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ABSTRACT 

 

 

 

High availability is a key requirement in mobile communication systems, 

especially, when it is used for mission-critical services such as public safety e.g. 

police, ambulance and fire services. A failure in the fixed network infrastructure 

that provides services to mobile users can affect a large number of users and 

risk loss of lives. The fixed infrastructure of mobile communication system has 

different characteristics, for example, architecture complexity, real-time peer-to-

peer communication and performance requirements that make the already 

existing failure recovery techniques, such as those using rollback or replication 

techniques inapplicable. 

This dissertation presents a novel failure recovery approach based on a 

behavioral model of the communication protocols. The new recovery method is 

able to deal with software and hardware faults and is particularly suitable for 

mobile communications infrastructure. The method enables the faulty 

applications in the infrastructure to quickly and effectively resume their services 

to their mobile clients with no or minimal loss of work after failure.   

In our approach, we do not assume a specific fault behavior for example fail-

stop or transient behavior as it is the case for many recovery techniques. In 

addition, the method does not require any modification to mobile clients. The 

Communicating Extended Finite State Machine (CEFSM) is used to model the 

behavior of the infrastructure applications. The model-based recovery scheme is 

integrated in the application and uses the client/server model to save the 

application state information during failure-free execution on a stable storage 

and retrieve them when needed during recovery. When and what information to 

be saved/retrieved is determined by the behavioral model of the application.  



To practically evaluate and demonstrate the effectiveness of our 

method, we developed as a case study an experimental testbed for the TETRA 

(TErrestrial Trunked Radio) packet data network. The testbed works as a 

distributed system and can run various communication scenarios between the 

fixed network infrastructure and its mobile users. We thoroughly followed the 

TETRA standard specifications in our implementation of the communication 

protocols in order to get a testbed system that operates as the real system with 

respect to message exchange and timing. The experimental results showed that 

by using our method the faulty infrastructure application can immediately 

resume its service after its restart and in less than a minute, it restores its service 

performance level prior to the failure. The failure-free overhead incurred by the 

method is relatively low, and is experimentally found to be less than 5% in the 

conducted experiments.    
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RESUME 

 

Høj tilgængelighed er et nøgle-krav til mobilkommunikationssystemer, 

i særdeleshed når de anvendes til livsvigtige opgaver som offentlig sikkerhed, 

f.eks. politi, ambulance- og brandtjeneste. En fejl i infrastrukturen af det faste 

netværk, som tilbyder mobile brugere tjenester, kan påvirke et stort antal 

brugere med risiko for tab af menneskeliv. I sammenligning med det faste 

netværk har infrastrukturen i mobilkommunikationssystemer helt andre 

karakteristika, så som kompleksiteten af arkitekturen, realtid peer-to-peer trafik 

og krav om ydelser. Dette gør, at man ikke kan anvende eksisterende 

genetablerings teknikker som tilbage-rulning eller Duplikering. 

Denne afhandling præsenterer en ny genetablerings metode, der er 

baseret på kommunikations protokollernes adfærd. Denne nye metode er i stand 

til at tolerere fejl i både programmél og maskinél og er i særdeleshed egnet til 

de forhold, der hersker for mobilkommunikation. Metoden gør det muligt 

hurtigt og effektivt at genetablere de af fejl i infrastrukturen ramte tjenester til 

de mobile kunder men ingen eller et minimalt tab af arbejde. I modsætning til 

mange andre genetableringsteknikker stiller vores metode ikke specifikke krav 

til den måde, fejl opfører sig på, så som ophør af fejl eller forbigående fejl. 

Endvidere kræver metoden ingen modifikation af de mobile enheder. Den 

kommunikerende-udvidede-begrænsede-tilstands-maskine  (Communicating 

Extended Finite State Machine, CEFSM) anvendes til at modellere opførslen af 
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de infrastruktur programmerer som servicerer mobiler. Den model-baserede 

genetablerings metode er integreret i selv programmet. Den bruger klient/server 

modellen til at gemme oplysninger om programmets tilstand i fejlfrie perioder 

og hente dem frem igen, når de skal bruges til genetablering. Oplysninger 

gemmes i en pålidelig opbevaring plads. Hvilke oplysninger der skal gemmes, 

og hvornår de skal gemmes/hentes, fastlægges ved hjælp af modellen for 

programmets tjeneste adfærd. 

For at vurdere og underbygge vores metodes effektivitet i praksis, har vi 

som eksempel opbygget en eksperimentel forsøgsmodel af TETRA (TErrestrial 

Trunked Radio) pakkekoblede  datanet. Forsøgsmodellen fungerer som et 

distribueret system og kan afvikle forskellige scenarier for kommunikationen 

mellem det faste  nets infrastruktur og dets mobile brugere. For at få en 

forsøgsmodel, der fungerer som det virkelige system med hensyn til 

informationsudveksling og tidsmæssigt forløb, fulgte vi ved implementeringen 

af kommunikations protokollerne omhyggeligt specifikationerne for TETRA 

standarden. De eksperimentelle resultater viser, at med vores metode kan en i 

infrastrukturen fejlramt tjeneste efter genstart reetableres til samme niveau som 

før fejlen indtraf i løbet af få sekunder. Den ekstra belastning, som metoden 

medfører i fejlfrie perioder, er ret lille, og i alle eksperimenter har den været 

mindre end fem procent.  

 

 



ix 

AUTHOR PUBLICATIONS 

 

Part of the research presented in this thesis has also been published in 

the following papers (in chronological order): 

 

� M. Zib Beiroumi, High Available Mobile Infrastructure Applications, 

proceedings of the 16th  IEEE International Symposium on Software 

Reliability Engineering (ISSRE 2005), pp. 181-190, Chicago, USA, Nov, 

2005. 

� M. Zib Beiroumi, V. Iversen, Recovery method based on communicating 

extended finite state machine (CEFSM) for mobile communications, 

proceedings of the 10th IEEE International Conference of Engineering of 

Complex Computer Systems, pp. 384-393, Shanghai,  China, June, 2005. 

� M. Zib Beiroumi, Recovery of Infrastructure Software in the Mobile 

Network, NTS-17, 17th Nordic Teletraffic Seminar, pp. 137-148, August 

25, 2004, Fornebu, Norway. 

� M. Zib Beiroumi, Recovery of peer-to-peer applications in the mobile 

network infrastructure, Fast abstract in the IEEE International Conference 

on Dependable Systems & Networks (DSN-2004), pp 62-63, June 28-July 

1, 2004, Florence, Italy.

 

 

  

 

 

 

 

 

 



x 

ACKNOWLEDGMENTS 

 

 

I would like first to thank my manager Lars Behrendt at Motorola who 

has supported me from the beginning to the end of this joint PhD research 

project between Motorola and the Technical University of Denmark. I sincerely 

doubt that this project would have ever seen the light without his help and 

support to overcome all the obstacles that stood in the way. 

I would also like to thank my advisors Villy Bæk Iversen and Lars 

Dittman for their great support and contribution to the success of this project. 

Last but not the least I must thank my family. I am fortunate to have 

such a wonderful wife, who has supported me all the way through and has lived 

up to the challenges at home with our three very active kids.  

My research work at the Technical University of Denmark was totally 

funded by Motorla A/S Tetra world, sydvestvej 15, 2600 Glostrup, Denmark. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 

TABLE OF CONTENTS 

 

 

Chapter 1 Introduction.................................................................................... 1 

1.1 Motivation .......................................................................................... 1 

1.2 Scope and contributions ..................................................................... 3 

1.3 Dissertation Overview........................................................................ 4 

1.4 Terminology....................................................................................... 6 

Chapter 2 Fault Tolerance: Recovery techniques & limitations................... 10 

2.1 Availability and Reliability .............................................................. 10 

2.2 Software Faults................................................................................. 11 

2.3 Building fault tolerant systems......................................................... 12 

2.4 Failure Recovery Techniques........................................................... 13 

2.4.1 Rollback recovery ........................................................................ 13 

2.4.2 Replication based recovery.......................................................... 17 

2.4.3 N-version programming............................................................... 19 

2.5 Limitations ....................................................................................... 20 

Chapter 3 Mobile Data Communication & Failure Recovery...................... 23 

3.1 Overall architecture of mobile network ........................................... 23 

3.2 Mobile Communication Characteristics and their implications ....... 25 

3.3 Requirements for failure recovery in mobile infrastructure ............. 28 

Chapter 4 Modeling Communication Applications...................................... 30 

4.1 OSI model ........................................................................................ 30 



xii 

4.2 Modeling communication protocols by CEFSM.............................. 32 

4.3 Case Study: TETRA Packet Data..................................................... 35 

4.3.1 CEFSM model for SNDCP protocol............................................ 38 

Chapter 5 State Transition Based Recovery (STBR) ................................... 43 

5.1 Objective & assumptions ................................................................. 43 

5.2 STBR Approach ............................................................................... 45 

5.3 Recovery protocol ............................................................................ 48 

5.4 Mechanism ....................................................................................... 50 

5.4.1 STBR during failure-free execution............................................. 51 

5.4.2 STBR during failure recovery...................................................... 55 

Chapter 6 Experimental Testbed and Results............................................... 61 

6.1 Testbed architecture ......................................................................... 61 

6.2 Experiment procedure and configuration......................................... 65 

6.3 Experiments...................................................................................... 67 

6.3.1 Failure recovery in experiment set #1.......................................... 74 

6.3.2 Failure recovery in experiment set #2.......................................... 79 

6.3.3 Failure recovery in experiment set #3.......................................... 83 

6.3.4 Failure-free overhead................................................................... 87 

6.4 Experiments summary...................................................................... 88 

Chapter 7 Conclusions and Discussion ........................................................ 89 

7.1 Conclusions ...................................................................................... 89 

7.2 Pros and cons.................................................................................... 91 



xiii 

7.3 Discussion ........................................................................................ 93 

Appendix A. SNDCP PDU formats .............................................................. 95 

Bibliography .................................................................................................... 100 

 





xv 

LIST OF TABLES 

 

 

 

Table 3-1: Negative implications of FNI communication on recovery techniques

.................................................................................................................. 28 

Table 4-1: CEFSM model for the SNDCP entity in FNI................................... 40 

Table 6-1: Summary of the failure recovery experiments ................................. 88 

Table A-1: SN-ACTIVATE PDP CONTEXT DEMAND PDU....................... 95 

Table A-2: SN-ACTIVATE PDP CONTEXT ACCEPT PDU ......................... 96 

Table A-3: SN-ACTIVATE PDP CONTEXT REJECT PDU .......................... 96 

Table A-4: SN-DATA PDU .............................................................................. 97 

Table A-5: SN-DATA TRANSMIT REQUEST PDU...................................... 97 

Table A-6: SN-DATA TRANSMIT RESPONSE PDU.................................... 97 

Table A-7: SN-DEACTIVATE PDP CONTEXT DEMAND........................... 98 

Table A-8: SN-DEACTIVATE PDP CONTEXT ACCEPT PDU.................... 98 

Table A-9: SN-PAGE REQUEST PDU............................................................ 98 

Table A-10: SN-RECONNECT PDU ............................................................... 99 

Table A-11: SN-END OF DATA...................................................................... 99 





xvii 

LIST OF FIGURES 

 

 

Figure 1 A generic time line from fault to recovery............................................ 6 

Figure 2: An example of out-of-bounds array indexing in C code...................... 8 

Figure 3: Rollback propagation and domino effect ........................................... 14 

Figure 4: Active replication structure ................................................................ 18 

Figure 5: N-version programming structure ...................................................... 19 

Figure 6: The overall architecture of the mobile communication system ......... 24 

Figure 7: Protocol entities interaction in OSI model ......................................... 31 

Figure 8: TETRA Packet Data Protocol stack................................................... 36 

Figure 9: STD of SNDCP entity in FNI ............................................................ 40 

Figure 10: STD of FNI SNDCP entity extended with Recovery State.............. 46 

Figure 11: Recovery protocol using client/server model................................... 48 

Figure 12: Format of requests and responses used in recovery protocol........... 49 

Figure 13: MSC showing STBR during successful PDP context activation ..... 51 

Figure 14 MSC showing STBR during uplink data transfer ............................. 52 

Figure 15 MSC showing STBR during downlink data transfer......................... 54 

Figure 16: Recovery of an MS initiated communication (Standby) .................. 56 

Figure 17: Recovery of an MS initiated communication (Ready)..................... 57 

Figure 18: Recovery for an FNI initiated communication (Standby) ................ 58 

Figure 19: Recovery for an FNI initiated communication (Ready)................... 59 

Figure 20: Overall architecture of TETRA packet data testbed ........................ 62 



xviii 

Figure 21: The MS application user interface ................................................... 66 

Figure 22: 3 typical failure-free experiments in set #1: (a) Number of 

downloaded files per time unit for each experiment run; (b) The 

corresponding number of packets; (c) The average download time of 40 

KB file....................................................................................................... 68 

Figure 23: 3 typical failure-free experiments in set #2: (a) Number of 

downloaded files per time unit for each experiment run; (b) The 

corresponding number of packets; (c) The average download time of 40 

KB file....................................................................................................... 71 

Figure 24: 3 typical failure-free experiments in set #3: (a) Number of 

downloaded files per time unit for each experiment run; (b) The 

corresponding number of packets; (c) The average download time of 24 

KB file....................................................................................................... 73 

Figure 25: Failure recovery in set #1 for 3 sample experiments where PDS 

application crashed around 75, 95 and 115 seconds respectively and then 

restarted after 5 seconds............................................................................ 75 

Figure 26: Failure recovery in set #1 for 3 sample experiments where PDS 

application crashed around 75, 95 and 115 seconds respectively and then 

restarted after 15 seconds.......................................................................... 77 

Figure 27: Failure recovery in set #2 for 3 sample experiments where PDS 

application crashed around 75, 95 and 115 seconds respectively and then 

restarted after 5 seconds............................................................................ 80 



xix 

Figure 28: Failure recovery in set #2 for 3 sample experiments where PDS 

application crashed around 75, 95 and 115 seconds respectively and then 

restarted after 15 seconds.......................................................................... 82 

Figure 29: Failure recovery in set #3 for 3 sample experiments where PDS 

application crashed around 75, 95 and 115 seconds respectively and then 

restarted after 5 seconds............................................................................ 84 

Figure 30: Failure recovery in set #3 for 3 sample experiments where PDS 

application crashed around 75, 95 and 115 seconds respectively and then 

restarted after 15 seconds.......................................................................... 86 

Figure 31: The PDS CPU time usage of two experiments in set #3. The PDS in 

the first experiment is updated with STBR method but not in the second.87 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xx 

LIST OF ABBREVIATIONS 

 

 

BS Base Station 
CEFSM Communicating Extended Finite State Machine 
FNI Fixed Network Infrastructure 
FPS File Packet Sender 
GPRS General Packet Data Service 
IP Internet Protocol 
LLC Logical Link Control 
MAC Medium Access Control 
MEU Mobile End User 
MLE Mobile Link Entity 
MS Mobile Station 
MSC Message Sequence Charts 
MTBF Mean Time Between Failure 
MTTR Mean Time To Repair 
OSI Open Systems Inter-connection 
PDS Packet Data Server 
PDU Packet Data Unit 
SAP Service Access Point 
SDL Specification and Description Language 
SDU Service Data Unit 
SIS State Information Saver 
SNDCP SubNetwork Dependent Convergence Protocol 
STBR State Transition Based Recovery 
TETRA TErrestrial Trunked Radio 
UML Universal Modeling Language 
UMTS Universal Mobile Telecommunications System 



1 

Chapter 1  

Introduction 
In building public safety communication systems that aim to tolerate 

failure, system developers must tackle many difficult issues. For example, there 

is the issue of which failure recovery approach that can work best for the 

system? What type of faults should the system tolerate? Does the system 

performance or real-time requirements deteriorate during failure-free execution? 

What is the cost of adding fault tolerance to the system? By systemically 

building a method to tolerate failures caused by software and hardware faults, 

we endeavor with this study to illuminate many of these issues. 

 

1.1 Motivation 

Mobile communication is a key element for the success of the public 

safety work and it is a necessary tool in solving the day-to-day mission-critical 

tasks accomplished by   public safety services such as ambulance services, fire 

brigades and police forces. The public safety workers are expected to provide 

prompt assistance in dealing with situations to preserve life, health and security. 

It is therefore very important that the public safety services have reliable and 

highly available mobile communication infrastructure in place to support the 

needs of the public. 
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In the last four decades, researchers have developed different 

techniques to tolerate system failures. There are three main approaches used to 

develop these techniques: 

1. Rollback: In this approach, the state of the application is saved 

periodically during failure-free execution to a stable storage. In case of 

failure, the faulty application is rolled back to the latest saved state and 

tries to recover from there. 

2. Replication: In this approach, the application (mainly server) is 

replicated and distributed across different computers. The idea behind 

this approach is that the failure of one server replica (or of a computer 

hosting a replica) can be masked from any client using that server 

because the other replicas can continue to perform any operation that 

the client requires from the faulty server. 

3. Design diversity:  This approach is based on the use of two or more 

versions of the application that are built independently (i.e. different 

designers, different programming languages, different development 

tools, etc.) from the same specifications. The rational for this approach 

is that the different versions fail independently because it is unlikely to 

have faults at exactly the same place in all versions, and thus, the 

probability of having at least one running application at any time is very 

high.   

 

Unfortunately, these approaches suffer from different limitations that 

restrict their use in commercial communication systems, for example, 

because of implementation cost or some inadequate assumptions about the 

causes to failures. In addition, mobile communication systems have many 

specific requirements such as real-time and performance requirements that 

seriously challenge the applicability of these approaches in mobile 

environment.  In communication industry today, most of the system 
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suppliers have their own customized solutions and approaches to deal with 

their systems failures. These solutions and approaches are based on best 

practice rather than on scientific studies.  

    

Our goal with this thesis is to develop a failure recovery method that 

gives a realistic solution for achieving fault tolerance in real-world 

communications systems. We are particularly interested in mission-critical 

public safety communication systems because of the obvious need for 

continuous service availability. The proposed recovery method should improve 

the system availability through fast and reliable recovery.  The method should 

also meet the requirements of today’s enterprise such as low implementation 

cost, good scalability, low overhead during failure-free execution, etc. 

  

1.2 Scope and contributions 

This dissertation details our research work to develop a failure recovery 

method to achieve high availability in mobile communication infrastructure. We 

investigate the challenges that in mobile environment create for the recovery 

and try to develop a scientific and engineering quality solution. 

The path we take in our work cuts a broad swath through traditional 

systems and fault tolerance research. We look at the existing recovery 

approaches and explain their general limitations. We then describe the 

characteristics of mobile communication and their impact on the recovery 

approach.  We begin by constructing a model that formally describes the 

behavior of the mobile communication protocols. The behavioral model is then 

used in our development of the failure recovery method. Finally, we implement 

an experimental testbed for real-world TETRA packet data communication 

system to evaluate our proposed method. Our work led to the following 

contributions:  
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1. Adaptation of the CEFSM model to the OSI model in order to get a 

more accurate behavioral model of the communication protocols which 

are normally designed according to the OSI model. 

2.  Studying fault tolerance in a new application area, namely the fixed 

infrastructure of mobile communication system. The fixed 

infrastructure manages and provides services to the mobile stations.  To 

the best of our knowledge there is no academic literature that deals with 

failure recovery in the fixed infrastructure but there is few for mobile 

stations, e.g. [Pradhan96].     

3. Applying the CEFSM model on a real-world case study, namely 

TETRA packet data communication system. We show how behavioral 

model can be developed for the layered communication protocol stack.   

4. Developing a novel behavioral model based failure recovery method to 

tolerate software and hardware faults. This recovery method referred to 

as State Transition Based Recovery (STBR) is aimed to achieve high 

availability in the mobile fixed network infrastructure. The method is 

well suited for real-time communication and do not rely on any specific 

fault behavior e.g. transient or fail-stop.     

5. Design and implementation of an experimental testbed for TETRA 

packet data where the communication between mobile users and 

infrastructure can be generated at various traffic profiles.  

 

1.3 Dissertation Overview 

In this dissertation, we gradually assemble the pieces needed to first 

develop our novel failure recovery method for mobile communication systems, 

and secondly to implement an experimental testbed to evaluate the proposed 

method. 
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In chapter 2, we present the most known recovery techniques in the 

field of fault tolerance research. We describe in general the basic ideas and 

approaches behind these techniques. Finally, we explain their general 

limitations as a result of the assumptions made by these approaches.  

In chapter 3, we look at the overall architecture of mobile 

communication systems and the different aspects that characterize mobile 

communication and its physical environment. We then investigate the 

implications of these characteristics on the existing recovery techniques and 

finally come to a number of requirements that should be considered when 

building recovery system for mobile environment. 

In chapter 4, we start by presenting a modified version of the CEFSM 

model that is adapted to the OSI model. We then introduce our case study about 

TETRA and describe the protocol stack of TETRA packet data.  Finally, the 

CEFSM model is applied to a selected layer protocol entity in the TETRA 

packet data protocol stack. 

In chapter 5, we present our failure recovery method. The principles 

that the method relies on, the objective and the assumptions are described in 

details. Furthermore, the protocol entity modeled in previous chapter is used to 

explain the recovery mechanism both during failure free execution and during 

recovery.  

In chapter 6, the design and implementation of the experimental testbed 

for TETRA packet data is described. The experiment procedure and setup is 

also described. Finally, the results of the conducted experiments are presented 

and evaluated. 

In chapter 7, we conclude our work and discuss the possibility of 

adopting our research in commercial systems.  
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1.4 Terminology 

The fundamental terms used in the field of fault-tolerance research are 

fault, error, failure, detection and recovery. The terminology used in this thesis 

is to some extent in line with that given by [Gray91] and [Pradhan95]. 

 

Figure 1 A generic time line from fault to recovery 

A fault is a physical defect that may lead to an error. Faults can be 

classified into different types such as:  

Hardware faults:  component failures, for example disk crashes or processor 

failures 

Software faults: faults in software e.g. coding mistakes or improper design 

Human faults: mistakes made by operators and maintenance personnel, for 

example making an erroneous change to a configuration file, or performing a 

failed upgrade. 

Environmental faults: failure in facilities e.g. fire, flood, earthquake, power 

failure and sabotage.  

In case of software, faults are activated or triggered when the faulty piece of 

code is executed. The fault activation rate measures how often faults are 

triggered.  

An error is an erroneous change in the system state caused by the activation of 

the fault. It is a deviation from the correct behavior of a system. Fault is the root 

cause of error and error may cause failure.   

Time 

Detection latency Error latency 

                 Fault        Error                  Failure                 Detection   Recovery  
              Activation 
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A failure is the nonperformance or incorrect performance of some action that is 

expected of the system by the user. 

Error latency is the time between error occurrence and the failure occurrence, 

see Figure 1. 

Failure detection is the process of identifying that the system is in failed state. 

There are different failure detection mechanisms that can work both locally (e.g. 

by using watchdog timers) and remotely (e.g. by using periodic heartbeat 

messages) to monitor the system state. 

Failure detection latency is the time between the failure occurrence and its 

detection by the deployed detection mechanism.  

Failure recovery is the process of getting the system back to an operational state 

after a failure has been detected. 

 

To illustrate the above mentioned terminology, a simple C code example 

containing out-of-bounds array indexing fault is presented in Figure 2. The fault 

is located at line code number 5 (� should be replaced by<), the fault is 

activated when line 9 is executed with parameter i equals to 100 which takes 

place when the user list is full. The fault activation will lead to writing the 

number out of the array bounds, precisely at address “&user_list[100]”. 

The fault activation will cause an error if the memory address 

“&user_list[100]” is already used by another variable in the program, for 

example if the compiler uses this address for the variable number_of_users, 

otherwise no error occurs. Suppose that an error is indeed occurred (i.e. 

number_of_users gets corrupted) then depending on the program flow, if the 

number_of_users is used before being overwritten then program failure is 

inevitable, but if it is always overwritten before being used then failure is 

avoided. The possible failure will occur at line 22 where the program depending 

on the error value may hang for a variable period of time or probably crash. 
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Figure 2: An example of out-of-bounds array indexing in C code  

 

Error latency is the time period between the execution of line 9 with parameter i 

equals to 100 and the following execution of line 22. Note that error latency is a 

variable that may depend on the program user activity.  The failure detection 

latency is the time period between the execution of line 22 and the detection of 

failure by the used detection techniques, e.g. via heartbeats and watchdog 

timers.  

Finally, there are two important properties for software faults that have been 

essential for many of the failure recovery methods [Chandra00a]. 

Non-Determinism: This property indicates that fault activation is non-

deterministic (transient) and it is most likely not to happen if the operation is 

retried, even if the same piece of code is retried.  The transient nature of the 

#define MAX_NUM_OF_USERS  100 

int  user_list[MAX_NUM_OF_USERS]; 

int  number_of_users 
      

1 Save_user_id_number(int id_number) 

2 { 

3   int i; 

4   /* save Id number in first empty element */ 

5    for ( i= 0; i � MAX_NUM_OF_USERS;i++) 

6    { 

7 if(user_list[i] == 0) 

8 { 

9    user_list[i] = id_number; 
 

 

  } 

20 send_to_all_users( ) 

21{ 

22 while(number_of_user--) 

 { 
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fault arises because some external factors have unexpectedly changed; for 

example, a race condition caused by unusual thread/process scheduling or a bit-

flip (a change from 0 to 1 or 1 to 0) in RAM caused by electromagnetic 

interference. The non-deterministic software faults are also known as 

“Heisenbugs” [Gray86]. The faults that do not uphold the non-deterministic 

property are known as permanent faults. 

      

Fail-stop property: A program must not perform erroneous actions after 

fault activation, for example writing erroneous data which corrupts its own 

process state or sending incorrect information to other processes. This property 

is also known as halt-on-failure. The faults that do not uphold fail-stop property 

is called Byzantine faults [Schneider84]. 
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Chapter 2  

Fault Tolerance: Recovery techniques & limitations 
Traditionally, fault tolerance means to avoid service failures in the presence of 

faults. The goal of fault tolerance is to mask or at least to minimize the impact 

of system failures on system users. Fault tolerance is a means to achieve high 

level of system availability. In this chapter, we describe the key principles to 

build fault tolerant system and the main existing techniques to achieve fault 

tolerance. Finally, the limitations of these techniques are explained. 

2.1 Availability and Reliability 

Reliability and availability are two metrics that are always related with fault 

tolerance. 

Reliability is the probability that a system will not fail at a specified point of 

time in the future given that it is operating correctly at time zero. Module 

reliability measures the time from an initial instant and the next failure event. 

Mean Time Between Failure (MTBF) is used to statistically quantified 

reliability. MTBF is the mean (average) time expected between failures of a 

given module (software or hardware) and is normally measured in hours. 

Because the calculation of MTBF is quite complex and may depend on many 

factors, it is usually done empirically to predict the rate at which failures can be 

expected.     

In contrast, availability is the probability that the system will be operating 

correctly at any instant of time within a given time interval. A widely accepted 

equation for system availability is A = MTBF/(MTBF+MTTR), where MTTR  ( 
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Mean Time To Repair)  is the average time between failure and recovery. An 

ideal system that never fails has availability equals to 1. Availability measures 

the readiness for correct service, while reliability measures the continuity of 

correct service.  

Depending on the criticality level of the user application, the requirements for 

system reliability and availability may vary. For example, in mission-critical 

applications such as emergency services, the main concern is a high level of 

availability; few numbers of outages per year can be tolerated as long as they 

are very short. While for life-critical application such as control system for 

nuclear power plants, high reliability is the main concern since no failure can be 

tolerated during the life of the system. Reliability and availability are related in 

such a way that improving module reliability will automatically improve its 

availability, but the reverse is not necessary true. 

 

2.2 Software Faults  

A system can be viewed as a set of modules - hardware and software – 

that communicate with each other through network (wired or wireless) to 

achieve common goals. Each module is designed to perform a specified number 

of functions and it has a well defined interface through which it can interact 

with other modules.  A module may also divided into several sub-modules if it 

is large.    

Systems fail due to a variety of problems with their software and hardware. 

Field studies [Gray91] and everyday experience show that the dominant cause 

of failures today is software faults, both in the application and operating system. 

We mean by “application” any software module that runs over the operating 

system ranging from end-user applications to system applications.  

As previously mentioned, software fault is the root cause of error and 

possible consequent failure. It is a defect that is located in a fixed position in a 
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specific module. However, the error that is caused by the software fault may not 

be limited to a single module and it may propagate to other modules. Consider 

the case where the faulty module starts sending corrupted messages to other 

modules, if the receiving modules are not prepared to handle such errors, they 

may fail too.  

The behavior of the fault is critical to the success of any proposed 

recovery method. Recall that recovery can be first started after detection of the 

failure so the evolvement from fault activation to failure detection is important 

to understand in order to ensure a successful recovery procedure after a failure. 

Most of the existing failure recovery techniques have some assumptions to the 

behavior of the software faults that they can tolerate. 

 

2.3 Building fault tolerant systems 

To build a fault tolerant system, there are four key elements to be 

addressed. A lack of any one of these elements will make the system less fault 

tolerant. 

1. Redundancy: A fault tolerant system must not have any single point of 

failure, therefore, both hardware and data redundancy is necessary to 

recover from hardware and software faults. The principle of redundancy 

relies on the fact that the probability of two or more redundant components 

failing at the same time is very low assuming that there is no dependency 

between them.   

2. Modularity: A fault tolerant system should be decomposed into modules 

where each module (software or hardware) is a unit of service with a well 

defined access interface. Besides that modularity is an important design 

approach to break down the complexity of the system, it is also an affective 

approach to hinder error propagation by adding strict error control at every 

access point to each module.  
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3. Failure detection: The main goal of failure detection is to determine when 

the system (most probably) does not operate correctly and to give the start 

signal for recovery/repair procedure. The quality of failure detection can be 

evaluated by two metrics: detection promptness which is directly translated 

to failure detection latency and second detection reliability which is the 

probability that the failure decision is wrong (false alarm). There are 

different failure detection techniques that can be used separately or in 

combination. Examples of failure detection techniques are: watchdog timers 

to detect hanging processes and heartbeat messages to detect crashed 

processes.     

4.   Failure recovery:   A fault tolerant system should be able to resume 

service after a failure and to bring the system state to that it had before 

failure. The aim of failure recovery is to reduce users’ loss of work as well 

as to minimize redo. A fundamental task for failure recovery process is to 

bring consistency to the system after failure. Failure recovery may need to 

utilize any of the above mentioned elements e.g. redundancy to achieve its 

goal. A vast number of failure recovery techniques have been proposed in 

the literature to achieve fault tolerance in the distributed systems. We treat 

some of the most known techniques in the next section.                                                                           

 

2.4 Failure Recovery Techniques 

During the last four decades, different failure recovery techniques and 

approaches have been developed. We describe some of the most known 

recovery methods in the field of fault-tolerance research.  

2.4.1 Rollback recovery 

Rollback recovery regards the system as a collection of application 

processes that communicate through network. The rollback recovery protocols 
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try to achieve fault tolerance by saving the complete process state of the 

application periodically on stable storage during failure-free execution. Upon a 

failure, the failed process rolls back to its latest saved state and then tries to 

recover from there, thereby reducing the amount of lost computation. The main 

goal of any rollback recovery protocol is to bring the system (processes) into a 

consistent state when inconsistencies occur because of a failure. Rollback 

recovery techniques try to achieve transparent recovery by avoiding the need of 

any involvement of the application programmer and just treat the application to 

be recovered as a black box. The Rollback recovery can be classified into two 

groups [Elnozahy96]: checkpoint based and log-based.   

 

Figure 3: Rollback propagation and domino effect 

• Checkpoint based Recovery: checkpoint-based rollback recovery 

relies on checkpoints to achieve fault tolerance. A check point is a 

“snapshot” of the process  state at a certain point of time as maintained 

by the operating system (program counter, data segments, CPU 

registers, stack pointers, etc) . Upon a failure, checkpoint-based rollback 

recovery restores the system state to the most recent consistent set of 

checkpoints. The simplest form of checkpoint based schemes referred to 

as uncoordinated where each process can conveniently take checkpoints 

according to some local criteria, for example to reduce performance 
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overhead, without taking account to the communication messages with 

the rest of the system. Uncoordinated checkpointing is simple to 

implement but it suffers from domino effect [Randell75] which may 

cause loss of work. After failure,  the failed process rolls back to the 

latest saved checkpoint  but this may not be in consistency with the 

latest checkpoint of one of the other processes, so that process is 

obliged to roll back to next older checkpoint. This cascaded rollback 

may continue and eventually may lead to the domino effect, which 

causes all processes of the system to roll back to the beginning of the 

computation, in spite of all the saved checkpoints. Consider the 

example in Figure 3, the system in this case is composed of three 

processes P1, P2 and P2.  Each process takes a checkpoint – represented 

by black bar independently. Suppose process P1 fails and rolls back to 

checkpoint C1,3. The rollback of P1 invalidates the sending of message 

m8 and so P2 must rollback to checkpoint C2,3 to “invalidate” the receipt 

of that message. Consequently, the rollback of P2 will force the rollback 

of P3 to check point C3,3   to invalidate the receipt of message m7. This 

cascaded rollback continues until all processes roll back to their initial 

checkpoints (C1,1, C2,1, C3,1). To avoid domino effect, coordinated 

checkpointing where processes coordinate their checkpoints in order to 

save a consistent global system state [Chandy85] is used. A coordinator 

process takes a checkpoint and broadcasts a request message to all other 

processes, requesting them to take checkpoint. Checkpoint coordination 

can also be achieved by using synchronized clocks where all system 

processes take checkpoints at approximately the same time without 

need to a coordinator process [Cristian91].    

• Log-based checkpointing: Log-based rollback-recovery uses both 

checkpointing and logging to enable processes to replay their execution 

after a failure beyond the latest checkpoint. Log-based checkpointing is 
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useful for the systems that interact frequently with the outside world. 

The systems in the outside world can not be rolled back and thus 

instead of taking expensive checkpoints whenever messages 

received/sent from/to outside world, it is enough to log messages and 

replay them after failure. Log-based recovery relies on the piecewise 

deterministic assumption [Strom and Yemini 1985]. This assumption 

assumes that the rollback-recovery protocol can identify all the 

nondeterministic events (e.g. receiving messages from the outside world 

and asynchronous interrupts) executed by each process, and for each 

such event, logs a determinant that contains all information necessary to 

replay the event should it be necessary during recovery. There are 

different flavors of log-based recovery depending on how the 

determinants are logged to a stable storage, pessimistic and optimistic 

are two best known log-based recovery techniques. Pessimistic log-

based assumes that a failure can occur after any nondeterministic event 

in the computation and therefore the process is blocked after each 

nondeterministic event waiting for its determinant to be logged to a 

stable storage before processing the event. Pessimistic logging 

simplifies the recovery and rolls back to a system consistent state that is 

very close to the pre-failure state, but the cost to pay is a high failure-

free performance overhead. In contrast, Optimistic logging [Storm85] 

assumes that determinants will be logged to stable storage before a 

failure occurs because failures are normally infrequent and thus there is 

no need to interrupt the process on every nondeterministic event. 

Determinants are kept on volatile log that is periodically flushed to 

stable storage. Optimistic log-based recovery achieves low failure-free 

overhead but uses a rather complex recovery scheme. 
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Rollback based Recovery has focused traditionally on recovering long running 

scientific computations [Casanova97], text editors [Lowell00], spreadsheet 

programs and database systems [Campos95]. 

2.4.2 Replication based recovery 

Replication implements roll-forward mechanism where the entity (mainly a 

server application) is replicated to establish a group of replicas and in the event 

of the failure of one entity, the other replicas can take over and continue 

processing requests. There are two best-known replication approaches: 

• Active replication: In active replication [Schneider93] (also known as 

state-machine approach), all server replicas run concurrently and 

execute the same work so they maintain exactly the same consistent 

state. Every server replica processes every client request in the same 

relative order and sends back a reply. Figure 4 illustrates schematically 

the architecture of active replication with three server replicas. Reliable 

multicast protocols may be used to forward client requests to all 

members of the server group. Majority voting technique is used when 

the group consists of more than two members to deliver the correct 

reply to the client.  If the fail-stop property is assumed then in order to 

tolerate k number of faulty replicas , a group of k+1 replicas is enough 

because faulty replicas keep silent and do not send any incorrect replies. 

However, if the Byzantine property is assumed then 2k+1 replicas is 

needed to sort out a possible k incorrect replies from the k faulty 

replicas. Active replication is very effective for hardware faults and 

provides a fast recovery. Active replication can also be used for load 

balancing by equally distributing clients’ requests on all members of  

the server group. 
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Figure 4: Active replication structure 

 

•  Passive replication: In passive replication (also known as primary-

backup) [Budhiraja93], one member of the server group is designated as 

the primary, while all other replicas serve as backups. The primary 

server is the only one that process clients’ requests and send back 

replies. During normal operation, the state of the primary is periodically 

recorded in a log, typically as a sequence of request and reply messages, 

while?? states and updates as checkpoints.   Upon a failure, a backup 

server is promoted to be the new primary server of the group. The state 

of the new primary is restored to the state of the old primary by 

reloading its state from the log, followed by reapplying request 

messages recorded in the log. 

 

The replication techniques have been mainly used in building enterprise 

distributed applications such as databases and transaction processing systems. 

Some of the best known systems that used replication to achieve fault tolerance 

in the enterprise applications are SIFT [Wensley72], ISIS [Birman94], and 

AQUA [Cukier98]. 
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2.4.3 N-version programming 

N-version programming [Avizienis77] uses design diversity approach 

and it is defined as the independent generation of N � 2 functionally equivalent 

programs from the same initial specification. Independent generation of 

programs means that the programming efforts are carried out by N development 

teams that do not interact with respect to the programming process. The initial 

specification is a formal specification in a specification language. The goal of 

the initial specification is to state the functional requirements completely and 

unambiguously, while leaving the choice of implementations to the N 

programming efforts. N-version programming assumes that all programs 

contain faults, but it relies on the fact that the number of hidden faults will be 

small and that they will be in different locations in each of the versions. 

Wherever possible, different algorithms, programming languages and compilers 

are used in each separate effort.  

Figure 5 shows the basic structure of the N-version programming 

scheme. The N programs run concurrently and the results of each version 

compared and voted on to determine the final output. 

 

 

 

 

 

 

Figure 5: N-version programming structure 
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The case where N equals two is a special case since no majority outcome can be 

derived when the individual program results do not agree.  Most fault-tolerant 

software systems utilize N � 3, and use a majority vote to resolve inconsistent 

results. Note that N-version programming is not only a recovery technique but it 

also provides failure detection through voting mechanism.   

The N-version programming is mainly utilized in life-critical applications with a 

high risk of life loss for example flight control computers e.g. in Boeing 737-

300 [Williams83] and Airbus 320 [Traverse88]. 

 

2.5 Limitations 

In this section, we explain  the general limitations of these techniques  

and leave the specific ones concerning the mobile environment to the next 

chapter. 

� Rollback depends on two assumptions: 

1- Transient faults: Without assuming that faults are transient, the 

faulty process will certainly fail again at exactly the same place. 

The faulty process will roll back to the latest saved state and then 

continues its execution (exactly the same program instructions 

are repeated) to restore the pre-failure state before it hits the error 

again. Note that the faulty entity may or may not reactivate the 

permanent fault depending on the latest checkpoint time, but it 

will certainly hit the error.  

2- Good checkpoints: Rollback assumes that only good data is 

saved to a stable storage and this implies that the fail-stop 

property must be upheld. In other words, the saved states must 

not contain the error that is caused by the transient fault. 

 

� Replication has also two assumptions 
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1. Transient fault: Replication approach depends on the assumption 

that most of the software faults are transient. If this assumption is 

not applied, then all members of the replica group will fail at the 

same time, for example because of a permanent software bug.       

2. Fail-stop: Most of the replication techniques assume fail-stop 

property, i.e. an entity works correctly or stops functioning 

completely. This assumption can be relaxed at the cost of more 

complex voting algorithm and an increase in the number of 

replicas. 

 

� N-version or the use of diversity has no technical limitation in general, but 

its main limitation is its high cost both with respect to implementation and 

maintenance. There is a big discussion whether it is better to concentrate on 

developing one reliable version rather than less reliable multi-versions. 

 

The two assumptions about the nature of fault fail-stop and transient are 

dated back to the early 1980’s and they can be probably true for some 

relatively simple applications. But, these assumptions will simply not hold 

for modern distributed communication applications. Everyday experience 

with communication applications has shown that many (if not most) of the 

software faults are permanent and they are reproducible, but they require 

rare sequence of events to be activated. This can be explained with the fact 

that it is almost impossible and not realistic to test every path and 

combination in these large and complex applications.  In some work on 

open-source applications (Apache web server and MySQL 

database)[Chandra00b], it has been found that deterministic faults are about 

72-87% of the total number of faults. Another study on database 

management system [Chandra98] has found that 7% of the faults violate the 

fail-stop property.  It should be mentioned, though, that mobile 
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communications applications are far more complex than the applications in 

these studies. 

Note that we have only concentrated on the intrinsic limitations that 

nothing can be done about them. But, there are some other challenging 

problems that are difficult to resolve completely in real-world communication 

environment. For example, it is very difficult for active replication to preserve 

consistency across all replicas in the presence of non-deterministic behavior 

such as caused by operating system-specific calls, process/thread scheduling, 

timers, etc. 
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Chapter 3  

Mobile Data Communication & Failure Recovery 
In the previous chapter, we described the best known existing failure 

recovery techniques. In this chapter, we will investigate the communication 

characteristics of the mobile network infrastructure and analyze their 

implications on the existing failure recovery techniques. But, we look first at the 

overall architecture of mobile communication systems and then introduce 

TETRA packet data network as a concrete case study.   

3.1 Overall architecture of mobile network  

Mobile communications systems refer generally to any 

telecommunications system which enables a wireless communication when 

users are moving within the service area of the system. One of the main goals in 

the development of mobile communications networks is to provide new data 

communication services, such as packet data communication, and especially IP 

(Internet protocol) services. Because of its high efficiency, packet switched data 

services are expected to be the dominant type of communication in all modern 

mobile networks even to provide voice services (Voice over IP).  

The overall architecture of packet switched mobile communications 

system is depicted in Figure 6 . The system can be roughly divided into 2 parts: 

 

1. Mobile Stations (MS): mobile devices used to transmit and receive 

user data wirelessly.  MS is composed of hardware and software, 

which implements a number of communication protocols. MSs can 
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move from one area (cell) to another and is still able to transfer 

data. 

 

 

Figure 6: The overall architecture of the mobile communication system 

 

2. Fixed Network Infrastructure (FNI):  This is a fixed network 

consisting of base stations, routers, gateways, resource 

management, mobility management units, etc. that exist to support 

the operation of the wireless mobile stations.  

The FNI takes the overall coordination and control of the 

communication with the MSs and it uses peer-to-peer based 

protocols to achieve that. 

 

The External network is an IP-based packet data network that contains 

the destination host requested by the mobile user. The External network can be 

the Internet or a customer private network e.g. LAN or X.25.  
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The fixed network connects the wireless mobile stations and the External 

network and consequently plays a critical role to the overall availability of the 

system. A failure in the FNI may disrupt the connection to hundreds or even 

thousands of MSs, this can be a very serious situation especially if the system is 

used in mission-critical applications such as in pubic safety, e.g. fire brigades, 

police forces and ambulance services. 

 

A recovery from failure in mobile stations by using checkpointing and 

message logging has been investigated in the literature e.g. 

[Acharya94][Yao99][Pradhan96]. These literatures have been limited to 

simulation and never really studied the mobile communication protocols 

between MS and FNI. We also find it less important from the overall system 

availability point of view to focus on the recovery from failures in MS rather 

than FNI.       

 

3.2 Mobile Communication Characteristics and their implications 

Mobile data communication has several characteristics that must be 

taken into consideration when developing any failure recovery method. What 

these characteristics are and what implications do these characteristics have 

specifically for the failure recovery in mobile infrastructure is to be investigated 

in this section. These characteristics are as following:   

• Peer-to-peer client/server communication: The communication pattern 

between an application in FNI and its peer application on MS is peer-to-

peer; which means that the communication can be initiated by either side 

(MS or FNI). On the contrary, it is the client that always initiates 

communication in client/server model. However, the application in FNI 

provides service to many peer applications on MSs concurrently (one-to-

many relationship) and it is also designed to be responsible for the overall 
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control, therefore the communication follows also client-server 

(master/slave) model at functional level. This mix of two communication 

models adds more complexity to the infrastructure applications. 

Furthermore, there is a coupling (dependency) between the application 

state in FNI and its peers on MSs resulting from use of the stateful 

communication in the design of mobile packet data services. The use of 

stateful protocols is the primary challenge for failure recovery process. 

• Real time communication: Real time issue arises when there are actions 

that must be completed within a specified amount of time otherwise they 

become useless or even harmful after that. In this context, the entity that 

initiates requests should receive replies within a specified period of time 

otherwise timeouts occur.  The real time aspects of mobile communication 

originate from both the end user application and the physical system. For 

example a user application (running in the application layer of OSI model) 

that monitors victims in the field and wirelessly sends information such as 

blood pressure and cardiac activity to the doctors in hospital needs to send 

this information and receive instructions instantly. In addition, real-time 

requirements are also imposed from the physical layer, for example by 

channel access schemes because data have to be transmitted in the 

assigned time slots. 

• High message rate: The number of messages received and sent per unit 

time is high. Any single application in the FNI can easily send or receive 

many thousands of messages per minute. Therefore, any recovery 

technique that uses message logging has to deal with two particular 

problems i.e. overhead and storage. 

• Distributed service architecture: The FNI is distributed over a large 

geographic area to provide mobility. It is normally that several applications 

running on different nodes cooperate together to complete a single service 

for an MS.  This distributed architecture will affect the selection of fault 
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tolerance approach; it will for example favor distributed redundancy such 

as active/standby approach rather than cluster approach e.g. server pool.   

• Scarce radio resources: The limited bandwidth of the air interface 

underlines the need of efficient communication between mobile stations 

and FNI. Therefore any extra communication to be brought by any 

recovery method should be carefully examined.  

 

What these characteristics imply? The two characteristics real-time and 

peer-to-peer communication combined together implies that message logging 

and then replaying them- as done by log-based checkpointing and passive 

replication- by the applications in FNI after failure will not work because the 

peer applications on MSs may change their state (because of timeouts) and 

hence not able to deal with the outcome of these replayed messages.  

What about taking coordinated checkpoints for applications in FNI and 

MSs? In this case when the application in the FNI rolls back after failure then 

all its peers on MSs need also to roll back. It is very difficult to imagine how 

complex the recovery protocol needed to manage this recovery and it will 

certainly exhaust the scarce radio resources.  

The two characteristics real-time combined with high message rate will 

be a killer to any technique using voting mechanism such as N-version and 

active replication because the delay, which is caused by voting, is proportional 

with message rate, and a second problem is that voting of communication 

messages may require knowledge about their contents.  

Finally, the distributed service architecture will strongly limit the use of 

active replication as it requires a significant increase in the number of hardware 

modules to run the various groups of replicas.   
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Table 3-1 summarizes the negative implications caused by the communication 

characteristics in the FNI.  

 

Table 3-1: Negative implications of FNI communication on recovery techniques 

 

3.3 Requirements for failure recovery in mobile infrastructure  

Let us start with some kinds of philosophy learned from experience. It 

is almost impossible to develop a complex application that is free from faults 

but it is possible through testing to reduce the number of faults to a level at 

which the application reliability is acceptable.  No guarantees can be given to 

what errors caused by the remaining faults can do. Furthermore, client users do 

not care if the failure is caused by the server application, operating system or 

hardware error; they just require the service to be restored immediately.  

Based on what we have studied and analyzed until now, we can point 

the following important requirements for failure recovery in mobile 

environment.  

High availability: because of the distributed nature of the fixed network 

infrastructure, it is difficult to imagine a complete failure of the system. But in 

general, a level of five nines 0.99999 availability (i.e. 5 minutes downtime per 
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year) is considered to be quite good for mission critical communication. Since 

the system is composed of many nodes, the availability of a single node should 

be much better than five nines but this also depends on the importance of the 

node i.e. its failure impact on the end users. We estimate a full recovery time in 

the order of seconds to be good for a single node.   

Low overhead without real-time drawbacks: The overhead – extra CPU 

utilization - that is caused by the presence of failure recovery method should be 

low so that application performance is not significantly affected. It is not 

sufficient with low overhead but it is also important that the overhead has no 

negative impact on real-time communication. By using checkpointing 

mechanism, for example, each process in the system is stopped every time a 

checkpoint is taken. Stopping processes causes time delays and consequently 

the application may fail to adhere to real-time constraints.    

No assumptions on faults: The practical use of the recovery method will 

be significantly improved if no assumptions are made about the nature of faults, 

e.g. transient or fail-stop. It is for example a serious limitation in the case of 

active replication that a permanent (deterministic) software fault will take all 

replicated servers down and practically everything is lost.     

Cost effective:  Any proposed failure recovery method should be cost 

effective. Development of software systems for mobile communication 

infrastructure costs tens of millions of dollars. Solutions such as N-version 

programming that triple or even double the development cost have no chance to 

be adopted. 
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Chapter 4  

Modeling Communication Applications  
Although transparent failure recovery, which does not require any 

intervention on the part of the application or the programmer, is very tempting 

but unfortunately it can not give the solution to many real world systems. It is 

rather simplistic to treat all applications requiring fault tolerance as black boxes 

despite the differences in their functionalities, real-time constraints and 

performance requirements.  As a result of using black box approach, it is 

necessary to put assumptions on the faults behavior for example to be transient, 

or even on the behavior of the application itself for example to act 

deterministically, which implies that application avoids using  nondeterministic 

sources such as multithreading and timers.    In contrast, we believe that 

understanding the communication applications behavior is a key factor in the 

success of the recovery techniques and this is the subject of this chapter. 

4.1 OSI model 

The OSI (Open Systems Inter-connection) layered model [ITU94] is the 

dominant model to develop mobile communication standards as well as to 

design and implement communication software systems. The OSI model 

provides a high level for system architecture and behavior.  Figure 7 illustrates 

peer-to-peer communication in the layered OSI model. In a layered architecture, 

each layer comprises protocol entities that perform functions within the layer. 

The entities in the (N)-layer (and all layers below) provide (N)-service to the 
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(N+1) entities, through (N)-Service-Access-Points ((N)-SAP) at the boundary 

between the (N+1)-layer and (N)-layer. A protocol design for the (N)-layer 

defines both the (N)-service and the (N)-protocol. In the generic OSI model, 

peer (N)-protocol-entities virtually communicate by sending and receiving 

Protocol Data Units (PDUs), which consist of a header containing protocol  

 

               Figure 7: Protocol entities interaction in OSI model 

control information and possibly user data. When the (N+1)-layer at the initiator 

needs to send a PDU to its peer, it sends it with a primitive Request to the lower 

(N)-layer.  The (N)-layer at the responder sends a primitive Indication to deliver 

the PDU to the (N+1)- layer. The peer responds to the indication by sending a 

Response primitive to the lower layer. The lower (N)-layer at the initiator 

notifies the (N+1)-layer about the PDU delivery by sending a primitive 

Confirm. Therefore, the logical path for exchanging information is vertical, via 

SAPs. When a PDU passes a SAP, it becomes an SDU (Service Data Unit) at 

the receiving layer. 
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In peer-to-peer communication, the same protocol entity may become an 

initiator in one case and a responder in another. However, the functions that the 

protocol entity should have depend on whether it acts as service requester 

(initiator) or service provider (responder). The client/server model may also 

included under the OSI model, in the sense that an entity can be designed to 

provide services to a group of peer entities (one-to-many relationship) as it the 

case in mobile communication protocols.  

In the context of OSI model and fault tolerance, Kenneth P. Birman [Birman96] 

has raised a very important question that, to the best of our knowledge, has been 

left without answer until now. Can “well structured” distributed computing 

systems be built that can tolerate the failures of their own components? In 

layering like the OSI one, this issue is not really addressed. The question is 

among the most important ones that will need to be resolved if we want to claim 

that we have arrived at a workable methodology for engineering reliable 

distributed computing systems.  

In this dissertation, we claim that the OSI model is fault tolerance “friendly” 

and it provides a good overall framework to develop failure recovery method 

on.    

The modular architecture of the OSI model fits well with the modularity key 

principle of fault tolerance, in the sense that protocol layer entities can be 

isolated from each other and the only interaction between them is through 

message passing. It is true that entities can still send corrupted messages to each 

other and thus open for error propagation but on the other hand it is quite 

possible for the entities to guard against this problem.     

4.2 Modeling communication protocols by CEFSM 

The OSI model, as mentioned in the previous section, provides an overall model 

for the distributed system behavior by defining the interaction mechanism 

between adjacent layers through SAPs and between peer layers by PDUs. In our 
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work to develop an effective failure recovery method for the FNI, we are further 

interested in a model that can describe in a sufficient degree the functional 

requirements of each protocol entity. The Communicating Extended Finite State 

Machine (CEFSM) is selected to formally describe the behavior of 

communication protocols entities. The CEFSM is used in a number of 

industrially significant specification techniques, such as SDL [ITU96] and 

UML [OMG02]. Our definition of CEFSM is different from that of [Byun02] in 

the sense that it is adapted to the OSI model to give it the ability to well model 

the complexity of the standard communication protocols.  

Definition: A CEFSM is a 6-tuple (S, I, E, A, O, T) where 

• S is a finite nonempty set of states, where one of these is initial state. 

• I is a set of information elements with their types and initial values. The 

information elements are used by entities for coordination and control. 

Each information element i (i ∈ I)  may have any number of bytes/bits 

and  is shared by more than one  entity (peer or adjacent). Examples of 

information elements are fields in the PDU header (e.g. sequence 

numbers), primitive parameters (e.g. request number) and constants 

defined by the protocol (e.g. maximum number of retransmissions and 

timer values).   

• E is a finite nonempty set of input events.   An input event e (e ∈ E) is 

one of the following three types: 

i. Receipt of an indication or confirm primitive from the next 

lower layer. 

ii. Receipt of a request or a response primitive from the next 

higher layer. 

iii. Receipt of an input signal that is triggered by, for example, 

timer expiration. 
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• A is a set of actions. This set may include various activities e.g. 

updating variables, incrementing/ decrementing counters, 

starting/stopping timers, queuing management, etc.  An action a (a ∈ A) 

may update some information elements and/or it may also require input 

information elements for its execution, this is denoted as a(i). 

• O is a set of outputs. An output event o (o ∈ O) is one of following two 

types. 

i. Sending a request or a response primitive to the next lower 

layer. 

ii. Sending an indication or confirm primitive to the next higher 

layer 

• T is a set of state transitions  

                     (t: (scurrent , e(Ψ) )�([a],[o], snext) 

Where t is a mapping from each state-event pair (scurrent ,e)  to a 

corresponding action set, output  set and next state snext. The event e is 

associated with an optional predicate Ψ which is a condition that decides 

the selection of the next state.  The predicate Ψ  has the following form: i ~ 

c  , where   ~ ∈{<, >, ==, ≠} and c ∈ 
�

 

The action and output sets contain zero or more elements, in other words 

the state-event pair may or may not trigger any action or send output. Note 

that CEFSM is deterministic because the selection criterion to make the 

transition for each state-event is clearly defined. 

It is in place to give a more clear definition of some terms. We use the term 

entity to mean a layer or a software process/thread that is actually an 

implementation of the functions that are defined for a given layer. The 

functionality provided by a layer is formally expressed by its set of 
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transition T. The term state information includes both the set of states S and 

the set of information I of the entity. Finally, an application includes one or 

more entities. 

 

4.3 Case Study: TETRA Packet Data  

TETRA packet data protocol [ETSI03] is developed by European 

Telecommunication Standards Institute (ETSI) to provide wireless data service 

that satisfy the most demanding mobile radio users, particularly users working 

in public safety, e.g. police, fire brigade and ambulance service. TETRA packet 

data protocol has many similarities with the General Packet Radio Service 

(GPRS) that has been built on GSM to provide IP packet data services. We use 

TETRA packet data as a concrete case study to firstly apply the CEFSM model 

and secondly to use it later to build an experimental testbed for evaluation of 

our proposed recovery method. The selection of TETRA packet data does not 

restrict the applicability of the proposed method to TETRA; it may be well used 

on other protocols for example GPRS or UMTS (Universal Mobile 

Telecommunications System). 

TETRA packet data is built on top of the basic TETRA radio link protocol stack 

and provides service mechanisms to convey different higher layer protocols. 

The network layer protocols supported by the TETRA packet data include 

Internet Protocol (IP) versions 4 and 6. Thus the TETRA packet data extends 

the TETRA network to act as an IP subnet in the mobile IP scheme, which 

enables application programmers to build their applications in a well 

standardized environment. Figure 8 illustrates the protocol stacks of the TETRA 

packet data when an application using the IP protocol is located in a mobile 

station MS. The fixed network infrastructure (also referred to as Switching and 

Management Infrastructure in TETRA terminology) communicates over an air 

interface R0 with a TETRA mobile station.  
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Figure 8: TETRA Packet Data Protocol stack 

The TETRA packet data protocol stack provides the specifications for a number 

of protocols that cover the physical layer, the data link layer, and the network 

layer of the OSI model.    

We briefly describe the TETRA Packet Data Protocol stack, starting from the 

highest layer of the stack and working our way downward.   

• SubNetwork Dependent Convergence Protocol (SNDCP): This stateful 

protocol is used to negotiate and maintain PDP (Packet Data Protocol) 

context between MS and FNI. Before any user IP packets can be conveyed 

by the SNDCP layer, it is necessary for the MS to successfully negotiate a 

PDP context with the infrastructure in order to gain access to SNDCP 

services. PDP context activation involves the negotiation of a PDP address 

(e.g. an IPv4 address) and other parameters (e.g. timers’ values) to be used 
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during data transfer. Furthermore, control of PDP data transfer, packet data 

channel handling and data compression is also performed in this layer. The 

SNDCP provides services to its user at SN (Symbol Number) SAP.   

• Mobile Link Entity (MLE): This layer is used to manage mobility and radio 

resources for the higher SNDCP layer. The MLE layer performs 

surveillance of the quality of the radio communication path based on 

information received from the MAC layer. MLE shall also report any loss 

or break of the path, for example due to cell change. The MLE entity 

provides services to SNDCP via LTPD (Link Entity TETRA product Data) 

SAP. 

• Logical Link Control (LLC): The LLC layer provides two types of logical 

links, basic link for connectionless services and advanced link for 

connection-oriented services. Basic link is used for short messages like 

signaling messages, while advanced link is used for long messages data 

transfer that requires some type of QoS. This layer offers segmentation of 

long messages, retransmission, and error control using frame check 

sequence.  LLC entity provides services to MLE at TLA (Type Identifier on 

Accept) SAP. 

• Medium Access Control (MAC): This layer is responsible for channel 

access, MAC uses TDMA (Time Division Multiple Access) access scheme 

with four physical channels (timeslots) per carrier. MS-MAC layer uses 

random access based on slotted ALOHA procedures to initiate transaction 

and reserved access for further processing in order to achieve higher 

channel throughput. MAC layer performs other functions such as channel 

coding, forward error correction, measurement of the signal quality and 

encryption over the air interface.  The MAC services are accessed at the 

TMA (Transmit Multiple Access) SAP. 
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• Air Interface (AI): This is the physical layer, which is responsible for 

modulation/ demodulation, frame synchronization and power control. The 

services of the AI are accessed at TP (Traffic Physical channel) SAP. 

 

4.3.1 CEFSM model for SNDCP protocol 

We select the FNI SNDCP protocol entity in FNI to demonstrate how a CEFSM 

model can be developed.  The SNDCP protocol is used by different mobile 

communication standards e.g. GPRS. The SNDCP protocol services, however, 

should exist in every mobile communications system that provide wireless data 

services. 

We give first a description of the SNDCP protocol in accordance with the 

standard. SNDCP protocol maps a network-level protocol, such as IP, to the 

underlying wireless protocols. SNDCP also controls packet data transfer 

between the MS and FNI. An MS can be in Idle, Standby or Ready state 

depending on its current activity. In the Idle state, MS is not reachable; no data 

transfer to and from the FNI is possible. In order to transfer data, the MS shall 

perform a PDP context activation procedure with its peer in the infrastructure. 

After completing a successful PDP context activation, the MS enters Standby 

state. A Standby timer associated with Standby state to control the time an MS 

retains SNDCP services after data service inactivity. The purpose of the 

Standby timer is to work as a fallback timer to delete PDP contexts when they 

remain unintentionally undeleted and thus having better resource utilization. 

The Standby timer is in the range of hours and is started on entry to Standby 

state. In the Ready state the MS may receive and transmit data. MS enters 

Ready state when it is granted a data channel. A Ready Timer associated with 

Ready state to control the time an MS may remain inactive on data channel after 

data service activity. The Ready timer is in the range of seconds and is started 

on entry to Ready state.   Table 4-1 shows our CEFSM model for the SNDCP  
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S = {s1, s2, s3} { Idle, Standby, Ready} 

I = {i1, i2, 

       i3, i4 , 

       i5,i6} 

{create_context_response_status, ip_addr,  

data_transmit_response_status ,  ms_location,  

standby_timer_value, ready_timer_value} 

E = {e1,  

         e2, 

         e3 , 

        e4, 

        e5, e6, 

        e7, e8, 

        e9, e10} 

{ACTIVATE_PDP_CONTEXT_DEMAND PDU in ind., 

 Create_PDP_Context response,  

DEACTIVATE_PDP_CONTEXT_DEMAND PDU in ind,  

DATA_TRANSMIT_REQUEST PDU in Ind., 

 DATA PDU in Ind , Data_Packet request , 

 Transmission_Report indication, RECONNECT PDU in Ind ,  

Standby_timer_expire, Ready_timer_expire} 

A = {a1, a2, a3,  

       a4, a5, a6, e7} 

{ Set_value, Cretate_ms_record, , Delete_ms_record, 

  Stop_timer, Start_timer, enqueue_packet, dequeue_packet } 

O = {o1, o2,  

       o3 ,  

       o4, 

      o5,   

      o6, 

      o7, 

      o8, o9, 

     o10, 

     o11 , 

     o12, o13} 

{Create_PDP_Context request,  Delete_PDP_Context request, 

ACTIVATE_PDP_CONTEXT_ACCEPT PDU in Resp., 

ACTIVATE_PDP_CONTEXT_REJECT PDU in Resp., 

DEACTIVATE_PDP_CONTEXT_ACCEPT PDU in Resp, 

DEACTIVATE_PDP_CONTEXT_DEMAND PDU in Req,  

DATA_TRANSMIT_RESPONSE PDU in Resp, 

Data_Packet indication ,DATA PDU in Req,  

DATA_TRANSMIT_REQUEST PDU in Req,  

Packet_Delivery_Status indication, 

PAGE_REQUEST PDU in Req,  END_OF_DATA PDU in Req} 

T= {t1, 

        t2, 

         t3, 

         t4, 

        t5, 

        t6, 

        t7, 

         t8, 

{ ( s1 , e1  ) �( [o1], s1)  

  ( s1 , e2(i1  == “Accepted” ) ) �([ a2,a1(i2), a5(i5)], [ o3], s2) 

   ( s1 , e2(i1  == “Rejected” ) ) �( [o4], s1) 

   ( s2 , e3 ) �([ a4(i5), [o2, o5] ], s1) 

   ( s2 , e10 ) �([a3], [o2, o6] s1) 

   ( s2 , e4 ) �([a2(i3), a4(i5), a5(i6)], [o7],s3) 

   ( s2 , e6(i4  � “Known” )  )�([ a6], [o12], s2 ) 

   ( s2 , e6(i4  == “Known” )  )�([ a6], [o10], s2 ) 
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         t9, 

         t10, 

        t11, 

         t12,  

      t13 , 

     t14 } 

   ( s2 , e7)�( [ a7,a5(i6)], [ o9], s3 ) 

   ( s3 , e7 )�( [a4(i6),a5(i6)], [o11], s3 ) 

   ( s3 , e6)�( [ o9], s3 ) 

   ( s3 , e8) �([a1(i4), a4(i6), a5(i5)], s2) 

     ( s3 , e5 ) �([ a4(i6),a5(i6)], [o8], s3) 

   ( s3 , e10 ) �([a5(i5)], [o13], s2) } 

 

Table 4-1: CEFSM model for the SNDCP entity in FNI 

protocol entity in FNI. The formats of the PDUs exchanged by SNDCP peer 

entities are listed in Appendix A. CEFSM is usually represented graphically by 

a state transition diagram (STD), a directed graph whose vertices correspond to 

states and whose edges correspond to transitions. Figure 9 shows the STD of the 

FNI SNDCP protocol entity. Each state is represented by a circle, and the initial 

state has a double circle. Transition that does not lead to a new state is 

represented by an arc that points to itself. 

 

      Figure 9: STD of SNDCP entity in FNI 

 

A description of the SNDCP state transitions is given below: 

t1: On reception of an ACTIVATE_PDP_CONTEXT_DEMAND PDU [Table 

A-1] in an indication primitive (event e1) from the lower layer MLE at state 

t10,t11,t13 t7,t8 
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Idle, the SNDCP entity in FNI sends  Create_PDP_Context request  to the upper 

layer (output o1). 

t2 :   Upon receiving Create_PDP_Context response from the upper layer (e2) 

with response status set to “Accepted”  (i1  == “Accepted”) to indicate that PDP 

context is created successfully, create MS record (action a2), set the MS IP 

address to the received value a1(i2), send ACTIVATE_PDP 

_CONTEXT_ACCEPT PDU[Table A-2] in a response to MLE (o3) , start 

Standby timer a5(i5)  and finally enter the Standby state 

t3 : Upon receiving Create_PDP_Context response  from the upper layer (e2) 

with response status “Rejected” (i1  == “Rejected”)  to indicate that PDP context 

is not created then send ACTIVATE_PDP_CONTEXT_REJECT PDU[Table 

A-3] in a response to MLE (o4). 

t4: On reception of a DEACTIVATE_PDP_CONTEXT_DEMAND PDU 

[Table A-7] in an indication primitive (e3) from MLE layer at Standby, send  

DEACTIVATE_PDP_CONTEXT _ACCEPT PDU [Table A-8] in a response to 

MLE (o5) , send Delete_PDP_Context request to the upper layer (o2), delete MS 

record a3, stop Standby timer a4(i5)   and finally enter the Idle state. 

t5 : Upon expiry of Standby timer (e9), send  DEACTIVATE_PDP_CONTEXT 

_DEMAND PDU in a request to MLE (o6) , send Delete_PDP_Context request 

to the upper layer(o2), delete MS record a3  and  enter the Idle state. 

t6 : On reception of a  DATA_TRANSMIT_REQUEST  PDU[Table A-5]  in an  

indication from MLE (e4), send DATA_TRANSMIT_RESPONSE PDU[Table 

A-6] (with Accept) in a response to MLE (o7),  stop Standby timer  a4(i5) , start 

Ready timer a5(i6) and finally enter the Ready state. 

t7 :  Upon receiving  Data_Packet  request containing IP data packet from the 

upper layer at Standby state (e6) and MS location is not known (i4  � “Known” ) , 

queue the IP packet a6, send PAGE_REQUEST PDU[Table A-9] in a request to 

MLE (o12). 
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t8 :  Upon receiving  Data_Packet  request from the upper layer at Standby state 

(e6) and MS location is known (i4  == “Known” ) , queue the IP packet a6, send 

DATA_TRANSMIT_REQUEST PDU in a request to MLE (o10). 

t9 : Upon receiving Transmission_Report indication from the MLE (e7) at 

Standby state, remove the IP packet/s from the queue a7, encapsulate Packet/s in 

DATA PDU/s[Table A-4] and send as request primitive to MLE (o9), start 

Ready timer and enter Ready state.  

t10 : Upon receiving Transmission_Report indication from the MLE (e7) at 

Ready state, send Packet_Delivery_Status indication containing transfer status 

to the higher layer (o11), and restart (stop and then start) Ready timer.  

t11 :  Upon receiving  Data_Packet request containing IP data packet (e6) from 

the higher layer at Ready state, place the IP packet in a DATA PDU and send 

the PDU  in a request primitive to MLE (o9). 

t12 : Upon reception of a RECONNECT PDU[Table A-10] in an indication from 

MLE (e8) - indicating that MS changed cell-, update the new location a1(i4), stop 

Ready timer a4(i6), start Standby timer a5(i5)  and  enter the Standby state. 

t13 : On reception of a DATA  PDU  -containing IP packet data- in an indication  

from the lower layer MLE (e5), restart Ready timer and  send  Data_Packet 

indication to the upper layer (o8). 

t14 : Upon Ready timer expiration (e10), send End_Of_Data PDU[Table A-11] in 

a request to MLE (o13), start Standby timer a5(i5) and then enter the Standby 

state. 

As it can be noticed, by using our OSI-adapted CEFSM, communication 

protocols can be modeled with a high level of detail to include any of the 

specifications in the standard. That also means that the CEFSM model describes 

the behavior of the protocol entity very realistically.  Finally, a CEFSM model 

for the SNDCP entity at MS can also be developed in the same way according 

to the standard specifications.  The MS SNDCP entity, however, has some extra 

states e.g. to handle cell change situation. 
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Chapter 5  

State Transition Based Recovery (STBR) 
Armed with the CEFSM model, we are ready to attack our main goal to 

develop a recovery technique that can improve the service availability in the 

mobile infrastructure. The proposed technique should be realistic enough to deal 

with real world programming faults, relatively easy to understand and 

implement, and cost effective. We call our recovery method state transition 

based recovery (STBR) because it is based on CEFSM model which in turn is 

based on the traditional state transition model.  

5.1 Objective & assumptions 

STBR failure recovery method should be able to tolerate software and 

hardware faults without any assumption on the nature of faults. The method 

should work in the mobile environment and has no negative impact on the real-

time communication. The faulty entity in the FNI has to resume communication 

after a failure in a way that hides the failure from all its peer entities on MSs. In 

other words, the peers should always receive input events in accordance with 

their protocol specifications.  

Although there are no assumptions on the nature of faults e.g. to be 

transient or fail-stop, there are two prerequisites that need to be satisfied in 

order for the STBR method to deliver the promised high availability: 

I. Error detection mechanism: We assume that there are mechanisms to 

quickly detect the failure and either to restart the faulty entity on the 
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active node or to immediately run it on a redundant node. Fault 

detection is an important part of building fault tolerant systems, but it 

is beyond the scope of this work. There are two main approaches to 

perform fault detection. Firstly, by monitoring locally the application 

for example by letting the entity kicks a watchdog timer as long as it 

is running to indicate that it is still in operating state [Mahmood88]. 

Secondly, by remotely sending periodic heartbeats and expecting 

responses from that entity [Han99]. These techniques can detect 

failures caused by hardware faults or coding faults which cause the 

application to crash or hang. But design faults - where the application 

works correctly from software point of view but fails to provide 

correct service according to the specifications – are rather difficult to 

detect. 

II. Software reliability: The software applications to be recovered need 

to be reasonably reliable before becoming high available, an 

application that fails once every day on average is not reliable 

enough. In other words, it is desirable that the activation rate of the 

remaining software faults which can lead to failures is relatively low. 

What that means in practice? It means that these remaining faults are 

activated, for example, by rare scenarios that are not tested or slow 

memory leak.  Software reliability can be achieved by a good test 

plan that includes different types of tests e.g. unit test, integration test, 

system test, etc. Testing complex software systems such as mobile 

communication is extremely difficult and time consuming due to the 

large number of scenario and test cases to be considered. The 

hardware reliability is not considered because it is very high 

nowadays. 
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5.2 STBR Approach 

A well designed protocol should always consider the disturbances that 

may occur in the communication environment between clients and servers or 

more generally between sender and receiver such as time delays , data loss, 

duplication and out of order. These disturbances in the communication path are 

coped with by the protocols, mainly as exceptional cases that shall be handled 

by both sender and receiver. Our intention is to utilize that for the recovery of 

the entities in FNI in such a way that a failure is experienced as a disturbance by 

the client entities on MSs. Thus the basic idea is to handle the failure as a 

disturbance that the application should recover from by itself.  

 

In the STBR approach, we seek to conform both to the key principles of 

building fault tolerant system and to the specific requirements of mobile 

environment. The STBR method applies the following set of principles to reach 

the objective: 

• Restarting faulty entity: Restarting the faulty entity as a first step of recovery 

process is a secure way to ensure that the entity is free from the error that 

caused its failure. All existing techniques that try to get the latest saved state, 

and then reach the same internal state as if fault has not occurred, have no 

guarantee that the error is cleared from the saved states. Consequently, there is 

a probability that the entity fails again short after its recovery. In case of 

permanent software fault there is still a risk that the entity using STBR do fail 

again after restart, but the probability is very low because the rare situation 

which activated the fault that lead to the failure has to re-occur. Why this 

should not be also true for rollback techniques and passive replication? These 

techniques intentionally seek to repeat the exact “faulty” pre-failure execution 

during their recovery while STBR starts the execution from the beginning and 

focus on service recovery. Restarting from the beginning is a secure remedy 
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against transient faults and the best solution against permanent faults, 

however, it needs to be followed by a fast recovery.    

• Model-based recovery: The STBR recovery is based on the behavior of the 

application represented by the CEFSM model. We will use our case study 

from previous chapter to explain this.  Assume that the SNDCP entity in FNI 

crashed while servicing its peer clients on MSs and then get restarted. 

Normally, the FNI SNDCP entity will start operating from the initial state 

(S1), so if the SNDCP entity should function correctly then all peer clients  

 
Figure 10: STD of FNI SNDCP entity extended with Recovery State   

that are not at initial should go back to initial state. Thus, without any recovery 

method clients not at initial state need to return to initial state and then redo 

some work to reach their pre-failure state. How can STBR fix this situation?          

According to the CEFSM model, if the protocol entity processes the set 

of events E in compliance with the specified set of transitions T, then it behaves 

correctly. Figure 9 shows actually how this is achieved for an FNI SNDCP 

entity that does not fail. Figure 10, on the other hand, is extended with Recovery 

state (S0) to include failure situation. After a failure, the FNI SNDCP entity 

restarts as usual and assumes by default that all its peer entities at initial state 

(S1). The FNI SNDCP entity becomes inconsistent once it receives an input 

event related to a peer that is not at initial state. To solve inconsistency, the 
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entity enters Recovery state( shown as dashed circle), finds out what is the 

current correct state of that peer, returns to the consistent state (any state other 

than initial) and finally executes the corresponding state transition. The 

Recovery state is entered from Initial state only once and only for the MS 

entities that need recovery. The FNI entity needs also to be aware about its 

failure in the previous execution before moving to Recovery state. We explain 

later in this chapter in details the recovery mechanism.      

To achieve the above mentioned recovery steps, the FNI SNDCP entity 

should know at any time the current state scurrent and information elements I of 

every peer entity. Therefore, the FNI SNDCP entity needs to save state 

information of every peer entity during failure-free execution and to use them 

after failure in order to process all input events correctly. In the next section a 

recovery protocol is developed to save/retrieve state information to/from a 

stable storage. 

• Autonomous recovery:   The faulty entity should be able to autonomously do 

self-recovery without involvement from either peer or adjacent entities. This 

principle will ensure that no modification is needed for MSs. Furthermore, the 

restart of a faulty entity does not require the restart of any other entity. 

Finally, it will not be necessary that all entities in system need to be built with 

the STBR.      

• Active/standby redundant system: Active/standby redundancy is an effective 

technique to prevent single point of failure in a distributed system. In case of a 

hardware fault, the faulty entity should be able to immediately start on the 

redundant standby node and resume the service to its peer entities on MSs. 

This ability can also be used for software faults in the operating system to 

avoid delay caused by reboot process. Active/standby approach is cost 

effective because the standby node can be used as a backup for more than a 

single node (N+1 redundancy) assuming that all active nodes running the 

same operating system. 
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5.3 Recovery protocol 

To enable the FNI entities to easily save/retrieve their state information, 

we have developed a protocol that uses the client server architecture, see          

Figure 11. Every entity in FNI that uses STBR method sends states S and 

information elements I during failure-free execution to a server task referred to 

as State Information Saver (SIS) for storing, and then continues its execution 

(non-blocked mode). The SIS runs on a separate hardware waiting for requests 

in a blocked mode, requests that need responses will always be processed before 

any others in order to minimize response time. The SIS adds timestamp and 

saves the information on a stable storage e.g. non-volatile RAM or hard disk. 

The entity should first register itself to the SIS before it can start saving state 

information.  The client side of the protocol (FNI) is implemented as a user 

level library of C functions that can be linked with the FNI entities. Some of the 

user functions provided by the library are listed below: 

 

 

         Figure 11: Recovery protocol using client/server model 

 

• Entity_Register (entity_id): This function sends a request message of type 

REGISTER (refer to) to the SIS to register the entity identified by entity_id. 

Every entity must call this function once it starts up.  The entity will receive a 

response message from SIS with one of the following response code “Ok”, 
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• Entity_Deregister (entity_id): This call sends a request message of type 

DEREGISTER to the SIS to deregister the entity identified by entity_id field. 

This call must always be executed before the entity exits. Failing to do 

deregistration will result in receiving “Already_registered” response status in 

 Figure 12: Format of requests and responses used in recovery protocol 
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with id number entity_id. The information element has id number elem_id and 

belongs to MS identified by object_id. A response message is received from 

SIS contains object_id, elem_id, elem_age, elem_length and elem_value 

fields. elem_value contains the requested information element and elem_age 

is the time elapsed since last save. The information element age is useful for 

the information that is time dependent. 

 

The advantages of using client-server model in the recovery method are 

following: 

I. The failure-free overhead caused by STBR recovery method will be low 

because entities need only to send requests while the SIS task executes save 

function and search algorithm.  

II. The entity will not be suspended during failure-free execution as it is the case 

in checkpointing mechanism and thus no negative impact on time-critical 

communication.   

III. Good scalability, as the system gets larger i.e. number of entities in FNI is 

increased, it should be easy to add more SIS tasks to serve them. 

 

5.4 Mechanism 

The mechanism of the STBR method will be illustrated for FNI SNDCP entity 

by using MSC (Message Sequence Charts) [ITU-T recommendation Z.120]. 

MSC is one of the most popular languages used in telecommunication to show 

interaction between protocol entities. MSC diagrams describe the behavior of 

the system in the form of message flows. We will explain how the recovery 

scheme acts during failure-free execution e.g. during PDP context activation 

and data transfer scenarios, and how recovery is executed after failure. The 

reader should refer to the SNDCP developed CEFM model [section 4.3.1] in 

order to completely understand these scenarios. 
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5.4.1 STBR during failure-free execution 

Every FNI entity that uses STBR method must call Entity_Register 

once it starts to register itself to SIS. After receiving an “OK” response, the 

entity saves it state information during its execution as illustrated in the 

following scenarios for SNDCP entity.  

 

Figure 13: MSC showing STBR during successful PDP context activation  
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successful PDP context activation. Dashed arrows are used to show the 

communication with the SIS, while solid arrows show the communication with 

adjacent layers, and the flow of time occurs downward. The SNDCP entity in 

FNI and all peer entities on MSs will begin at initial state IDLE. When MS 

needs to start wireless data services, the MS SNDCP sends an 

ACTIVATE_PDP_CONTEXT_DEMAND PDU to FNI SNDCP. The FNI 

SNDCP receives ACTIVATE_PDP_CONTEXT_DEMAND PDU in an 

indication primitive from the lower layer MLE (input event e1), so it executes 

ACTIVATE_ PDP_ 
CONTEXT_ACCEPT PDU 

ACTIVATE_ PDP_  
CONTEXT_DEMAND  PDU 

t1 

t2 

MS-SNDCP 

Create_PDP_Context 
request 

FNI-SNDCP 

Save_Info_Element 

 e1  o1 

 e2  o2 

IDLE 

Create_PDP_Context 
response (Accept) 

Standby_timer 

IDLE 

STANDBY STANDBY 



52 

transition t1 where Create_PDP_Context request is sent to the upper layer 

(output o1). Upon receiving Create_PDP_Context reponse  (e2) indicating that 

PDP context is created, transition t2 is executed where 

ACTIVATE_PDP_CONTEXT _ACCEPT PDU is sent in a response primitive 

to MLE (o2), Standby state is entered , Standby timer is started and finally 

Save_Info_Element_Req is sent to save the new state and other information 

elements such as received IP address and timer values (i2, i5, i6) . When MS 

SNDCP receives ACTIVATE_PDP_CONTEXT_ACCEPT PDU, it enters 

STANDBY state and starts Standby timer. 

 

Figure 14 MSC showing STBR during uplink data transfer 
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Figure 14 shows how the STBR acts during uplink data transfer (from 

MS to FNI). In this scenario the MS is at Standby state and has user data to 

send, so MS SNDCP entity sends DATA_TRANSMIT_REQ PDU to FNI. 

When the FNI SNDCP receives DATA_TRANSMIT_REQ PDU in an 

indication (e4), it executes transition t6 where DATA_TRANSMIT_RESPONSE 

PDU (with Accept) is sent in a response to MLE (o7),  Standby timer is stopped 

a4(i5), Ready timer is started a5(i6), Ready state is entered and finally  

Save_Info_Element is called to save the new state. The MS SNDCP receives 

DATA_TRANSMIT_RESPONSE PDU with a granted data channel and begins 

transmitting the first IP packet in a DATA PDU. The FNI SNDCP receives 

DATA PDU and executes transition t13 where it forwards the IP packet in 

Data_Packet indication to the higher layer (o5), restart the Ready timer, and 

finally call Save_Info_Element to update the Ready state. Although transition 

t13 re-enters the same state (Ready), however, calling Save_Info_Element will 

make it possible after failure to resynchronize with the peer by calculating the 

time passed since state was last re-entered (elem_age is used). This is useful 

when the state is associated with a timer. MS SNDCP continues to send DATA 

PDUs to the FNI SNDCP entity until no more data remains. When FNI SNDCP 

Ready timer expires (e10), transition t14 is executed where END_OF_DATA 

PDU is sent in a request to MLE (o13), Standby state is entered, Standby timer is 

started and finally Save_Info_Element is called to save the new state. 

Figure 15 shows how the STBR acts during downlink data transfer 

(from FNI to MS). In this scenario FNI has data (e.g. originating from another 

MS or dispatcher center) to send to an MS that is at Standby and whose location 

is known. On the reception of the first packet in Data_Packet request from the 

upper layer (e6) the FNI SNDCP entity executes state transition t7 where it 

queues the packet and then sends DATA_TRANSMIT_REQUSET PDU in 

request primitive to MLE entity. When the PDU is completely transmitted on 

the air, the FNI SNDCP receives Transmission_Report indication (e7) and 
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executes state transition t9 where the queued packet is placed in DATA PDU 

and sent in a request to MLE (o9), Ready state is entered, Ready timer is started 

and finally Save_Info_Element is called to save the new state. After  

 

Figure 15 MSC showing STBR during downlink data transfer 
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Let us for a moment compare state information saving by STBR with 

state saving by checkpointing mechanism. In recovery techniques that use 

checkpointing there are two factors to struggle with during failure-free 

execution, and they need to be considered carefully. The two factors are the 

comprehensiveness of the process state being saved and the frequency at which 

the process state to be saved. In other words, how much process information 

should the checkpoints include to fully describe the state of the application and 

how often checkpoints to be taken. In deciding the degree of comprehensiveness 

and frequency to be used, there is a tradeoff between the amount of lost work 

and the performance overhead. This is not an easy task to solve without 

knowledge about the application to be recovered, therefore most checkpoint-

based recovery schemes let the application programmer determines when to 

take checkpoints. However, in STBR as we can see from the scenarios these are 

nicely determined by the STBR mechanism. The STBR saves only the 

necessary state information and at the right time.   

5.4.2 STBR during failure recovery 

Once the faulty FNI entity restarts after failure, it calls Entity_Register 

as usual, but it receives “Already_registered” response this time from SIS 

because it did not call Entity_Deregister as a result of failure. That response can 

be used to make the entity aware of its previous failure.  The entity can also get 

automatically informed about its previous failure by error detection utilities. In 

this section different SNDCP scenarios are used to show how the STBR 

performs recovery after failure. 

 Figure 16 shows an MSC diagram of recovery procedure for an MS 

initiated communication. The MS was at Standby state when the FNI SNDCP 

entity crashed. In this scenario the MS needs to send data, so MS SNDCP entity 

sends DATA_TRANSMIT_REQ PDU to FNI. The FNI SNDCP entity receives 

DATA_TRANSMIT_REQ PDU in an indication (e4) at initial state Idle, but 
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since the state-event pair (e4, s1) is inconsistent with T (i.e. does not belong to 

the set of state transitions T) and in addition to its knowledge of the previous 

failure, FNI SNDCP enters Recovery state and calls Retrieve_Info_Element to  

 

Figure 16: Recovery of an MS initiated communication (Standby) 
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DATA_TRANSMIT_RESPONSE PDU, starts Ready timer and enters Ready 

state. The consistency is now fully restored between the FNI SNDCP and MS 

SNDCP and the communication between them can continue as normal. 

 

Figure 17: Recovery of an MS initiated communication (Ready) 
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indication is sent to the upper layer (o8). The consistency is restored now 

between FNI SNDCP and MS SNDCP and hence communication can continue 

as normal.   

 

Figure 18: Recovery for an FNI initiated communication (Standby) 
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the FNI SNDCP entity is down). The FNI SNDCP enters Standby state, starts 

the Standby timer and executes t8 (assuming the MS location i4 is known) where 

the received packet is queued a6 and DATA_TRANSMIT_REQUEST PDU is 

sent in a request to MLE (o10). On the reception of Transmission_Report 

indication (e7), the FNI SNDCP entity executes transition t9 where Standby 

timer is stopped, Ready state is entered, the queued packet is sent in DATA 

PDU (o9) and finally Ready timer is started. The communication between the 

FNI SNDCP and that MS is now completely recovered and can resume as 

normal.     

 

Figure 19: Recovery for an FNI initiated communication (Ready) 
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reception of Data_Packet request from the upper layer (e6), the FNI SNDCP 

enters recovery state because the state-event pair (e6, s1)  is inconsistent with T 

and then calls Retrieve_Info_Element to retrieve state information for the target 

MS. Based on the retrieved information, the FNI SNDCP enters Ready state, 

starts the Ready timer with value (i6 - elem_age of Ready state)   to synchronize 

with MS Ready timer and then executes  t11 where the received packet is passed 

down in a DATA PDU (o9). On the reception of Transmission_Report 

indication (e7), the FNI SNDCP entity executes state transition t10 where 

Packet_Delivery_Status indication is sent (o11) to inform the upper layer about 

the transfer of the packet and Ready timer is restarted. The MS SNDCP restarts 

in turn the Ready timer upon receiving the packet.  The communication is now 

recovered with that MS and the next Data_Packet request is processed as 

normal.  

Note that because the state transition based recovery is event-driven, that makes 

it very efficient regarding overhead for two reasons. First, the frequency of 

information saving during failure-free execution is kept minimal because 

information is only saved at the correct point of time as mentioned before.  

Second, the FNI entity only restores the consistency with each peer entity on 

MS upon the occurrence of first inconsistent state-event pair and not before i.e. 

any MS entity will be recovered only when there is a communication demand, 

so as a result the system as a whole will be recovered smoothly and gradually.  
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Chapter 6  

Experimental Testbed and Results 
Our aim is to develop a testbed for TETRA packet data where peer-to-peer 

communication can be generated between protocol entities on MSs and FNI.  

The STBR method is applied to the FNI entities to study failure recovery in 

FNI. We use an operational model approach to develop the testbed. By 

operational model, we mean that the testbed should to a large extent operate as 

the real system does regarding message exchange and timing, but only provide a 

restricted form of its functionality. For example, in real system the cell change 

procedure is started at the MAC layer where signal strength is continuously 

measured, and when a stronger signal is detected from a neighboring cell, then 

the MAC layer indicates to the upper layer the cell change. In this example, the 

signal measurement is not relevant, but the MAC layer should be able to 

indicate to the upper layer about cell change if that is required by the 

experiment. The evaluation of the recovery should be done from the end user 

point of view. Different criteria are of interest to judge the STBR method, first 

recovery time i.e. the average time to restore pre-failure performance, and 

second the reliability of the recovery process. Furthermore, the performance 

overhead incurred by the STBR during free-failure execution is also important. 

6.1 Testbed architecture 

The testbed consists of four PCs that are connected via Ethernet. The entire 

testbed architecture is depicted in Figure 20. Each of the machines has an 
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application and/or a task running on it. We use the word “task” to refer to a 

software module that is not part of the TETRA packet data standard. The 

testbed software consists of three applications, namely mobile_station (MS), 

Base_Station(BS) and Packet Data Server(PDS) and three tasks, namely 

Mobile_End_User (MEU), State_Info_Saver (SIS) and File_Packet_Sender 

(FPS). The following items describe each of these applications and tasks 

individually, explaining their functions and their implementation issues. 

1. Mobile_Station (MS): This application provides packet data services to the 

MS users. It implements SNDCP, MLE, LLC and MAC protocol entities of the 

TETRA packet data on MS side. The MS application is able to run hundreds of 

MSs concurrently where each MS runs as a single thread. Each MS thread 

provides packet data service to one single user. The MS application is 

implemented in C++ and consists of about 5,000 lines of code. It runs on 1600 

MHZ, 512 MB RAM PC with Microsoft Windows 2000. 

 

Figure 20: Overall architecture of TETRA packet data testbed 
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2. Base Station (BS): This application provides main services provided by the 

BS such as data channel allocation and time slot reservation. Each BS 

application is assigned a number of channels to serve the mobile stations in its 

own cell. The data transfer on wireless channels is imitated by data transfer on 

UDP socket connections. The BS application implements MAC protocol entity 

and an interface to socket layer for sending and receiving MAC PDUs. Multiple 

BS applications can be run concurrently on the same machine or different 

machines where each application is identified by a unique address which is a 

combination of IP address and socket number. Each BS has a fixed socket that 

is known for each MS in the cell. This socket acts as the common control 

channel in real system where any MS that is either at Idle or Standby state 

utilizes it to initiate communication with the FNI by using random access 

procedure. The MS that has more data to send/receive will be shortly instructed 

to move to another packet data channel (another socket) where it can transmit 

by reserved access. BS uses TDMA access scheme where the channel is divided 

into timeslots and is shared by multiple MSs, however, each MS may transmit 

during the timeslots granted by the BS. BS application is written using C and 

consists of about 2,500 lines of code. It runs on 500 MHZ, 128 MB RAM Linux 

PC.  

3. Packet Data Server (PDS): This application implements the main 

functionalities of the LLC, MLE and SNDCP protocol entities in the FNI. The 

PDS application communicates with every BS application and it provides 

packet data services to all mobile stations created by the MS application.    The 

PDS application sends LLC requests to the MAC entity at BS and receives 

indications from BS through socket interface.  The PDS application has a 

known socket where any BS can forward the received MAC PDUs from MSs. 

The PDS in turn sends LLC PDUs in request primitives to the BSs. Each entity 

of the PDS is implemented as a single thread where inter-communication is 

done through messages via SAP primitives. The PDS application is written in C 



64 

and consists of about 5,000 lines of code. It runs on 548 MHZ, 256 MB RAM 

Linux PC. 

4. State Information Saver (SIS): This server task enables FNI entities to easily 

save their state information according to the recovery protocol developed in 

section 5.3. The client (FNI entity) needs to link to an SIS library in order to 

have access to the protocol function calls. The FNI entities communicate with 

SIS server through sockets.   The SIS has a known socket at which the PDS 

application entities can send the requests defined by the STBR recovery 

protocol. The SIS server task is implemented in C (about 800 lines of code) and 

runs on a separate 500 MHZ, 128 MB RAM Linux PC. 

5. Mobile End-User (MEU):  This is a simple task that uses the packet data 

services provided by the MS application. There is one MEU task associated 

with every MS. Each MEU task can request its MS to download files from a 

destination PC. The MEU  tasks has several functionalities such as converting 

files into packets to be delivered to SNDCP entity for transmission, assembling 

received packets from SNDCP entity into files, add/verify file checksum, file 

retransmission, generating different traffic and mobility patterns, collecting 

experimental statistics, etc. The MEU is written in C++ (about 700 lines of 

code) runs on the same Windows machine where the MS application runs. 

6. File_Packet_Sender (FPS): This is the task that handles the file download 

requests issued by the MEU tasks. The FPS task owns a number of files of 

different sizes. The requested file is converted into packets that are sent to the 

PDS application. The FPS task has a known socket where PDS can deliver 

messages. The FPS task is implemented in C (about 600 lines of code) and  runs 

on the same machine where SIS runs but it may also run on a separate linux 

machine. 
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6.2 Experiment procedure and configuration 

Our intention is to test the STBR method on the PDS application. The idea is to 

force the PDS application to crash and then study its recovery as perceived by 

the MEU tasks.  Therefore, the PDS application is linked to the SIS library to 

enable PDS entities to register to the SIS and save their state information. 

Furthermore, the code of the PDS is updated according to the STBR method, 

where the finite state machine code of SNDCP, MLE and LLC entities are 

updated to handle Recovery state. Every place in the code where it is necessary 

to save/retrieve state information is identified and Save_Info_Element/ 

Retrieve_Info_Element calls are added. 

Let us first describe the communication flow that takes place in the testbed.  

Each MEU task uses its MS to periodically send file download request to FPS 

task. But before sending any user data, every MS needs to create PDP context 

activation with the PDS application. If file downloading is not started after 5 

seconds, the MEU task retransmits the file download request. Once the FPS task 

receives the file download request, it converts the requested file into packets 

and sends them one by one to the PDS SNDCP entity. The FPS task sends the 

next packet upon receiving Packet_Delivery_Status indication with transfer 

status “success” from the PDS SNDCP (refer to 5.4.1). The PDS SNDCP entity 

adds a header to every packet and forwards it as an SDU to the MLE entity 

which in turn adds a header and forwards it to LLC entity. The LLC entity 

divides the received SDU into segments (maximum size of 231 bits each) and a 

header containing SDU number and segment number is added to each segment. 

The LLC entity then requests the BS application to reserve time slots for all 

segments in hand. On reception of slots grants from the BS, the LLC entity 

sends each segment in a timeslot to the BS. The BS application forwards the 

segments to the appropriate MS. The MS MAC entity receives the segments 

through the socket and forwards them to the LLC entity. The MS LLC entity 

assembles the received segments (after removing headers) into a complete SDU 
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that is forwarded to the MLE entity. The MLE entity removes its header and 

then forwards the SDU to the SNDCP entity.  The MS SNDCP entity extracts 

the packet and delivers it to the MEU task. The MEU task collects all the 

packets and reconstructs the file, calculates file checksum, measure download 

time, etc. 

The testbed setup that is used to conduct experiments consists of 2 BSs where 

each BS is assigned a number of data channels enough to carry the data load in 

experiments. Each data channel has a gross bit rate of 28 Kbit/sec. Two file 

sizes are used for experiments 24 and 40 KB, the ideal download time are bout 

7 and 11 seconds respectively, while actual time is about twice of that. The 

number of MSs in each cell and the address information to access BSs can be 

entered in the MS application interface shown in Figure 21.  Cell change rate is 

set to 10% i.e. about 10% of MSs will move to the other BS every minute.  

 

Figure 21: The MS application user interface 

Each failure recovery experiment begins by  starting all applications and tasks 

and when the workload reaches steady state(also known as stationary state)  i.e. 



67 

the average number of packets received by all MEU tasks is relatively stable, a 

Kill signal is sent at a random instant of time to cause the crash of the PDS 

application. The PDS application is then restarted after a short time period 

between 5-15 seconds to compensate for fault detection time. The recovery of 

the PDS application is then assessed by its effect on MEU tasks both with 

respect to performance (download time) and correctness (download success).  

 

6.3 Experiments 

We conducted 3 sets of experiments. In the first set of experiments 

there are 50 MSs in both cells and on average one MS is context activated every 

1 second. Therefore, it takes about 50*1 seconds to create all PDP context 

activations i.e. every single MS in the experiment can send and receive data 

(possibly all together at the same time). Once an MS completes PDP context 

activation, its associated MEU task issues a file download request within 30 

seconds requesting the FPS task to download a 40 KB file size by simply 

picking a random number between 0 and 30. Upon the reception of all file 

packets, the MEU task calculates both file checksum to check its integrity and 

the download time. The MEU task then picks again a random number between 0 

and 30 seconds to issue a new file download request. In other words, each MEU 

task will on average send a new file download request after 15 seconds from 

finishing the latest file download.  The MEU task keeps downloading files until 

a selected number set by the experiment is reached. The total number of 

completely downloaded files, number of packets and the average file download 

time during each time unit is computed for every MEU task. The time unit used 

in the experiments is 10 seconds. The average file download time is the average 

of download times of all files that completed downloading in the same time 

unit. Note that the beginning and the end of file download can not occur in the 

same time unit unless the download time is less than the time unit.  
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Figure 22: 3 typical failure-free experiments in set #1: (a) Number of downloaded 

files per time unit for each experiment run; (b) The corresponding number of 

packets; (c) The average download time of 40 KB file. 
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Figure 22(a) shows the number of downloaded files for 3 representative 

experiments in set #1 during failure-free run. A run in which the PDS 

application does not crash is called a failure-free run. The number of files that 

finish downloading within the same time unit is found for the entire experiment 

run and the results are shown as solid curve. As can be seen from the graph, the 

number of file download completions per unit time is zero at the beginning of 

each experiment. In the first period of the experiment, the number increases 

rapidly as more MSs create PDP contexts and thus more MEU tasks start 

downloading files. In the second period, the number fluctuates around 14 files. 

In the third and final period, the number declines to zero as more MEU tasks 

stop downloading because they reached the selected number of files. The 

dashed curve shows the mean number of downloaded files for all these three 

experiments. Each MEU task downloads 5 files and then stops so the total 

number of downloaded files in each experiment in set #1 is 50*5 files. Each 

experiment takes about 250 seconds from the beginning to the end. Figure 22(b) 

shows the corresponding number of packets received by all MEU tasks in each 

time unit for these three experiments. The 40 KB file is equivalent to 28 packets 

of maximum size of 1500 bytes so the number of downloaded packets in each 

experiment in set #1 is 50*5*28 packets. The total number of received packets 

per unit time increases in the first period of the experiment then fluctuates 

around 400 in the second period and finally declines in the final period. The 

dashed curve is the mean number of packets across all the three experiments 

together. The average file download time during these 3 experiments is shown 

in  Figure 22(c). As it can be seen from the figure, it takes about 20 seconds to 

download the 40 KB file from the FPS task to any MEU task during failure-free 

run and it is almost constant. As previously mentioned, we intend to induce 

failure while the workload is at steady state. The steady state as it can be clearly 

seen from the mean curves in  is reached after about 70 seconds from the 

experiment beginning - when the number of packets is around 400 and 
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downloaded files is 14 - and sustain about 100 seconds. The steady state load 

(packets per unit time) can be calculated by using this simple formula:  

downloadsbetweentimeaveragetimedownloadfile
unittimepacketsinsizefile

MSsofNumberloadSteady
+

××=

 

Thus the expected steady state load in set #1 is about 50 * (28 * 10/ 20+15) = 

400 packets per unit time which is equivalent to about 14 files per unit time. 

The calculated steady state value matches well with the value obtained from the 

mean (dashed curve) across all the three experiments. It can be also deduced 

from the calculation that at steady state there will be around 14 MEU tasks 

downloading simultaneously.     

  

In the second set of experiments there are 100 MSs, and the context activation 

occurs at a rate of one MS every 0.5 second in order to keep the 50 seconds 

period to complete all PDP context activations. Each MEU task downloads the 

40 KB file 5 times from the PC running the FPS task. Once the MEU task 

receives the whole file, it picks a random number between 0 and 30 seconds to 

start the next file download. Figure 23 (a) shows the number of downloaded 

files per unit time for 3 representative failure-free experimental runs in set #2. 

As can be seen from the graph, the number of file download completions per 

unit time increases from 0 to about 30 files in the first period, then fluctuates 

around 30 files in the second period and finally decreases to 0 in the third and 

final period. Each experiment takes about 260 seconds and performs 100*5 file 

downloads. Figure 23 (b) shows the corresponding number of packets received 

during each time unit of the three experiments. The total number of packets 

received by all MEU tasks during each experiment in set #2 is 100*5*28, where 

28 is the size of the 40 KB file in packets.    The average file download time 

during all these 3 runs is shown in Figure 23 (c). The average file download 

time is about 20 seconds, exactly the same as in set #1. As can be seen from the  
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Figure 23: 3 typical failure-free experiments in set #2: (a) Number of 

downloaded files per time unit for each experiment run; (b) The corresponding 

number of packets; (c) The average download time of 40 KB file. 
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mean curve, the steady state is reached between 70 and 170 seconds of the 

experiment time during which the number of packets per unit time is around 

800 and the number of downloaded files is between 25 and 30. The expected 

steady state load of experiments in set #2 can be calculated as follows:  

100 * (28 * 10/ 20+15) = 800 packets per unit time or about 28 files per unit 

time. That’s again match good with the mean curve for the three experiments. 

Consequently, the number of MEU tasks that will download simultaneously at 

steady state is about 28.  The steady state load in experiments of set #2 is the 

double of that in set #1 as a result of doubling the number of MSs. 

 

In the third set of experiments there are 200 MSs, and the context activation 

occurs at a rate of one MS every 0.25 second. Each MEU task downloads a 24 

KB file 5 times from the PC running the FPS task. Once the MEU task receives 

the whole file, it issues a new file download request within 20 seconds by 

simply picking a random number between 0 and 40 seconds. Figure 24(a) 

displays the number of the number of downloaded files per unit time for three 

representative experiments in set #3. In each experiment run, 200*5 files are 

downloaded from the FPS task during a period of about 260 seconds.  The 

dashed curve plots the mean number of downloaded files across all the three 

experiments. Figure 24(b) displays the number of received file packets per unit 

time for the three experiments. The total number of packets which is 

downloaded during every experiment is 200*5*16, where 16 is the size of the 

24 KB file in packets. The dashed curve displays the mean number of packets 

for these three experiments. Finally, Figure 24(c) shows the average file 

download time for the three experiments. The average download time for the 24 

KB file is about 12 seconds and is relatively constant throughout all the three 

experiments. The two mean curves for files and packets indicate that that the 

steady state is reached after 70 seconds i.e. when the number of packets is 

around 1000 and files around 60, and it lasts about 7 time units before the  
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Figure 24: 3 typical failure-free experiments in set #3: (a) Number of 

downloaded files per time unit for each experiment run; (b) The corresponding 

number of packets; (c) The average download time of 24 KB file. 
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curves start declining. The expected number of packets per unit time at steady 

state load can be calculated as follows:  

200 * (16 * 10/ 12+20) = 1000 packets per unit time or about 62 files per unit 

time. That’s again very close to the mean curve for the three representative 

experiments. Accordingly, the number of MSs that will transmit simultaneously 

at steady state is going to be around 62. The steady state load in experiment set 

#2 is about 25% higher than in set #2. 

6.3.1 Failure recovery in experiment set #1  

 

To test the failure recovery of the PDS application in the first set of 

experiments, we intend to force the PDS application to fail by sending a Kill 

signal while the load is at steady state and then restart it after a short period of 

time to compensate for the failure detection latency. Figure 25 shows 3 

representative experiments where the Kill signal is issued at around 75, 95 and 

115 seconds from the experiment beginning respectively and the PDS is 

restarted after 5 seconds. The instant of the PDS crash may deviate about ± 1 

second from the mentioned values.  Figure 25 (a) displays the effect of the 5 

seconds failure period on the number of files downloaded by the MEU tasks. 

For the sake of comparison, the dashed curve which plots the mean number of 

downloaded files for the three previous failure-free experiments in set #1 is 

added to the graph.  The number of file download completions per unit time for 

all three experiments drops from about 14 to lower than 5 files and then rises 

sharply to over 20 files right after the PDS restart as can be seen. 

Correspondingly, the number of received packets per unit time falls from about 

400 to around 100 packets and then rise sharply to over 400 after the PDS 

restart as it can be seen in Figure 25 (b).  The sharp rise in the number of files 

and packets is the result of the fact that the number of MEU tasks that  
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Figure 25: Failure recovery in set #1 for 3 sample experiments where PDS 

application crashed around 75, 95 and 115 seconds respectively and then restarted 

after 5 seconds 
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downloads simultaneously will increase after failure. Every MEU task that was 

downloading when the PDS crashed besides any new one that tried to download 

while the PDS is down will retransmit file download request if no file packet is 

received within 5 seconds. The peak of the first experiment indicates that the 

number of MEU tasks that downloads simultaneously right after the PDS restart 

is almost reaching 25, and it exceeds 20 for the second and third experiment. 

We refer to the experiment killed at 75 second as the first experiment, the 

experiment killed at 95 second as the second experiment, etc. Figure 25 (c) 

shows the variation in the average file download time for these 3 experiments. 

The average file download time is increased from 20 to about 30 seconds after 

failure and then drops back to 20 seconds within 4 time units from the PDS 

restart. The average file download can clearly indicate when the impact of 

failure is removed and the performance is restored. 

As can be seen from these experiments, the PDS application eliminates 

completely the impact of the failure within 40 seconds from its restart. It is also 

obvious to see that after 4 time units from the sharp rise all three sample 

experiments tend to re-follow the mean curve nicely. Note that the PDS 

application starts servicing correctly immediately after its restart but it takes 

about 40 seconds to eliminate the impact of the failure on the mobile end users. 

Furthermore, we control the success of the failure recovery in each experiment 

in set #1 by checking that the total number of downloaded files and packets 

must be equal to 50*5 files and 50*5*28 packets which correspond to the values 

obtained under failure-free experiment. Finally we should mention that our 

procedure of testing and measuring failure recovery is not something that is 

adopted by the fault tolerance research community nor do we know to any 

specific procedure but we find our procedure to be very logical and practical.       

In the same manner, we conducted experiments where the PDS is restarted after 

15 seconds instead of 5. Figure 26 shows 3 typical experiments where the PDS  
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 Figure 26: Failure recovery in set #1 for 3 sample experiments where PDS 

application crashed around 75, 95 and 115 seconds respectively and then restarted 

after 15 seconds 
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application is killed at around 75, 95 and 115 seconds respectively and then 

restarted after 15 seconds. The number of downloaded files drops from around 

14 before the PDS crash to zero when the PDS is down for all three experiments 

as can be seen in Figure 26 (a). The number of files then rises sharply to around 

30 files right after PDS restart in the first and second experiment. That also 

indicates that the number of MEU tasks that are downloading simultaneously is 

increased to about the double right after the PDS restart. In parallel to the 

number of downloaded files, the number of packets drops from about 400 to 

zero during the PDS downtime. The number of packets then rises sharply to 

around 500 packets to service the increasing number of MEU tasks requesting 

file downloads. Figure 26(c) displays the average file download time calculated 

on the MEU tasks during these 3 experiments. The average file download time 

increases from 20 to 40 seconds. The average file download time peak is 

increased by 10 seconds (from 30 to 40) relative to the 5 seconds downtime case 

which match very well with the 10 seconds increase in the PDS downtime.   

The average file download time is set to zero in the time unit where no file 

download completion is counted. The PDS application eliminates the impact of 

failure within 40 seconds from its restart as can be seen. It is clear to see from 

these sample experiments that the PDS handles the burst of messages coming 

from MSs after its restart well and within 4 time units it returns back to the 

steady state level. The experiment takes few more time units than the failure-

free run to finish as can be noticed because of the crash and downtime. It is 

quiet good that the increase in the PDS downtime has no negative impact on the 

recovery time but the end users will of course observe longer delay.    
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6.3.2 Failure recovery in experiment set #2 

In the second set of experiments, the number of MSs is increased to 100; file 

size is 40 KB and a new file download is initiated within 30 after the previous 

file download is finished. Figure 27 shows the experimental data for three 

representative experiments where the PDS application is killed at around 75, 95 

and 115 seconds respectively and then restarted after 5 seconds. As can be seen 

from Figure 27(a) the average number of downloaded files drops from about 30 

to fewer than 10 files per unit time during the PDS crash and then rise to over 

40 files right after the PDS restart. The dashed curve displays the mean number 

of files for the previous three failure-free experiments in set #2. Figure 27(b) 

shows the corresponding number of packets per unit time for these three 

experiments. The number of packets drops from about 800 to less than 200 

packet per unit time as a result of the PDS crash. The number of packets then 

rises sharply to about 1000 right after the PDS restart.  The average file 

download time as can be seen in Figure 27(c) increase from 20 seconds before 

PDS crash to about 30 seconds after  PDS restart and then goes back to 20 

seconds within 4 time units.  That is exactly the same to what happens in 

experiment set #1 after 5 seconds downtime. As can be seen from these sample 

experiments in set #2, the PDS is still able to handle recovery quickly and 

successfully although the workload is increased to the double of that in set #1. 

The success of the failure recovery is also controlled for every experiment in set 

#2 by checking that the total number of downloaded files and packets must be 

equal to 100*5 files and 100*5*28 packets which correspond to the values 

obtained under failure-free experiments.     
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Figure 27: Failure recovery in set #2 for 3 sample experiments where PDS 

application crashed around 75, 95 and 115 seconds respectively and then restarted 

after 5 seconds 
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More experiments were conducted for set #2, but now the PDS downtime is 

prolonged to 15 seconds. Figure 28 shows three representative experiments in 

set #2, during which the PDS application  is crashed around 75, 95 and 115 

seconds and then restarted after 15 seconds. As can be seen in Figure 28(a), the 

number of downloaded files drops from about 28 before the PDS crash to zero 

during the PDS downtime. The number of packets then jumps to between 50 

and 60 files after the PDS restart.  The peaks in the second and third 

experiment, for example, indicate that there are about 60 MSs that are 

transmitting simultaneously right after the PDS restart. Figure 28(b) shows the 

corresponding number of packets per unit time for these three experiments. The 

number of packets drops from around the 800 packets reached at the steady 

state to zero and then rise to around 1000 packets right after the PDS restart. 

The average file download time is zero during the PDS downtime because no 

file download completion is counted and then increases to 40 seconds right after 

the PDS start as be seen in Figure 28(c). The average file download time then 

drops back to 20 seconds within 4 time units. As we can see again, the PDS 

promptly resumes servicing all MSs that were in the middle of file downloading 

or requesting new downloads right after its restart and within 40 seconds the 

impact of the failure is cleared out. That is obvious to see from the average file 

download time but it can also be seen in the number of files and packets 

because after 4 time units from PDS restart, each experiment tends to re-follow 

the course of the mean curve which actually represents the failure-free 

execution of the PDS. 
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Figure 28: Failure recovery in set #2 for 3 sample experiments where PDS 

application crashed around 75, 95 and 115 seconds respectively and then restarted 

after 15 seconds 
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6.3.3 Failure recovery in experiment set #3 

In the third set of experiments, the number of MSs is increased to 200, 

file size is 24 KB and new file download request is issued within 40 seconds 

after the previous download finished. Figure 29 shows three typical experiments 

in set #3 during which the PDS application is forced to crash at around 75, 95 

and 115 seconds respectively, and then restarted after 5 seconds.   Figure 29(a) 

shows the number of files that are downloaded by MEU tasks from the FPS task 

throughout all these experiments. The dashed curve is the mean number of files 

obtained previously for three failure-free experiments in set #3. As can be seen, 

the number of downloaded files drops from about 60 files per unit time at 

steady load to less than 30 during the PDS downtime. The number of 

downloaded files then jumps to over 100 files right after the restart indicating an 

increase of the traffic load after the crash. For example, the peak in the first 

experiment indicates that there are about 120 MSs transmitting simultaneously 

i.e. about the double of what it is at steady state load. Figure 29 (b) shows the 

corresponding number of packets received by MEU tasks throughout all these 

three experiments. The number of packets drops from about 1000 packets per 

unit time reached at the steady state to fewer than 400 during the PDS 

downtime and then rise sharply to between 1200 and 1600 right after the PDS 

restart. Figure 29(c) plots the average file download time throughout all these 

three experiments. The average file download time as can be seen increases 

from 12 seconds before the PDS crash to about 22 and then drops back to 12 

seconds within 4 time units. The PDS shows again the ability to perform a full 

recovery within 40 seconds from its restart following a 5 seconds downtime. It 

is also clear to see that both the number of downloaded files and packets re-

follows the mean curve nicely after 4 time units from the PDS restart. The 

different file size and download rate that is used for experiments in set #3 has 

not effected the fast and successful recovery. The success of the failure recovery 

for each experiment is controlled by checking that the total number of  
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Figure 29: Failure recovery in set #3 for 3 sample experiments where PDS 

application crashed around 75, 95 and 115 seconds respectively and then restarted 

after 5 seconds 
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downloaded files and packets must be equal to 200*5 files and 200*5*16 

packets which are equal to the values obtained under failure-free experiment. 

Further experiments in set #3 were conducted with the PDS downtime 

being increased to 15 seconds. Figure 30 shows three typical experiments in set 

#3, during which the PDS application  is crashed around 75, 95 and 115 seconds 

and then restarted after 15 seconds. As can be seen in Figure 30(a), the number 

of file download completions per unit time drops from about 60 files reached at 

steady load before the PDS crash to zero during the PDS downtime. The 

number of downloaded files then rises sharply to more than 140 as in the first 

and third experiment which indicates that there are more than 140 MSs 

transmitting simultaneously right after the PDS restart. The number of packet 

received per unit time by the MEU tasks during the course of these experiments 

is shown in Figure 30(b). The number of packets drops from about 1000 packet 

per unit time before the PDS crash to zero during the PDS down time. After the 

PDS restart, the number of packets jumps to around 1600 packet per unit time 

as can be seen in these three experiments. The average download for the 24 KB 

file is increased from 12 seconds before the PDS crash to about 32 seconds after 

the PDS restart as can be seen in Figure 30(c). The average file download time 

then falls down to 12 seconds within 40 seconds from the PDS restart. As we 

can see again the impact of the failure is cleared out by the PDS after 4 time 

units from its restart. It is also to clear to see that packet and downloaded file 

curves for all three experiments re-follows very nicely the course of their 

respective mean curve after 4 time units the PDS restart. The experiment 

duration, however, will take about two more time units to finish than the failure-

free run as can be noticed.          
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  Figure 30: Failure recovery in set #3 for 3 sample experiments where PDS 

application crashed around 75, 95 and 115 seconds respectively and then restarted 

after 15 seconds 
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6.3.4 Failure-free overhead 

 We used the Linux “top” command to measure the overhead that the STBR 

method caused on PDS application during failure free execution i.e. the cost of 

saving and updating the PDS state information on the SIS. To do that, the CPU 

usage of the PDS application is read by “top” at an interval of 10 seconds 

during failure-free run for a number of experiments in every experiment set.  

We then replaced the PDS application with the original one that is not updated 

with STBR and repeated the same procedure. Figure 31 shows two experiments 

in set #3, in the first experiment the PDS runs with STBR but in the second 

experiment STBR is not used. As can be seen, the first experiment uses the 

CPU slightly more than the second one. The highest CPU usage in the first 

experiment is 4.7% and 4.5% in the second so the overhead is about 4.4 % in 

this example. The accuracy in the decimal portion of the results may be not 

good but this is not very significant.  During all conducted experiments, the 

overhead never exceeded 5% in all experiment sets. This is a low overhead as 

we previously expected due to the non-blocking socket mode and client/server 

model used by the STBR. 
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Figure 31: The PDS CPU time usage of two experiments in set #3. The PDS in the 

first experiment is updated with STBR method but not in the second. 
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6.4 Experiments summary 

Table 6-1 shows a summary of the three experimental sets and the 

achieved results. 

As far as we can see from these results and hundreds of other experiments that 

we conducted, the STBR method proofed to be able to achieve fast and 

successful recovery. In each experiment of these three sets and no matter if the 

PDS downtime is 5 or 15 seconds, the PDS could promptly resume service after 

its restart and 40 seconds later the impact of the crash failure disappeared. 

Furthermore the failure-free overhead found to be less than 5% for all 

experiments where the CPU usage is measured and there were no apparent 

difference between sets. There were cases where the PDS application did crash 

during the recovery but after every investigation and hard debugging work it 

always turned up to be an implementation error somewhere in the testbed 

software and had nothing to do with the STBR method.  

 

Experiments Set #1 Set #2 Set #3 

Number of MSs 50 100 200 

File size (KB) 40 40 24 

Time to next file download (sec) random[0,30] random[0,30] random[0,40] 

Average file download time (sec) 20 20 12 

Failure downtime (sec) 5 15 5 15 5 15 

Highest average file download time 

during failure recovery (sec) 

30 40 30 40 22 32 

Recovery time (time units) 4 4 4 4 4 4 

 

Table 6-1: Summary of the failure recovery experiments 
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Chapter 7  

Conclusions and Discussion 

7.1 Conclusions 

The use of mobile data services is increasing rapidly due to its huge 

potential to offer effective solutions to various tasks in many sectors, e.g. public 

safety, transportation, public health, etc. Consequently, the demand for highly 

reliable and available data services is expected to be a top priority as users rely 

more and more on data services to perform their work, especially in the security 

and public safety fields. 

The goal of our research was to develop a failure recovery method that 

can be used to achieve high availability in mobile data communications 

systems. We reviewed the best known recovery methods in fault tolerance 

research and pointed out their general limitations. We then analyzed the 

characteristics of mobile data communications systems and based on that a 

number of requirements that need to be fulfilled by any recovery method are 

determined. Our major contribution in this thesis is the development of the State 

Transition based Recovery (STBR) method. The STBR is a novel failure 

recovery method that is based on behavioral model of the communication 

protocols. The behavior of the communication protocol is modeled by our 

adapted Communicating Extended Finite State Machine (CEFSM). We took 

TETRA packet data as a concrete case study and   implemented an experimental 
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testbed to generate the communication traffic between mobile stations and the 

fixed network infrastructure in accordance to the TETRA standard. 

The results of the experiments we conducted on the testbed were very 

encouraging. The PDS application of the infrastructure which is updated with 

STBR could instantly resume servicing mobile users when it restarts after its 

crash as if no failure had happened. Furthermore, the PDS application was able 

to clear out the impact of its failure on mobile users in less than a minute from 

its restart. In addition, the performance overhead caused by the STBR during 

failure-free execution was experimentally found to be less than 5%. Based on 

these promising results, we belief that high availability (five nines) can be 

technically achieved in mobile data communication by using the STBR method 

combined with a quick failure detection mechanism. The high availability can 

still be maintained even in the presence of permanent faults in the code as long 

as they are not activated too often as it is normally the case for reliable software. 

We can not directly compare our work with other works for many 

reasons. For example it is not useful to compare it with rollback or replication 

based recovery methods because they do not work if the fault is permanent. In 

case of N-version, we would need to implement at least 3 versions of the PDS 

application by different teams and then forward messages coming from BS 

application to all versions, and moreover find a way to vote between messages 

issued from all PDS versions. This is a huge task which requires both resources 

and time knowing that it took us no less than 200 workdays to implement the 

PDS application alone. Even then, we suspect that the N-version or other failure 

recovery methods can meet the real time requirements. We actually do not 

know any comparative study between the different existing methods.   This is 

probably a shortage from a scientific point of view, but we believe that it will be 

technically difficult to compare these different methods on experimental level. 

Finally, in order to compare the STBR with a customized solution that is used 

by a commercial communication system, we need first to implement STBR in 
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that system then try to compare these two solutions. That could be a goal for a 

future project.      

We have learned many lessons during the many thousands of hours we 

used in designing and implementing the applications for the TETRA testbed, 

then adding STBR, and finally testing and fixing the problems. Based on our 

previous experience in developing real time embedded communication systems, 

we estimate that these lessons can be very valuable for communication software 

development. We discovered during testing the recovery of the PDS application 

that many bugs and unforeseen scenarios are more likely to show up because 

the application is exposed to any event at any instant of time. The root causes of 

these problems are different e.g. design, coding, misinterpretation, or lack of the 

specifications in the standard. The specifications in any communication 

standard can not count for all possible scenarios that can occur in the real 

system and is not supposed to do that. The last and final details fall on the 

shoulders of the software developers to treat them.  Applying STBR thus can 

aid in performing very thorough test and consequently save a lot of problems 

before they may be discovered later in the field. We also found out that the 

specifications of the communications standards (at least TETRA) are flexible 

enough to contain the STBR method. We have not met with any scenario that 

was impossible to recover or required a protocol modification. We believe that 

this will be the case for every well designed protocol.    

7.2 Pros and cons 

In this section, we try to discuss the benefits, disadvantages and opportunities of 

using the STBR method as we see it.  

The STBR method is a white box approach that requires knowledge 

about the application to be recovered. The main disadvantage of choosing this 

approach is that the burden of handling recovery is placed on the system 

designer and application programmer. However, because the model based 
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STBR method uses the white box approach it can save the minimum amount of 

information at the lowest frequency and thus a minimum performance overhead 

with lowest impact on real-time communication.  

The cost of applying STBR to the communication systems is expected 

to be between low and middle. There are different reasons to support this 

expectation.  As a rule of thumb, the cost to design, implement and test a 

protocol entity is proportional to the size of its finite state machine determined 

by the number of states and input events. Extending state transition diagram 

with one extra “Recovery” state will imply more designs scenarios, more code 

and more test cases, but this increase will not become significantly high. With 

respect to the cost of hardware, it is also moderate due to the fact that STBR 

adopts 2N and N+1 redundancy.  

Furthermore, the autonomous recovery principle gives the flexibility to select 

only the most critical entities or nodes and add STBR capabilities to them.  

The ability to recover quickly and reliably from failures will not only 

improve the availability of the system but it will also make it easier for failure 

detection technique to judge if the system is operational or not. The failure 

detection mechanism may early initiate failure recovery procedure by relying on 

the fast and successful recovery of the STBR. 

 The STBR method opens the opportunity for “hot update” technology 

by analogy with “hot swap” for hardware. In other words, it may be possible to 

replace the running infrastructure application with a newer version that 

immediately continues to service the mobile users in the field after retrieving 

their state information from the SIS.  

Finally, the STBR method has one more strong advantage which is 

portability as the method does not depend on any type of hardware or operating 

system. This gives the designers the free choice to choose the hardware and 

software that meet their requirements. This is not the case for the rollback and 
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replication based methods because the accompanied middleware is usually 

written for a specific operating system and hardware.  

 

7.3 Discussion 

Should we live with system down time in the range of hours per year? 

Or try to develop systems with downtime in the range of minutes? Should we 

stick to the traditional way of designing and implementing communication 

systems? Or should we take the additional step and the associated risks? This is 

a difficult decision to make and this decision probably concerns system 

designers and developers more than project managers. But there is always a risk 

by introducing new technology. 

Based on our experience, we believe that the most effective approach to 

develop communication systems is to select the best methods from the 

beginning. Trying to have a system up and running very quickly to reduce time-

to-market and then finally fix the issues of availability and reliability may not 

lead to the shortest time in the long run. The consequences can be high 

development and maintenance costs, damaged reputation, and a final system 

filled with patches with no way to the optimal solution.  

The problem here is that it is impossible to foresee the number 

problems and their size ahead, and when the system is declared to be ready for 

operation how one can determine if the developed system could had been better 

both with respect to quality (availability and reliability) and cost. To do that, we 

need to re-build the system with different approach and methods and then do the 

comparison. That is not realistic, and the common answer is that there is always 

place for improvement.       

Finally, what is the chance for adopting the STBR in a commercial data 

communications system? This is an interesting question that we frankly can not 

give a direct answer to.  But the best candidate would be a new started project 
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that has availability and reliability as top priorities and  ready to follow the key 

principles of building high available system i.e. redundancy, modularity, 

detection and failure recovery. There is no doubt that customers need high 

availability and reliability communication systems. However, while no such 

system is yet in place, customers can not exert hard pressure on system 

suppliers but have to live with what exists.  
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Appendix A. SNDCP PDU formats 
 

This appendix lists the PDUs of the TETRA SNDCP protocol and their 

contents [ETSI03]. 

Table A-1: SN-ACTIVATE PDP CONTEXT DEMAND PDU   

Field name Length(bits) 

SN PDU type 4 

SNDCP version 4 

NSAPI 4 

Address type identifier in demand 3 

IP Address IPv4 32 

Packet data MS Type 4 

PCOMP negotiation 8 

Number of Van Jacobson compression state slots 8  

Number of compression state slots, TCP 8  

Number of compression state slots, non-TCP 16 

Maximum interval between full headers 8 

Maximum time interval between full headers 8 

Largest header size in octets that may be compressed 8 

Access point name index 16 

DCOMP negotiation varies 

Protocol configuration options varies 

 

 



96 

Table A-2: SN-ACTIVATE PDP CONTEXT ACCEPT PDU  

Field name Length(bits) 

SN PDU type 4 

NSAPI  4  

PDU priority max 3  

READY timer  4  

STANDBY timer  4  

RESPONSE_WAIT timer 4  

Type identifier in accept 3  

IP Address IPv4  32  

PCOMP negotiation 8  

Number of Van Jacobson compression state slots  8  

Number of compression state slots, TCP  8  

Number of compression state slots, non-TCP 16 

Maximum interval between full headers 8  

Maximum time interval between full headers 8  

Largest header size in octets that may be compressed 8  

Maximum transmission unit  3  

SNDCP network endpoint identifier  16  

FNI IPv6 information  98  

FNI Mobile IPv4 information 71  

DCOMP negotiation  varies  

Protocol configuration options varies  

 

Table A-3: SN-ACTIVATE PDP CONTEXT REJECT PDU  

Field name Length(bits) 

SN PDU type 4 

NSAPI 4 
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Activation reject cause 8 

Protocol configuration options varies 

 

 

 

Table A-4: SN-DATA PDU  

Field name Length(bits) 

SN PDU type 4 

NSAPI 4 

PCOMP 4 

DCOMP 4 

N-PDU varies 

 

Table A-5: SN-DATA TRANSMIT REQUEST PDU  

Field name Length(bits) 

SN PDU type 4 

NSAPI 4 

Logical link status 1 

Enhanced service 1 

Resource request varies 

SNDCP network endpoint identifier 16 

Reserved 20 

 

 

Table A-6: SN-DATA TRANSMIT RESPONSE PDU  

Field name Length(bits) 

SN PDU type 4 

NSAPI 4 
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Accept/Reject 1 

Transmit response reject cause 8 

SNDCP network endpoint identifier 16 

 

 

Table A-7: SN-DEACTIVATE PDP CONTEXT DEMAND 

Field name Length(bits) 

SN PDU type 4 

Deactivation type 8 

NSAPI 4 

SNDCP network endpoint identifier 16 

Reserved 12 

 

 

Table A-8: SN-DEACTIVATE PDP CONTEXT ACCEPT PDU  

Field name Length(bits) 

SN PDU type 4 

Deactivation type 8 

NSAPI 4 

SNDCP network endpoint identifier 16 

Reserved 11 

 

Table A-9: SN-PAGE REQUEST PDU  

Field name Length(bits) 

SN PDU type 4 

NSAPI 4 

Reply requested 1 

SNDCP network endpoint identifier 16  
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Table A-10: SN-RECONNECT PDU 

SN PDU type 4 

Data to send 1 

NSAPI 4 

Enhanced service 1 

Resource request variable 

SNDCP network endpoint identifier 16 

Reserved 19 

 

 

 

Table A-11: SN-END OF DATA 

Field name Length(bits) 

SN PDU type 4 

Immediate service change 1 

Reserved 4 
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