c), from the � tting of the quasi-linear part of
the wavelength shift it can be found that the thermal sensitivity of

both FBGs is almost the same. This means that the annealing process
does not signi � cantly change the TOC of PMMA.

The fact that the annealing process does not eliminate the
threshold totally can be further validated by the thermal stability
experiments. As shown in Fig. 4, the grating temperature was
increased to and kept at 66 °C and 85 °C for both annealed and non-
annealed POF. As demonstrated in Fig. 4(b…d), it was found that both
the resonance wavelength and the peak power of the gratings were
varying during the monitoring time up to hours once the temperature
was beyond the threshold. When the annealed POF grating was
subject to 66 °C and after the stable resonance wavelength reached, as
shown in Fig. 4(a), no further wavelength shifting and only 2 dB peak
power decrease was identi � ed over 5.5 h.

The unavoidable decrease of the peak power seen in Fig. 4would lead
to the gratings being barely observable, especially if the temperature was
above the threshold temperature of the gratings, i.e., 75 °C for the
annealed POF grating and 55 °C for the non-annealed POF grating. We
observed that when the grating was subject to a temperature beyond the
threshold for hours its peak power could not recover to the original status
after returning to room temperature (results not shown). In contrast, as
shown in Fig. 3(b), the annealed POF grating could resume to its original
peak power after a short 20 min exposure to a temperature above its
threshold 75 °C. This means that the long-term thermal stability of even
the annealed POF FBGs is still a problem at high temperature.

Fig. 3. Bragg wavelength shift and peak intensity variation with temperature for two consecutive heating and cooling cycles in the annealed POF (a …b) and the non-annealed POF
(c…d). The temperature response of the Brag g wavelength in (a) and (c) show an approx imately linear thermal sensitivity of � 98 pm/°C and � 109 pm/°C for the annealed
and non-annealed P OF, respectively.
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2.3. Tensile strain characterization of FBGs

It is well-known that the annealing process would give a higher
operational temperature of the POF FBGs. We are interested in
accelerometers and � ber-optical microphones based on POF FBG
strain sensor. This means that any improvement of the operational
strain regime by annealing would be very important. The strain tuning
of the polymer � ber Bragg gratings was investigated by mechanical
stretching, and the strain characteristics of the gratings in both
annealed and non-annealed POF were compared. The two ends of the
POF were clamped to two micro-translation stages, with one of them
� xed and used to butt-couple the POF to a silica � ber, and the other
stage can move longitudinally to apply the axial strain to the grating
manually with a very low loading speed. The axial strain values were
determined by dividing the � ber longitudinal elongation by the length
of � ber between the two clamping points. The longitudinal displace-
ment accuracy of the moving translation stage is 0.01 mm. All gratings
were fabricated with a same exposure time, i.e., 60 min, which give
them a similar peak intensity of about � 25 dB.

The gratings were left to stabilize for about 10 min each time the
tensile strain was changed before reading the re � ection spectrum. A
single strain loading cycle experiment was carried out � rstly to study
the strain tuning responses of the two kinds of gratings, as shown in
Fig. 5. As shown in Fig. 5(b) and (d), for the non-annealed POF grating,
a strong decrease of peak intensity was found when the strain loading
was taken over 2.5%, and almost 7 dB peak intensity loss was

introduced by the 3.75% strain loading, which was also accompanied
by peak splitting [9] , which made the grating peak very dif � cult to
identify. As shown in Fig. 5(a) and (c), the strain tuning response of
the annealed POF grating also showed a peak intensity decrease when
the strain was over 2.81%, but interestingly, the peak intensity only
decreases 3 dB even when the applied strain was 6.55%, which is more
than twice the strain the non-annealed POF grating can hold.
Furthermore, no peak splitting was found in the annealed POF grating
even at strain up to 6.55%.

Both gratings showed a quasi-linear response of the wavelength
shift over the whole strain loading range. From the data � tting, it was
found that the strain sensitivity of both gratings is similar, i.e., about
1.3 pm/ �� for the non-annealed POF and about 1.37 pm/ �� for the
annealed POF. This is reasonable since the strain sensitivity only
depends on the Young's modulus and geometric factors of the POF
gratings. We think that the small difference of the strain sensitivity
between two gratings is probably due to the small difference of the
� ber diameter which has been induced by the shrinking effect of the
annealing process.

The recoverability of the grating has been examined through the
strain loading and unloading process, as shown in Fig. 6. In the
experiments, the strain was gradually applied to both gratings up to
2.81% and 3.75% separately and then gradually unloaded to zero
strain. Judging from the variation of the resonance wavelengths and
the peak intensities of the gratings during the loading …unloading
experiment, as shown in Fig. 6(d), an observable hysteresis in the

Fig. 4. (a), (b) are thermal stability tests of FBG in annealed POF at 66 °C and 85 °C. (c) and (d) show thermal stability of the FBG in non-annealed POF at the same t emperature.
Square-dash line represents the relative resonance wavelength of FBG, circle-solid line represents the normalized peak intensity of FBG.
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resonance wavelength appeared at a strain of 3.75% for the grating in
non-annealed POF. For the annealed POF, in contrast, the grating was
recoverable also at 3.75% strain, as shown in Fig. 6(c). If we de � ne the
operational strain regime of POF FBG as up to where the peak intensity
has decreased by 3 dB and the resonance wavelength is still
recoverable, the experimental results showed that the operational
strain range should be up to about 2.8% for the non-annealed POF
grating and at least up to about 3.8% for the annealed POF grating.

Our experiments also showed that once the � bers were strained
over threshold, for example, when strain was taken over 2.8% for the
non-annealed POF grating or over 3.8% for the annealed POF grating, it
took longer time for the gratings to stabilize and return to the original
state when the strain was unloaded. The gratings did not return to
their original states when the applied strain was over 3.75% for the
non-annealed POF grating and over 6.55% for the annealed POF
gratings even over 24 h. This could be explained by that the gratings
have been strained over their elastic limits.

The comparison of the two kinds of gratings through the strain
tuning experiment showed that for the annealed POF there was a
signi � cant improvement in the stability of the peak intensity, no peak
splitting at high loading strain was found and much higher strain can
be applied to the � ber. As we mentioned before, the index modulation
of the grating determines the grating strength, so the constant peak
intensity means a much more stable modulation of index in the
annealed POF grating under strain tuning. The unavoidable peak
intensity decrease might be due to the increase of the mode
propagation loss when the core of the � ber became smaller under
the high longitudinal strain.

3. Conclusions

A detailed characterization of FBGs in commercial step-index POFs
was presented. Through a study of the growth dynamics of the
grating, the thermal effect of the UV-induced heating was shown to
result in a reversible 0.15 nm blue shift in the resonance wavelength,
which disappeared after the laser was turned off. We estimated the
UV-induced increase in the temperature to be approximately 15 °C.
This is below the damage temperature, which is why the blue shift
was reversible. Furthermore, no signi � cant change in the photosen-
sitivity of the POF was observed due to the annealing process before
the grating writing.

The thermal tuning experiments showed that hysteresis in the
wavelength shift and peak intensity was observed once the
temperature was taken to above a threshold, which was 75 °C for
the grating in the annealed POF and 55 °C for the grating in the non-
annealed POF. Comparing with the non-annealed POF grating, the
grating in the annealed POF can offer much more stable peak intensity
during the temperature cycling below the threshold temperature. The
similar thermal sensitivity of both gratings means that the annealing
process does not change the TOC of the material signi � cantly. The
existence of a temperature threshold even after the annealing process
was further validated by thermal stability experiments which showed
a 10 dB drop in the re � ected peak intensity over 6 h at 85 °C, and it
shows that the long-term stability of even the annealed POF FBGs is
still a problem.

The strain tuning of the POF FBGs by mechanical stretching
demonstrated that the operational strain limits without any

Fig. 5. Single strain loading cycle of FBG in the annealed POF (a, c) and non-annealed POF (b, d). (a, b): strained tuned re � ection spectra, (c, d): the dash lines are the � tting of the Bragg
wavelength shift. Squares-dashed line represents the relative resonance wavelength shift of FBG, and circles-solid line represents the normalize d peak intensity variation of FBG.
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hysteresis is 2.8% for the non-annealed POF grating and 3.8% for the
annealed POF grating. The strain sensitivity of both the annealed and
the non-annealed POF gratings is similar, which is about 1.37 pm/ ��
and about 1.3 pm/ �� , respectively. There was a signi � cant improve-
ment of the peak intensity stability, no peak splitting at high loading
strain was found, and much higher strain can be applied to the
annealed POF grating.

Acknowledgements

We would like to acknowledge support from the Danish National
Advanced Technology Foundation.

References

[1] M. Silva-Lopez, A. Fender, W.N. MacPherson, J.S. Barton, J.D.C. Jones, D. Zhao, H.
Dobb, L. Zhang, I. Bennion, Opt. Lett. 30 (2005) 3129.

[2] K. Kalli, H.L. Dobb, D.J. Webb, K. Carroll, M. Komodromos, C. Themistos, G.D. Peng,
Q. Fang, I.W. Boyd, Opt. Lett. 32 (2007) 214.

[3] H. Dobb, K. Carroll, D.J. Webb, K. Kalli, M. Komodromos, C. Themistos, G.D. Peng, A.
Argyros, M.C.J. Large, M.A. van Eijkelenborg, Q. Fang, I.W. Boyd, Proc. SPIE 6189
(2006) 1.

[4] J.M. Yu, X.M. Tao, H.Y. Tam, Opt. Lett. 29 (2004) 156.
[5] K. Kalli, H.L. Dobb, D.J. Webb, K. Carroll, C. Themistos, M. Komodromos, G.D. Peng,

Q. Fang, I.W. Boyd, Meas. Sci. Technol. 18 (2007) 3155.
[6] M. Stecher, R.J. Williams, O. Bang, G.D. Marshall, M.J. Withford, G.E. Town, Proc.

POF2009- The 18th international conference on plastic optical � bers, 2009.
[7] A. Baum, W. Perrie, P.J. Scully, M. Basanta, C.L.P. Thomas, N.J. Goddard, P.R. Fielden,

P.R. Chalker, OFS, , 2006.

[8] Z. Xiong, G.D. Peng, B. Wu, P.L. Chu, IEEE Photon. Technol. Lett. 11 (1999) 352.
[9] H.Y. Liu, H.B. Liu, G.D. Peng, Opt. Commun. 251 (2005) 37.

[10] H.Y. Liu, G.D. Peng, P.L. Chu, IEEE Photon. Technol. Lett. 13 (2001) 824.
[11] H.B. Liu, H.Y. Liu, G.D. Peng, P.L. Chu, Opt. Commun. 219 (2003) 139.
[12] H.Y. Liu, G.D. Peng, P.L. Chu, IEEE Photon. Technol. Lett. 14 (2002) 935.
[13] H.Y. Liu, H.B. Liu, G.D. Peng, P.L. Chu, Opt. Commun. 220 (2003) 337.
[14] G.D. Peng, P.L. Chu, X. Lou, R.A. Chaplin, J. Electr. Electron. Eng. Aust. (1995) 289.
[15] H.Y. Liu, G.D. Peng, P.L. Chu, Opt. Commun. 204 (2002) 151.
[16] H.Y. Liu, G.D. Peng, P.L. Chu, Y. Koike, Y. Watanabe, Electron. Lett 37 (2001) 347.
[17] D.J. Webb, K. Kalli, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov,

O. Bang, E. Kjaer, Proc. SPIE 6990 (2008) L9900.
[18] E.E. Shafee, Polym. Degrad. Stabil. 53 (1996) 57.
[19] W.J. Tomlinson, I.P. Kaminow, E.A. Chandross, R.L. Forkland, W.T. Silvfast, Appl.

Phys. Lett. 16 (1970) 486.
[20] M.J. Bowden, E.A. Chandross, I.P. Kaminow, Appl. Opt. 13 (1974) 112.
[21] C. Jiang, M.G. Kuzyk, J.L. Ding, W.E. Johns, D.J. Welker, J. Appl. Physiol. 92 (2002) 4.
[22] K. Carroll, C. Zhang, D.J. Webb, K. Kalli, A. Argyros, M.C.J. Large, Opt. Express 15

(2007) 8844.
[23] D. Webb, K. Kalli, in: A. Cusano, A. Cutolo, J. Albert (Eds.), Chapter 15 of Book •Fiber

Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market
Exploitation Ž, Bentham Science Publishers Ltd., 2009, p. 1.

[24] M.C.J. Large, L. Poladian, G. Barton, M. Eijkelenborg, Microstructured Polymer
Optical Fibres, Springer, 2008.

[25] J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, A. Bjarklev, Opt. Express 13
(2005) 5883.

[26] A. Dupuis, N. Guo, Y. Gao, N. Godbout, S. Lacroix, C. Dubois, M. Skorobogatiy, Opt.
Lett. 32 (2007) 109.

[27] G. Emiliyanov, J.B. Jensen, O. Bang, P.E. Hoiby, L.H. Pedersen, E.M. Kjær, L. Lindvold,
Opt. Lett. 32 (2007) 460.

[28] G. Emiliyanov, J.B. Jensen, O. Bang, P.E. Hoiby, L.H. Pedersen, E.M. Kjaer, L.
Lindvold, Opt. Lett. 32 (2007) 1059.

[29] A. Stefani, K. Nielsen, H.K. Rasmussen, O. Bang,•Microstructured polymer optical
� bers cutting optimization and analysis Ž, unpublished, (2010).

Fig. 6. Strain tuning of FBG in the annealed POF (a, c) and non-annealed POF (b, d). Strain loading and unloading experiments at a maximum loading strain of 2.81 % (a…b) and 3.75%
(c…d). Squares-dashed line represents the relative resonance wavelength shift of FBG, and circles-solid line represents the normalized peak intensit y variation of FBG.

182 W. Yuan et al. / Optics Communications 284 (2011) 176–182





Paper 3

Narrow Bandwidth 850 nm Fiber Bragg
Gratings in Few-Mode Polymer Optical
Fibers

A. Stefani, W. Yuan, C. Markos and O. Bang

IEEE Photonics Technology Letters, vol. 23(10), pp. 660-662 (2011).

65





660 IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 23, NO. 10, MAY 15, 2011

Narrow Bandwidth 850-nm Fiber Bragg Gratings in
Few-Mode Polymer Optical Fibers

Alessio Stefani, Wu Yuan, Christos Markos, and Ole Bang

Abstract—We report on the inscription and characterization of
narrow bandwidth Þber Bragg gratings (FBGs) with 850-nm res-
onance wavelength in polymer opticalÞbers (POFs). We use two
Þbers: an in-house fabricated microstructured POF (mPOF) with
relative hole size of 0.5 and a commercial step-index POF, which
supports six modes at 850 nm. The gratings have been written with
the phase-mask technique and a 325-nm HeCd laser. The mPOF
grating has a full-width at half-maximum (FWHM) bandwidth of
0.29 nm and the step-index POF has a bandwidth of 0.17 nm. For
both Þbers, the static tensile strain sensitivity is measured to be
0.71 pm/ at 850 nm and 1.3 pm/ at 1550 nm.

Index Terms—Fiber Bragg grating (FBG), polymer optical Þber,
Þber-optic sensors.

I. INTRODUCTION

F IBER-OPTIC sensors based on Fiber Bragg Gratings
(FBGs) have many important industrial applications [1],

[2]. The Þber material of choice in industrial applications has
so far been silica, because of its low loss and resistance to
high temperatures. Polymer opticalÞber (POF) FBGs have
been used for strain and temperature measurements because
of the low Young’s modulus, high failure strain, and high
thermal sensitivity of polymer compared to silica [3]–[8]. The
POF FBGs reported until recently had a resonance wavelength
around 1550 nm, primarily becauseof the availability of cheap
telecommunications equipment at that wavelength. However,
in contrast to silicaÞbers, POFs made of for example standard
poly(methyl methacrylate) (PMMA) [9] and Topas [10], [11]
have very high losses of more than 100 dB/m around 1550 nm.
This makes it hard to work with POFs at the telecommunication
wavelengths, unless using very short sections ofÞber.

A considerable decrease in thematerial loss to about 2 dB/m
can be achieved by working at a lower wavelength [7], [9]. In
particular, the 2 dB/m target is possible at 850 nm at which
CMOS (complementary metal-oxide-semiconductor) tech-
nology is available. For this reason there is currently a strong
push in the sensor and interrogator community to develop
devices at 850 nm. A 962 nm FBG has been written into a
POF [12], but at this wavelength the loss of standard PMMA
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and Topas is still signiÞcant and the FBG suffered from a large
zeroth-order component of the phase mask used in the writing
process.

More importantly, it was recently reported that a 827 nm
FBG could be written into a polymerÞber using a 30 mW
325 nm HeCd CW Laser and writing times around 2 hours
through a phase-mask with period 557.20 nm [13]. TheÞber
was a multimode microstructured POF (mPOF) from Kiriama
Pty Ltd, Sydney, Australia, with a large core diameter of 50m
and 3 rings of holes. The loss was not quoted. The authors
reported on prior problems with writing FBGs in both POFs
and mPOFs, which they solved for the mPOF by adjusting
the distance between theÞber and the phase-mask [13]. In the
successful 827 nm writing experiment, the mPOF had a quite
large core diameter. This makes it easier to write an FBG into
the mPOF, which is otherwise very difÞcult due to the scat-
tering of light at the air-polymer interface at all the holes [4].
However, the large core unfortunately makes theÞber heavily
multimoded, which combined with a relatively short grating
length of 1.8 mm, made the spectrum broad, with a full-width
at half-maximum (FWHM) bandwidth of 2.45 nm.

For sensing applications narrow bandwidth FBGs and single-
mode operation is important. This means that the core diameter
of the mPOF is small and it is difÞcult to fabricate an FBG.
Here we report the fabrication of narrow bandwidth 850 nm
FBGs in both few-mode POFs (bandwidth 0.17 nm) and mPOFs
(bandwidth 0.29 nm).

II. GRATING WRITING AND LOSSMEASUREMENTS

The FBGs have been written using a phase-mask and a
30 mW 325 nm CW HeCd laser (IK5751 I-G, Kimmon) as
in [13]. We expanded the beam to 1.2 cm with a cylindrical
lens along the direction of theÞber axis and focused it in the
orthogonal direction with a second cylindrical lens into the
core. The pattern imprinted into theÞber was determined by
the phase mask (Ibsen Photonics), placed just above theÞber,
whose period of 572.4 nm was optimized for polymerÞbers to
give 850 nm gratings in the CMOS window.

We used twoÞbers. (1) a PMMA mPOF that we fabricated
ourselves,with 3 rings of holes separated with a pitch of 6m
and a hole size of 3 m (see Fig. 1). The relative hole size of
0.5 meansthat the mPOF is few-mode at 850 nm [14]. (2) a
commercially available PMMA step-index POF, which has a
polystyrene doped PMMA core (MORPOF02, Paradigm Op-
tics). The Þber has a quoted numerical aperture (NA) of 0.27
at 1300 nm and closer inspection shows that the core is not cir-
cular, but elliptical, with a diameter of 2 m along the short axis
and6 m along the long axis (see Fig. 1). The normalized fre-
quency , where is the core radius, is then
2.606 at 1300 nm if considering an average core radius of 4m.

1041-1135/$26.00 © 2011 IEEE
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Fig. 1. Loss proÞle of the mPOF (red dashed line) and the step index POF (blue
solid line) with insets showing theÞber end facets.

Scaling for 850 nm the V number becomes 3.98, which indi-
cates that theÞber will support 6 modes at 850 nm. Few-mode
POFs and mPOFs have been used successfully before for FBG
inscription before, so we anticipate to obtain a reasonably clean
reßection spectrum [4].

Before focusing on the FBG writing, we report in Fig. 1 the
losses of the twoÞbers. The loss for the commercial POF has
been given by the manufacturer to be 3 dB/cm at 1550 nm,
1 dB/cm at 1000 nm, and less than 0.2 dB/m at 650 nm. Our
cutback measurement revealedthat the loss was much higher
than that. It was so high that we could not use pieces longer
than 20 cm and had to settle for only 3 cuts in the cutback mea-
surement. The small number of cuts and the fact that theÞber is
multimode at 850 nm means that the loss spectrum has signif-
icant oscillations. Nevertheless, we can conclude that theÞber
loss is above 100 dB/m even at short wavelength, which ex-
plains the fact that nobody were able to write good FBGs in this
Þber so far.

The loss of the mPOF, as obtained by a cutback measurement
with 14 cuts, is shown in Fig. 1. The mPOF is made from cheap
PMMA from Vink with nonoptimal preform fabrication condi-
tions. The measured 10 dB/m loss at 850 nm is thus signiÞcantly
higher than the record mPOF loss of about 2 dB/m at 850 nm
[7]. Nevertheless, 10 dB/m is more than an order of magnitude
lower than the loss of the commercial POF. Further optimization
in terms of cooling liquid used for preform drilling and proper
washing and drying in clean atmosphere after drilling, are un-
derway.

For the characterization of the FBG reßection spectrum we
use an 850 nm circulator. TheÞrst arm of the circulator was
connected to a SuperK Versa broadband source from NKT Pho-
tonics A/S. The broadband signal was then butt-coupled to the
Þber from the second arm of the circulator. The reßection was
collected and measured at the third arm of the circulator with an
Optical Spectrum Analyzer (Ando AQ6317B).

The measured reßectance spectra, recorded with dBm
output power from the SuperK source, are shown in Fig. 2. The
spectrum for the mPOF (POF) was recorded before saturation
after a writing time of 185 min. (60 min.), where both FBGs
show a normalized reßected power of about dB, which
includes coupling loss andÞber propagation loss. The longer
writing time for the mPOF is due to the strong scattering of light
at the holes, which signiÞcantly reduces the power reaching the
core.

Fig. 2. Reßection spectrum of mPOF (red dashed line) and POF (blue full line)
FBGs. The spectrum for the mPOF (POF) was recorded after a writing time of
185 min. (60 min.).

Fig. 3. FBG reßection spectra for increasing writing time for the mPOF (a) and
POF (b). Inserts show the peak reßected power versus time.

The reßection spectrum of the mPOF (POF) has a central
wavelength of 847.60 nm (853.96 nm) and a FWHM band-
width of 0.29 nm (0.17 nm). The narrow line width is evidence
to the fact that theÞbers are few-moded. Both spectra were
recorded during the writing process, where theÞber was given
a small tension to keep it straight. After the writing, when the
tension is released, the peak wavelength will blue shift a couple
of nanometers. The noise level is 10 dB lower than the peak
power, which means that the FBG resonance can be detected
and tracked by conventional interrogators, such as the IMON
from Ibsen Photonics.

The growth dynamics of the FBG writing process is shown in
Fig. 3. It displays the typical scenario, in which the peak grows
faster in the beginning and then saturates [15]. After 185 (60)
minutes the spectrum of the mPOF (POF) starts to broaden more
and more and side peaks start to appear. This means that the
optimum writing time is around 185 min. for the mPOF and
60 min. for the POF. The saturation time, deÞned as the writing
time after which the reßectance saturates, while the FWHM in-
creases rapidly, is around 210 min. for the mPOF and 90 min.
for the POF. During the initial rapid growth a standard blue shift
of the peak is observed due to laser induced heating, which will
disappear after the laser is turned off [6].

III. STRAIN SENSITIVITY MEASUREMENTS

Here we perform strain measurements and check the mea-
sured sensitivities of 850 nm and 1550 nm FBGs against each
other. The strain sensitivity experiments are particularly rele-
vant due to the applications for which the 850 nm gratings are
intended i.e.,Þber-optic sensing of acceleration and sound.

The sensitivity of the FBG is deÞned as [2], [16]

(1)
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Fig. 4. Strain sensitivity of 1550 nm FBGs in POF (dots) and mPOF (squares),
Þtted to a straight solid line. Strain sensitivity of 850 nm FBGs in POF (dots)
and mPOF (squares),Þtted to a straight dashed line.

where is the Bragg wavelength, is the effec-
tive index of the fundamental core mode, andis the grating pe-
riod. The parameter depends only on theÞber material, with

being the Pockel’s (piezo) coefÞcients of the stress-optic
tensor and the Poisson’s ratio. The change inover the wave-
length range 850–1550 nm can be neglected and thus (1) shows
that the ratio between the sensitivity at 1550 nm and at 850 nm
of a givenÞber is approximately equal to the ratio of the reso-
nance wavelengths, which is 1.82.

Fig. 4 shows the wavelength shift versus applied strain for
both 850 nm and 1550 nm gratings in both mPOFs and POFs.
Both 850 nm mPOF and POF FBGs respond linearly to the
applied strain with an identical sensitivity of 0.71 pm/. At
1550 nm both FBGs display a linear response with an identical
sensitivity of 1.3 pm/ , which corresponds to an earlier mea-
surement on this particular 1550 nm POF FBG [6]. The ratio of
sensitivities is , which is very close to the the-
oretically predicted value of 1.82.

We note that the sensitivity can be different fromÞber toÞber
depending on the material and on the thermal history of theÞber
[6] e.g., 1.46 pm/ was reported in [18] and 1.13 pm/ was
reported in [17] around 1550 nm, compared to the 1.3 pm/
measured here and in [6]. Thus, even though both ourÞbers
are made of PMMA, the fact that the POF is doped in the core,
PMMA can vary from manufacturer to manufacturer, and the
drawing conditions have been different, means that our mPOF
and POF FBGs should nota priori have the same sensitivity. It
is thus an interesting result that weÞnd the same sensitivities
of these two types of PMMA polymer opticalÞbers. Since our
setup has been the same for the different measurements, this
hints at that in fact also the different experimental setups play a
role.

IV. CONCLUSION

In conclusion, we have reported theÞrst narrow bandwidth
FBG at 850 nm in two types of few-moded POFs. The 850 nm
FBG in our own mPOF has a bandwidth of 0.29 nm, whereas
the bandwidth of the FBG in a commercial step-index POF is
0.17 nm. We have measured their strain sensitivities to be iden-
tical 0.71 pm/ at 850 nm and 1.3 pm/ at 1550 nm.

The loss of the commercial PMMA step-index POF is too
large for it to be relevant in sensing. However, with a loss of

10 dB/m at 850 nm and a bandwidth of 0.29 nm, the PMMA
mPOF FBG is deÞnitely a candidate for future strain sensing
devices using CMOS technology, in particular when taking into
account that the loss can be further reduced to 1 dB/m by im-
provement of the fabrication technology.
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Optical Þbre Bragg grating recorded in
TOPAS cyclic oleÞn copolymer

I.P. Johnson, W. Yuan, A. Stefani, K. Nielsen,
H.K. Rasmussen, L. Khan, D.J. Webb, K. Kalli and O. Bang

A report is presented on the inscription of a “bre Bragg grating into a
microstructured polymer optical “bre fabricated from TOPAS cyclic
ole“n copolymer. This material offers two important advantages over
poly (methyl methacrylate), which up to now has formed the basis
for polymer “bre Bragg gratings: TOPAS has a much lower water af“nity
and has useful properties for biosensing. The grating had a Bragg wave-
length of 1569 nm and a temperature sensitivity of2 36.5+ 0.3 pm/ 8C.

Introduction: Over the last twenty years, silica “bre Bragg grating
(FBG) sensor technology has been developed to the point where it is
now mature enough to “nd commercial application in a variety of
“elds, such as structural health monitoring and down-hole sensing for
the oil and gas industry. Grating sensors in polymer optical “bre
(POF) have been studied for about ten years[1], but remain much less
well developed. Nevertheless there appear to be good reasons for pursu-
ing that development owing to the rather different properties of POF
compared to silica, especially its much lower Young•s modulus[2]
and its ability to survive much higher strains[3].

Research to date on POF gratings has essentially involved just one
material, poly (methyl methacrylate) (PMMA), with “bres being either
fabricated entirely out of this material, in the case of microstructured
“bres [4], or based on this material with the addition of dopants in the
“bre core, in the case of step index “bres[5]. However there are
many other transparent polymers with properties that might be utilised
for sensors, if they can be drawn into “bre and if they possess a suitable
photosensitivity to permit grating inscription. One example is TOPAS
cyclic ole“n copolymer. Unlike PMMA, this material is chemically
inert, but it has been shown to be possible to fabricate localised biosen-
sors by treatment with antraquinon followed by UV activation[6, 7].
Furthermore, TOPAS has a much reduced af“nity for water compared
to PMMA [8]. which may prevent the cross-sensitivity to humidity
that is an issue for PMMA-based FBGs[9]. Interestingly, TOPAS is
also an ideal material for terahertz “bres, because it becomes transparent
with strongly reduced material dispersion in the terahertz frequency
range[10].

Photosensitivity has been reported in some early TOPAS “bre[11],
but the results obtained then were not very reproducible, the grating
was visible in transmission but curiously not in re”ection, and tempera-
ture testing suggested a surprisingly large and positive Bragg wave-
length sensitivity. In this Letter, we report on the successful and
repeatable inscription of FBGs in microstructured “bre fabricated from
TOPAS, and characterise the temperature response of the devices,
which we now repeatedly and reliably measure to be negative.

Fig. 1 Microscope image of cleaved end face of TOPAS “bre of diameter
287mm
Inset: Magni“ed view of core region

Experiment:A solid cylindrical preform of TOPAS 8007-F-04 of 6 cm
diameter was drilled with two rings of 3 mm air holes to provide light
guidance and drawn down to an all TOPAS “bre in a two stage
process. The resulting “bre had a diameter of 270mm, a hole pitch of
8.5mm and a hole diameter of 3.8mm, and was singlemode at
1550 nm; seeFig. 1. Grating inscription was carried out using a

325 nm HeCd laser commonly used for grating fabrication with
PMMA based “bre (Kimmon IK3301R-G). The “bre was mounted hori-
zontally in a v-groove for support and the beam focused down from
above onto the “bre using a cylindrical lens of focal length 10 cm.
The UV light passed through a phase mask of period 1034.2 nm opti-
mised for 325 nm light and supported directly on the “bre. The
growth of the grating was monitored by butt coupling an angle
cleaved singlemode silica “bre lead from a 2× 2 coupler to the
TOPAS “bre, which had been cleaved using a razor blade at room temp-
erature. The grating was illuminated using a broadband light source
(Thorlabs, Broadband ASE light source) and monitored on an optical
spectrum analyser (HP86142A). A small amount of index matching
gel was used to reduce Fresnel re”ections from the end of the silica
“bre. With a beam power of 30 mW approximately 45 minutes were
required for the gratings to reach saturation, seeFig. 2. The re”ection
spectrum from the 1.8 mm-long grating is shown inFig. 3; the Bragg
wavelength is 1567.9 nm and the bandwidth (full width at half
maximum) is 0.75 nm.
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Fig. 3 Re”ection spectrum from FBG in TOPAS “bre

TOPAS has the same high attenuation as PMMA in the 1550 nm
spectral region, which limits practical “bre lengths to around 10 cm.
Consequently, following inscription, the grating was glued to the end
of a singlemode silica “bre lead to facilitate temperature testing. The
grating was placed in an environmental chamber (Sanyo Gallenkamp)
with the humidity held at 55% to remove any possibility of this in”uen-
cing the measurements. The temperature was varied in the range 20 to
358C and the results are shown inFig. 4. From the data, the temperature
sensitivity is obtained as2 36.5+ 0.3 pm/ 8C. This value is not very
different from that obtained with PMMA-based FBGs at a similar wave-
length (2 43 pm/ 8C [12]) and con“rms that the preliminary data
obtained from the “rst TOPAS FBG showing a positive wavelength
shift was in error[11]. Whilst the data presented in this Letter come
from one grating, several were fabricated in the TOPAS “bre, with all
exhibiting similar behaviour.
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Fig. 4 Thermal response of TOPAS FBG
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One disadvantage of TOPAS compared to PMMA is its glass transition
temperature of 788C [8], which is almost 308C less than that of typical
PMMA. This provides an upper limit on the usable temperature range.

Conclusion:We have proven de“nitively that “bre Bragg grating
sensors can be reliably recorded in “bres fabricated from TOPAS
cyclic ole“n copolymer. For the “rst time this permits the development
of POF-based strain sensors that should not suffer from signi“cant cross-
sensitivity to humidity and also aids the development of novel grating-
based polymer “bre biosensors.

# The Institution of Engineering and Technology 2011
22 November 2010
doi: 10.1049/el.2010.7347
One or more of the Figures in this Letter are available in colour online.

I.P. Johnson, L. Khan and D.J. Webb (Photonics Research Group, Aston
University, Birmingham, B4 7ET, United Kingdom)

E-mail: d.j.webb@aston.ac.uk

W. Yuan, A. Stefani, K. Nielsen and O. Bang (DTU Fotonik, Department
of Photonics Engineering, Technical University of Denmark, DK-2800
Kgs., Lyngby, Denmark)

H.K. Rasmussen (DTU Mekanik, Department of Mechanical Engineering,
Technical University of Denmark, DK-2800 Kgs., Lyngby, Denmark)

K. Kalli (Nanophotonics Research Laboratory, Cyprus University of
Technology, Limassol, 3036, Cyprus)

References

1 Xiong, Z., Peng, G., Wu, B., and Chu, P.: •Highly tunable Bragg
gratings in single-mode polymer optical “bers•,IEEE Photonics
Technol. Lett., 1999,11, (3), pp. 352…354

2 Brandrup, J.: •Polymer handbook• (Wiley, 1999)
3 Aressy, M.: •Manufacturing optimisation and mechanical properties of

polymer optical “bre•, M.Phil., 2006, Birmingham University
4 Dobb, H., Webb, D.J., Kalli, K., Argyros, A., Large, M.C.J., and van

Eijkelenborg, M.A.: •Continuous wave ultraviolet light-induced “ber
Bragg gratings in few- and single-mode microstructured polymer
optical “bers•,Opt. Lett., 2005,30, (24), pp. 3296…3298

5 Peng, G.D., and Chu, P.L.: •Polymer optical “ber photosensitivities and
highly tunable “ber gratings•,Fiber Integr. Opt., 2000, 19,
pp. 277…293

6 Emiliyanov, G., Jensen, J.B., Bang, O., Hoiby, P.E., Pedersen, L.H.,
Kjaer, E.M., and Lindvold, L.: •Localized biosensing with Topas
microstructured polymer optical “ber•,Opt. Lett., 2007, 32, (5),
pp. 460…462

7 Emiliyanov, G., Jensen, J.B., Bang, O., Hoiby, P.E., Pedersen, L.H.,
Kjaer, E.M., and Lindvold, L.: •Localized biosensing with Topas
microstructured polymer optical “ber: Erratum•,Opt. Lett., 2007,32,
(9), p. 1059

8 www.topas.com
9 Zhang, C., Zhang, W., Webb, D.J., and Peng, G.D.: •Optical “bre

temperature and humidity sensor•,Electron. Lett., 2010, 46, (9),
pp. 643…644

10 Nielsen, K., Rasmussen, H.K., Adam, A.J.L., Planken, P.C.M., Bang, O.,
and Jepsen, P.U.: •Bendable, low-loss Topas “bers for the terahertz
frequency range•,Opt. Express, 2009,17, (10), pp. 8592…8601

11 Webb, D.J., Kalli, K., Zhang, C., Komodromos, M., Argyros, A., Large, M.,
Emiliyanov, G., Bang, O., and Kjaer, E.: •Temperature sensitivity of Bragg
gratings in PMMA and TOPAS microstructured polymer optical “bres•.
Photonic Crystal Fibers II2008, pp. L9900…L9900, art. no. 69900L

12 Webb, D.J., and Kalli, K.: •Polymer “bre Bragg gratings•,in Cusano, A.
(Ed.): •Fiber Bragg grating sensors: Thirty years from research to
market• (Bentham eBooks, 2010)

ELECTRONICS LETTERS 17th February 2011 Vol. 47 No. 4



Paper 5

Tunable Polymer Fiber Bragg Grating
(FBG) Inscription: Fabrication of Dual-
FBG Temperature Compensated Polymer
Optical Fiber Strain Sensors

W. Yuan, A. Stefani, and O. Bang

IEEE Photonics Technology Letters, vol. 24(5), pp. 401-403 (2012).

75





IEEE PHOTONICS TECHNOLOGY LETTERS, VOL.24, NO. 5, MARCH 1, 2012 401

Tunable Polymer Fiber Bragg Grating (FBG)
Inscription: Fabrication of Dual-FBG Temperature
Compensated Polymer Optical Fiber Strain Sensors

Wu Yuan, Alessio Stefani, and Ole Bang

Abstract—We demonstrate stable wavelength tunable
inscription of polymer optical �ber Bragg gratings (FBGs). By
straining the �ber during FBG inscription, we linearly tune the
center wavelength over 7 nm with less than 1% strain. Above
1% strain, the tuning curve saturates and we show a maximum
tuning of 12 nm with 2.25% strain. We use this inscription
method to fabricate a dual-FBG strain sensor in a poly (methyl
methacrylate) single-mode microstructured polymer optical
�ber and demonstrate temperature compensated strain sensing
around 850 nm.

Index Terms—Fiber Bragg grating, polymer optical �ber,
strain sensing, temperature compensation.

DUE to the low Young’s modulus (about 25 times lower
than silica) and high elastic limit of over 10% (about

10 times higher than silica), �ber Bragg gratings (FBGs) in
polymer optical �bers (POFs) areattractive for �ber-optical
strain sensing [1-2]. POFs are also clinically acceptable, �ex-
ible and non-brittle, which makes the POF FBG a candidate
for in-vivo biomedical applications [3-6]. FBGs have been
reported in both step index POFs [2,7-9] and microstructured
POFs (mPOFs) [9-13].

To date the majority of POFs and microstructured POFs
(mPOFs) are made of poly (methyl methacrylate) (PMMA),
which has a high thermo-optic coef�cient and strongly absorbs
water. PMMA FBG strain sensors therefore have a large
cross-sensitivity to humidity and temperature [1,8,13]. The
problem of humidity is strongly reduced by using POF FBGs
made of the polymer TOPAS [4,5], which has a humidity
sensitivity of less than 38.4 pm/%rH @1565nm [13]. This
is more than 50 times less than POF FBGs made of PMMA
[10,13]. However, both TOPAS and PMMA POF FBGs are
still sensitive to temperature with similar sensitivities [1,13].
This is a major problem for POF (and silica) FBG strain
sensors in practical applications, in particular in static strain
sensing, where temperature variations occur on the same time-
scale as the variations in strain.

A simple solution is to use a second closely spaced and
strain free FBG with a different resonance wavelength to
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version February 15, 2012.
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provide an independent control of the temperature. The differ-
ence in resonance frequency between the two FBGs will then
still measure the strain, but be independent of temperature, as
was demonstrated for silica FBGs [14].

In this letter we demonstrate the concept of dual-FBG
temperature compensated strain sensing for POF FBGs. To
fabricate two (or more) POF FBGs with closely spaced reso-
nance wavelengths we further demonstrate a simple technique
for highly controlled tuning of the resonance wavelength of
a POF FBG written with the standard phase-mask technique
using the same phase-mask. By straining the POF during
writing we can linearly tune the wavelength by 7 nm using
only 1% strain. Going into the saturated regime we show
12 nm tuning with 2.25 % strain using a force of only 0.5 N
due to the low Young’s modulus of PMMA. This tuning range
is about 5 times higher than for silica �bers [15] and can prove
useful for future multiplexed sensor applications of POFs.

In an earlier experiment, two broadband FBGs were
inscribed in a large-core multi-mode mPOF at 1562nm
and 1545nm using also a single phase-mask, by thermally
annealing the �rst grating before writing the next [16]. Our
method differs from the annealing technique, in that it is much
more controllable and works with POFs regardless of their
drawing conditions and whether they have been annealed or
not. Furthermore, we are here able to apply it to narrow-band
single-mode POFs to demonstrate closely packed FBGs ideal
for future multiplexed POF FBG strain sensors. Most impor-
tantly, we use the technique to present the �rst demonstration
of temperature compensated FBG strain sensing in POFs.

In our experiments we use an endlessly single-mode PMMA
mPOF fabricated by the drill-and-draw technique. The mPOF
has a diameter of 180µm and a solid core surrounded by three
rings of air holes arranged in a hexagonal lattice. The air-hole
diameter is on average 2± 0.2µm and the inter-hole pitch is on
average 4.8± 0.2µm (see inset of Fig. 1(a)). The hole diameter
to pitch ratio is thus d/� � 0.41, which is below the threshold
value of 0.42 that ensures endlessly single-mode operation [9].

We use a 325 nm HeCd CW laser (IK5751I-G, Kimmon)
and a phase-mask with a uniform period of 572.4 nm (Ibsen
Photonics) customized for 325 nm writing of mPOF FBGs
with a resonance wavelength of� B = 850 nm. The �ber was
supported by v-grooves on both sides of a gap to avoid re�ec-
tion, and strain was applied to control the wavelength and keep
the �ber straight during writing. Two hours of exposure time
was used and the resulting gratings have a length of 10 mm.
The applied strain was measured with a v-groove axial force

1041–1135/$26.00 © 2011 IEEE
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Fig. 1. (a) Resulting FBG resonance wavelength versus force. The corre-
sponding strain is given at the measurement points. Inset shows the mPOF
used for grating writing and the re�ection spectrum of a fabricated dual-FBG.
(b) Relaxation of the resonance wavelength (848.3 nm while strained) after
release for different applied strains.

sensor (FSC102, Thorlabs) and the FBG re�ection spectrum
was measured in re�ection with a spectral resolution of
10 pm using an 850 nm silica �ber circulator, a SuperK Versa
broadband source (NKT Photonics), and an optical spectrum
analyzer (Ando AQ6317B). A standard single-mode silica
�ber was butt-coupled to the mPOF using an angle cleaved
end-facet and a small amount of refractive index matching
gel in order to reduce Fresnel re�ections.

In Fig. 1(a) we show that� B depends linearly on the applied
force and strain for strains up to 1%, with a total tunability of
7 nm. In this regime� B relaxes rapidly to its stationary value,
after which it remains stable, as seen in Fig. 1(b). For strains
above 1 % the tuning curve saturates and the relaxation time
increases signi�cantly. This is a re�ection of the visco-elastic
properties of the PMMA, which become particularly apparent
when the �ber is exposed to high strain for long times [1].

In the inset of Fig. 1(a) we show two FBGs with� B =
846.28 nm (FBG1) and 847.44 nm (FBG2) inscribed in
the same �ber with 1 cm separation. Both FBGs were
unchanged after storage for more than 24 hours. We now use
this dual-FBG as a strain sensor to demonstrate temperature
compensated strain sensing. We control the temperature of
both gratings and mechanically stretch FBG2, while FBG1
remains unstretched. The two ends of FBG2 are glued to
micro-translation stages with a UV curable glue (OG116+ 31,
Epotek), which is mechanically much stiffer than the PMMA
mPOF, so that it does not in�uence the strain. One stage was
kept �xed, while the other moved to apply axial strain to
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Fig. 2. Resonance wavelength of FBGs 1 and 2 (a) versus tempera-
ture/humidity with no strain and (b) versus strain applied to only FBG 2
at a �xed temperature (humidity) of 25 °C (63%).

FBG2 manually with a low loading speed. The axial strain
was determined by dividing the �ber longitudinal elongation
by the length of �ber between the two gluing points. The
longitudinal displacement accuracy of the translation stage is
0.01 mm. The strain-free FBG1, was taped on the �xed stage.
Another micro-translation stage was used to butt-couple the
mPOF to a single-mode silica �ber (SM800, Thorlabs). The
FBGs were heated up with a resistive heater (TH60, Linkam)
placed on top of them. A thermocouple was used to measure
the temperature as close to the gratings as possible with an
uncertainty around 0.3 °C. A humidity sensor (C210, Lufft)
was used to monitor the humidity near the two gratings with
an uncertainty of 0.5 %rH.

The gratings were heated up from room temperature to
36.3 °C stepwise in a single cycle with the temperature
allowed to stabilize for twenty minutes at each new set
temperature before the re�ection spectra were measured. The
relative humidity decreased correspondingly from 66 %rH to
44 %rH. In Fig. 2(a) we show the measured dependence of the
resonance wavelength of FBG1 and FBG2 on the temperature,
with the corresponding humidity indicated on the curve. A
nearly identical blue shift of both resonance wavelengths is
observed, while there was no obvious change in the bandwidth
(not shown). A temperature sensitivity ofŠ77± 7 pm/°C was
found for both gratings by a linear �t, which corresponds well
with earlier measurements [1].

A strain loading experiment of FBG2 was carried out with
a �x temperature of 25 °C (constant humidity of 63%rH).
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Fig. 3. (a) Resonance wavelength of FBG1 and FBG2 subject to a tempera-
ture cycle alternating between 25 °C and 35 °C every 20 min (corresponding
humidity 64% and 38% rH) while the strain applied to FBG2 only was
increased every 20 min starting after 10 min. (b) Difference in resonance
wavelength of FBG2 and FBG1, showingtemperature compensation. Inset
shows a zoom.

The grating was left to stabilize for about ten minutes each
time the tensile strain was changed before reading the re�ec-
tion spectrum. As seen in Fig. 2(b), FBG2 shows a linear
response of the center wavelength over the whole strain
loading range up to 1.53% strain, with a linear �t giving
a sensitivity of 0.73± 0.02 pm/µstrain as also found in [9].
The resonance wavelength of the unstrained FBG1 is stable
as expected.

In order to emulate a practical situation and further con�rm
the temperature (humidity) compensation capability of our
dual-FBG strain sensor, a strain-sensing experiment with a
periodic temperature (humidity) change was carried out. As
shown in Fig. 3(a), strain was gradually applied to FBG2
every 20 min., while the temperature (humidity) experienced
by both gratings was cycled between 25 °C (64%rH) and 35 °C
(48%rH) every 20 min. with a 10 min. offset from the strain
increase. In Fig. 3(a) we see how the strain recorded by FBG2
is strongly affected by the changing temperature (humidity),
leading to the expected slow change in center wavelength of
770 pm with every 10 °C change. The temperature depen-
dence is effectively compensated by instead monitoring the
difference in center wavelength between FBG2 and FBG1,
as demonstrated in Fig. 3(b). In fact one cannot talk about
a cross-sensitivity to temperature of this sensor, because the
�uctuations observed in the zoom in Fig. 3(b) are so small
that they are within the limits of the mechanical stability of
the set-up. If we instead analyse the plateaus or periods with
�xed strain, then the maximum standard deviation from the
mean of 12 pm is found for the third plateau from 30 to
50 min. shown in the zoom. If we then divide the 12 pm
with the change in average wavelength of 1687 pm going to
the plateau 3 from plateau 2, then we get a measure for the

maximum noise of 0.71%. This is obviously a very low degree
of noise given that the temperature is increased suddenly by
10 °C during this 20 min. period.

In summary, we have demonstrated a temperature and
humidity compensated POF FBG strain sensor, which is based
on a dual-FBG architecture in a single-mode PMMA mPOF
and operates at the low-loss wavelength 850 nm. We have also
demonstrated a simple technique to UV-write POF FBGs with
a highly controlled tunable resonance wavelength, still using
only a single phase-mask. Applying strain to the POF during
writing we linearly tune the resonance by 7 nm using only 1%
strain and show that going into the saturation regime allows
to tune the FBG resonance by 12 nm with 2.25 % strain.

The strain tuning technique has been applied to silica
�bers before but with a limited tunability of only 2.5 nm
due to the high Young’s modulus of silica. The 12 nm we
demonstrated here is thus by far the highest ever achieved
with this technique.
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Direct Writing of Fiber Bragg Grating in
Microstructured Polymer Optical Fiber
Alessio Stefani, Matthias Stecher, Graham E. Town(Senior Member)and Ole Bang

Abstract—We report point-by-point laser direct-writing of a
1520 nm �ber Bragg grating in a microstructured polymer opti cal
�ber (mPOF). The mPOF was specially designed such that the
microstructure did not obstruct the writing beam when properly
aligned. A 4th order grating was inscribed in the mPOF with
only a 2.5 seconds writing time.

Index Terms—Fiber Bragg grating, polymer optical �ber,
microstructured �ber, laser direct writing.

I. I NTRODUCTION

Fiber-optic sensors based on �ber Bragg gratings (FBGs)
have many important industrial applications [1], [2]. The
�ber material of choice in industrial applications has so far
been silica, because of its low loss and resistance to high
temperatures. However, polymer optical �ber (POF) FBGs are
better suited for strain sensing because of the low Young's
modulus and high failure strain of polymer compared to silica
[1], [3].

Fiber Bragg gratings have been written into both step index
POFs and microstructured POFs (mPOFs) using continuous
wave (CW) UV illumination in a ring interferometer con-
�guration [4] or with a phase-mask [5]–[12]. Writing times
of 30-100 minutes for step index �bers [5], [6] and 60-
270 minutes for mPOF [7]–[11] are usually necessary. A
specially photosensitized �ber from University of New South
Wales (UNSW) has allowed to reduce the writing time to 7.5
minutes [12]. Moreover in the mPOFs the resulting gratings
are also relatively weak. The long inscription time is a result
of the relatively weak photosensitivity of polymers (except
for the UNSW �ber). In mPOFs the obstruction of the core
by the high-contrast air-hole microstructure contributesto the
increase in writing time, compared to solid POFs, and leads
to relatively weak gratings [13]–[15]. Long writing times is a
serious problem for applications requiring mass production.

A technique previously used to overcome the low photo-
sensitivity of polymer waveguides is point-by-point grating
writing with high intensity ultrashort laser pulses [16]–[18].
This direct writing approach has been demonstrated also in
step index silica �bers [19], [20], and in silica waveguides
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[21]. Laser direct-writing also allows �exibility in the grating
design [22], and avoids the expense of the phase mask and use
of dopants or hydrogenation to increase the photosensitivity.
However, the problem of obstruction by the microstructure still
needs to be overcome.

One approach used to overcome scattering by the mi-
crostructure is to �ll the holes with a material with similar
index to the host. However �lling the holes can be dif�cult
to achieve in practice and signi�cantly reduces the strong
con�nement achievable in air-�lled microstructures [23] and
it would be dif�cult to get the liquid out of the �ber.

Recently Geernaertet al. [24] demonstrated the �rst grating
point-by-point written in a simple silica microstructured�ber
in which two layers of air holes de�ned a rectangular core.
The use of only one layer of holes minimized scattering
and diffraction of the writing beam. However there is still a
tradeoff between con�nement of the guided mode and access
to the core by the grating writing beam.

In this letter we report femtosecond laser direct-writing of
a 4th order Bragg grating at 1518.67 nm with a 2.5 seconds
writing time in an mPOF speci�cally designed for point-by-
point side-writing.

Fig. 1. Cross section of the mPOF designed for direct writing. Inset: zoom
on the microstructure.

II. F IBER DESIGN AND FABRICATION

The �ber was designed so that the laser beam used for writ-
ing would, ideally, pass between the air-holes and encounter
minimal scattering before reaching the �ber core. For this
reason an “opening” in the 3 ring hexagonal microstructure
was created by removing 3 holes; 2 in the outer ring and one in
the second ring (see Figs. 1-2). As the �ber was symmetric, 6
holes in total were removed. In this way access for the focused
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Fig. 2. COMSOL simulation of the guided mode in the �ber. The simulated
structure has a pitch of 3.5� m and hole diameters varying from 1 to 1.4� m
in order to match as much as possible the real structure.

800 nm laser beam was created through the microstructure on
both sides. The pitch of the microstructure was designed so
that the beam could also pass the �rst ring of holes without
facing any interface. The focused beam was estimated to have
a spot size just above 1� m and, as we aim for a hole to pitch
ratio of 0.42, a minimum pitch of 2� m was required. The
relative hole size of 0.42 was chosen because it would make
the mPOF endlessly single mode with all holes present in the
cladding [25]. The �ber with all holes was previously used
for UV-writing of FBGs, which required over 60 minutes of
writing time [10], [11].

The fabricated �ber is shown in Fig. 1 and a zoom on the
microstructure can be seen in the inset. From the �gure it is
possible to notice a design feature on the �ber: an alignment
slot in the outer part of the �ber was added in order to facilitate
the alignment of the microstructure. The produced �ber, made
in poly(methyl methacrylate) (PMMA), has an outer diameter
of 130 � m and a resulting microstructure that was slightly
asymmetric with hole diameters between 1 and 1.5� m. The
pitch is 3.5� m, resulting in a hole to pitch ratio between 0.29
and 0.43.

The novel �ber design was simulated with the commercial
software COMSOL in order to estimate the guiding properties.
A pitch of 3.5 � m and hole diameters varying from 1 to
1.4 � m were used (as shown in Fig. 2) in order to match
as much as possible the real structure. The fundamental
mode for a wavelength of 1.52� m is shown in Fig. 2. The
simulated fundamental mode has an effective refractive index
of nef f =1.48037 (using 1.49 as material refractive index) and
from the imaginary part a con�nement loss of 0.67 dB/m
is calculated, which is negligible compared to the material
loss [3].

III. G RATING WRITING

The grating writing set-up [26] is shown in Fig. 3. A
regeneratively ampli�ed, low-repetition rate, Ti:sapphire fem-
tosecond laser system (Hurricane, Spectra-Physics) was used
to produce the refractive index change. The output of the
laser has 100 fs pulses with a central wavelength of 800 nm,
repetition rate of 1 kHz and average output power of 1 W. A

Fig. 3. Schematic of the set-up used for point by point writing.

series of neutral density �lters at the output of the laser was
used to reduce and control the pulse energy. The beam was
then re�ected by a dichroic mirror, which allowed to observe
the writing process with a CCD camera. After the dichroic
mirror the light beam was focused with a 40x objective lens
into the �ber. The �ber was held with �ber rotators, which
were mounted on a computer controlled 3 axes translation
stage (Aerotech FA-130, Aerotech ABL200) that can move
with 200 nm resolution. The alignment was done visually
with a CCD camera to �rst �nd the alignment slot on the
�ber, then rotating the �ber 150 degrees in order to align
the microstructure, moving the �ber towards the objective
for half of the �ber thickness and adjusting the in-plane
position by placing the laser beam position in the center of
the microstructure. The position was then recorded and the
same procedure was repeated at a distance from the �rst
point corresponding to the desired grating length. During the
writing the stage is moved with a linear trajectory from one
point to the other. A pulse energy of 75 nJ (corresponding

Fig. 4. DIC microscope image of the FBG. The image was taken with a
40x magni�cation lens. A modulation with about 2� m period can be seen at
the center of the �ber and in particular at the center of the microstructure.

to a �uence of about 1 Jcm� 2 which gives a refractive index
change of about 5� 10� 4 in a PMMA slab [16]) was used
and a 4th order grating was written. This grating order was
the minimum for which two consecutive spots (with diameter
around 1 � m) would not overlap and thereby produce a
continuous index change instead of a grating. We aim at a
grating at� B = 1520 nm, so usingnef f = 1.48037, we �nd
a grating period of� = 4� B

2n ef f
= 2.053� m. Then, because

we want to have a single pulse per spot, we �nd a necessary
translation speed of 2.053� m � 1kHz = 2.053 mm/s. Thus,
in order to produce a 5 mm long grating a direct writing time
of about 2.5 s is needed.
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Fig. 5. Measured re�ection spectrum of the 4th order grating(OSA resolution
0.2 nm). The main peak central wavelength is 1518.67 nm.

The �ber was examined afterwards under a differential inter-
ference contrast (DIC) microscope (Olympus). The resulting
image is shown in Fig. 4. From the image a clear modulation
of the refractive index is visible. The modulation period is
around 2� m, which is in agreement with the design spacing.

The grating has been characterized by measuring the re�ec-
tion spectrum using a �ber circulator operating at 1550 nm.
The �rst arm of the circulator is connected to a SuperK Versa
broadband source from NKT Photonics A/S. The broadband
signal is then butt-coupled to the �ber from the second arm
of the circulator. The re�ection is collected and measured at
the third arm of the circulator with an Optical Spectrum An-
alyzer (Ando AQ6317B). The measured re�ectance spectrum
is shown in Fig. 5. The central wavelength is 1518.67 nm
and more than one peak can be observed (possibly due to
birefringence or the �ber not being single mode).

IV. CONCLUSION

In conclusion we have shown a new �ber structure to allow
direct writing of FBGs in microstructured optical �bers in only
2.5 s. The �ber design is investigated and the �ber is drawn.
A fourth order grating resulting in a resonance wavelength of
1518.67 nm is written using the point-by-point technique for
the �rst time into a microstructured polymer optical �ber. The
spectrum shown in Fig. 5 is the �rst reported directly written
FBG spectrum in any POF or mPOF.

The proof that the direct writing technique can work for
mPOFs could solve one of the crucial problems of mPOF
FBG fabrication, i.e. the long writing time, which is generally
above 60 minutes for mPOFs [1].

We note that direct writing could allow grating writing in
�bers made with non-photosensitive materials, such as low
loss per�uorinated POFs [3].
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Dynamic characterization of polymer optical �bers
Alessio Stefani, Søren Andresen, Wu Yuan and Ole Bang

Abstract—With the increasing interest in �ber sensors based
on polymer optical �bers it becomes fundamental to determine
the real applicability and reliability of this type of sensor. The
viscoelastic nature of polymers gives rise to questions about
the mechanical behaviour of the �bers. In particular, concerns
on the response in the non-static regime �nd foundation in
the viscoelasticity theory. We investigate the effects of such
behaviour by an analysis of the mechanical properties under
dynamic excitations. It is shown that for low strain (0.28%) the
Young's modulus is constant for frequencies up to the limit set
by our measurement system. A more detailed analysis shows
that viscoelastic effects are present and that they increase with
both applied strain and frequency. However the possibilityof
developing sensors that measure small dynamic deformations
is not compromised. A stress-relaxation experiment for larger
deformations (2.8%) is also reported and a relaxation time
around 5 seconds is measured, de�ning a viscosity of 20 GPa�s.

Index Terms—Polymer Optical Fibers, Dynamic Mechanical
Analysis.

I. I NTRODUCTION

Polymer optical �bers (POFs) are more and more used for
sensors because of their material advantages over silica. In
particular microstructured POFs (mPOFs) have been used for
applications like strain sensing [1], [2] exploiting the af�nity to
organic compounds, and the combined low Young's modulus
and high failure strain [3] respectively and biosensing [4]–
[6] . Different polymers have been used to make �bers, but
the most used are poly(methyl methacrylate) (PMMA) and
the cyclic ole�n copolymer TOPAS. The exploitation of the
mechanical properties is strongly enhanced by the fact that
these polymers are also photosensitive and that it is then
possible to write �ber Bragg gratings (FBGs) in this kind
of �ber [2], [7]–[11]. Moreover increasing interest for the
use of mPOF FBGs as strain related sensors is driven by
the possibility of reducing the environmental in�uence, by
choosing a humidity insensitive polymer (such as TOPAS)
[12] and/or by temperature compensating with a dual grating
scheme [13].

POF based strain sensors �nd applications not only in static
measurements but also in dynamic ones. Examples could be
for monitoring structural vibrations [14] and for accelerome-
ters [15]. As already mentioned the choice of polymer �bers
instead of silica is related to their elasticity. Unfortunately
polymers are not elastic, but viscoelastic. Viscoelastic ma-
terials do not have a constant response to strain/stress with
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frequency due to molecular rearrangement, which dissipates
part of the accumulated energy, as in a plastic deformation
[16]. This implies that the material under stress has the
tendency to relax. It also implies that they have a Young's
modulus that is not constant in temperature and frequency. It
is well known that for bulk polymers this behaviour occurs at
really low frequencies (often even less than 1 Hz) [17], [18].
This material property seems to exclude polymer optical �bers
from all those sensing applications in which the frequency
response of the sensor is one of the main characteristics, e.g.
accelerometers, microphones and sensors for fast vibrations
detection.

Mechanical characterizations of polymer optical �bers have
been made, but most of them in terms of dependence of the
mechanical properties on the fabrication parameter [2], [19]
and static load [20]–[22]. Kiesel et al. [22] show the in�uence
of the strain rate on the strain/stress curve and consequently
Young's modulus. A study on time dependent effects has also
been done [23], but it reports only on measurements of the
relaxation time. The investigations on polymer �bers reported
up to now do not consider cyclic strain excitation, and thus
the dynamic Young's modulus. In order to fully understand
and characterize the viscoelastic properties of polymer op-
tical �bers and exploit the favorable regimes when making
POF based sensors, measurements of the dynamic Young's
modulus and of the recovery time are necessary. The most
used technique for this kind of measurements is the dynamic
mechanical analysis (DMA) [17]. It allows for analysis of
frequency and temperature behaviour of viscoelastic materials.
We base this study on the principles used in the DMA, but
in a different con�guration. We report on the investigation
on the frequency dependence of the Young's modulus of
polymer optical �bers and the effects caused by viscoelasticity
in this regime. Moreover we also investigate stress-relaxation
of polymer �bers.

II. EXPERIMENTAL SET-UP

Compared with standard DMA we choose a reciprocal
approach, also used in [24], in which elongation is applied
and force is measured instead of vice versa. A schematic of
the set-up used to characterize the �bers is shown in Fig. 1.
A current driven shaker (Brüel & Kjær Type 4810) is used
to produce the desired elongation. The shaker can provide
displacement up to 6 mm peak to peak in a frequency range
0 to 18 kHz. The �ber is �xed on one end to the shaker while
on the other end it's �xed to a force gauge (Brüel & Kjær
8230 or 8230-002). On the shaker side, underneath the �ber
holder an accelerometer (Brüel & Kjær 4507) is placed in
order to determine the displacement. A waveform generator
is used to drive the shaker and a data acquisition card (Brüel
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Fig. 1. Schematic of the set-up used for dynamic measurements.

& Kjær LAN-XI module type 3160-B-042) is use to monitor
the response of the force gauge, the accelerometer and the
shaker input. All the experiments have been conducted at room
temperature (about 23� C) in an air conditioned environment.

III. D YNAMIC YOUNG' S MODULUS MEASUREMENTS

There are different ways to determine the dynamic Young's
modulus over a range of frequencies. They only differ in
the excitation wave used: it could be by sampling a certain
number of sine wave excitations with various frequencies,
by sweeping the frequency continuously, by using the free
resonance technique or by exciting with a wave with multiple
components [17]. We measured the response to a white noise
excitation with components from 0.7 Hz to 3.5 kHz. An
elongation of 116� m (RMS value) was applied. Considering
that the �ber holders are separated by 4.1 cm, a deformation
of 0.28% was produced. The �bers under test are to be
used in optical accelerometers [15] for which a 0.02% strain
corresponds to an acceleration of already 15g. For this reason
we are interested in the small deformation regime and we
chose to test the �bers with an about 10 times stronger
deformation than what is typically required in our application
of �ber-optical accelerometer. The recorded force was divided
by the displacement, calculated by double integrating the
response of the accelerometer using the software of the data
acquisition card. We expected the displacement to be �xed by
the input current to the shaker, so that it wouldn't have been
necessary to measure the elongation, but we decided to do
anyway it in order to make sure that the shaker displacement
wasn't in�uenced by the �ber to the point of not following
the speci�cations. The corresponding Fourier transform (FFT)
response gives the frequency dependent spring constant. The
Young's modulus was then calculated by multiplying with
the �ber length and dividing by the cross sectional area. It
was assumed that, for the applied deformation, the variation
in cross section and in length was negligible. Three different
�bers have been tested this way: a silica SMF-28 �ber with
125� m diameter; a 115� m in diameter commercial step index
polymer optical �ber made of PMMA with a polystyrene co-
doped core (MORPOF02, Paradigm Optics); and a microstruc-

tured polymer optical �ber (mPOF) made in PMMA with
a diameter of 130� m. The measured frequency dependent
Young's modulus is shown in Fig. 2.

10 100 1000
1

10

100

1000

Frequency (Hz)

Y
ou

ng
's

 m
od

ul
us

 (
G

P
a)

 

 

mPOF
POF
Silica

Fig. 2. Dynamic Young's modulus of the PMMA mPOF, the step index POF
and of the silica SMF28.

Due to the acquisition system used, the low frequency
region, i.e. below 7 Hz, can not be trusted. The whole system
presents a mechanical resonance at about 1 kHz which limits
the useful high frequency response to just above 100 Hz. In the
range of frequencies between 10 to 100 Hz the modulus shows
a frequency independent �at response, indicating an elastic
like behaviour, and a low viscosity regime for the elongation
used. To compare with literature, the value of the modulus
was calculated by taking the average value in the �at region.
The silica �ber has, as expected, a higher modulus and it's
value (71 GPa)(spanning from 67.8 to 72.8), is in agrement
with what is reported in the literature [3]. The two polymer
�bers have a Young's modulus about a factor of 15 smaller
than the silica �ber. The speci�c values differ slightly, with
4.3 GPa(spanning from 4 to 4.9)for the POF and 5.1 GPa
(spanning from 4.9 to 5.3)for the mPOF. Different values have
to be expected, considering that the POF has a core partially
composed of a different material, whereas the mPOF is fully
made in PMMA. Furthermore, the particular grade of PMMA
used for the two �bers could be different (e.g., in terms of
molecular weight) and the drawing conditions (in particular
the tension) most probably were different for the two �bers
[2], [19]. If comparing the result found to what is reported in
literature, we notice that the POF has a modulus very similar
to what is reported for a �ber made by the same producer and
with very similar characteristics [22], while the other results
span very much from 1 to 5 GPa [3], [25]. The diversity of
the values reported stresses the fact that if it's desired toknow
accurately the characteristics of a �ber used for a particular
application, a measurement of each different batch of �ber is
necessary.

IV. SINE WAVE RESPONSE

To deeper investigate the effects of viscoelasticity and to
have a clearer idea of what can happen when the �ber is
used in a dynamic sensor , e.g the accelerometer [15], we
investigated the time response to a sine wave excitation, with
different frequencies and amplitudes. In order to show the
change in behaviour we show the results for two of the
investigated frequencies, 1 and 10 Hz, and for two different
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