

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Nov 21, 2018

High available and fault tolerant mobile communications infrastructure

Beiroumi, Mohammad Zib; Iversen, Villy Bæk; Dittmann, Lars

Publication date:
2006

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Beiroumi, M. Z., Iversen, V. B., & Dittmann, L. (2006). High available and fault tolerant mobile communications
infrastructure.

http://orbit.dtu.dk/en/publications/high-available-and-fault-tolerant-mobile-communications-infrastructure(fa955d6e-30f8-4cfc-a477-a2cdb1a8914f).html

HIGHLY AVAILABLE AND FAULT TOLERANT

MOBILE COMMUNICATIONS INFRASTRUCTURE

By

Mohammad Zib Beiroumi

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Technical University of Denmark

(Research Center COM)

2005

 Motorola, Inc.

 © 2005

 All Rights Reserved

ABSTRACT

High availability is a key requirement in mobile communication systems,

especially, when it is used for mission-critical services such as public safety e.g.

police, ambulance and fire services. A failure in the fixed network infrastructure

that provides services to mobile users can affect a large number of users and

risk loss of lives. The fixed infrastructure of mobile communication system has

different characteristics, for example, architecture complexity, real-time peer-to-

peer communication and performance requirements that make the already

existing failure recovery techniques, such as those using rollback or replication

techniques inapplicable.

This dissertation presents a novel failure recovery approach based on a

behavioral model of the communication protocols. The new recovery method is

able to deal with software and hardware faults and is particularly suitable for

mobile communications infrastructure. The method enables the faulty

applications in the infrastructure to quickly and effectively resume their services

to their mobile clients with no or minimal loss of work after failure.

In our approach, we do not assume a specific fault behavior for example fail-

stop or transient behavior as it is the case for many recovery techniques. In

addition, the method does not require any modification to mobile clients. The

Communicating Extended Finite State Machine (CEFSM) is used to model the

behavior of the infrastructure applications. The model-based recovery scheme is

integrated in the application and uses the client/server model to save the

application state information during failure-free execution on a stable storage

and retrieve them when needed during recovery. When and what information to

be saved/retrieved is determined by the behavioral model of the application.

To practically evaluate and demonstrate the effectiveness of our

method, we developed as a case study an experimental testbed for the TETRA

(TErrestrial Trunked Radio) packet data network. The testbed works as a

distributed system and can run various communication scenarios between the

fixed network infrastructure and its mobile users. We thoroughly followed the

TETRA standard specifications in our implementation of the communication

protocols in order to get a testbed system that operates as the real system with

respect to message exchange and timing. The experimental results showed that

by using our method the faulty infrastructure application can immediately

resume its service after its restart and in less than a minute, it restores its service

performance level prior to the failure. The failure-free overhead incurred by the

method is relatively low, and is experimentally found to be less than 5% in the

conducted experiments.

vii

RESUME

Høj tilgængelighed er et nøgle-krav til mobilkommunikationssystemer,

i særdeleshed når de anvendes til livsvigtige opgaver som offentlig sikkerhed,

f.eks. politi, ambulance- og brandtjeneste. En fejl i infrastrukturen af det faste

netværk, som tilbyder mobile brugere tjenester, kan påvirke et stort antal

brugere med risiko for tab af menneskeliv. I sammenligning med det faste

netværk har infrastrukturen i mobilkommunikationssystemer helt andre

karakteristika, så som kompleksiteten af arkitekturen, realtid peer-to-peer trafik

og krav om ydelser. Dette gør, at man ikke kan anvende eksisterende

genetablerings teknikker som tilbage-rulning eller Duplikering.

Denne afhandling præsenterer en ny genetablerings metode, der er

baseret på kommunikations protokollernes adfærd. Denne nye metode er i stand

til at tolerere fejl i både programmél og maskinél og er i særdeleshed egnet til

de forhold, der hersker for mobilkommunikation. Metoden gør det muligt

hurtigt og effektivt at genetablere de af fejl i infrastrukturen ramte tjenester til

de mobile kunder men ingen eller et minimalt tab af arbejde. I modsætning til

mange andre genetableringsteknikker stiller vores metode ikke specifikke krav

til den måde, fejl opfører sig på, så som ophør af fejl eller forbigående fejl.

Endvidere kræver metoden ingen modifikation af de mobile enheder. Den

kommunikerende-udvidede-begrænsede-tilstands-maskine (Communicating

Extended Finite State Machine, CEFSM) anvendes til at modellere opførslen af

viii

de infrastruktur programmerer som servicerer mobiler. Den model-baserede

genetablerings metode er integreret i selv programmet. Den bruger klient/server

modellen til at gemme oplysninger om programmets tilstand i fejlfrie perioder

og hente dem frem igen, når de skal bruges til genetablering. Oplysninger

gemmes i en pålidelig opbevaring plads. Hvilke oplysninger der skal gemmes,

og hvornår de skal gemmes/hentes, fastlægges ved hjælp af modellen for

programmets tjeneste adfærd.

For at vurdere og underbygge vores metodes effektivitet i praksis, har vi

som eksempel opbygget en eksperimentel forsøgsmodel af TETRA (TErrestrial

Trunked Radio) pakkekoblede datanet. Forsøgsmodellen fungerer som et

distribueret system og kan afvikle forskellige scenarier for kommunikationen

mellem det faste nets infrastruktur og dets mobile brugere. For at få en

forsøgsmodel, der fungerer som det virkelige system med hensyn til

informationsudveksling og tidsmæssigt forløb, fulgte vi ved implementeringen

af kommunikations protokollerne omhyggeligt specifikationerne for TETRA

standarden. De eksperimentelle resultater viser, at med vores metode kan en i

infrastrukturen fejlramt tjeneste efter genstart reetableres til samme niveau som

før fejlen indtraf i løbet af få sekunder. Den ekstra belastning, som metoden

medfører i fejlfrie perioder, er ret lille, og i alle eksperimenter har den været

mindre end fem procent.

ix

AUTHOR PUBLICATIONS

Part of the research presented in this thesis has also been published in

the following papers (in chronological order):

� M. Zib Beiroumi, High Available Mobile Infrastructure Applications,

proceedings of the 16th IEEE International Symposium on Software

Reliability Engineering (ISSRE 2005), pp. 181-190, Chicago, USA, Nov,

2005.

� M. Zib Beiroumi, V. Iversen, Recovery method based on communicating

extended finite state machine (CEFSM) for mobile communications,

proceedings of the 10th IEEE International Conference of Engineering of

Complex Computer Systems, pp. 384-393, Shanghai, China, June, 2005.

� M. Zib Beiroumi, Recovery of Infrastructure Software in the Mobile

Network, NTS-17, 17th Nordic Teletraffic Seminar, pp. 137-148, August

25, 2004, Fornebu, Norway.

� M. Zib Beiroumi, Recovery of peer-to-peer applications in the mobile

network infrastructure, Fast abstract in the IEEE International Conference

on Dependable Systems & Networks (DSN-2004), pp 62-63, June 28-July

1, 2004, Florence, Italy.

x

ACKNOWLEDGMENTS

I would like first to thank my manager Lars Behrendt at Motorola who

has supported me from the beginning to the end of this joint PhD research

project between Motorola and the Technical University of Denmark. I sincerely

doubt that this project would have ever seen the light without his help and

support to overcome all the obstacles that stood in the way.

I would also like to thank my advisors Villy Bæk Iversen and Lars

Dittman for their great support and contribution to the success of this project.

Last but not the least I must thank my family. I am fortunate to have

such a wonderful wife, who has supported me all the way through and has lived

up to the challenges at home with our three very active kids.

My research work at the Technical University of Denmark was totally

funded by Motorla A/S Tetra world, sydvestvej 15, 2600 Glostrup, Denmark.

xi

TABLE OF CONTENTS

Chapter 1 Introduction.. 1

1.1 Motivation .. 1

1.2 Scope and contributions ... 3

1.3 Dissertation Overview.. 4

1.4 Terminology... 6

Chapter 2 Fault Tolerance: Recovery techniques & limitations................... 10

2.1 Availability and Reliability .. 10

2.2 Software Faults... 11

2.3 Building fault tolerant systems... 12

2.4 Failure Recovery Techniques... 13

2.4.1 Rollback recovery .. 13

2.4.2 Replication based recovery.. 17

2.4.3 N-version programming... 19

2.5 Limitations ... 20

Chapter 3 Mobile Data Communication & Failure Recovery...................... 23

3.1 Overall architecture of mobile network ... 23

3.2 Mobile Communication Characteristics and their implications 25

3.3 Requirements for failure recovery in mobile infrastructure 28

Chapter 4 Modeling Communication Applications...................................... 30

4.1 OSI model .. 30

xii

4.2 Modeling communication protocols by CEFSM.............................. 32

4.3 Case Study: TETRA Packet Data... 35

4.3.1 CEFSM model for SNDCP protocol.. 38

Chapter 5 State Transition Based Recovery (STBR) 43

5.1 Objective & assumptions ... 43

5.2 STBR Approach ... 45

5.3 Recovery protocol .. 48

5.4 Mechanism ... 50

5.4.1 STBR during failure-free execution... 51

5.4.2 STBR during failure recovery.. 55

Chapter 6 Experimental Testbed and Results... 61

6.1 Testbed architecture ... 61

6.2 Experiment procedure and configuration... 65

6.3 Experiments.. 67

6.3.1 Failure recovery in experiment set #1.. 74

6.3.2 Failure recovery in experiment set #2.. 79

6.3.3 Failure recovery in experiment set #3.. 83

6.3.4 Failure-free overhead... 87

6.4 Experiments summary.. 88

Chapter 7 Conclusions and Discussion .. 89

7.1 Conclusions .. 89

7.2 Pros and cons.. 91

xiii

7.3 Discussion .. 93

Appendix A. SNDCP PDU formats .. 95

Bibliography .. 100

xv

LIST OF TABLES

Table 3-1: Negative implications of FNI communication on recovery techniques

.. 28

Table 4-1: CEFSM model for the SNDCP entity in FNI................................... 40

Table 6-1: Summary of the failure recovery experiments 88

Table A-1: SN-ACTIVATE PDP CONTEXT DEMAND PDU....................... 95

Table A-2: SN-ACTIVATE PDP CONTEXT ACCEPT PDU 96

Table A-3: SN-ACTIVATE PDP CONTEXT REJECT PDU 96

Table A-4: SN-DATA PDU .. 97

Table A-5: SN-DATA TRANSMIT REQUEST PDU...................................... 97

Table A-6: SN-DATA TRANSMIT RESPONSE PDU.................................... 97

Table A-7: SN-DEACTIVATE PDP CONTEXT DEMAND........................... 98

Table A-8: SN-DEACTIVATE PDP CONTEXT ACCEPT PDU.................... 98

Table A-9: SN-PAGE REQUEST PDU.. 98

Table A-10: SN-RECONNECT PDU ... 99

Table A-11: SN-END OF DATA.. 99

xvii

LIST OF FIGURES

Figure 1 A generic time line from fault to recovery.. 6

Figure 2: An example of out-of-bounds array indexing in C code...................... 8

Figure 3: Rollback propagation and domino effect ... 14

Figure 4: Active replication structure .. 18

Figure 5: N-version programming structure .. 19

Figure 6: The overall architecture of the mobile communication system 24

Figure 7: Protocol entities interaction in OSI model ... 31

Figure 8: TETRA Packet Data Protocol stack... 36

Figure 9: STD of SNDCP entity in FNI .. 40

Figure 10: STD of FNI SNDCP entity extended with Recovery State.............. 46

Figure 11: Recovery protocol using client/server model................................... 48

Figure 12: Format of requests and responses used in recovery protocol........... 49

Figure 13: MSC showing STBR during successful PDP context activation 51

Figure 14 MSC showing STBR during uplink data transfer 52

Figure 15 MSC showing STBR during downlink data transfer......................... 54

Figure 16: Recovery of an MS initiated communication (Standby) 56

Figure 17: Recovery of an MS initiated communication (Ready)..................... 57

Figure 18: Recovery for an FNI initiated communication (Standby) 58

Figure 19: Recovery for an FNI initiated communication (Ready)................... 59

Figure 20: Overall architecture of TETRA packet data testbed 62

xviii

Figure 21: The MS application user interface ... 66

Figure 22: 3 typical failure-free experiments in set #1: (a) Number of

downloaded files per time unit for each experiment run; (b) The

corresponding number of packets; (c) The average download time of 40

KB file... 68

Figure 23: 3 typical failure-free experiments in set #2: (a) Number of

downloaded files per time unit for each experiment run; (b) The

corresponding number of packets; (c) The average download time of 40

KB file... 71

Figure 24: 3 typical failure-free experiments in set #3: (a) Number of

downloaded files per time unit for each experiment run; (b) The

corresponding number of packets; (c) The average download time of 24

KB file... 73

Figure 25: Failure recovery in set #1 for 3 sample experiments where PDS

application crashed around 75, 95 and 115 seconds respectively and then

restarted after 5 seconds.. 75

Figure 26: Failure recovery in set #1 for 3 sample experiments where PDS

application crashed around 75, 95 and 115 seconds respectively and then

restarted after 15 seconds.. 77

Figure 27: Failure recovery in set #2 for 3 sample experiments where PDS

application crashed around 75, 95 and 115 seconds respectively and then

restarted after 5 seconds.. 80

xix

Figure 28: Failure recovery in set #2 for 3 sample experiments where PDS

application crashed around 75, 95 and 115 seconds respectively and then

restarted after 15 seconds.. 82

Figure 29: Failure recovery in set #3 for 3 sample experiments where PDS

application crashed around 75, 95 and 115 seconds respectively and then

restarted after 5 seconds.. 84

Figure 30: Failure recovery in set #3 for 3 sample experiments where PDS

application crashed around 75, 95 and 115 seconds respectively and then

restarted after 15 seconds.. 86

Figure 31: The PDS CPU time usage of two experiments in set #3. The PDS in

the first experiment is updated with STBR method but not in the second.87

xx

LIST OF ABBREVIATIONS

BS Base Station
CEFSM Communicating Extended Finite State Machine
FNI Fixed Network Infrastructure
FPS File Packet Sender
GPRS General Packet Data Service
IP Internet Protocol
LLC Logical Link Control
MAC Medium Access Control
MEU Mobile End User
MLE Mobile Link Entity
MS Mobile Station
MSC Message Sequence Charts
MTBF Mean Time Between Failure
MTTR Mean Time To Repair
OSI Open Systems Inter-connection
PDS Packet Data Server
PDU Packet Data Unit
SAP Service Access Point
SDL Specification and Description Language
SDU Service Data Unit
SIS State Information Saver
SNDCP SubNetwork Dependent Convergence Protocol
STBR State Transition Based Recovery
TETRA TErrestrial Trunked Radio
UML Universal Modeling Language
UMTS Universal Mobile Telecommunications System

1

Chapter 1

Introduction
In building public safety communication systems that aim to tolerate

failure, system developers must tackle many difficult issues. For example, there

is the issue of which failure recovery approach that can work best for the

system? What type of faults should the system tolerate? Does the system

performance or real-time requirements deteriorate during failure-free execution?

What is the cost of adding fault tolerance to the system? By systemically

building a method to tolerate failures caused by software and hardware faults,

we endeavor with this study to illuminate many of these issues.

1.1 Motivation

Mobile communication is a key element for the success of the public

safety work and it is a necessary tool in solving the day-to-day mission-critical

tasks accomplished by public safety services such as ambulance services, fire

brigades and police forces. The public safety workers are expected to provide

prompt assistance in dealing with situations to preserve life, health and security.

It is therefore very important that the public safety services have reliable and

highly available mobile communication infrastructure in place to support the

needs of the public.

2

In the last four decades, researchers have developed different

techniques to tolerate system failures. There are three main approaches used to

develop these techniques:

1. Rollback: In this approach, the state of the application is saved

periodically during failure-free execution to a stable storage. In case of

failure, the faulty application is rolled back to the latest saved state and

tries to recover from there.

2. Replication: In this approach, the application (mainly server) is

replicated and distributed across different computers. The idea behind

this approach is that the failure of one server replica (or of a computer

hosting a replica) can be masked from any client using that server

because the other replicas can continue to perform any operation that

the client requires from the faulty server.

3. Design diversity: This approach is based on the use of two or more

versions of the application that are built independently (i.e. different

designers, different programming languages, different development

tools, etc.) from the same specifications. The rational for this approach

is that the different versions fail independently because it is unlikely to

have faults at exactly the same place in all versions, and thus, the

probability of having at least one running application at any time is very

high.

Unfortunately, these approaches suffer from different limitations that

restrict their use in commercial communication systems, for example,

because of implementation cost or some inadequate assumptions about the

causes to failures. In addition, mobile communication systems have many

specific requirements such as real-time and performance requirements that

seriously challenge the applicability of these approaches in mobile

environment. In communication industry today, most of the system

3

suppliers have their own customized solutions and approaches to deal with

their systems failures. These solutions and approaches are based on best

practice rather than on scientific studies.

Our goal with this thesis is to develop a failure recovery method that

gives a realistic solution for achieving fault tolerance in real-world

communications systems. We are particularly interested in mission-critical

public safety communication systems because of the obvious need for

continuous service availability. The proposed recovery method should improve

the system availability through fast and reliable recovery. The method should

also meet the requirements of today’s enterprise such as low implementation

cost, good scalability, low overhead during failure-free execution, etc.

1.2 Scope and contributions

This dissertation details our research work to develop a failure recovery

method to achieve high availability in mobile communication infrastructure. We

investigate the challenges that in mobile environment create for the recovery

and try to develop a scientific and engineering quality solution.

The path we take in our work cuts a broad swath through traditional

systems and fault tolerance research. We look at the existing recovery

approaches and explain their general limitations. We then describe the

characteristics of mobile communication and their impact on the recovery

approach. We begin by constructing a model that formally describes the

behavior of the mobile communication protocols. The behavioral model is then

used in our development of the failure recovery method. Finally, we implement

an experimental testbed for real-world TETRA packet data communication

system to evaluate our proposed method. Our work led to the following

contributions:

4

1. Adaptation of the CEFSM model to the OSI model in order to get a

more accurate behavioral model of the communication protocols which

are normally designed according to the OSI model.

2. Studying fault tolerance in a new application area, namely the fixed

infrastructure of mobile communication system. The fixed

infrastructure manages and provides services to the mobile stations. To

the best of our knowledge there is no academic literature that deals with

failure recovery in the fixed infrastructure but there is few for mobile

stations, e.g. [Pradhan96].

3. Applying the CEFSM model on a real-world case study, namely

TETRA packet data communication system. We show how behavioral

model can be developed for the layered communication protocol stack.

4. Developing a novel behavioral model based failure recovery method to

tolerate software and hardware faults. This recovery method referred to

as State Transition Based Recovery (STBR) is aimed to achieve high

availability in the mobile fixed network infrastructure. The method is

well suited for real-time communication and do not rely on any specific

fault behavior e.g. transient or fail-stop.

5. Design and implementation of an experimental testbed for TETRA

packet data where the communication between mobile users and

infrastructure can be generated at various traffic profiles.

1.3 Dissertation Overview

In this dissertation, we gradually assemble the pieces needed to first

develop our novel failure recovery method for mobile communication systems,

and secondly to implement an experimental testbed to evaluate the proposed

method.

5

In chapter 2, we present the most known recovery techniques in the

field of fault tolerance research. We describe in general the basic ideas and

approaches behind these techniques. Finally, we explain their general

limitations as a result of the assumptions made by these approaches.

In chapter 3, we look at the overall architecture of mobile

communication systems and the different aspects that characterize mobile

communication and its physical environment. We then investigate the

implications of these characteristics on the existing recovery techniques and

finally come to a number of requirements that should be considered when

building recovery system for mobile environment.

In chapter 4, we start by presenting a modified version of the CEFSM

model that is adapted to the OSI model. We then introduce our case study about

TETRA and describe the protocol stack of TETRA packet data. Finally, the

CEFSM model is applied to a selected layer protocol entity in the TETRA

packet data protocol stack.

In chapter 5, we present our failure recovery method. The principles

that the method relies on, the objective and the assumptions are described in

details. Furthermore, the protocol entity modeled in previous chapter is used to

explain the recovery mechanism both during failure free execution and during

recovery.

In chapter 6, the design and implementation of the experimental testbed

for TETRA packet data is described. The experiment procedure and setup is

also described. Finally, the results of the conducted experiments are presented

and evaluated.

In chapter 7, we conclude our work and discuss the possibility of

adopting our research in commercial systems.

6

1.4 Terminology

The fundamental terms used in the field of fault-tolerance research are

fault, error, failure, detection and recovery. The terminology used in this thesis

is to some extent in line with that given by [Gray91] and [Pradhan95].

Figure 1 A generic time line from fault to recovery

A fault is a physical defect that may lead to an error. Faults can be

classified into different types such as:

Hardware faults: component failures, for example disk crashes or processor

failures

Software faults: faults in software e.g. coding mistakes or improper design

Human faults: mistakes made by operators and maintenance personnel, for

example making an erroneous change to a configuration file, or performing a

failed upgrade.

Environmental faults: failure in facilities e.g. fire, flood, earthquake, power

failure and sabotage.

In case of software, faults are activated or triggered when the faulty piece of

code is executed. The fault activation rate measures how often faults are

triggered.

An error is an erroneous change in the system state caused by the activation of

the fault. It is a deviation from the correct behavior of a system. Fault is the root

cause of error and error may cause failure.

Time

Detection latency Error latency

 Fault Error Failure Detection Recovery
 Activation

7

A failure is the nonperformance or incorrect performance of some action that is

expected of the system by the user.

Error latency is the time between error occurrence and the failure occurrence,

see Figure 1.

Failure detection is the process of identifying that the system is in failed state.

There are different failure detection mechanisms that can work both locally (e.g.

by using watchdog timers) and remotely (e.g. by using periodic heartbeat

messages) to monitor the system state.

Failure detection latency is the time between the failure occurrence and its

detection by the deployed detection mechanism.

Failure recovery is the process of getting the system back to an operational state

after a failure has been detected.

To illustrate the above mentioned terminology, a simple C code example

containing out-of-bounds array indexing fault is presented in Figure 2. The fault

is located at line code number 5 (� should be replaced by<), the fault is

activated when line 9 is executed with parameter i equals to 100 which takes

place when the user list is full. The fault activation will lead to writing the

number out of the array bounds, precisely at address “&user_list[100]”.

The fault activation will cause an error if the memory address

“&user_list[100]” is already used by another variable in the program, for

example if the compiler uses this address for the variable number_of_users,

otherwise no error occurs. Suppose that an error is indeed occurred (i.e.

number_of_users gets corrupted) then depending on the program flow, if the

number_of_users is used before being overwritten then program failure is

inevitable, but if it is always overwritten before being used then failure is

avoided. The possible failure will occur at line 22 where the program depending

on the error value may hang for a variable period of time or probably crash.

8

Figure 2: An example of out-of-bounds array indexing in C code

Error latency is the time period between the execution of line 9 with parameter i

equals to 100 and the following execution of line 22. Note that error latency is a

variable that may depend on the program user activity. The failure detection

latency is the time period between the execution of line 22 and the detection of

failure by the used detection techniques, e.g. via heartbeats and watchdog

timers.

Finally, there are two important properties for software faults that have been

essential for many of the failure recovery methods [Chandra00a].

Non-Determinism: This property indicates that fault activation is non-

deterministic (transient) and it is most likely not to happen if the operation is

retried, even if the same piece of code is retried. The transient nature of the

#define MAX_NUM_OF_USERS 100

int user_list[MAX_NUM_OF_USERS];

int number_of_users

1 Save_user_id_number(int id_number)

2 {

3 int i;

4 /* save Id number in first empty element */

5 for (i= 0; i � MAX_NUM_OF_USERS;i++)

6 {

7 if(user_list[i] == 0)

8 {

9 user_list[i] = id_number;

 }

20 send_to_all_users()

21{

22 while(number_of_user--)

 {

9

fault arises because some external factors have unexpectedly changed; for

example, a race condition caused by unusual thread/process scheduling or a bit-

flip (a change from 0 to 1 or 1 to 0) in RAM caused by electromagnetic

interference. The non-deterministic software faults are also known as

“Heisenbugs” [Gray86]. The faults that do not uphold the non-deterministic

property are known as permanent faults.

Fail-stop property: A program must not perform erroneous actions after

fault activation, for example writing erroneous data which corrupts its own

process state or sending incorrect information to other processes. This property

is also known as halt-on-failure. The faults that do not uphold fail-stop property

is called Byzantine faults [Schneider84].

10

Chapter 2

Fault Tolerance: Recovery techniques & limitations
Traditionally, fault tolerance means to avoid service failures in the presence of

faults. The goal of fault tolerance is to mask or at least to minimize the impact

of system failures on system users. Fault tolerance is a means to achieve high

level of system availability. In this chapter, we describe the key principles to

build fault tolerant system and the main existing techniques to achieve fault

tolerance. Finally, the limitations of these techniques are explained.

2.1 Availability and Reliability

Reliability and availability are two metrics that are always related with fault

tolerance.

Reliability is the probability that a system will not fail at a specified point of

time in the future given that it is operating correctly at time zero. Module

reliability measures the time from an initial instant and the next failure event.

Mean Time Between Failure (MTBF) is used to statistically quantified

reliability. MTBF is the mean (average) time expected between failures of a

given module (software or hardware) and is normally measured in hours.

Because the calculation of MTBF is quite complex and may depend on many

factors, it is usually done empirically to predict the rate at which failures can be

expected.

In contrast, availability is the probability that the system will be operating

correctly at any instant of time within a given time interval. A widely accepted

equation for system availability is A = MTBF/(MTBF+MTTR), where MTTR (

11

Mean Time To Repair) is the average time between failure and recovery. An

ideal system that never fails has availability equals to 1. Availability measures

the readiness for correct service, while reliability measures the continuity of

correct service.

Depending on the criticality level of the user application, the requirements for

system reliability and availability may vary. For example, in mission-critical

applications such as emergency services, the main concern is a high level of

availability; few numbers of outages per year can be tolerated as long as they

are very short. While for life-critical application such as control system for

nuclear power plants, high reliability is the main concern since no failure can be

tolerated during the life of the system. Reliability and availability are related in

such a way that improving module reliability will automatically improve its

availability, but the reverse is not necessary true.

2.2 Software Faults

A system can be viewed as a set of modules - hardware and software –

that communicate with each other through network (wired or wireless) to

achieve common goals. Each module is designed to perform a specified number

of functions and it has a well defined interface through which it can interact

with other modules. A module may also divided into several sub-modules if it

is large.

Systems fail due to a variety of problems with their software and hardware.

Field studies [Gray91] and everyday experience show that the dominant cause

of failures today is software faults, both in the application and operating system.

We mean by “application” any software module that runs over the operating

system ranging from end-user applications to system applications.

As previously mentioned, software fault is the root cause of error and

possible consequent failure. It is a defect that is located in a fixed position in a

12

specific module. However, the error that is caused by the software fault may not

be limited to a single module and it may propagate to other modules. Consider

the case where the faulty module starts sending corrupted messages to other

modules, if the receiving modules are not prepared to handle such errors, they

may fail too.

The behavior of the fault is critical to the success of any proposed

recovery method. Recall that recovery can be first started after detection of the

failure so the evolvement from fault activation to failure detection is important

to understand in order to ensure a successful recovery procedure after a failure.

Most of the existing failure recovery techniques have some assumptions to the

behavior of the software faults that they can tolerate.

2.3 Building fault tolerant systems

To build a fault tolerant system, there are four key elements to be

addressed. A lack of any one of these elements will make the system less fault

tolerant.

1. Redundancy: A fault tolerant system must not have any single point of

failure, therefore, both hardware and data redundancy is necessary to

recover from hardware and software faults. The principle of redundancy

relies on the fact that the probability of two or more redundant components

failing at the same time is very low assuming that there is no dependency

between them.

2. Modularity: A fault tolerant system should be decomposed into modules

where each module (software or hardware) is a unit of service with a well

defined access interface. Besides that modularity is an important design

approach to break down the complexity of the system, it is also an affective

approach to hinder error propagation by adding strict error control at every

access point to each module.

13

3. Failure detection: The main goal of failure detection is to determine when

the system (most probably) does not operate correctly and to give the start

signal for recovery/repair procedure. The quality of failure detection can be

evaluated by two metrics: detection promptness which is directly translated

to failure detection latency and second detection reliability which is the

probability that the failure decision is wrong (false alarm). There are

different failure detection techniques that can be used separately or in

combination. Examples of failure detection techniques are: watchdog timers

to detect hanging processes and heartbeat messages to detect crashed

processes.

4. Failure recovery: A fault tolerant system should be able to resume

service after a failure and to bring the system state to that it had before

failure. The aim of failure recovery is to reduce users’ loss of work as well

as to minimize redo. A fundamental task for failure recovery process is to

bring consistency to the system after failure. Failure recovery may need to

utilize any of the above mentioned elements e.g. redundancy to achieve its

goal. A vast number of failure recovery techniques have been proposed in

the literature to achieve fault tolerance in the distributed systems. We treat

some of the most known techniques in the next section.

2.4 Failure Recovery Techniques

During the last four decades, different failure recovery techniques and

approaches have been developed. We describe some of the most known

recovery methods in the field of fault-tolerance research.

2.4.1 Rollback recovery

Rollback recovery regards the system as a collection of application

processes that communicate through network. The rollback recovery protocols

14

try to achieve fault tolerance by saving the complete process state of the

application periodically on stable storage during failure-free execution. Upon a

failure, the failed process rolls back to its latest saved state and then tries to

recover from there, thereby reducing the amount of lost computation. The main

goal of any rollback recovery protocol is to bring the system (processes) into a

consistent state when inconsistencies occur because of a failure. Rollback

recovery techniques try to achieve transparent recovery by avoiding the need of

any involvement of the application programmer and just treat the application to

be recovered as a black box. The Rollback recovery can be classified into two

groups [Elnozahy96]: checkpoint based and log-based.

Figure 3: Rollback propagation and domino effect

• Checkpoint based Recovery: checkpoint-based rollback recovery

relies on checkpoints to achieve fault tolerance. A check point is a

“snapshot” of the process state at a certain point of time as maintained

by the operating system (program counter, data segments, CPU

registers, stack pointers, etc) . Upon a failure, checkpoint-based rollback

recovery restores the system state to the most recent consistent set of

checkpoints. The simplest form of checkpoint based schemes referred to

as uncoordinated where each process can conveniently take checkpoints

according to some local criteria, for example to reduce performance

C1,1 C1,2 C1,3

C2,1 C2,2 C2,3

P1

P2

P3

Failure

C3,1 C3,2 C3,3

m1

m2

m3

m4

m5

m8

m6

m7

15

overhead, without taking account to the communication messages with

the rest of the system. Uncoordinated checkpointing is simple to

implement but it suffers from domino effect [Randell75] which may

cause loss of work. After failure, the failed process rolls back to the

latest saved checkpoint but this may not be in consistency with the

latest checkpoint of one of the other processes, so that process is

obliged to roll back to next older checkpoint. This cascaded rollback

may continue and eventually may lead to the domino effect, which

causes all processes of the system to roll back to the beginning of the

computation, in spite of all the saved checkpoints. Consider the

example in Figure 3, the system in this case is composed of three

processes P1, P2 and P2. Each process takes a checkpoint – represented

by black bar independently. Suppose process P1 fails and rolls back to

checkpoint C1,3. The rollback of P1 invalidates the sending of message

m8 and so P2 must rollback to checkpoint C2,3 to “invalidate” the receipt

of that message. Consequently, the rollback of P2 will force the rollback

of P3 to check point C3,3 to invalidate the receipt of message m7. This

cascaded rollback continues until all processes roll back to their initial

checkpoints (C1,1, C2,1, C3,1). To avoid domino effect, coordinated

checkpointing where processes coordinate their checkpoints in order to

save a consistent global system state [Chandy85] is used. A coordinator

process takes a checkpoint and broadcasts a request message to all other

processes, requesting them to take checkpoint. Checkpoint coordination

can also be achieved by using synchronized clocks where all system

processes take checkpoints at approximately the same time without

need to a coordinator process [Cristian91].

• Log-based checkpointing: Log-based rollback-recovery uses both

checkpointing and logging to enable processes to replay their execution

after a failure beyond the latest checkpoint. Log-based checkpointing is

16

useful for the systems that interact frequently with the outside world.

The systems in the outside world can not be rolled back and thus

instead of taking expensive checkpoints whenever messages

received/sent from/to outside world, it is enough to log messages and

replay them after failure. Log-based recovery relies on the piecewise

deterministic assumption [Strom and Yemini 1985]. This assumption

assumes that the rollback-recovery protocol can identify all the

nondeterministic events (e.g. receiving messages from the outside world

and asynchronous interrupts) executed by each process, and for each

such event, logs a determinant that contains all information necessary to

replay the event should it be necessary during recovery. There are

different flavors of log-based recovery depending on how the

determinants are logged to a stable storage, pessimistic and optimistic

are two best known log-based recovery techniques. Pessimistic log-

based assumes that a failure can occur after any nondeterministic event

in the computation and therefore the process is blocked after each

nondeterministic event waiting for its determinant to be logged to a

stable storage before processing the event. Pessimistic logging

simplifies the recovery and rolls back to a system consistent state that is

very close to the pre-failure state, but the cost to pay is a high failure-

free performance overhead. In contrast, Optimistic logging [Storm85]

assumes that determinants will be logged to stable storage before a

failure occurs because failures are normally infrequent and thus there is

no need to interrupt the process on every nondeterministic event.

Determinants are kept on volatile log that is periodically flushed to

stable storage. Optimistic log-based recovery achieves low failure-free

overhead but uses a rather complex recovery scheme.

17

Rollback based Recovery has focused traditionally on recovering long running

scientific computations [Casanova97], text editors [Lowell00], spreadsheet

programs and database systems [Campos95].

2.4.2 Replication based recovery

Replication implements roll-forward mechanism where the entity (mainly a

server application) is replicated to establish a group of replicas and in the event

of the failure of one entity, the other replicas can take over and continue

processing requests. There are two best-known replication approaches:

• Active replication: In active replication [Schneider93] (also known as

state-machine approach), all server replicas run concurrently and

execute the same work so they maintain exactly the same consistent

state. Every server replica processes every client request in the same

relative order and sends back a reply. Figure 4 illustrates schematically

the architecture of active replication with three server replicas. Reliable

multicast protocols may be used to forward client requests to all

members of the server group. Majority voting technique is used when

the group consists of more than two members to deliver the correct

reply to the client. If the fail-stop property is assumed then in order to

tolerate k number of faulty replicas , a group of k+1 replicas is enough

because faulty replicas keep silent and do not send any incorrect replies.

However, if the Byzantine property is assumed then 2k+1 replicas is

needed to sort out a possible k incorrect replies from the k faulty

replicas. Active replication is very effective for hardware faults and

provides a fast recovery. Active replication can also be used for load

balancing by equally distributing clients’ requests on all members of

the server group.

18

Figure 4: Active replication structure

• Passive replication: In passive replication (also known as primary-

backup) [Budhiraja93], one member of the server group is designated as

the primary, while all other replicas serve as backups. The primary

server is the only one that process clients’ requests and send back

replies. During normal operation, the state of the primary is periodically

recorded in a log, typically as a sequence of request and reply messages,

while?? states and updates as checkpoints. Upon a failure, a backup

server is promoted to be the new primary server of the group. The state

of the new primary is restored to the state of the old primary by

reloading its state from the log, followed by reapplying request

messages recorded in the log.

The replication techniques have been mainly used in building enterprise

distributed applications such as databases and transaction processing systems.

Some of the best known systems that used replication to achieve fault tolerance

in the enterprise applications are SIFT [Wensley72], ISIS [Birman94], and

AQUA [Cukier98].

server

client
Request

Reply

server

server

19

2.4.3 N-version programming

N-version programming [Avizienis77] uses design diversity approach

and it is defined as the independent generation of N � 2 functionally equivalent

programs from the same initial specification. Independent generation of

programs means that the programming efforts are carried out by N development

teams that do not interact with respect to the programming process. The initial

specification is a formal specification in a specification language. The goal of

the initial specification is to state the functional requirements completely and

unambiguously, while leaving the choice of implementations to the N

programming efforts. N-version programming assumes that all programs

contain faults, but it relies on the fact that the number of hidden faults will be

small and that they will be in different locations in each of the versions.

Wherever possible, different algorithms, programming languages and compilers

are used in each separate effort.

Figure 5 shows the basic structure of the N-version programming

scheme. The N programs run concurrently and the results of each version

compared and voted on to determine the final output.

Figure 5: N-version programming structure

N-version programming

Voter

Version 1

Version 2

Version N

Input Output

20

The case where N equals two is a special case since no majority outcome can be

derived when the individual program results do not agree. Most fault-tolerant

software systems utilize N � 3, and use a majority vote to resolve inconsistent

results. Note that N-version programming is not only a recovery technique but it

also provides failure detection through voting mechanism.

The N-version programming is mainly utilized in life-critical applications with a

high risk of life loss for example flight control computers e.g. in Boeing 737-

300 [Williams83] and Airbus 320 [Traverse88].

2.5 Limitations

In this section, we explain the general limitations of these techniques

and leave the specific ones concerning the mobile environment to the next

chapter.

� Rollback depends on two assumptions:

1- Transient faults: Without assuming that faults are transient, the

faulty process will certainly fail again at exactly the same place.

The faulty process will roll back to the latest saved state and then

continues its execution (exactly the same program instructions

are repeated) to restore the pre-failure state before it hits the error

again. Note that the faulty entity may or may not reactivate the

permanent fault depending on the latest checkpoint time, but it

will certainly hit the error.

2- Good checkpoints: Rollback assumes that only good data is

saved to a stable storage and this implies that the fail-stop

property must be upheld. In other words, the saved states must

not contain the error that is caused by the transient fault.

� Replication has also two assumptions

21

1. Transient fault: Replication approach depends on the assumption

that most of the software faults are transient. If this assumption is

not applied, then all members of the replica group will fail at the

same time, for example because of a permanent software bug.

2. Fail-stop: Most of the replication techniques assume fail-stop

property, i.e. an entity works correctly or stops functioning

completely. This assumption can be relaxed at the cost of more

complex voting algorithm and an increase in the number of

replicas.

� N-version or the use of diversity has no technical limitation in general, but

its main limitation is its high cost both with respect to implementation and

maintenance. There is a big discussion whether it is better to concentrate on

developing one reliable version rather than less reliable multi-versions.

The two assumptions about the nature of fault fail-stop and transient are

dated back to the early 1980’s and they can be probably true for some

relatively simple applications. But, these assumptions will simply not hold

for modern distributed communication applications. Everyday experience

with communication applications has shown that many (if not most) of the

software faults are permanent and they are reproducible, but they require

rare sequence of events to be activated. This can be explained with the fact

that it is almost impossible and not realistic to test every path and

combination in these large and complex applications. In some work on

open-source applications (Apache web server and MySQL

database)[Chandra00b], it has been found that deterministic faults are about

72-87% of the total number of faults. Another study on database

management system [Chandra98] has found that 7% of the faults violate the

fail-stop property. It should be mentioned, though, that mobile

22

communications applications are far more complex than the applications in

these studies.

Note that we have only concentrated on the intrinsic limitations that

nothing can be done about them. But, there are some other challenging

problems that are difficult to resolve completely in real-world communication

environment. For example, it is very difficult for active replication to preserve

consistency across all replicas in the presence of non-deterministic behavior

such as caused by operating system-specific calls, process/thread scheduling,

timers, etc.

23

Chapter 3

Mobile Data Communication & Failure Recovery
In the previous chapter, we described the best known existing failure

recovery techniques. In this chapter, we will investigate the communication

characteristics of the mobile network infrastructure and analyze their

implications on the existing failure recovery techniques. But, we look first at the

overall architecture of mobile communication systems and then introduce

TETRA packet data network as a concrete case study.

3.1 Overall architecture of mobile network

Mobile communications systems refer generally to any

telecommunications system which enables a wireless communication when

users are moving within the service area of the system. One of the main goals in

the development of mobile communications networks is to provide new data

communication services, such as packet data communication, and especially IP

(Internet protocol) services. Because of its high efficiency, packet switched data

services are expected to be the dominant type of communication in all modern

mobile networks even to provide voice services (Voice over IP).

The overall architecture of packet switched mobile communications

system is depicted in Figure 6 . The system can be roughly divided into 2 parts:

1. Mobile Stations (MS): mobile devices used to transmit and receive

user data wirelessly. MS is composed of hardware and software,

which implements a number of communication protocols. MSs can

24

move from one area (cell) to another and is still able to transfer

data.

Figure 6: The overall architecture of the mobile communication system

2. Fixed Network Infrastructure (FNI): This is a fixed network

consisting of base stations, routers, gateways, resource

management, mobility management units, etc. that exist to support

the operation of the wireless mobile stations.

The FNI takes the overall coordination and control of the

communication with the MSs and it uses peer-to-peer based

protocols to achieve that.

The External network is an IP-based packet data network that contains

the destination host requested by the mobile user. The External network can be

the Internet or a customer private network e.g. LAN or X.25.

Fixed Network
Infrastructure (FNI)

External network
(e.g. Internet or
Private network)

 Mobile Station (MS)

25

The fixed network connects the wireless mobile stations and the External

network and consequently plays a critical role to the overall availability of the

system. A failure in the FNI may disrupt the connection to hundreds or even

thousands of MSs, this can be a very serious situation especially if the system is

used in mission-critical applications such as in pubic safety, e.g. fire brigades,

police forces and ambulance services.

A recovery from failure in mobile stations by using checkpointing and

message logging has been investigated in the literature e.g.

[Acharya94][Yao99][Pradhan96]. These literatures have been limited to

simulation and never really studied the mobile communication protocols

between MS and FNI. We also find it less important from the overall system

availability point of view to focus on the recovery from failures in MS rather

than FNI.

3.2 Mobile Communication Characteristics and their implications

Mobile data communication has several characteristics that must be

taken into consideration when developing any failure recovery method. What

these characteristics are and what implications do these characteristics have

specifically for the failure recovery in mobile infrastructure is to be investigated

in this section. These characteristics are as following:

• Peer-to-peer client/server communication: The communication pattern

between an application in FNI and its peer application on MS is peer-to-

peer; which means that the communication can be initiated by either side

(MS or FNI). On the contrary, it is the client that always initiates

communication in client/server model. However, the application in FNI

provides service to many peer applications on MSs concurrently (one-to-

many relationship) and it is also designed to be responsible for the overall

26

control, therefore the communication follows also client-server

(master/slave) model at functional level. This mix of two communication

models adds more complexity to the infrastructure applications.

Furthermore, there is a coupling (dependency) between the application

state in FNI and its peers on MSs resulting from use of the stateful

communication in the design of mobile packet data services. The use of

stateful protocols is the primary challenge for failure recovery process.

• Real time communication: Real time issue arises when there are actions

that must be completed within a specified amount of time otherwise they

become useless or even harmful after that. In this context, the entity that

initiates requests should receive replies within a specified period of time

otherwise timeouts occur. The real time aspects of mobile communication

originate from both the end user application and the physical system. For

example a user application (running in the application layer of OSI model)

that monitors victims in the field and wirelessly sends information such as

blood pressure and cardiac activity to the doctors in hospital needs to send

this information and receive instructions instantly. In addition, real-time

requirements are also imposed from the physical layer, for example by

channel access schemes because data have to be transmitted in the

assigned time slots.

• High message rate: The number of messages received and sent per unit

time is high. Any single application in the FNI can easily send or receive

many thousands of messages per minute. Therefore, any recovery

technique that uses message logging has to deal with two particular

problems i.e. overhead and storage.

• Distributed service architecture: The FNI is distributed over a large

geographic area to provide mobility. It is normally that several applications

running on different nodes cooperate together to complete a single service

for an MS. This distributed architecture will affect the selection of fault

27

tolerance approach; it will for example favor distributed redundancy such

as active/standby approach rather than cluster approach e.g. server pool.

• Scarce radio resources: The limited bandwidth of the air interface

underlines the need of efficient communication between mobile stations

and FNI. Therefore any extra communication to be brought by any

recovery method should be carefully examined.

What these characteristics imply? The two characteristics real-time and

peer-to-peer communication combined together implies that message logging

and then replaying them- as done by log-based checkpointing and passive

replication- by the applications in FNI after failure will not work because the

peer applications on MSs may change their state (because of timeouts) and

hence not able to deal with the outcome of these replayed messages.

What about taking coordinated checkpoints for applications in FNI and

MSs? In this case when the application in the FNI rolls back after failure then

all its peers on MSs need also to roll back. It is very difficult to imagine how

complex the recovery protocol needed to manage this recovery and it will

certainly exhaust the scarce radio resources.

The two characteristics real-time combined with high message rate will

be a killer to any technique using voting mechanism such as N-version and

active replication because the delay, which is caused by voting, is proportional

with message rate, and a second problem is that voting of communication

messages may require knowledge about their contents.

Finally, the distributed service architecture will strongly limit the use of

active replication as it requires a significant increase in the number of hardware

modules to run the various groups of replicas.

28

Table 3-1 summarizes the negative implications caused by the communication

characteristics in the FNI.

Table 3-1: Negative implications of FNI communication on recovery techniques

3.3 Requirements for failure recovery in mobile infrastructure

Let us start with some kinds of philosophy learned from experience. It

is almost impossible to develop a complex application that is free from faults

but it is possible through testing to reduce the number of faults to a level at

which the application reliability is acceptable. No guarantees can be given to

what errors caused by the remaining faults can do. Furthermore, client users do

not care if the failure is caused by the server application, operating system or

hardware error; they just require the service to be restored immediately.

Based on what we have studied and analyzed until now, we can point

the following important requirements for failure recovery in mobile

environment.

High availability: because of the distributed nature of the fixed network

infrastructure, it is difficult to imagine a complete failure of the system. But in

general, a level of five nines 0.99999 availability (i.e. 5 minutes downtime per

Coordinated

checkpointing

Log-based

checkpointing

Active

replication

Passive

replication

N-version

programming

Peer-to-peer ÷ ÷

Real-time ÷ ÷ ÷ ÷ ÷

High message rate ÷ ÷ ÷ ÷

Distributed service ÷

Limited bandwidth ÷

29

year) is considered to be quite good for mission critical communication. Since

the system is composed of many nodes, the availability of a single node should

be much better than five nines but this also depends on the importance of the

node i.e. its failure impact on the end users. We estimate a full recovery time in

the order of seconds to be good for a single node.

Low overhead without real-time drawbacks: The overhead – extra CPU

utilization - that is caused by the presence of failure recovery method should be

low so that application performance is not significantly affected. It is not

sufficient with low overhead but it is also important that the overhead has no

negative impact on real-time communication. By using checkpointing

mechanism, for example, each process in the system is stopped every time a

checkpoint is taken. Stopping processes causes time delays and consequently

the application may fail to adhere to real-time constraints.

No assumptions on faults: The practical use of the recovery method will

be significantly improved if no assumptions are made about the nature of faults,

e.g. transient or fail-stop. It is for example a serious limitation in the case of

active replication that a permanent (deterministic) software fault will take all

replicated servers down and practically everything is lost.

Cost effective: Any proposed failure recovery method should be cost

effective. Development of software systems for mobile communication

infrastructure costs tens of millions of dollars. Solutions such as N-version

programming that triple or even double the development cost have no chance to

be adopted.

30

Chapter 4

Modeling Communication Applications
Although transparent failure recovery, which does not require any

intervention on the part of the application or the programmer, is very tempting

but unfortunately it can not give the solution to many real world systems. It is

rather simplistic to treat all applications requiring fault tolerance as black boxes

despite the differences in their functionalities, real-time constraints and

performance requirements. As a result of using black box approach, it is

necessary to put assumptions on the faults behavior for example to be transient,

or even on the behavior of the application itself for example to act

deterministically, which implies that application avoids using nondeterministic

sources such as multithreading and timers. In contrast, we believe that

understanding the communication applications behavior is a key factor in the

success of the recovery techniques and this is the subject of this chapter.

4.1 OSI model

The OSI (Open Systems Inter-connection) layered model [ITU94] is the

dominant model to develop mobile communication standards as well as to

design and implement communication software systems. The OSI model

provides a high level for system architecture and behavior. Figure 7 illustrates

peer-to-peer communication in the layered OSI model. In a layered architecture,

each layer comprises protocol entities that perform functions within the layer.

The entities in the (N)-layer (and all layers below) provide (N)-service to the

31

(N+1) entities, through (N)-Service-Access-Points ((N)-SAP) at the boundary

between the (N+1)-layer and (N)-layer. A protocol design for the (N)-layer

defines both the (N)-service and the (N)-protocol. In the generic OSI model,

peer (N)-protocol-entities virtually communicate by sending and receiving

Protocol Data Units (PDUs), which consist of a header containing protocol

 Figure 7: Protocol entities interaction in OSI model

control information and possibly user data. When the (N+1)-layer at the initiator

needs to send a PDU to its peer, it sends it with a primitive Request to the lower

(N)-layer. The (N)-layer at the responder sends a primitive Indication to deliver

the PDU to the (N+1)- layer. The peer responds to the indication by sending a

Response primitive to the lower layer. The lower (N)-layer at the initiator

notifies the (N+1)-layer about the PDU delivery by sending a primitive

Confirm. Therefore, the logical path for exchanging information is vertical, via

SAPs. When a PDU passes a SAP, it becomes an SDU (Service Data Unit) at

the receiving layer.

N+1

Initiator Responder

 Layer N-1

N protocol

 Layer N+1

 Req Conf

 Layer N

N+1- layer entity

N-layer entity

N SAP

PDU

N-1 SAP

Layer N-1

 Layer N+1

 Resp Ind

 Layer N

N+1- layer entity

N-layer entity

N SAP

N-1 SAP

PDU

32

In peer-to-peer communication, the same protocol entity may become an

initiator in one case and a responder in another. However, the functions that the

protocol entity should have depend on whether it acts as service requester

(initiator) or service provider (responder). The client/server model may also

included under the OSI model, in the sense that an entity can be designed to

provide services to a group of peer entities (one-to-many relationship) as it the

case in mobile communication protocols.

In the context of OSI model and fault tolerance, Kenneth P. Birman [Birman96]

has raised a very important question that, to the best of our knowledge, has been

left without answer until now. Can “well structured” distributed computing

systems be built that can tolerate the failures of their own components? In

layering like the OSI one, this issue is not really addressed. The question is

among the most important ones that will need to be resolved if we want to claim

that we have arrived at a workable methodology for engineering reliable

distributed computing systems.

In this dissertation, we claim that the OSI model is fault tolerance “friendly”

and it provides a good overall framework to develop failure recovery method

on.

The modular architecture of the OSI model fits well with the modularity key

principle of fault tolerance, in the sense that protocol layer entities can be

isolated from each other and the only interaction between them is through

message passing. It is true that entities can still send corrupted messages to each

other and thus open for error propagation but on the other hand it is quite

possible for the entities to guard against this problem.

4.2 Modeling communication protocols by CEFSM

The OSI model, as mentioned in the previous section, provides an overall model

for the distributed system behavior by defining the interaction mechanism

between adjacent layers through SAPs and between peer layers by PDUs. In our

33

work to develop an effective failure recovery method for the FNI, we are further

interested in a model that can describe in a sufficient degree the functional

requirements of each protocol entity. The Communicating Extended Finite State

Machine (CEFSM) is selected to formally describe the behavior of

communication protocols entities. The CEFSM is used in a number of

industrially significant specification techniques, such as SDL [ITU96] and

UML [OMG02]. Our definition of CEFSM is different from that of [Byun02] in

the sense that it is adapted to the OSI model to give it the ability to well model

the complexity of the standard communication protocols.

Definition: A CEFSM is a 6-tuple (S, I, E, A, O, T) where

• S is a finite nonempty set of states, where one of these is initial state.

• I is a set of information elements with their types and initial values. The

information elements are used by entities for coordination and control.

Each information element i (i ∈ I) may have any number of bytes/bits

and is shared by more than one entity (peer or adjacent). Examples of

information elements are fields in the PDU header (e.g. sequence

numbers), primitive parameters (e.g. request number) and constants

defined by the protocol (e.g. maximum number of retransmissions and

timer values).

• E is a finite nonempty set of input events. An input event e (e ∈ E) is

one of the following three types:

i. Receipt of an indication or confirm primitive from the next

lower layer.

ii. Receipt of a request or a response primitive from the next

higher layer.

iii. Receipt of an input signal that is triggered by, for example,

timer expiration.

34

• A is a set of actions. This set may include various activities e.g.

updating variables, incrementing/ decrementing counters,

starting/stopping timers, queuing management, etc. An action a (a ∈ A)

may update some information elements and/or it may also require input

information elements for its execution, this is denoted as a(i).

• O is a set of outputs. An output event o (o ∈ O) is one of following two

types.

i. Sending a request or a response primitive to the next lower

layer.

ii. Sending an indication or confirm primitive to the next higher

layer

• T is a set of state transitions

 (t: (scurrent , e(Ψ))�([a],[o], snext)

Where t is a mapping from each state-event pair (scurrent ,e) to a

corresponding action set, output set and next state snext. The event e is

associated with an optional predicate Ψ which is a condition that decides

the selection of the next state. The predicate Ψ has the following form: i ~

c , where ~ ∈{<, >, ==, ≠} and c ∈
�

The action and output sets contain zero or more elements, in other words

the state-event pair may or may not trigger any action or send output. Note

that CEFSM is deterministic because the selection criterion to make the

transition for each state-event is clearly defined.

It is in place to give a more clear definition of some terms. We use the term

entity to mean a layer or a software process/thread that is actually an

implementation of the functions that are defined for a given layer. The

functionality provided by a layer is formally expressed by its set of

35

transition T. The term state information includes both the set of states S and

the set of information I of the entity. Finally, an application includes one or

more entities.

4.3 Case Study: TETRA Packet Data

TETRA packet data protocol [ETSI03] is developed by European

Telecommunication Standards Institute (ETSI) to provide wireless data service

that satisfy the most demanding mobile radio users, particularly users working

in public safety, e.g. police, fire brigade and ambulance service. TETRA packet

data protocol has many similarities with the General Packet Radio Service

(GPRS) that has been built on GSM to provide IP packet data services. We use

TETRA packet data as a concrete case study to firstly apply the CEFSM model

and secondly to use it later to build an experimental testbed for evaluation of

our proposed recovery method. The selection of TETRA packet data does not

restrict the applicability of the proposed method to TETRA; it may be well used

on other protocols for example GPRS or UMTS (Universal Mobile

Telecommunications System).

TETRA packet data is built on top of the basic TETRA radio link protocol stack

and provides service mechanisms to convey different higher layer protocols.

The network layer protocols supported by the TETRA packet data include

Internet Protocol (IP) versions 4 and 6. Thus the TETRA packet data extends

the TETRA network to act as an IP subnet in the mobile IP scheme, which

enables application programmers to build their applications in a well

standardized environment. Figure 8 illustrates the protocol stacks of the TETRA

packet data when an application using the IP protocol is located in a mobile

station MS. The fixed network infrastructure (also referred to as Switching and

Management Infrastructure in TETRA terminology) communicates over an air

interface R0 with a TETRA mobile station.

36

Figure 8: TETRA Packet Data Protocol stack

The TETRA packet data protocol stack provides the specifications for a number

of protocols that cover the physical layer, the data link layer, and the network

layer of the OSI model.

We briefly describe the TETRA Packet Data Protocol stack, starting from the

highest layer of the stack and working our way downward.

• SubNetwork Dependent Convergence Protocol (SNDCP): This stateful

protocol is used to negotiate and maintain PDP (Packet Data Protocol)

context between MS and FNI. Before any user IP packets can be conveyed

by the SNDCP layer, it is necessary for the MS to successfully negotiate a

PDP context with the infrastructure in order to gain access to SNDCP

services. PDP context activation involves the negotiation of a PDP address

(e.g. an IPv4 address) and other parameters (e.g. timers’ values) to be used

SNDCP

MLE

LLC

MAC

AI

User appl

IP

SNDCP

MLE

LLC

MAC

AI

Routing

IP

 FNI MS

 R0

SN-SAP

LTPD-SAP

TLA-SAP

TMA-SAP

TP-SAP

Network layer

Data link layer

Physical layer

37

during data transfer. Furthermore, control of PDP data transfer, packet data

channel handling and data compression is also performed in this layer. The

SNDCP provides services to its user at SN (Symbol Number) SAP.

• Mobile Link Entity (MLE): This layer is used to manage mobility and radio

resources for the higher SNDCP layer. The MLE layer performs

surveillance of the quality of the radio communication path based on

information received from the MAC layer. MLE shall also report any loss

or break of the path, for example due to cell change. The MLE entity

provides services to SNDCP via LTPD (Link Entity TETRA product Data)

SAP.

• Logical Link Control (LLC): The LLC layer provides two types of logical

links, basic link for connectionless services and advanced link for

connection-oriented services. Basic link is used for short messages like

signaling messages, while advanced link is used for long messages data

transfer that requires some type of QoS. This layer offers segmentation of

long messages, retransmission, and error control using frame check

sequence. LLC entity provides services to MLE at TLA (Type Identifier on

Accept) SAP.

• Medium Access Control (MAC): This layer is responsible for channel

access, MAC uses TDMA (Time Division Multiple Access) access scheme

with four physical channels (timeslots) per carrier. MS-MAC layer uses

random access based on slotted ALOHA procedures to initiate transaction

and reserved access for further processing in order to achieve higher

channel throughput. MAC layer performs other functions such as channel

coding, forward error correction, measurement of the signal quality and

encryption over the air interface. The MAC services are accessed at the

TMA (Transmit Multiple Access) SAP.

38

• Air Interface (AI): This is the physical layer, which is responsible for

modulation/ demodulation, frame synchronization and power control. The

services of the AI are accessed at TP (Traffic Physical channel) SAP.

4.3.1 CEFSM model for SNDCP protocol

We select the FNI SNDCP protocol entity in FNI to demonstrate how a CEFSM

model can be developed. The SNDCP protocol is used by different mobile

communication standards e.g. GPRS. The SNDCP protocol services, however,

should exist in every mobile communications system that provide wireless data

services.

We give first a description of the SNDCP protocol in accordance with the

standard. SNDCP protocol maps a network-level protocol, such as IP, to the

underlying wireless protocols. SNDCP also controls packet data transfer

between the MS and FNI. An MS can be in Idle, Standby or Ready state

depending on its current activity. In the Idle state, MS is not reachable; no data

transfer to and from the FNI is possible. In order to transfer data, the MS shall

perform a PDP context activation procedure with its peer in the infrastructure.

After completing a successful PDP context activation, the MS enters Standby

state. A Standby timer associated with Standby state to control the time an MS

retains SNDCP services after data service inactivity. The purpose of the

Standby timer is to work as a fallback timer to delete PDP contexts when they

remain unintentionally undeleted and thus having better resource utilization.

The Standby timer is in the range of hours and is started on entry to Standby

state. In the Ready state the MS may receive and transmit data. MS enters

Ready state when it is granted a data channel. A Ready Timer associated with

Ready state to control the time an MS may remain inactive on data channel after

data service activity. The Ready timer is in the range of seconds and is started

on entry to Ready state. Table 4-1 shows our CEFSM model for the SNDCP

39

S = {s1, s2, s3} { Idle, Standby, Ready}

I = {i1, i2,

 i3, i4 ,

 i5,i6}

{create_context_response_status, ip_addr,

data_transmit_response_status , ms_location,

standby_timer_value, ready_timer_value}

E = {e1,

 e2,

 e3 ,

 e4,

 e5, e6,

 e7, e8,

 e9, e10}

{ACTIVATE_PDP_CONTEXT_DEMAND PDU in ind.,

 Create_PDP_Context response,

DEACTIVATE_PDP_CONTEXT_DEMAND PDU in ind,

DATA_TRANSMIT_REQUEST PDU in Ind.,

 DATA PDU in Ind , Data_Packet request ,

 Transmission_Report indication, RECONNECT PDU in Ind ,

Standby_timer_expire, Ready_timer_expire}

A = {a1, a2, a3,

 a4, a5, a6, e7}

{ Set_value, Cretate_ms_record, , Delete_ms_record,

 Stop_timer, Start_timer, enqueue_packet, dequeue_packet }

O = {o1, o2,

 o3 ,

 o4,

 o5,

 o6,

 o7,

 o8, o9,

 o10,

 o11 ,

 o12, o13}

{Create_PDP_Context request, Delete_PDP_Context request,

ACTIVATE_PDP_CONTEXT_ACCEPT PDU in Resp.,

ACTIVATE_PDP_CONTEXT_REJECT PDU in Resp.,

DEACTIVATE_PDP_CONTEXT_ACCEPT PDU in Resp,

DEACTIVATE_PDP_CONTEXT_DEMAND PDU in Req,

DATA_TRANSMIT_RESPONSE PDU in Resp,

Data_Packet indication ,DATA PDU in Req,

DATA_TRANSMIT_REQUEST PDU in Req,

Packet_Delivery_Status indication,

PAGE_REQUEST PDU in Req, END_OF_DATA PDU in Req}

T= {t1,

 t2,

 t3,

 t4,

 t5,

 t6,

 t7,

 t8,

{ (s1 , e1) �([o1], s1)

 (s1 , e2(i1 == “Accepted”)) �([a2,a1(i2), a5(i5)], [o3], s2)

 (s1 , e2(i1 == “Rejected”)) �([o4], s1)

 (s2 , e3) �([a4(i5), [o2, o5]], s1)

 (s2 , e10) �([a3], [o2, o6] s1)

 (s2 , e4) �([a2(i3), a4(i5), a5(i6)], [o7],s3)

 (s2 , e6(i4 � “Known”))�([a6], [o12], s2)

 (s2 , e6(i4 == “Known”))�([a6], [o10], s2)

40

 t9,

 t10,

 t11,

 t12,

 t13 ,

 t14 }

 (s2 , e7)�([a7,a5(i6)], [o9], s3)

 (s3 , e7)�([a4(i6),a5(i6)], [o11], s3)

 (s3 , e6)�([o9], s3)

 (s3 , e8) �([a1(i4), a4(i6), a5(i5)], s2)

 (s3 , e5) �([a4(i6),a5(i6)], [o8], s3)

 (s3 , e10) �([a5(i5)], [o13], s2) }

Table 4-1: CEFSM model for the SNDCP entity in FNI

protocol entity in FNI. The formats of the PDUs exchanged by SNDCP peer

entities are listed in Appendix A. CEFSM is usually represented graphically by

a state transition diagram (STD), a directed graph whose vertices correspond to

states and whose edges correspond to transitions. Figure 9 shows the STD of the

FNI SNDCP protocol entity. Each state is represented by a circle, and the initial

state has a double circle. Transition that does not lead to a new state is

represented by an arc that points to itself.

 Figure 9: STD of SNDCP entity in FNI

A description of the SNDCP state transitions is given below:

t1: On reception of an ACTIVATE_PDP_CONTEXT_DEMAND PDU [Table

A-1] in an indication primitive (event e1) from the lower layer MLE at state

t10,t11,t13 t7,t8

t4, t5

t1, t3
t2

 S1

t14

t6,t9

 S2 S3

Ready Standby Idle

41

Idle, the SNDCP entity in FNI sends Create_PDP_Context request to the upper

layer (output o1).

t2 : Upon receiving Create_PDP_Context response from the upper layer (e2)

with response status set to “Accepted” (i1 == “Accepted”) to indicate that PDP

context is created successfully, create MS record (action a2), set the MS IP

address to the received value a1(i2), send ACTIVATE_PDP

_CONTEXT_ACCEPT PDU[Table A-2] in a response to MLE (o3) , start

Standby timer a5(i5) and finally enter the Standby state

t3 : Upon receiving Create_PDP_Context response from the upper layer (e2)

with response status “Rejected” (i1 == “Rejected”) to indicate that PDP context

is not created then send ACTIVATE_PDP_CONTEXT_REJECT PDU[Table

A-3] in a response to MLE (o4).

t4: On reception of a DEACTIVATE_PDP_CONTEXT_DEMAND PDU

[Table A-7] in an indication primitive (e3) from MLE layer at Standby, send

DEACTIVATE_PDP_CONTEXT _ACCEPT PDU [Table A-8] in a response to

MLE (o5) , send Delete_PDP_Context request to the upper layer (o2), delete MS

record a3, stop Standby timer a4(i5) and finally enter the Idle state.

t5 : Upon expiry of Standby timer (e9), send DEACTIVATE_PDP_CONTEXT

_DEMAND PDU in a request to MLE (o6) , send Delete_PDP_Context request

to the upper layer(o2), delete MS record a3 and enter the Idle state.

t6 : On reception of a DATA_TRANSMIT_REQUEST PDU[Table A-5] in an

indication from MLE (e4), send DATA_TRANSMIT_RESPONSE PDU[Table

A-6] (with Accept) in a response to MLE (o7), stop Standby timer a4(i5) , start

Ready timer a5(i6) and finally enter the Ready state.

t7 : Upon receiving Data_Packet request containing IP data packet from the

upper layer at Standby state (e6) and MS location is not known (i4 � “Known”) ,

queue the IP packet a6, send PAGE_REQUEST PDU[Table A-9] in a request to

MLE (o12).

42

t8 : Upon receiving Data_Packet request from the upper layer at Standby state

(e6) and MS location is known (i4 == “Known”) , queue the IP packet a6, send

DATA_TRANSMIT_REQUEST PDU in a request to MLE (o10).

t9 : Upon receiving Transmission_Report indication from the MLE (e7) at

Standby state, remove the IP packet/s from the queue a7, encapsulate Packet/s in

DATA PDU/s[Table A-4] and send as request primitive to MLE (o9), start

Ready timer and enter Ready state.

t10 : Upon receiving Transmission_Report indication from the MLE (e7) at

Ready state, send Packet_Delivery_Status indication containing transfer status

to the higher layer (o11), and restart (stop and then start) Ready timer.

t11 : Upon receiving Data_Packet request containing IP data packet (e6) from

the higher layer at Ready state, place the IP packet in a DATA PDU and send

the PDU in a request primitive to MLE (o9).

t12 : Upon reception of a RECONNECT PDU[Table A-10] in an indication from

MLE (e8) - indicating that MS changed cell-, update the new location a1(i4), stop

Ready timer a4(i6), start Standby timer a5(i5) and enter the Standby state.

t13 : On reception of a DATA PDU -containing IP packet data- in an indication

from the lower layer MLE (e5), restart Ready timer and send Data_Packet

indication to the upper layer (o8).

t14 : Upon Ready timer expiration (e10), send End_Of_Data PDU[Table A-11] in

a request to MLE (o13), start Standby timer a5(i5) and then enter the Standby

state.

As it can be noticed, by using our OSI-adapted CEFSM, communication

protocols can be modeled with a high level of detail to include any of the

specifications in the standard. That also means that the CEFSM model describes

the behavior of the protocol entity very realistically. Finally, a CEFSM model

for the SNDCP entity at MS can also be developed in the same way according

to the standard specifications. The MS SNDCP entity, however, has some extra

states e.g. to handle cell change situation.

43

Chapter 5

State Transition Based Recovery (STBR)
Armed with the CEFSM model, we are ready to attack our main goal to

develop a recovery technique that can improve the service availability in the

mobile infrastructure. The proposed technique should be realistic enough to deal

with real world programming faults, relatively easy to understand and

implement, and cost effective. We call our recovery method state transition

based recovery (STBR) because it is based on CEFSM model which in turn is

based on the traditional state transition model.

5.1 Objective & assumptions

STBR failure recovery method should be able to tolerate software and

hardware faults without any assumption on the nature of faults. The method

should work in the mobile environment and has no negative impact on the real-

time communication. The faulty entity in the FNI has to resume communication

after a failure in a way that hides the failure from all its peer entities on MSs. In

other words, the peers should always receive input events in accordance with

their protocol specifications.

Although there are no assumptions on the nature of faults e.g. to be

transient or fail-stop, there are two prerequisites that need to be satisfied in

order for the STBR method to deliver the promised high availability:

I. Error detection mechanism: We assume that there are mechanisms to

quickly detect the failure and either to restart the faulty entity on the

44

active node or to immediately run it on a redundant node. Fault

detection is an important part of building fault tolerant systems, but it

is beyond the scope of this work. There are two main approaches to

perform fault detection. Firstly, by monitoring locally the application

for example by letting the entity kicks a watchdog timer as long as it

is running to indicate that it is still in operating state [Mahmood88].

Secondly, by remotely sending periodic heartbeats and expecting

responses from that entity [Han99]. These techniques can detect

failures caused by hardware faults or coding faults which cause the

application to crash or hang. But design faults - where the application

works correctly from software point of view but fails to provide

correct service according to the specifications – are rather difficult to

detect.

II. Software reliability: The software applications to be recovered need

to be reasonably reliable before becoming high available, an

application that fails once every day on average is not reliable

enough. In other words, it is desirable that the activation rate of the

remaining software faults which can lead to failures is relatively low.

What that means in practice? It means that these remaining faults are

activated, for example, by rare scenarios that are not tested or slow

memory leak. Software reliability can be achieved by a good test

plan that includes different types of tests e.g. unit test, integration test,

system test, etc. Testing complex software systems such as mobile

communication is extremely difficult and time consuming due to the

large number of scenario and test cases to be considered. The

hardware reliability is not considered because it is very high

nowadays.

45

5.2 STBR Approach

A well designed protocol should always consider the disturbances that

may occur in the communication environment between clients and servers or

more generally between sender and receiver such as time delays , data loss,

duplication and out of order. These disturbances in the communication path are

coped with by the protocols, mainly as exceptional cases that shall be handled

by both sender and receiver. Our intention is to utilize that for the recovery of

the entities in FNI in such a way that a failure is experienced as a disturbance by

the client entities on MSs. Thus the basic idea is to handle the failure as a

disturbance that the application should recover from by itself.

In the STBR approach, we seek to conform both to the key principles of

building fault tolerant system and to the specific requirements of mobile

environment. The STBR method applies the following set of principles to reach

the objective:

• Restarting faulty entity: Restarting the faulty entity as a first step of recovery

process is a secure way to ensure that the entity is free from the error that

caused its failure. All existing techniques that try to get the latest saved state,

and then reach the same internal state as if fault has not occurred, have no

guarantee that the error is cleared from the saved states. Consequently, there is

a probability that the entity fails again short after its recovery. In case of

permanent software fault there is still a risk that the entity using STBR do fail

again after restart, but the probability is very low because the rare situation

which activated the fault that lead to the failure has to re-occur. Why this

should not be also true for rollback techniques and passive replication? These

techniques intentionally seek to repeat the exact “faulty” pre-failure execution

during their recovery while STBR starts the execution from the beginning and

focus on service recovery. Restarting from the beginning is a secure remedy

46

against transient faults and the best solution against permanent faults,

however, it needs to be followed by a fast recovery.

• Model-based recovery: The STBR recovery is based on the behavior of the

application represented by the CEFSM model. We will use our case study

from previous chapter to explain this. Assume that the SNDCP entity in FNI

crashed while servicing its peer clients on MSs and then get restarted.

Normally, the FNI SNDCP entity will start operating from the initial state

(S1), so if the SNDCP entity should function correctly then all peer clients

Figure 10: STD of FNI SNDCP entity extended with Recovery State

that are not at initial should go back to initial state. Thus, without any recovery

method clients not at initial state need to return to initial state and then redo

some work to reach their pre-failure state. How can STBR fix this situation?

According to the CEFSM model, if the protocol entity processes the set

of events E in compliance with the specified set of transitions T, then it behaves

correctly. Figure 9 shows actually how this is achieved for an FNI SNDCP

entity that does not fail. Figure 10, on the other hand, is extended with Recovery

state (S0) to include failure situation. After a failure, the FNI SNDCP entity

restarts as usual and assumes by default that all its peer entities at initial state

(S1). The FNI SNDCP entity becomes inconsistent once it receives an input

event related to a peer that is not at initial state. To solve inconsistency, the

Ready Standby Idle

 S1 S2 S3

 S0

Recovery

47

entity enters Recovery state(shown as dashed circle), finds out what is the

current correct state of that peer, returns to the consistent state (any state other

than initial) and finally executes the corresponding state transition. The

Recovery state is entered from Initial state only once and only for the MS

entities that need recovery. The FNI entity needs also to be aware about its

failure in the previous execution before moving to Recovery state. We explain

later in this chapter in details the recovery mechanism.

To achieve the above mentioned recovery steps, the FNI SNDCP entity

should know at any time the current state scurrent and information elements I of

every peer entity. Therefore, the FNI SNDCP entity needs to save state

information of every peer entity during failure-free execution and to use them

after failure in order to process all input events correctly. In the next section a

recovery protocol is developed to save/retrieve state information to/from a

stable storage.

• Autonomous recovery: The faulty entity should be able to autonomously do

self-recovery without involvement from either peer or adjacent entities. This

principle will ensure that no modification is needed for MSs. Furthermore, the

restart of a faulty entity does not require the restart of any other entity.

Finally, it will not be necessary that all entities in system need to be built with

the STBR.

• Active/standby redundant system: Active/standby redundancy is an effective

technique to prevent single point of failure in a distributed system. In case of a

hardware fault, the faulty entity should be able to immediately start on the

redundant standby node and resume the service to its peer entities on MSs.

This ability can also be used for software faults in the operating system to

avoid delay caused by reboot process. Active/standby approach is cost

effective because the standby node can be used as a backup for more than a

single node (N+1 redundancy) assuming that all active nodes running the

same operating system.

48

5.3 Recovery protocol

To enable the FNI entities to easily save/retrieve their state information,

we have developed a protocol that uses the client server architecture, see

Figure 11. Every entity in FNI that uses STBR method sends states S and

information elements I during failure-free execution to a server task referred to

as State Information Saver (SIS) for storing, and then continues its execution

(non-blocked mode). The SIS runs on a separate hardware waiting for requests

in a blocked mode, requests that need responses will always be processed before

any others in order to minimize response time. The SIS adds timestamp and

saves the information on a stable storage e.g. non-volatile RAM or hard disk.

The entity should first register itself to the SIS before it can start saving state

information. The client side of the protocol (FNI) is implemented as a user

level library of C functions that can be linked with the FNI entities. Some of the

user functions provided by the library are listed below:

 Figure 11: Recovery protocol using client/server model

• Entity_Register (entity_id): This function sends a request message of type

REGISTER (refer to) to the SIS to register the entity identified by entity_id.

Every entity must call this function once it starts up. The entity will receive a

response message from SIS with one of the following response code “Ok”,

“Not_ok” or “Aleardy-registered”, the latter response code indicates that the

entity has not exited normally from last run (possible crash).

 Client

 FNI

entity
#1

 Server

 stable storage

State Info
Saver (SIS)

Req

Resp

entity
#2

.#

49

• Entity_Deregister (entity_id): This call sends a request message of type

DEREGISTER to the SIS to deregister the entity identified by entity_id field.

This call must always be executed before the entity exits. Failing to do

deregistration will result in receiving “Already_registered” response status in

 Figure 12: Format of requests and responses used in recovery protocol

the next registration. The entity will receive a response message of type

DEREGISTER from SIS task to acknowledge deregistration.

• Save_Info_Element (entity_id, object_id, elem_id, elem_length,

elem_value): This call sends a request message of type SAVE to save or

update state information element that is identified by elem_id and of length

elem_length in bytes. The elem_value contains the raw data information. The

object_id specifies the object that the information element belongs to, for

example object_id could specify the MS identification number.

• Retrieve_Info_Element (entity_id, object_id, elem_id): This call sends a

request message of type RETRIEVE to retrieve information element for entity

Entity_Deregister

Retrieve_Info_Element

Save_Info_Element

Entity_Register

RETRIEVE entity_id object_id elem_id elem_age elem_length elem_value

RETREIVE entity_id object_id elem_id

SAVE entity_id object_id elem_id elem_length elem_value

DEREGISTER entity_id

DEREGISTER entity_id

REGISTER entity_id response code

REGISTER entity_id

Req

Req

Req

Resp

Resp

Resp

Req

50

with id number entity_id. The information element has id number elem_id and

belongs to MS identified by object_id. A response message is received from

SIS contains object_id, elem_id, elem_age, elem_length and elem_value

fields. elem_value contains the requested information element and elem_age

is the time elapsed since last save. The information element age is useful for

the information that is time dependent.

The advantages of using client-server model in the recovery method are

following:

I. The failure-free overhead caused by STBR recovery method will be low

because entities need only to send requests while the SIS task executes save

function and search algorithm.

II. The entity will not be suspended during failure-free execution as it is the case

in checkpointing mechanism and thus no negative impact on time-critical

communication.

III. Good scalability, as the system gets larger i.e. number of entities in FNI is

increased, it should be easy to add more SIS tasks to serve them.

5.4 Mechanism

The mechanism of the STBR method will be illustrated for FNI SNDCP entity

by using MSC (Message Sequence Charts) [ITU-T recommendation Z.120].

MSC is one of the most popular languages used in telecommunication to show

interaction between protocol entities. MSC diagrams describe the behavior of

the system in the form of message flows. We will explain how the recovery

scheme acts during failure-free execution e.g. during PDP context activation

and data transfer scenarios, and how recovery is executed after failure. The

reader should refer to the SNDCP developed CEFM model [section 4.3.1] in

order to completely understand these scenarios.

51

5.4.1 STBR during failure-free execution

Every FNI entity that uses STBR method must call Entity_Register

once it starts to register itself to SIS. After receiving an “OK” response, the

entity saves it state information during its execution as illustrated in the

following scenarios for SNDCP entity.

Figure 13: MSC showing STBR during successful PDP context activation

 The MSC diagram in Figure 13 shows how STBR acts during a

successful PDP context activation. Dashed arrows are used to show the

communication with the SIS, while solid arrows show the communication with

adjacent layers, and the flow of time occurs downward. The SNDCP entity in

FNI and all peer entities on MSs will begin at initial state IDLE. When MS

needs to start wireless data services, the MS SNDCP sends an

ACTIVATE_PDP_CONTEXT_DEMAND PDU to FNI SNDCP. The FNI

SNDCP receives ACTIVATE_PDP_CONTEXT_DEMAND PDU in an

indication primitive from the lower layer MLE (input event e1), so it executes

ACTIVATE_ PDP_
CONTEXT_ACCEPT PDU

ACTIVATE_ PDP_
CONTEXT_DEMAND PDU

t1

t2

MS-SNDCP

Create_PDP_Context
request

FNI-SNDCP

Save_Info_Element

 e1 o1

 e2 o2

IDLE

Create_PDP_Context
response (Accept)

Standby_timer

IDLE

STANDBY STANDBY

52

transition t1 where Create_PDP_Context request is sent to the upper layer

(output o1). Upon receiving Create_PDP_Context reponse (e2) indicating that

PDP context is created, transition t2 is executed where

ACTIVATE_PDP_CONTEXT _ACCEPT PDU is sent in a response primitive

to MLE (o2), Standby state is entered , Standby timer is started and finally

Save_Info_Element_Req is sent to save the new state and other information

elements such as received IP address and timer values (i2, i5, i6) . When MS

SNDCP receives ACTIVATE_PDP_CONTEXT_ACCEPT PDU, it enters

STANDBY state and starts Standby timer.

Figure 14 MSC showing STBR during uplink data transfer

Save_Info_Element

END_OF_DATA PDU

DATA_TRANSMIT
_RESPONSE PDU

Save_Info_Element

 Data_Packet ind

t13

DATA PDU

DATA_TRANSMIT
_REQUEST PDU

t6

MS-SNDCP FNI-SNDCP

Save_Info_Element

 e4

 o5

 o13

STANDBY STANDBY

STANDBY
STANDBY

 o7

READY
READY

 e5

 Data_Packet ind

t13
 o8

 e5

t14

DATA PDU

 e10

Save_Info_Element

53

Figure 14 shows how the STBR acts during uplink data transfer (from

MS to FNI). In this scenario the MS is at Standby state and has user data to

send, so MS SNDCP entity sends DATA_TRANSMIT_REQ PDU to FNI.

When the FNI SNDCP receives DATA_TRANSMIT_REQ PDU in an

indication (e4), it executes transition t6 where DATA_TRANSMIT_RESPONSE

PDU (with Accept) is sent in a response to MLE (o7), Standby timer is stopped

a4(i5), Ready timer is started a5(i6), Ready state is entered and finally

Save_Info_Element is called to save the new state. The MS SNDCP receives

DATA_TRANSMIT_RESPONSE PDU with a granted data channel and begins

transmitting the first IP packet in a DATA PDU. The FNI SNDCP receives

DATA PDU and executes transition t13 where it forwards the IP packet in

Data_Packet indication to the higher layer (o5), restart the Ready timer, and

finally call Save_Info_Element to update the Ready state. Although transition

t13 re-enters the same state (Ready), however, calling Save_Info_Element will

make it possible after failure to resynchronize with the peer by calculating the

time passed since state was last re-entered (elem_age is used). This is useful

when the state is associated with a timer. MS SNDCP continues to send DATA

PDUs to the FNI SNDCP entity until no more data remains. When FNI SNDCP

Ready timer expires (e10), transition t14 is executed where END_OF_DATA

PDU is sent in a request to MLE (o13), Standby state is entered, Standby timer is

started and finally Save_Info_Element is called to save the new state.

Figure 15 shows how the STBR acts during downlink data transfer

(from FNI to MS). In this scenario FNI has data (e.g. originating from another

MS or dispatcher center) to send to an MS that is at Standby and whose location

is known. On the reception of the first packet in Data_Packet request from the

upper layer (e6) the FNI SNDCP entity executes state transition t7 where it

queues the packet and then sends DATA_TRANSMIT_REQUSET PDU in

request primitive to MLE entity. When the PDU is completely transmitted on

the air, the FNI SNDCP receives Transmission_Report indication (e7) and

54

executes state transition t9 where the queued packet is placed in DATA PDU

and sent in a request to MLE (o9), Ready state is entered, Ready timer is started

and finally Save_Info_Element is called to save the new state. After

Figure 15 MSC showing STBR during downlink data transfer

transmitting the DATA PDU on the air the FNI SNDCP receives

Transmission_Report indication and executes state transition t10 where

Packet_Delivery_Status indication is sent to inform the upper layer about the

transfer of the packet, Ready timer is restarted and finally Save_Info_Element

is called to update the state. The upper layer continues to send the remaining

packets in Data_Packet requests to the FNI SNDCP entity in the same manner.

Transmission
__Report ind

Transmission
__Report ind

t7
Data_Packet req

Packet_Delivery
_Status ind

DATA_TRANSMIT
_REQUEST PDU

MS-SNDCP FNI-SNDCP

Save_Info_Element

STANDBY STANDBY

 o9

READY READY

DATA PDU

 e6 o10

t9 e7

DATA PDU

t10
 o11

 e7

Data_Packet req

 e6
 o9

t11
Save_Info_Element

55

Let us for a moment compare state information saving by STBR with

state saving by checkpointing mechanism. In recovery techniques that use

checkpointing there are two factors to struggle with during failure-free

execution, and they need to be considered carefully. The two factors are the

comprehensiveness of the process state being saved and the frequency at which

the process state to be saved. In other words, how much process information

should the checkpoints include to fully describe the state of the application and

how often checkpoints to be taken. In deciding the degree of comprehensiveness

and frequency to be used, there is a tradeoff between the amount of lost work

and the performance overhead. This is not an easy task to solve without

knowledge about the application to be recovered, therefore most checkpoint-

based recovery schemes let the application programmer determines when to

take checkpoints. However, in STBR as we can see from the scenarios these are

nicely determined by the STBR mechanism. The STBR saves only the

necessary state information and at the right time.

5.4.2 STBR during failure recovery

Once the faulty FNI entity restarts after failure, it calls Entity_Register

as usual, but it receives “Already_registered” response this time from SIS

because it did not call Entity_Deregister as a result of failure. That response can

be used to make the entity aware of its previous failure. The entity can also get

automatically informed about its previous failure by error detection utilities. In

this section different SNDCP scenarios are used to show how the STBR

performs recovery after failure.

 Figure 16 shows an MSC diagram of recovery procedure for an MS

initiated communication. The MS was at Standby state when the FNI SNDCP

entity crashed. In this scenario the MS needs to send data, so MS SNDCP entity

sends DATA_TRANSMIT_REQ PDU to FNI. The FNI SNDCP entity receives

DATA_TRANSMIT_REQ PDU in an indication (e4) at initial state Idle, but

56

since the state-event pair (e4, s1) is inconsistent with T (i.e. does not belong to

the set of state transitions T) and in addition to its knowledge of the previous

failure, FNI SNDCP enters Recovery state and calls Retrieve_Info_Element to

Figure 16: Recovery of an MS initiated communication (Standby)

retrieve the saved state and information elements (i3, i5, i6) from SIS for the MS

in concern. Based on the retrieved information, the FNI SNDCP enters Standby

state and starts Standby timer with the calculated value (i5 - elem_age of

Standby state) to achieve synchronization with the running Standby timer in MS

SNDCP. The FNI SNDCP will execute the state transition t6, where

DATA_TRANSMIT_RESPONSE PDU is sent in a response (o7) to the next

lower layer, Standby timer is stopped, Ready timer is started and finally the

Ready state is entered. The MS SNDCP receives

Request
Response

Retrieve_Info_Element

 DATA_TRANSMIT
 _RESP PDU

DATA_TRANSMIT
 _REQ PDU

t6

MS-SNDCP FNI-SNDCP

Save_Info_Element

 e4

 o7

STANDBY

Ready_timer

IDLE

READY

STANDBY

READY

RECOVERY

57

DATA_TRANSMIT_RESPONSE PDU, starts Ready timer and enters Ready

state. The consistency is now fully restored between the FNI SNDCP and MS

SNDCP and the communication between them can continue as normal.

Figure 17: Recovery of an MS initiated communication (Ready)

Figure 17 shows MSC diagram of recovery procedure for an MS

initiated communication that is at Ready state. The MS was at Ready state when

the FNI SNDCP did crash. The MS SNDCP sends DATA PDU to the FNI

SNDCP. The FNI SNDCP receives DATA PDU in an indication from MLE (e5)

at initial state Idle, but since the state-event pair (e5, s1) is inconsistent with state

transitions T and in addition to the knowledge about the previous failure so it

enters Recovery state. The FNI SNDCP entity calls Retrieve_Info_Element to

retrieve the saved state and information elements from SIS for the MS in

concern. After receiving response from SIS, FNI SNDCP enters Ready state,

starts Ready timer, and executes state transition t13 where Data_Packet

t13

 Data_Packet_Ind

Request
Response

Retrieve_Info_Element

Data PDU

MS-SNDCP FNI-SNDCP

 e5

READY IDLE

READY

RECOVERY

t13
 o8

Ready_timer

 Data_Packet_Ind
 o8

 e5
Data PDU

58

indication is sent to the upper layer (o8). The consistency is restored now

between FNI SNDCP and MS SNDCP and hence communication can continue

as normal.

Figure 18: Recovery for an FNI initiated communication (Standby)

Figure 18 shows MSC for recovery procedure for an FNI initiated

communication and the MS is currently at Standby state. On the reception of

Data_Packet request from the upper layer (e6) , the FNI SNDCP enters recovery

state because the state-event pair (e6, s1) is inconsistent with T and then calls

Retrieve_Info_Element to retrieve state information (i2, i4, i5, i6) for the target

MS. The FNI SNDCP uses both the retrieved state and time information

“elem_age” to determine the state of the MS SNDCP, for example the

retrieved state may be Ready but the “elem_age” value implies that the MS

SNDCP must be at Standby (case where MS SNDCP entity had timed out while

Transmission
_Report ind

MS-SNDCP FNI-SNDCP

t8

 e6

o10

 o9

t9 e7

DATA_TRANSMIT
_REQUEST PDU

STANDBY IDLE

Retrieve_Info_Element

RECOVERY

Data_Packet req

STANDBY

Save_Info_Element

READY

DATA PDU

READY

59

the FNI SNDCP entity is down). The FNI SNDCP enters Standby state, starts

the Standby timer and executes t8 (assuming the MS location i4 is known) where

the received packet is queued a6 and DATA_TRANSMIT_REQUEST PDU is

sent in a request to MLE (o10). On the reception of Transmission_Report

indication (e7), the FNI SNDCP entity executes transition t9 where Standby

timer is stopped, Ready state is entered, the queued packet is sent in DATA

PDU (o9) and finally Ready timer is started. The communication between the

FNI SNDCP and that MS is now completely recovered and can resume as

normal.

Figure 19: Recovery for an FNI initiated communication (Ready)

The MSC diagram in Figure 19 shows recovery procedure for an FNI

initiated communication and the MS is currently at Ready state. On the

Transmission
__Report ind

MS-SNDCP FNI-SNDCP

READY IDLE

Retrieve_Info_Element

RECOVERY

Data_Packet req

 e6

READY

DATA PDU
 o9

t11

Packet_Delivery
_Status ind

t10
 o11

 e7

Save_Info_Element

DATA PDU
 Data_Packet req

 e6
 o9

t11

60

reception of Data_Packet request from the upper layer (e6), the FNI SNDCP

enters recovery state because the state-event pair (e6, s1) is inconsistent with T

and then calls Retrieve_Info_Element to retrieve state information for the target

MS. Based on the retrieved information, the FNI SNDCP enters Ready state,

starts the Ready timer with value (i6 - elem_age of Ready state) to synchronize

with MS Ready timer and then executes t11 where the received packet is passed

down in a DATA PDU (o9). On the reception of Transmission_Report

indication (e7), the FNI SNDCP entity executes state transition t10 where

Packet_Delivery_Status indication is sent (o11) to inform the upper layer about

the transfer of the packet and Ready timer is restarted. The MS SNDCP restarts

in turn the Ready timer upon receiving the packet. The communication is now

recovered with that MS and the next Data_Packet request is processed as

normal.

Note that because the state transition based recovery is event-driven, that makes

it very efficient regarding overhead for two reasons. First, the frequency of

information saving during failure-free execution is kept minimal because

information is only saved at the correct point of time as mentioned before.

Second, the FNI entity only restores the consistency with each peer entity on

MS upon the occurrence of first inconsistent state-event pair and not before i.e.

any MS entity will be recovered only when there is a communication demand,

so as a result the system as a whole will be recovered smoothly and gradually.

61

Chapter 6

Experimental Testbed and Results
Our aim is to develop a testbed for TETRA packet data where peer-to-peer

communication can be generated between protocol entities on MSs and FNI.

The STBR method is applied to the FNI entities to study failure recovery in

FNI. We use an operational model approach to develop the testbed. By

operational model, we mean that the testbed should to a large extent operate as

the real system does regarding message exchange and timing, but only provide a

restricted form of its functionality. For example, in real system the cell change

procedure is started at the MAC layer where signal strength is continuously

measured, and when a stronger signal is detected from a neighboring cell, then

the MAC layer indicates to the upper layer the cell change. In this example, the

signal measurement is not relevant, but the MAC layer should be able to

indicate to the upper layer about cell change if that is required by the

experiment. The evaluation of the recovery should be done from the end user

point of view. Different criteria are of interest to judge the STBR method, first

recovery time i.e. the average time to restore pre-failure performance, and

second the reliability of the recovery process. Furthermore, the performance

overhead incurred by the STBR during free-failure execution is also important.

6.1 Testbed architecture

The testbed consists of four PCs that are connected via Ethernet. The entire

testbed architecture is depicted in Figure 20. Each of the machines has an

62

application and/or a task running on it. We use the word “task” to refer to a

software module that is not part of the TETRA packet data standard. The

testbed software consists of three applications, namely mobile_station (MS),

Base_Station(BS) and Packet Data Server(PDS) and three tasks, namely

Mobile_End_User (MEU), State_Info_Saver (SIS) and File_Packet_Sender

(FPS). The following items describe each of these applications and tasks

individually, explaining their functions and their implementation issues.

1. Mobile_Station (MS): This application provides packet data services to the

MS users. It implements SNDCP, MLE, LLC and MAC protocol entities of the

TETRA packet data on MS side. The MS application is able to run hundreds of

MSs concurrently where each MS runs as a single thread. Each MS thread

provides packet data service to one single user. The MS application is

implemented in C++ and consists of about 5,000 lines of code. It runs on 1600

MHZ, 512 MB RAM PC with Microsoft Windows 2000.

Figure 20: Overall architecture of TETRA packet data testbed

 BS MS

SNDCP

 Socket
Interface

MLE

MAC

LLC

 Socket
Interface

MAC

 Socket
Interface

SNDCP

MLE

LLC

Linux PC Linux PC

 Stable storage

 State Info
Saver (SIS)

Linux PC

Req

Resp

Mobile End

Mobile End

Mobile End
User(MEU)

File Packet
Sender(FPS

Windows PC

PDS

63

2. Base Station (BS): This application provides main services provided by the

BS such as data channel allocation and time slot reservation. Each BS

application is assigned a number of channels to serve the mobile stations in its

own cell. The data transfer on wireless channels is imitated by data transfer on

UDP socket connections. The BS application implements MAC protocol entity

and an interface to socket layer for sending and receiving MAC PDUs. Multiple

BS applications can be run concurrently on the same machine or different

machines where each application is identified by a unique address which is a

combination of IP address and socket number. Each BS has a fixed socket that

is known for each MS in the cell. This socket acts as the common control

channel in real system where any MS that is either at Idle or Standby state

utilizes it to initiate communication with the FNI by using random access

procedure. The MS that has more data to send/receive will be shortly instructed

to move to another packet data channel (another socket) where it can transmit

by reserved access. BS uses TDMA access scheme where the channel is divided

into timeslots and is shared by multiple MSs, however, each MS may transmit

during the timeslots granted by the BS. BS application is written using C and

consists of about 2,500 lines of code. It runs on 500 MHZ, 128 MB RAM Linux

PC.

3. Packet Data Server (PDS): This application implements the main

functionalities of the LLC, MLE and SNDCP protocol entities in the FNI. The

PDS application communicates with every BS application and it provides

packet data services to all mobile stations created by the MS application. The

PDS application sends LLC requests to the MAC entity at BS and receives

indications from BS through socket interface. The PDS application has a

known socket where any BS can forward the received MAC PDUs from MSs.

The PDS in turn sends LLC PDUs in request primitives to the BSs. Each entity

of the PDS is implemented as a single thread where inter-communication is

done through messages via SAP primitives. The PDS application is written in C

64

and consists of about 5,000 lines of code. It runs on 548 MHZ, 256 MB RAM

Linux PC.

4. State Information Saver (SIS): This server task enables FNI entities to easily

save their state information according to the recovery protocol developed in

section 5.3. The client (FNI entity) needs to link to an SIS library in order to

have access to the protocol function calls. The FNI entities communicate with

SIS server through sockets. The SIS has a known socket at which the PDS

application entities can send the requests defined by the STBR recovery

protocol. The SIS server task is implemented in C (about 800 lines of code) and

runs on a separate 500 MHZ, 128 MB RAM Linux PC.

5. Mobile End-User (MEU): This is a simple task that uses the packet data

services provided by the MS application. There is one MEU task associated

with every MS. Each MEU task can request its MS to download files from a

destination PC. The MEU tasks has several functionalities such as converting

files into packets to be delivered to SNDCP entity for transmission, assembling

received packets from SNDCP entity into files, add/verify file checksum, file

retransmission, generating different traffic and mobility patterns, collecting

experimental statistics, etc. The MEU is written in C++ (about 700 lines of

code) runs on the same Windows machine where the MS application runs.

6. File_Packet_Sender (FPS): This is the task that handles the file download

requests issued by the MEU tasks. The FPS task owns a number of files of

different sizes. The requested file is converted into packets that are sent to the

PDS application. The FPS task has a known socket where PDS can deliver

messages. The FPS task is implemented in C (about 600 lines of code) and runs

on the same machine where SIS runs but it may also run on a separate linux

machine.

65

6.2 Experiment procedure and configuration

Our intention is to test the STBR method on the PDS application. The idea is to

force the PDS application to crash and then study its recovery as perceived by

the MEU tasks. Therefore, the PDS application is linked to the SIS library to

enable PDS entities to register to the SIS and save their state information.

Furthermore, the code of the PDS is updated according to the STBR method,

where the finite state machine code of SNDCP, MLE and LLC entities are

updated to handle Recovery state. Every place in the code where it is necessary

to save/retrieve state information is identified and Save_Info_Element/

Retrieve_Info_Element calls are added.

Let us first describe the communication flow that takes place in the testbed.

Each MEU task uses its MS to periodically send file download request to FPS

task. But before sending any user data, every MS needs to create PDP context

activation with the PDS application. If file downloading is not started after 5

seconds, the MEU task retransmits the file download request. Once the FPS task

receives the file download request, it converts the requested file into packets

and sends them one by one to the PDS SNDCP entity. The FPS task sends the

next packet upon receiving Packet_Delivery_Status indication with transfer

status “success” from the PDS SNDCP (refer to 5.4.1). The PDS SNDCP entity

adds a header to every packet and forwards it as an SDU to the MLE entity

which in turn adds a header and forwards it to LLC entity. The LLC entity

divides the received SDU into segments (maximum size of 231 bits each) and a

header containing SDU number and segment number is added to each segment.

The LLC entity then requests the BS application to reserve time slots for all

segments in hand. On reception of slots grants from the BS, the LLC entity

sends each segment in a timeslot to the BS. The BS application forwards the

segments to the appropriate MS. The MS MAC entity receives the segments

through the socket and forwards them to the LLC entity. The MS LLC entity

assembles the received segments (after removing headers) into a complete SDU

66

that is forwarded to the MLE entity. The MLE entity removes its header and

then forwards the SDU to the SNDCP entity. The MS SNDCP entity extracts

the packet and delivers it to the MEU task. The MEU task collects all the

packets and reconstructs the file, calculates file checksum, measure download

time, etc.

The testbed setup that is used to conduct experiments consists of 2 BSs where

each BS is assigned a number of data channels enough to carry the data load in

experiments. Each data channel has a gross bit rate of 28 Kbit/sec. Two file

sizes are used for experiments 24 and 40 KB, the ideal download time are bout

7 and 11 seconds respectively, while actual time is about twice of that. The

number of MSs in each cell and the address information to access BSs can be

entered in the MS application interface shown in Figure 21. Cell change rate is

set to 10% i.e. about 10% of MSs will move to the other BS every minute.

Figure 21: The MS application user interface

Each failure recovery experiment begins by starting all applications and tasks

and when the workload reaches steady state(also known as stationary state) i.e.

67

the average number of packets received by all MEU tasks is relatively stable, a

Kill signal is sent at a random instant of time to cause the crash of the PDS

application. The PDS application is then restarted after a short time period

between 5-15 seconds to compensate for fault detection time. The recovery of

the PDS application is then assessed by its effect on MEU tasks both with

respect to performance (download time) and correctness (download success).

6.3 Experiments

We conducted 3 sets of experiments. In the first set of experiments

there are 50 MSs in both cells and on average one MS is context activated every

1 second. Therefore, it takes about 50*1 seconds to create all PDP context

activations i.e. every single MS in the experiment can send and receive data

(possibly all together at the same time). Once an MS completes PDP context

activation, its associated MEU task issues a file download request within 30

seconds requesting the FPS task to download a 40 KB file size by simply

picking a random number between 0 and 30. Upon the reception of all file

packets, the MEU task calculates both file checksum to check its integrity and

the download time. The MEU task then picks again a random number between 0

and 30 seconds to issue a new file download request. In other words, each MEU

task will on average send a new file download request after 15 seconds from

finishing the latest file download. The MEU task keeps downloading files until

a selected number set by the experiment is reached. The total number of

completely downloaded files, number of packets and the average file download

time during each time unit is computed for every MEU task. The time unit used

in the experiments is 10 seconds. The average file download time is the average

of download times of all files that completed downloading in the same time

unit. Note that the beginning and the end of file download can not occur in the

same time unit unless the download time is less than the time unit.

68

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

N
um

be
r

of
 d

ow
nl

oa
de

d
fil

es
(a)

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

N
um

be
r

of
 p

ac
ke

ts

(b)

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Time (10 sec unit)

A
ve

ag
e

fil
e

do
w

nl
oa

d
tim

e
(s

ec
) (c)

Figure 22: 3 typical failure-free experiments in set #1: (a) Number of downloaded

files per time unit for each experiment run; (b) The corresponding number of

packets; (c) The average download time of 40 KB file.

69

Figure 22(a) shows the number of downloaded files for 3 representative

experiments in set #1 during failure-free run. A run in which the PDS

application does not crash is called a failure-free run. The number of files that

finish downloading within the same time unit is found for the entire experiment

run and the results are shown as solid curve. As can be seen from the graph, the

number of file download completions per unit time is zero at the beginning of

each experiment. In the first period of the experiment, the number increases

rapidly as more MSs create PDP contexts and thus more MEU tasks start

downloading files. In the second period, the number fluctuates around 14 files.

In the third and final period, the number declines to zero as more MEU tasks

stop downloading because they reached the selected number of files. The

dashed curve shows the mean number of downloaded files for all these three

experiments. Each MEU task downloads 5 files and then stops so the total

number of downloaded files in each experiment in set #1 is 50*5 files. Each

experiment takes about 250 seconds from the beginning to the end. Figure 22(b)

shows the corresponding number of packets received by all MEU tasks in each

time unit for these three experiments. The 40 KB file is equivalent to 28 packets

of maximum size of 1500 bytes so the number of downloaded packets in each

experiment in set #1 is 50*5*28 packets. The total number of received packets

per unit time increases in the first period of the experiment then fluctuates

around 400 in the second period and finally declines in the final period. The

dashed curve is the mean number of packets across all the three experiments

together. The average file download time during these 3 experiments is shown

in Figure 22(c). As it can be seen from the figure, it takes about 20 seconds to

download the 40 KB file from the FPS task to any MEU task during failure-free

run and it is almost constant. As previously mentioned, we intend to induce

failure while the workload is at steady state. The steady state as it can be clearly

seen from the mean curves in is reached after about 70 seconds from the

experiment beginning - when the number of packets is around 400 and

70

downloaded files is 14 - and sustain about 100 seconds. The steady state load

(packets per unit time) can be calculated by using this simple formula:

downloadsbetweentimeaveragetimedownloadfile
unittimepacketsinsizefile

MSsofNumberloadSteady
+

××=

Thus the expected steady state load in set #1 is about 50 * (28 * 10/ 20+15) =

400 packets per unit time which is equivalent to about 14 files per unit time.

The calculated steady state value matches well with the value obtained from the

mean (dashed curve) across all the three experiments. It can be also deduced

from the calculation that at steady state there will be around 14 MEU tasks

downloading simultaneously.

In the second set of experiments there are 100 MSs, and the context activation

occurs at a rate of one MS every 0.5 second in order to keep the 50 seconds

period to complete all PDP context activations. Each MEU task downloads the

40 KB file 5 times from the PC running the FPS task. Once the MEU task

receives the whole file, it picks a random number between 0 and 30 seconds to

start the next file download. Figure 23 (a) shows the number of downloaded

files per unit time for 3 representative failure-free experimental runs in set #2.

As can be seen from the graph, the number of file download completions per

unit time increases from 0 to about 30 files in the first period, then fluctuates

around 30 files in the second period and finally decreases to 0 in the third and

final period. Each experiment takes about 260 seconds and performs 100*5 file

downloads. Figure 23 (b) shows the corresponding number of packets received

during each time unit of the three experiments. The total number of packets

received by all MEU tasks during each experiment in set #2 is 100*5*28, where

28 is the size of the 40 KB file in packets. The average file download time

during all these 3 runs is shown in Figure 23 (c). The average file download

time is about 20 seconds, exactly the same as in set #1. As can be seen from the

71

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

N
um

be
r

of
 d

ow
nl

oa
de

d
fil

es
(a)

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

N
um

be
r

of
 p

ac
ke

ts

(b)

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Time (10 sec unit)

A
vr

ag
e

fil
e

do
w

nl
oa

d
tim

e
(s

ec
)

(c)

Figure 23: 3 typical failure-free experiments in set #2: (a) Number of

downloaded files per time unit for each experiment run; (b) The corresponding

number of packets; (c) The average download time of 40 KB file.

72

mean curve, the steady state is reached between 70 and 170 seconds of the

experiment time during which the number of packets per unit time is around

800 and the number of downloaded files is between 25 and 30. The expected

steady state load of experiments in set #2 can be calculated as follows:

100 * (28 * 10/ 20+15) = 800 packets per unit time or about 28 files per unit

time. That’s again match good with the mean curve for the three experiments.

Consequently, the number of MEU tasks that will download simultaneously at

steady state is about 28. The steady state load in experiments of set #2 is the

double of that in set #1 as a result of doubling the number of MSs.

In the third set of experiments there are 200 MSs, and the context activation

occurs at a rate of one MS every 0.25 second. Each MEU task downloads a 24

KB file 5 times from the PC running the FPS task. Once the MEU task receives

the whole file, it issues a new file download request within 20 seconds by

simply picking a random number between 0 and 40 seconds. Figure 24(a)

displays the number of the number of downloaded files per unit time for three

representative experiments in set #3. In each experiment run, 200*5 files are

downloaded from the FPS task during a period of about 260 seconds. The

dashed curve plots the mean number of downloaded files across all the three

experiments. Figure 24(b) displays the number of received file packets per unit

time for the three experiments. The total number of packets which is

downloaded during every experiment is 200*5*16, where 16 is the size of the

24 KB file in packets. The dashed curve displays the mean number of packets

for these three experiments. Finally, Figure 24(c) shows the average file

download time for the three experiments. The average download time for the 24

KB file is about 12 seconds and is relatively constant throughout all the three

experiments. The two mean curves for files and packets indicate that that the

steady state is reached after 70 seconds i.e. when the number of packets is

around 1000 and files around 60, and it lasts about 7 time units before the

73

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

N
um

be
r

of
 d

ow
nl

oa
de

d
fil

es
(a)

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

N
um

be
r

of
 p

ac
ke

ts

(b)

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Time (10 sec unit)

A
ve

ra
ge

 fi
le

 d
ow

nl
oa

d
tim

e
(s

ec
) (c)

Figure 24: 3 typical failure-free experiments in set #3: (a) Number of

downloaded files per time unit for each experiment run; (b) The corresponding

number of packets; (c) The average download time of 24 KB file.

74

curves start declining. The expected number of packets per unit time at steady

state load can be calculated as follows:

200 * (16 * 10/ 12+20) = 1000 packets per unit time or about 62 files per unit

time. That’s again very close to the mean curve for the three representative

experiments. Accordingly, the number of MSs that will transmit simultaneously

at steady state is going to be around 62. The steady state load in experiment set

#2 is about 25% higher than in set #2.

6.3.1 Failure recovery in experiment set #1

To test the failure recovery of the PDS application in the first set of

experiments, we intend to force the PDS application to fail by sending a Kill

signal while the load is at steady state and then restart it after a short period of

time to compensate for the failure detection latency. Figure 25 shows 3

representative experiments where the Kill signal is issued at around 75, 95 and

115 seconds from the experiment beginning respectively and the PDS is

restarted after 5 seconds. The instant of the PDS crash may deviate about ± 1

second from the mentioned values. Figure 25 (a) displays the effect of the 5

seconds failure period on the number of files downloaded by the MEU tasks.

For the sake of comparison, the dashed curve which plots the mean number of

downloaded files for the three previous failure-free experiments in set #1 is

added to the graph. The number of file download completions per unit time for

all three experiments drops from about 14 to lower than 5 files and then rises

sharply to over 20 files right after the PDS restart as can be seen.

Correspondingly, the number of received packets per unit time falls from about

400 to around 100 packets and then rise sharply to over 400 after the PDS

restart as it can be seen in Figure 25 (b). The sharp rise in the number of files

and packets is the result of the fact that the number of MEU tasks that

75

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

N
um

be
r

of
 d

ow
nl

oa
de

d
fil

es
(a)

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

N
um

be
r

of
 p

ac
ke

ts

(b)

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Time (10 sec unit)

A
ve

ra
ge

 fi
le

 d
ow

nl
oa

d
tim

e
(s

ec
) (c)

Figure 25: Failure recovery in set #1 for 3 sample experiments where PDS

application crashed around 75, 95 and 115 seconds respectively and then restarted

after 5 seconds

76

downloads simultaneously will increase after failure. Every MEU task that was

downloading when the PDS crashed besides any new one that tried to download

while the PDS is down will retransmit file download request if no file packet is

received within 5 seconds. The peak of the first experiment indicates that the

number of MEU tasks that downloads simultaneously right after the PDS restart

is almost reaching 25, and it exceeds 20 for the second and third experiment.

We refer to the experiment killed at 75 second as the first experiment, the

experiment killed at 95 second as the second experiment, etc. Figure 25 (c)

shows the variation in the average file download time for these 3 experiments.

The average file download time is increased from 20 to about 30 seconds after

failure and then drops back to 20 seconds within 4 time units from the PDS

restart. The average file download can clearly indicate when the impact of

failure is removed and the performance is restored.

As can be seen from these experiments, the PDS application eliminates

completely the impact of the failure within 40 seconds from its restart. It is also

obvious to see that after 4 time units from the sharp rise all three sample

experiments tend to re-follow the mean curve nicely. Note that the PDS

application starts servicing correctly immediately after its restart but it takes

about 40 seconds to eliminate the impact of the failure on the mobile end users.

Furthermore, we control the success of the failure recovery in each experiment

in set #1 by checking that the total number of downloaded files and packets

must be equal to 50*5 files and 50*5*28 packets which correspond to the values

obtained under failure-free experiment. Finally we should mention that our

procedure of testing and measuring failure recovery is not something that is

adopted by the fault tolerance research community nor do we know to any

specific procedure but we find our procedure to be very logical and practical.

In the same manner, we conducted experiments where the PDS is restarted after

15 seconds instead of 5. Figure 26 shows 3 typical experiments where the PDS

77

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

N
um

be
r

of
 d

ow
nl

oa
de

d
fil

es
(a)

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

N
um

be
r

of
 p

ac
ke

ts

(b)

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Time (10 sec unit)

A
ve

ra
ge

 fi
le

 d
ow

nl
oa

d
tim

e
(s

ec
) (c)

 Figure 26: Failure recovery in set #1 for 3 sample experiments where PDS

application crashed around 75, 95 and 115 seconds respectively and then restarted

after 15 seconds

78

application is killed at around 75, 95 and 115 seconds respectively and then

restarted after 15 seconds. The number of downloaded files drops from around

14 before the PDS crash to zero when the PDS is down for all three experiments

as can be seen in Figure 26 (a). The number of files then rises sharply to around

30 files right after PDS restart in the first and second experiment. That also

indicates that the number of MEU tasks that are downloading simultaneously is

increased to about the double right after the PDS restart. In parallel to the

number of downloaded files, the number of packets drops from about 400 to

zero during the PDS downtime. The number of packets then rises sharply to

around 500 packets to service the increasing number of MEU tasks requesting

file downloads. Figure 26(c) displays the average file download time calculated

on the MEU tasks during these 3 experiments. The average file download time

increases from 20 to 40 seconds. The average file download time peak is

increased by 10 seconds (from 30 to 40) relative to the 5 seconds downtime case

which match very well with the 10 seconds increase in the PDS downtime.

The average file download time is set to zero in the time unit where no file

download completion is counted. The PDS application eliminates the impact of

failure within 40 seconds from its restart as can be seen. It is clear to see from

these sample experiments that the PDS handles the burst of messages coming

from MSs after its restart well and within 4 time units it returns back to the

steady state level. The experiment takes few more time units than the failure-

free run to finish as can be noticed because of the crash and downtime. It is

quiet good that the increase in the PDS downtime has no negative impact on the

recovery time but the end users will of course observe longer delay.

79

6.3.2 Failure recovery in experiment set #2

In the second set of experiments, the number of MSs is increased to 100; file

size is 40 KB and a new file download is initiated within 30 after the previous

file download is finished. Figure 27 shows the experimental data for three

representative experiments where the PDS application is killed at around 75, 95

and 115 seconds respectively and then restarted after 5 seconds. As can be seen

from Figure 27(a) the average number of downloaded files drops from about 30

to fewer than 10 files per unit time during the PDS crash and then rise to over

40 files right after the PDS restart. The dashed curve displays the mean number

of files for the previous three failure-free experiments in set #2. Figure 27(b)

shows the corresponding number of packets per unit time for these three

experiments. The number of packets drops from about 800 to less than 200

packet per unit time as a result of the PDS crash. The number of packets then

rises sharply to about 1000 right after the PDS restart. The average file

download time as can be seen in Figure 27(c) increase from 20 seconds before

PDS crash to about 30 seconds after PDS restart and then goes back to 20

seconds within 4 time units. That is exactly the same to what happens in

experiment set #1 after 5 seconds downtime. As can be seen from these sample

experiments in set #2, the PDS is still able to handle recovery quickly and

successfully although the workload is increased to the double of that in set #1.

The success of the failure recovery is also controlled for every experiment in set

#2 by checking that the total number of downloaded files and packets must be

equal to 100*5 files and 100*5*28 packets which correspond to the values

obtained under failure-free experiments.

80

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

N
um

be
r

of
 d

ow
nl

oa
de

d
fil

es
(a)

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

N
um

be
r

of
 p

ac
ke

ts

(b)

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Time (10 sec unit)

A
ve

ra
ge

 fi
le

 d
ow

nl
oa

d
tim

e
(s

ec
) (c)

Figure 27: Failure recovery in set #2 for 3 sample experiments where PDS

application crashed around 75, 95 and 115 seconds respectively and then restarted

after 5 seconds

81

More experiments were conducted for set #2, but now the PDS downtime is

prolonged to 15 seconds. Figure 28 shows three representative experiments in

set #2, during which the PDS application is crashed around 75, 95 and 115

seconds and then restarted after 15 seconds. As can be seen in Figure 28(a), the

number of downloaded files drops from about 28 before the PDS crash to zero

during the PDS downtime. The number of packets then jumps to between 50

and 60 files after the PDS restart. The peaks in the second and third

experiment, for example, indicate that there are about 60 MSs that are

transmitting simultaneously right after the PDS restart. Figure 28(b) shows the

corresponding number of packets per unit time for these three experiments. The

number of packets drops from around the 800 packets reached at the steady

state to zero and then rise to around 1000 packets right after the PDS restart.

The average file download time is zero during the PDS downtime because no

file download completion is counted and then increases to 40 seconds right after

the PDS start as be seen in Figure 28(c). The average file download time then

drops back to 20 seconds within 4 time units. As we can see again, the PDS

promptly resumes servicing all MSs that were in the middle of file downloading

or requesting new downloads right after its restart and within 40 seconds the

impact of the failure is cleared out. That is obvious to see from the average file

download time but it can also be seen in the number of files and packets

because after 4 time units from PDS restart, each experiment tends to re-follow

the course of the mean curve which actually represents the failure-free

execution of the PDS.

82

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

N
um

be
r

of
 d

ow
nl

oa
de

d
fil

es
(a)

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

N
um

be
r

of
 p

ac
ke

ts

(b)

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Time (10 sec unit)

A
ve

ra
ge

 fi
le

 d
ow

nl
oa

d
tim

e (c)

Figure 28: Failure recovery in set #2 for 3 sample experiments where PDS

application crashed around 75, 95 and 115 seconds respectively and then restarted

after 15 seconds

83

6.3.3 Failure recovery in experiment set #3

In the third set of experiments, the number of MSs is increased to 200,

file size is 24 KB and new file download request is issued within 40 seconds

after the previous download finished. Figure 29 shows three typical experiments

in set #3 during which the PDS application is forced to crash at around 75, 95

and 115 seconds respectively, and then restarted after 5 seconds. Figure 29(a)

shows the number of files that are downloaded by MEU tasks from the FPS task

throughout all these experiments. The dashed curve is the mean number of files

obtained previously for three failure-free experiments in set #3. As can be seen,

the number of downloaded files drops from about 60 files per unit time at

steady load to less than 30 during the PDS downtime. The number of

downloaded files then jumps to over 100 files right after the restart indicating an

increase of the traffic load after the crash. For example, the peak in the first

experiment indicates that there are about 120 MSs transmitting simultaneously

i.e. about the double of what it is at steady state load. Figure 29 (b) shows the

corresponding number of packets received by MEU tasks throughout all these

three experiments. The number of packets drops from about 1000 packets per

unit time reached at the steady state to fewer than 400 during the PDS

downtime and then rise sharply to between 1200 and 1600 right after the PDS

restart. Figure 29(c) plots the average file download time throughout all these

three experiments. The average file download time as can be seen increases

from 12 seconds before the PDS crash to about 22 and then drops back to 12

seconds within 4 time units. The PDS shows again the ability to perform a full

recovery within 40 seconds from its restart following a 5 seconds downtime. It

is also clear to see that both the number of downloaded files and packets re-

follows the mean curve nicely after 4 time units from the PDS restart. The

different file size and download rate that is used for experiments in set #3 has

not effected the fast and successful recovery. The success of the failure recovery

for each experiment is controlled by checking that the total number of

84

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

N
um

be
r

of
 d

ow
nl

oa
de

d
fil

es

(a)

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

N
um

be
r

of
 p

ac
ke

ts

(b)

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Time (10 sec unit)

A
ve

ra
ge

 f
ile

 d
ow

nl
oa

d
tim

e
(s

ec
) (c)

Figure 29: Failure recovery in set #3 for 3 sample experiments where PDS

application crashed around 75, 95 and 115 seconds respectively and then restarted

after 5 seconds

85

downloaded files and packets must be equal to 200*5 files and 200*5*16

packets which are equal to the values obtained under failure-free experiment.

Further experiments in set #3 were conducted with the PDS downtime

being increased to 15 seconds. Figure 30 shows three typical experiments in set

#3, during which the PDS application is crashed around 75, 95 and 115 seconds

and then restarted after 15 seconds. As can be seen in Figure 30(a), the number

of file download completions per unit time drops from about 60 files reached at

steady load before the PDS crash to zero during the PDS downtime. The

number of downloaded files then rises sharply to more than 140 as in the first

and third experiment which indicates that there are more than 140 MSs

transmitting simultaneously right after the PDS restart. The number of packet

received per unit time by the MEU tasks during the course of these experiments

is shown in Figure 30(b). The number of packets drops from about 1000 packet

per unit time before the PDS crash to zero during the PDS down time. After the

PDS restart, the number of packets jumps to around 1600 packet per unit time

as can be seen in these three experiments. The average download for the 24 KB

file is increased from 12 seconds before the PDS crash to about 32 seconds after

the PDS restart as can be seen in Figure 30(c). The average file download time

then falls down to 12 seconds within 40 seconds from the PDS restart. As we

can see again the impact of the failure is cleared out by the PDS after 4 time

units from its restart. It is also to clear to see that packet and downloaded file

curves for all three experiments re-follows very nicely the course of their

respective mean curve after 4 time units the PDS restart. The experiment

duration, however, will take about two more time units to finish than the failure-

free run as can be noticed.

86

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

N
um

be
r

of
 d

ow
nl

oa
de

d
fil

es
(a)

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

N
um

be
r

of
 p

ac
ke

ts

(b)

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Time (10 sec unit)

A
ve

ra
ge

 fi
le

 d
ow

nl
oa

d
tim

e
(s

ec
) (c)

 Figure 30: Failure recovery in set #3 for 3 sample experiments where PDS

application crashed around 75, 95 and 115 seconds respectively and then restarted

after 15 seconds

87

6.3.4 Failure-free overhead

 We used the Linux “top” command to measure the overhead that the STBR

method caused on PDS application during failure free execution i.e. the cost of

saving and updating the PDS state information on the SIS. To do that, the CPU

usage of the PDS application is read by “top” at an interval of 10 seconds

during failure-free run for a number of experiments in every experiment set.

We then replaced the PDS application with the original one that is not updated

with STBR and repeated the same procedure. Figure 31 shows two experiments

in set #3, in the first experiment the PDS runs with STBR but in the second

experiment STBR is not used. As can be seen, the first experiment uses the

CPU slightly more than the second one. The highest CPU usage in the first

experiment is 4.7% and 4.5% in the second so the overhead is about 4.4 % in

this example. The accuracy in the decimal portion of the results may be not

good but this is not very significant. During all conducted experiments, the

overhead never exceeded 5% in all experiment sets. This is a low overhead as

we previously expected due to the non-blocking socket mode and client/server

model used by the STBR.

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Tim e (10 se c un it)

%
C

PU
 ti

m
e

us
ag

e

PDS with STBR

PDS without STBR

Figure 31: The PDS CPU time usage of two experiments in set #3. The PDS in the

first experiment is updated with STBR method but not in the second.

88

6.4 Experiments summary

Table 6-1 shows a summary of the three experimental sets and the

achieved results.

As far as we can see from these results and hundreds of other experiments that

we conducted, the STBR method proofed to be able to achieve fast and

successful recovery. In each experiment of these three sets and no matter if the

PDS downtime is 5 or 15 seconds, the PDS could promptly resume service after

its restart and 40 seconds later the impact of the crash failure disappeared.

Furthermore the failure-free overhead found to be less than 5% for all

experiments where the CPU usage is measured and there were no apparent

difference between sets. There were cases where the PDS application did crash

during the recovery but after every investigation and hard debugging work it

always turned up to be an implementation error somewhere in the testbed

software and had nothing to do with the STBR method.

Experiments Set #1 Set #2 Set #3

Number of MSs 50 100 200

File size (KB) 40 40 24

Time to next file download (sec) random[0,30] random[0,30] random[0,40]

Average file download time (sec) 20 20 12

Failure downtime (sec) 5 15 5 15 5 15

Highest average file download time

during failure recovery (sec)

30 40 30 40 22 32

Recovery time (time units) 4 4 4 4 4 4

Table 6-1: Summary of the failure recovery experiments

89

Chapter 7

Conclusions and Discussion

7.1 Conclusions

The use of mobile data services is increasing rapidly due to its huge

potential to offer effective solutions to various tasks in many sectors, e.g. public

safety, transportation, public health, etc. Consequently, the demand for highly

reliable and available data services is expected to be a top priority as users rely

more and more on data services to perform their work, especially in the security

and public safety fields.

The goal of our research was to develop a failure recovery method that

can be used to achieve high availability in mobile data communications

systems. We reviewed the best known recovery methods in fault tolerance

research and pointed out their general limitations. We then analyzed the

characteristics of mobile data communications systems and based on that a

number of requirements that need to be fulfilled by any recovery method are

determined. Our major contribution in this thesis is the development of the State

Transition based Recovery (STBR) method. The STBR is a novel failure

recovery method that is based on behavioral model of the communication

protocols. The behavior of the communication protocol is modeled by our

adapted Communicating Extended Finite State Machine (CEFSM). We took

TETRA packet data as a concrete case study and implemented an experimental

90

testbed to generate the communication traffic between mobile stations and the

fixed network infrastructure in accordance to the TETRA standard.

The results of the experiments we conducted on the testbed were very

encouraging. The PDS application of the infrastructure which is updated with

STBR could instantly resume servicing mobile users when it restarts after its

crash as if no failure had happened. Furthermore, the PDS application was able

to clear out the impact of its failure on mobile users in less than a minute from

its restart. In addition, the performance overhead caused by the STBR during

failure-free execution was experimentally found to be less than 5%. Based on

these promising results, we belief that high availability (five nines) can be

technically achieved in mobile data communication by using the STBR method

combined with a quick failure detection mechanism. The high availability can

still be maintained even in the presence of permanent faults in the code as long

as they are not activated too often as it is normally the case for reliable software.

We can not directly compare our work with other works for many

reasons. For example it is not useful to compare it with rollback or replication

based recovery methods because they do not work if the fault is permanent. In

case of N-version, we would need to implement at least 3 versions of the PDS

application by different teams and then forward messages coming from BS

application to all versions, and moreover find a way to vote between messages

issued from all PDS versions. This is a huge task which requires both resources

and time knowing that it took us no less than 200 workdays to implement the

PDS application alone. Even then, we suspect that the N-version or other failure

recovery methods can meet the real time requirements. We actually do not

know any comparative study between the different existing methods. This is

probably a shortage from a scientific point of view, but we believe that it will be

technically difficult to compare these different methods on experimental level.

Finally, in order to compare the STBR with a customized solution that is used

by a commercial communication system, we need first to implement STBR in

91

that system then try to compare these two solutions. That could be a goal for a

future project.

We have learned many lessons during the many thousands of hours we

used in designing and implementing the applications for the TETRA testbed,

then adding STBR, and finally testing and fixing the problems. Based on our

previous experience in developing real time embedded communication systems,

we estimate that these lessons can be very valuable for communication software

development. We discovered during testing the recovery of the PDS application

that many bugs and unforeseen scenarios are more likely to show up because

the application is exposed to any event at any instant of time. The root causes of

these problems are different e.g. design, coding, misinterpretation, or lack of the

specifications in the standard. The specifications in any communication

standard can not count for all possible scenarios that can occur in the real

system and is not supposed to do that. The last and final details fall on the

shoulders of the software developers to treat them. Applying STBR thus can

aid in performing very thorough test and consequently save a lot of problems

before they may be discovered later in the field. We also found out that the

specifications of the communications standards (at least TETRA) are flexible

enough to contain the STBR method. We have not met with any scenario that

was impossible to recover or required a protocol modification. We believe that

this will be the case for every well designed protocol.

7.2 Pros and cons

In this section, we try to discuss the benefits, disadvantages and opportunities of

using the STBR method as we see it.

The STBR method is a white box approach that requires knowledge

about the application to be recovered. The main disadvantage of choosing this

approach is that the burden of handling recovery is placed on the system

designer and application programmer. However, because the model based

92

STBR method uses the white box approach it can save the minimum amount of

information at the lowest frequency and thus a minimum performance overhead

with lowest impact on real-time communication.

The cost of applying STBR to the communication systems is expected

to be between low and middle. There are different reasons to support this

expectation. As a rule of thumb, the cost to design, implement and test a

protocol entity is proportional to the size of its finite state machine determined

by the number of states and input events. Extending state transition diagram

with one extra “Recovery” state will imply more designs scenarios, more code

and more test cases, but this increase will not become significantly high. With

respect to the cost of hardware, it is also moderate due to the fact that STBR

adopts 2N and N+1 redundancy.

Furthermore, the autonomous recovery principle gives the flexibility to select

only the most critical entities or nodes and add STBR capabilities to them.

The ability to recover quickly and reliably from failures will not only

improve the availability of the system but it will also make it easier for failure

detection technique to judge if the system is operational or not. The failure

detection mechanism may early initiate failure recovery procedure by relying on

the fast and successful recovery of the STBR.

 The STBR method opens the opportunity for “hot update” technology

by analogy with “hot swap” for hardware. In other words, it may be possible to

replace the running infrastructure application with a newer version that

immediately continues to service the mobile users in the field after retrieving

their state information from the SIS.

Finally, the STBR method has one more strong advantage which is

portability as the method does not depend on any type of hardware or operating

system. This gives the designers the free choice to choose the hardware and

software that meet their requirements. This is not the case for the rollback and

93

replication based methods because the accompanied middleware is usually

written for a specific operating system and hardware.

7.3 Discussion

Should we live with system down time in the range of hours per year?

Or try to develop systems with downtime in the range of minutes? Should we

stick to the traditional way of designing and implementing communication

systems? Or should we take the additional step and the associated risks? This is

a difficult decision to make and this decision probably concerns system

designers and developers more than project managers. But there is always a risk

by introducing new technology.

Based on our experience, we believe that the most effective approach to

develop communication systems is to select the best methods from the

beginning. Trying to have a system up and running very quickly to reduce time-

to-market and then finally fix the issues of availability and reliability may not

lead to the shortest time in the long run. The consequences can be high

development and maintenance costs, damaged reputation, and a final system

filled with patches with no way to the optimal solution.

The problem here is that it is impossible to foresee the number

problems and their size ahead, and when the system is declared to be ready for

operation how one can determine if the developed system could had been better

both with respect to quality (availability and reliability) and cost. To do that, we

need to re-build the system with different approach and methods and then do the

comparison. That is not realistic, and the common answer is that there is always

place for improvement.

Finally, what is the chance for adopting the STBR in a commercial data

communications system? This is an interesting question that we frankly can not

give a direct answer to. But the best candidate would be a new started project

94

that has availability and reliability as top priorities and ready to follow the key

principles of building high available system i.e. redundancy, modularity,

detection and failure recovery. There is no doubt that customers need high

availability and reliability communication systems. However, while no such

system is yet in place, customers can not exert hard pressure on system

suppliers but have to live with what exists.

95

Appendix A. SNDCP PDU formats

This appendix lists the PDUs of the TETRA SNDCP protocol and their

contents [ETSI03].

Table A-1: SN-ACTIVATE PDP CONTEXT DEMAND PDU

Field name Length(bits)

SN PDU type 4

SNDCP version 4

NSAPI 4

Address type identifier in demand 3

IP Address IPv4 32

Packet data MS Type 4

PCOMP negotiation 8

Number of Van Jacobson compression state slots 8

Number of compression state slots, TCP 8

Number of compression state slots, non-TCP 16

Maximum interval between full headers 8

Maximum time interval between full headers 8

Largest header size in octets that may be compressed 8

Access point name index 16

DCOMP negotiation varies

Protocol configuration options varies

96

Table A-2: SN-ACTIVATE PDP CONTEXT ACCEPT PDU

Field name Length(bits)

SN PDU type 4

NSAPI 4

PDU priority max 3

READY timer 4

STANDBY timer 4

RESPONSE_WAIT timer 4

Type identifier in accept 3

IP Address IPv4 32

PCOMP negotiation 8

Number of Van Jacobson compression state slots 8

Number of compression state slots, TCP 8

Number of compression state slots, non-TCP 16

Maximum interval between full headers 8

Maximum time interval between full headers 8

Largest header size in octets that may be compressed 8

Maximum transmission unit 3

SNDCP network endpoint identifier 16

FNI IPv6 information 98

FNI Mobile IPv4 information 71

DCOMP negotiation varies

Protocol configuration options varies

Table A-3: SN-ACTIVATE PDP CONTEXT REJECT PDU

Field name Length(bits)

SN PDU type 4

NSAPI 4

97

Activation reject cause 8

Protocol configuration options varies

Table A-4: SN-DATA PDU

Field name Length(bits)

SN PDU type 4

NSAPI 4

PCOMP 4

DCOMP 4

N-PDU varies

Table A-5: SN-DATA TRANSMIT REQUEST PDU

Field name Length(bits)

SN PDU type 4

NSAPI 4

Logical link status 1

Enhanced service 1

Resource request varies

SNDCP network endpoint identifier 16

Reserved 20

Table A-6: SN-DATA TRANSMIT RESPONSE PDU

Field name Length(bits)

SN PDU type 4

NSAPI 4

98

Accept/Reject 1

Transmit response reject cause 8

SNDCP network endpoint identifier 16

Table A-7: SN-DEACTIVATE PDP CONTEXT DEMAND

Field name Length(bits)

SN PDU type 4

Deactivation type 8

NSAPI 4

SNDCP network endpoint identifier 16

Reserved 12

Table A-8: SN-DEACTIVATE PDP CONTEXT ACCEPT PDU

Field name Length(bits)

SN PDU type 4

Deactivation type 8

NSAPI 4

SNDCP network endpoint identifier 16

Reserved 11

Table A-9: SN-PAGE REQUEST PDU

Field name Length(bits)

SN PDU type 4

NSAPI 4

Reply requested 1

SNDCP network endpoint identifier 16

99

Table A-10: SN-RECONNECT PDU

SN PDU type 4

Data to send 1

NSAPI 4

Enhanced service 1

Resource request variable

SNDCP network endpoint identifier 16

Reserved 19

Table A-11: SN-END OF DATA

Field name Length(bits)

SN PDU type 4

Immediate service change 1

Reserved 4

100

Bibliography
[Acharya94] A. Acharya and B. Badrinath, Checkpointing Distributed

Applications on Mobile Computers, Proceedings of the 3rd

International Conference on Parallel and Distributed

Information Systems, pp. 73- 80, Sep 1994.

[Avizienis77] A. Avizienis and L. Chen, On the implementation of N-version

programming for software fault tolerance during execution,

Proceedings of the IEEE COMPSAC 77, pages 149–155, Nov

1977.

 [Birman94] K.P. Birman and R. van Renesse, Reliable Distributed

Computing with the Isis Toolkit, IEEE Computer Society Press,

Mar 1994

[Birman96] Kenneth P. Birman, Building Secure and Reliable Network

Applications, chapter 1 fundamentals page 35, Manning

publishing company and Prentice Hall, 1997.

 [Budhiraja93] N. Budhiraja, K. Marzullo, F. Schneider, and S. Toueg.

Distributed Systems, chapter8: The Primary-Backup Approach,

pp 199–216. 2nd edition, 1993.

[Byun02] Young Joon Byun, Beverly A. Sanders and KiSook Chung, A

Pattern Language for Communication Protocols, Proceedings of

the 9th Pattern Languages of Programming Workshop (PLoP),

2002

101

[Campos95] Reinaldo V. Campos, Edmundo de Souza e Silva, Availability

and Performance Evaluation of Database Systems under

Periodic Checkpoints, pp. 269-277, FTCS 1995

[Casanova97] H. Casanova and J. Dongarra. NetSolve: A network server for

solving computational science problems, The International

Journal of Supercomputer Applications and High Performance

Computing, 11(3):212–223, 1997.

[Chandra98] S. Chandra, Peter M. Chen, How Fail-Stop are Faulty programs

?, 28th International Symposium on Fault-Tolerant Computing,

pp 240-249, June 1998.

[Chandra00a] Subhachandra Chandra, An Evaluation of the Recovery-Related

Properties of Software Faults, PhD thesis, University of

Michigan, Sep 2000.

[Chandra00b] S. Chandra and Peter M. Chen, Whither Generic Recovery from

Application Faults? A Fault Study Using Open-Source

Software, Proc. International Conference on Dependable

Systems (DSN 2000), June 2000

[Chandy85] Chandy M. , Lamport L. ,Distributed snapshots: Determining

global states of distributed systems. ACM Trans. Comput. Syst.

31, 1, 63–75., 1985

[Cristian91] Cristian F., Jahanian F. , A timestampbased checkpointing

protocol for long-lived distributed computations, In

Proceedings, Tenth Symposium on Reliable Distributed

Systems, pp.12–20, 1991.

[Cukier98] M. Cukier et al., AQUA: An Adaptive Architecture that

Provides Dependable Distributed Objects , Proceeding IEEE

Symposium on Reliable Distributed Systems (SRDS-17), pp.

245-253, 1998

102

[Elnozahy96] E. N. Elnozahy, D. B. Johnson, and Y. M. Wang, A Survey of

Rollback-Recovery Protocols in Message-Passing Systems,

Technical Report CMU TR 96-181, Carnegie Mellon

University, 1996

[ETSI03] ETSI, Terrestrial Trunked Radio (TETRA); Voice Plus Data

(V+D); Part 2: Air Interface (AI), EN 300 392-2 V2.4.1, Oct

2003

[Gray86] Jim Gray. Why do computers stop and what can be done about

it?, In Proceedings of the 1986 Symposium on Reliability in

Distributed Software and Database Systems, pages 3–12, Jan

1986.

[Gray91] Jim Gray and Daniel P. Siewiorek, High-Availability Computer

Systems, IEEE Computer 24, pp. 39–48, Sep 1991.

[Han99] S. Han and K. G. Shin, Experimental evaluation of behavior-

based failure-detection schemes in real-time communication

networks, IEEE Transactions on Parallel and Distributed

Systems, Vol. 10, No 6,pp 613-626, June 1999.

[ITU94] ITU-T, Information Technology–Open Systems

Interconnection–Basic reference model: The basic model, ITU-

T Recommendation X.200, July 1994.

[ITU96] ITU-T, Recommendation Z.100: Specification and Description

Language (SDL), ITU-T, Geneva, 1996.

[Lowell00] David E. Lowell, Subhachandra Chandra, Peter M. Chen,

Exploring Failure Transparency and the Limits of Generic

Recovery, Proceedings of the 2000 Symposium on Operating

Systems Design and Implementation (OSDI), pp. 289-304, Oct

2000

[Mahmood88] Mahmood, A., and E.J. McCluskey, Concurrent Error

Detection Using

103

Watchdog Processors- A Survey, IEEE Trans. on Computers,

Vol. 37, No. 2, pp. 160-174, Feb 1988.

[OMG02] Object Management Group (OMG), Unified Modeling

Language (UML), version 1.4 OMG Standard, Nov 2002.

[Pradhan95] Dhiraj K. Pradhan, Fault-Tolerant Computer System Design,

ISBN 0-13-057887-8, Prentice-Hall, 1996.

[Pradhan96] Dhiraj K. Pradhan, P. Krishna, and N.H. Vaidya, Recoverable

Mobile Environment: Design and Trade-off Analysis,

Proceedings of the 26th

International Symposium on Fault Tolerant Computing, pp. 16-

25, June 1996.

[Randell75] B. Randell , System structure for software fault tolerance, IEEE

Transaction Software Engineering, vol. SE-1, pp. 220–232,

June 1975

[Schneider84] Fred B. Schneider. Byzantine Generals in Action:

Implementing Fail-Stop Processors. ACM Transactions on

Computer Systems, 2(2):145–154, May 1984

[Schneider93] Fred B. Schneider, Distributed Systems, chapter 7: Replication

Management using the State-Machine Approach, pp 169–197,

2nd edition, 1993.

[Storm85] Strom R., Yemini S., Optimistic recovery in distributed

systems. ACM Transactions on Computer Systems, Vol. 3, No.

3, pp 204-226, Aug 1985.

 [Traverse88] P. Traverse, AIRBUS and ATR system architecture and

specification, editor, Software Diversity in Computerized

Control Systems. Springer Verlag, pp. 95–104, 1988

104

[Wensley72] J. H. Wensley, SIFT Software Implemented Fault Tolerance,

FJCC,

pp. 243-253, 1972

[Williams83] J. F. Williams, L. J. Yount, and J. B. Flannigan, Advanced

autopilot flight director system computer architecture for

Boeing 737-300 aircraft, In AIAA/IEEE 5th Digital Avionics

Systems Conference, Seattle, WA, Nov 1983.

[Yao99] B. Yao, K. Ssu, and W.K. Fuchs, Message Logging in Mobile

Computing, Proceedings of the 29th International Symposium

on Fault Tolerant Computing, pp. 294-301, June 1999

