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Abstract

The vehicle routing problem with time windows is concerndthwhe optimal routing of a fleet of ve-
hicles between a depot and a number of customers that mussitelwvithin a specified time interval,
called a time window. The purpose of this thesis is to devalep and efficient solution techniques for
solving the vehicle routing problem with time windows (VRRJ. The thesis consists of a section of
introductory remarks and four independent papers.

The first paper ‘Formulations and exact approaches for th&herouting problem with time win-
dows’ (Kallehauge, 2005, unpublished) is a review of thecesdgorithms proposed in the last three
decades for the solution of the vehicle routing problem wiithe windows. A detailed analysis of the
formulations of the VRPTW is presented together with a nevié the literature related to the different
formulations. We present the two main lines of developmemelation to the exact approaches for the
VRPTW. One is concerned with the general decompositionagmtr and the solution to certain dual
problems associated with the VRPTW. Another more receetton is concerned with the analysis of
the polyhedral structure of the VRPTW. We conclude by examgipossible future lines of research in
the area of the VRPTW.

In the second paper ‘Lagrangian duality applied to the Jehimuting problem with time windows’
(Kallehauge, Larsen, and Madsen, Computers & Operatiossdeh, 33:1464-1487, 2006) we consider
the Lagrangian relaxation of the constraint set requirivag each customer must be served by exactly
one vehicle yielding a constrained shortest path subpnebW#e present a stabilized cutting-plane algo-
rithm within the framework of linear programming for solgithe associated Lagrangian dual problem.
This algorithm creates easier constrained shortest patirshlems because less negative cycles are in-
troduced and it leads to faster multiplier convergence dwestabilization of the dual variables. We have
embedded the stabilized cutting-plane algorithm in a braaned-bound search and introduce strong valid
inequalities at the master problem level by Lagrangiarxeglan. The result is a Lagrangian branch-and-
cut-and-price (LBCP) algorithm for the VRPTW. Making usetlois acceleration strategy at the master
problem level gives a significant speed-up compared to difgos in the literature based on traditional
column generation. We have solved two test problems inttedin 2001 by Gehring and Homberger
with 400 and 1000 customers respectively, which to dateteréargest problems ever solved to optimal-
ity. We have implemented the LBCP algorithm using the ABAChjfen-source framework for solving
mixed-integer linear-programs by branch, cut, and price.

In the third paper ‘Path inequalities for the vehicle rogtproblem with time windows’ (Kallehauge,
Boland, and Madsen, 2005, submitted) we introduce a newutation of the VRPTW involving only
binary variables associated with the arcs in the underldiggaph. The new formulation is based on
a formulation of the asymmetric traveling salesman problgth time windows and has the advantage
of avoiding additional variables and linking constraints. the new formulation of the VRPTW time
windows are modeled using path inequalities. The path ialtgs eliminate time and capacity infeasible
paths. We present a new class of strengthened path inegsiddidsed on polyhedral results obtained
in the context of the asymmetric traveling salesman probhgth replenishment arcs. We study the
VRPTW polytope and determine the polytope dimension. Wevstihat the lifted path inequalities are
facet defining under certain assumptions. We also introgueeedence constraints in the context of the
VRPTW. Computational experiments are performed with a ¢ineemd-cut algorithm on the Solomon
test problems with wide time windows. Based on results om@&e problems the outcome is that the
algorithm shows promising results compared to leadingrittyos in the literature. In particular we report
a solution to a previously unsolved 50-node Solomon tedblpro R208. The conclusion is therefore
that the path formulation of the VRPTW is no longer the uniglmged winning strategy for solving the
VRPTW.

The fourth and final paper ‘Vehicle routing problem with timmexdows’ (Kallehauge, Larsen, Mad-
sen, and Solomon. In Desaulniers, Desrosiers, and Soloeditioys, Column generation, pages 67-98,
Springer, New York, 2005) is a contribution to a book on catugeneration edited by G. Desaulniers,



J. Desrosiers, and M. M. Solomon. The focus of the paper ihe’VRPTW as one of the important
applications of column generation in integer programmifvg.discuss the VRPTW in terms of its math-
ematical modeling, its structure and decomposition adtivas. We then present the master problem and
the subproblem for the column generation approach, reispctNext, we illustrate a branch-and-bound
framework and address acceleration strategies used waiseithe efficiency of branch-and-price meth-
ods. Then, we describe generalizations of the problem gmottreomputational results for the classic
Solomon test sets. Finally, we present our conclusions &ttiss some open problems.



Resumeé

Den danske titel pa denne afhandling er ‘Ruteplanlaegniogéemet med tidsvinduer'. Dette prob-
lem omhandler den optimale styring af en flade af lastbileHeneet lager og et antal kunder, der
skal besgges inden for et bestemt tidsinterval, et sakiasitihdue. Formalet med denne afhandling
er udvikling af nye og effektive metoder til Igsning af rul@psegningsproblemet med tidsvinduer (ve-
hicle routing problem with time windows - VRPTW). Afhandjan bestar af et afsnit af introducerende
bemaerkninger og fire separate artikler. Det introducerexfsi@t beskriver artiklernes videnskabelige
bidrag. | det fglgende vil artiklernes engelske titel ikkizd oversat til dansk.

Den farste artikel ‘Formulations and exact approachesHerviehicle routing problem with time
windows’ (Kallehauge 2005, ikke publiceret) er en gennemggaf eksakte metoder udviklet gennem
de seneste tre artier til lasning af ruteplanleegningsprobt med tidsvinduer. Der preesenteres en de-
taljeret analyse af formuleringerne af VRPTW, samt en gemgang af den relevante litteratur for de
forskellige formuleringer. De to hovedretninger i forskgéen inden for eksakte metoder til VRPTW
beskrives. En af retningerne omhandler generel dekoniposig lasning af visse duale problemer for-
bundet med VRPTW. En anden og nyere retning omhandler anafyden polyhedrale struktur forbundet
med VRPTW. Artiklen afsluttes med en diskussion af muliganftidige forskningsomrader inden for
VRPTW.

| den anden artikel ‘Lagrangian duality applied to the vehiouting problem with time windows’
(Kallehauge, Larsen, and Madsen, Computers & Operatiosdeh, 33:1464-1487, 2006) betragter vi
en Lagrange relaksering af VRPTW. De restriktioner der lersatvhver kunde besgges af netop en lastbil
relakseres, hvilket resulterer i et korteste vej subpmbiged bibetingelser. Der praesenteres en stabilis-
eret snitplansalgoritme inden for rammerne af lineaer @ognering. Algoritmen anvendes til lgsning
af det Lagrange duale problem. Denne algoritme resultaremmere korteste vej subproblemer, fordi
feerre negative kredse introduceres, og den resultereréledvergens af lgsningen, fordi de duale vari-
able stabiliseres. Vi har inkluderet den stabiliseredgpkarisalgoritme i en branch-and-bound sggning
og introducerer staerke gyldige uligheder i master probtemeé hjeelp af Lagrange relaksering. Resul-
tatet er en Lagrangian branch-and-cut-and-price (LBG@Rrime til lgsning af VRPTW. Benyttelsen af
denne algoritme giver en signifikant forbedring af lgsniitigs sammenlignet med algoritmer i littera-
turen baseret pa saedvanlig sgjlegenerering. Vi har lgsstptoblemer introduceret i 2001 af Gehring
og Homberger med henholdsvist 400 og 1000 kunder. Dissdgima er de til dato starste problemer
Igst til optimalitet. Algoritmen er implementeret ved hjgaff open-source rammesystemet ABACUS, der
er beregnet til lasning af heltalsproblemer ved hjeaelp afthaand-cut-and-price.

| den tredje artikel ‘Path inequalities for the vehicle liagt problem with time windows’ (Kalle-
hauge, Boland, and Madsen, 2005, indsendt til publicepnggsenterer vi en ny formulering af VRPTW
der kun involverer bingere variable tilknyttet kanterne uewlerliggende orienteret graf. Denne nye for-
mulering er baseret pa en formulering af traveling salesprablemet (TSP) med tidsvinduer og har
den fordel at man undgar ekstra variable og koblende begieges. | den nye formulering af VRPTW
modelleres tidsvinduer ved hjeelp af uligheder, der eliménagyldige veje i netveerket. En ugyldig vej
kan skyldes overskridelse af kapacitet eller tidsbegréagsn Vi preesenterer en ny klasse af uligheder
baseret pa polyhedrale resultater opnaet inden for TSP epéehnishment begraensninger. Vi bestemmer
dimensionen af VRPTW polytopen. Vi beviser under visse galser at de nye uligheder er facetter
for VRPTW polytopen. Vi introducerer ogsa precedence bagiager for VRPTW. Beregningsmaes-
sige eksperimenter udfares med en branch-and-cut algorithbetragter Solomons test problemer med
brede tidsvinduer. Baseret pa resultater for problemer #ekluinder er konklusionen at algoritmen er
lovende sammenlignet med fgrende algoritmer i litteratuié praesenterer ogsa en lgsning til et hidtil
ulgst problem med 50 kunder, nemlig R208. Konklusionen eiodat korteste vej dekompositionen af
VRPTW ikke leengere er den absolutte vinderstrategi tililegaf VRPTW.

Den fjerde og sidste artikel ‘Vehicle routing problem witmé windows’ (Kallehauge, Larsen, Mad-
sen, and Solomon. In Desaulniers, Desrosiers, and Soloeditioys, Column generation, pages 67-98,



Springer, New York, 2005) er et bidrag til en bog om sgjlegeniag redigeret af G. Desaulniers, J.

Desrosiers og M. M. Solomon. Fokus for denne artikel er VRPSOM et vigtigt eksempel p& anvendelse
af sgjlegenerering i heltalsprogrammering. Vi diskut&BPTW i henhold til modelleringsmaessige as-
pekter, problemstrukturen og dekompositionsalternatii2erefter praesenterer vi master problemet og
subproblemet ved sgjlegenereringsalgoritmen. Efteefmdg beskriver vi branch-and-bound strukturen
og forskellige strategier til accelerering af branch-gmde metoder. Vi beskriver generaliseringer af
problemet og rapporterer beregningsmaessige resultatée fidassiske Solomon test problemer. Afslut-
ningsvist praesenterer vi vore konklusioner og diskutesaegproblemstillinger.



Introductory remarks

This thesis is not really meant to be read from cover to covestead, the material is organized
in four independent papers. This type of organization showok get in the way of a reader with some
acquaintance with the subject, however, in this sectiondigiscribed just what the contributions of each
paper are and how the papers are related. Paper 1 and pagesuyraey papers. In paper 1 an attempt
has been made to provide a complete survey of the exact appyg®éor the VRPTW. The focus of paper
4 is on the path formulation of the VRPTW and column genermati®aper 2 and paper 3 represent the
main part of the work during my graduate studies and descthibaelevelopment of respectively a dual
algorithm and a branch and cut algorithm for the solutiorhef¥RPTW.

Paper 1: Formulations and exact approaches for the vehicleauting problem with time windows

Although this is the first paper of the thesis, it is actuahlig tast paper | wrote during my graduate
studies and it represents my view on the research of thisifiellde fall of 2005. The purpose of this
paper is to provide a complete survey of the exact approguimgmsed in the last three decades for
the solution of the VRPTW. The material in the survey is $iiyiorganized according to four different
formulations of the VRPTW. This is somewhat different froth&r surveys and in my opinion one of
the contributions of the survey. The relationship betwdenresearch on the VRPTW and the TSP
is discussed because of the fundamental role of the TSP iicamorial optimization in general and
routing and scheduling in particular. | have included soristohical references in this survey that |
believe improve the understanding of this field. The suraejuides new material related to the polyhedral
approach that is not described in other surveys. In paaidupresents my recent work with Boland and
Madsen, which is the subject of paper 3 of this thesis. | ald@be that the treatment of the spanning
tree formulation of the VRPTW is more thorough than elsewraand it illustrates that further work is
required in this area. Finally, the survey presents thearebeon the decomposition approach of the path
formulation including my work on acceleration strategiesthe Lagrangian dual problem with Larsen
and Madsen, which is the subject of paper 2 of this thesis. éstijon that the survey also discusses is
this: What are the gaps between the bounds of the elemerd#infgrmulation and the non-elementary
relaxation with 2-cycle elimination? | made some measurgmi relation to this question that are
included in the survey and | believe they are interestingabee they made a clear case for eliminating
higher order of cycles. Following this the 2-cycle elimipatscheme was generalized by other authors.
The survey concludes by discussing future directions adarsh that in my opinion are not as clearly
expressed elsewhere.

Paper 2: Lagrangian duality applied to the vehicle routing problem with time windows

This is the first paper | wrote during my graduate studies aigldan extension of the work for my
Masters’ thesis. The topic of my Masters’ thesis was alsordmagian relaxation and its application to
the VRPTW; particularly how the Lagrangian multipliers twbibe determined in an efficient way. |
was motivated by the work on acceleration strategies at tstan problem level by Kohl and Madsen.
The authors had implemented a method for solving the Lagmardual problem that combined the use
of the subgradient algorithm and a version of the bundlerélyn but had only applied the method to
a set of test problems with clustered customer locationsinguny Masters’ thesis | had access to a
software package for the solution of convex nondifferdsiéaptimization problems. | therefore only
had to provide a subroutine for evaluating a single subgradit each trial point. In the Lagrangian
relaxation of the VRPTW | considered this corresponds twisgla resource-constrained shortest path
problem. Larsen had just completed the development of a-sfathe-art column generation algorithm
for the VRPTW and provided me with the subroutine for solving shortest path problem. | applied this
dual algorithm to all of the Solomon problem classes ingigdhe problems with wide time windows and



the results were promising. The method created easierestiath subproblems because one could start
with small values of the Lagrangian multipliers and inceetteem to the optimal level. This is different
from standard column generation were one typically findsnétial feasible basis with high objective
function coefficients which in turn gives high dual valuesother drawback of standard column gen-
eration is instability of the solution. Instability refets a situation where the current solution is closer
(with respect to some norm) to the optimal solution than teet solution. Identifying the difficulty of
the subproblem relative to the behavior of the Lagrangiattiptiers and addressing the drawbacks of
standard column generation was the main contributionseMhsters’ thesis. In order to find integer
solutions we combined the dual algorithm with Larsen’s owlugeneration algorithm creating a hybrid
algorithm. However, in 2000 it turned out that we could na tlse package for nondifferentiable op-
timization and we therefore developed our own trust-regn@thod for maximizing concave piece-wise
linear functions, which are encountered in Lagrangianxatlan of integer linear programming prob-
lems. The development of this algorithm is the subject ofepdb Kaj Madsen was also involved in
the development of the trust-region method, which was basesbme of his previous work in nonlinear
optimization. We embedded the trust-region method in tl@dhn and bound framework ABACUS. The
dual algorithm is a row generation algorithm similar to gadgdral approaches, however, it is concerned
with the characterization of the objective function of thenbinatorial optimization problem instead of
its polytope. Trust-region methods and polyhedral metlawd<utting-plane algorithms and we denoted
our method a Lagrangian branch and cut algorithm where ttilmgtplanes corresponds to the subgradi-
ents. We also introduced valid inequalities for the VRPTWIyfope in the master problem but because
the master problem is stated on the dual variables thesaaliggs are added as columns to the problem
through a pricing step. One of the benefits of the trust-regiethod was that we avoided solving the
guadratic problems of the bundle algorithms previouslyliagplt is also interesting to note that Thienel,
the creator of ABACUS, thought that it would require a getieation of ABACUS to use the system
for Lagrangian relaxation but we showed that by remainintipiwithe context of linear programming
when solving the Lagrangian dual problem it was alreadyiptesto embed Lagrangian relaxation in the
system. The main contribution of paper 2 is the developmeattoust-region method for solving the
Lagrangian dual problem and embedding the trust-regiomaakin a branch and bound algorithm. The
method of paper 2 gives a significant speed-up compared toitdms in the literature based on stan-
dard column generation and we also succeeded in solvingargescale problems with 400 and 1000
customers, which to date are the largest problems everdstiveptimality.

Paper 3: Path inequalities for the vehicle routing problem with time windows

Through September 2001 to March 2002 | visited Dr. N. Bolahithe University of Melbourne and
paper 3 grew out of the work | carried out during that visiteMmork was inspired by the work of Boland
and Mak on polyhedral approaches for a variant of the tragedalesman problem. Because of the links
to the TSP the material of paper 3 very much reflects the relsear exact approaches for the TSP. We
proposed a new formulation of the VRPTW that is based on adtation of the TSP with time windows.
We introduced new and stronger path inequalities for madelie time windows of the VRPTW based
on the polyhedral results of Mak for the TSP with replenishtmmnstraints. We presented the first
polyhedral results for the VRPTW by determining the dimensif the polytope and proving that the
new path inequalities under certain conditions are facéhidg. Furthermore, we take advantage of
the precedence structure that the time windows induce andfer precedence inequalities from the TSP
contextto the VRPTW. Finally, we make use of classes of iaéties for the ATSP in our implementation
of a branch and cut algorithm. The contributions of papee3laerefore both theoretical and algorithmic,
i.e. it is the first branch and cut algorithm for this variahtltee VRPTW. The computational results of
our algorithm shows that the polyhedral approach is a priognidirection of research and in my opinion
the conclusion is that the path formulation is no longer thehallenged winning strategy for solving the
VRPTW. However, it is clear that the amount of research effpent to solve VRPTW by the polyhedral
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approach is not comparable with what has been dedicatecetdebomposition approach of the path
formulation. Paper 3 is only the beginning of the developtoéthe polyhedral approach for the VRPTW
and a better understanding of its polytope and further waorkieveloping efficient separation routines
should yield much better computational results than thepented here.

Paper 4: Vehicle routing problem with time windows

In 2005 GERAD celebrated its 25th anniversary. The Genewhtis one of the best known research
teams of the center and has made significant advances intégeimprogramming column generation
area. The group originally focused on the vehicle routirabpgm with time windows and has made very
substantial achievements in this area so it was a greatqg@s/to contribute to a chapter on the VRPTW
for the 25th GERAD anniversary volume on column generatiaper 4 represents this contribution to
the book on column generation edited by Desaulniers, Diesssand Solomon, all part of the Gencol
team. Paper 4 focuses on the methodological evolutionydling cutting planes, parallelism, acceleration
strategies for the master problem, novel subproblem aphes and generalizations of the VRPTW. It
also reports computational results for the classic Solotasthproblems. It is clear that there is some
overlap between paper 1 and paper 4 but in my opinion it isvgtillable to include both surveys in this
thesis because they are structured differently and withffardnt focus thereby highlighting different
aspects of the research on the VRPTW.

Vii



Acknowledgements

| would like to express my deep thanks to my principal sugemwProfessor Oli B. G. Madsen of the
Centre for Traffic and Transport, Technical University ofibeark, whose support has been a mainstay
since | started my graduate studies. | would also like to @pmy gratitude to my supervisor Associate
Professor Jesper Larsen of the department of Informatiddviathematical Modelling, Technical Uni-
versity of Denmark, whose advise and help over the courseyginmiect has been extremely valuable. |
would also like to thank my supervisor Professor Kaj Maddegh@department of Informatics and Math-
ematical Modelling, Technical University of Denmark, fdirlas suggestions regarding the development
of a trust-region algorithm for the Lagrangian dual problem

| am very grateful to Dr. Natashia Boland of University of Melrne for giving me the opportunity
to visit University of Melbourne through September 2001 tarbh 2002 and benefit from her broad
research experience. | am also very grateful to Dr. Vicky M&beakin University for all the fruitful
discussions with her during my stay in Melbourne and subsetly | feel very indebted to Boland and
Mak for giving me the opportunity to benefit from their knowtge about polyhedral combinatorics.

The scholarship for my graduate studies was provided by ¢ietriical University of Denmark. The
research presented in this thesis was carried out in the€mnmtTraffic and Transport of the Technical
University of Denmark. | appreciate all the support thestitutions offered.

January 10, 2006

Brian Kallehauge

viii



Contents

Formulations and exact approaches for the vehicle routinggroblem with time windows
1.1 Introduction . . . . . . . . e e
1.2 Problemdefinitionand notation. . . . . . . .. ... ... e
1.2.1 Complexity . . . . . . . e e e
122 Polytope . . . . .
1.3 Subtourand pathinequalities . . . . . . . . .. ..
1.4 Resourceinequalities . . . . . . . . . . L e
1.5 Trees. . . . . o e
1.6 Paths. . . . . .
1.7 Conclusions . . . . . . . e e

Lagrangian duality applied to the vehicle routing problemwith time windows
2.1 Introduction . . . . . . L
2.2 AnILP formulationofthe VRPTW . . . . . . . . . ... .. . ... . .0,
2.3 AlLagrangianrelaxationofthe VRPTW . . . . . . . ... ... . ... ... ...
2.4 Solving the Lagrangianproblem . . . . .. .. ... ... e
2.5 Solvingthe Lagrangiandual problem. . . . . . .. ... ... ... ...
2.6 The Lagrangian branch-and-cut-and-pricealgorithm .. .. . . . . ... ... .. ...
2.7 Computationalresults . . . . . . . . . . .. e
2.7.1 Comparison of column generation and stabilizedmgHtilanes . . . . . . . ..
2.7.2 Solutions for the Solomon problems . . . . . . ... ... L.
2.7.3 Solutions for the Hombergerproblems . . . . . . .. ... ............
2.8 ConcClusions . . . . . . . . e

Path inequalities for the vehicle routing problem with time windows
3.1 Introduction . . . . . . . e
3.2 ABIPformulationofthe VRPTW . . . . . . . . ... ... .. ..
3.3 Lifted pathinequalities . . . . . . . . . . . . . ... e e
3.3.1 Facetproof . . . . . . .
3.4 Precedenceconstraints . . . . . . ... e
3.5 ATSPinequalities . . . . . . . . . . . e
3.6 Preprocessing . . . . . . v i e e
3.6.1 Tighteningofthetimewindows . ... ... ... ..............
3.6.2 Precedence relationships and eliminationofarcs . . . . . ... ... ...
3.7 Test problems and computational platform . . . . . . ... ..o
3.8 The branch-and-cutalgorithm . . . . ... .. ... ... .. ... L.
3.8.1 Formulation of the initial binary integer program . . . . .. ... ... ...



3.8.2 Separationroutines . . . . . . . . .. e e 71

3.83 Branching. . . . ... . . . . . .. e 72
3.8.4 Enumerationstrategy . . . . . . . .. e 72
3.9 Computationalresults . . . . . . . . . . e 72
3.9.1 PreproCessiNg . . . . . v i e e e e e e e e 73
3.9.2 Solomon'stestproblems . . .. ... . ... ... ... .. 74
3.10 ConcClusionS . . . . . . e 91
Vehicle routing problem with time windows 93
4.1 Introduction . . . . . . . e 93
42 Themodel . . . . . . . . 94
4.3 Structure and decomposition . . . . . . ... e 96
4.4 Themasterproblem . . . . . . . . . e 97
45 Thesubproblem . . . . . . . ... e 100
4.6 Branch-and-bound . . . .. .. .. ... e 103
4.6.1 Branching onthe numberofvehicles . ... ... ... ... .......... 103
4.6.2 Branchingonflowvariables . . . . ... .. ... ... ... ... ... . 103
4.6.3 Branchingonresource windows . . . . . . . . . . .. .. oL 104
4.7 Accelerationstrategies . . . . . . . .. e 105
471 Preprocessing . . . . . . v i e e 105
4.7.2 Subproblemstrategies . . . . . . ... e 105
4.7.3 Master problem strategies . . . . . . . ... e 105
4.7.4 Cuttingplanes . . . . . .. 106
4.8 Generalizations of the VRPTW model . . . . . ... ... ... . ... .. ..., 107
4.8.1 Non-identicalvehicles . . . . . ... ... . .. . ... e 107
4.8.2 Multipledepots . . . . . . .. ... e 108
4.8.3 Multiple or softtimewindows . . . . . .. .. ... ... ... ... 108
4.9 Computational experiments . . . . . . . . . . e 108
4.9.1 TheSolomoninstances . . . . . . . . . . .. 108
4.9.2 Computationalresults . . . .. . .. .. ... . e . 109
4.10 ConcCluSIONS . . . . . o o e 109



Chapter 1

Formulations and exact approaches for
the vehicle routing problem with time
windows

Brian Kallehauge
Centre for Traffic and Transport, Technical University ofribeark

Abstract

In this paper we review the exact algorithms proposed in @isethree decades for the solution of the
vehicle routing problem with time windows (VRPTW). The ekapproaches for the VRPTW are in
many aspects inherited from work on the traveling salesmahl@m (TSP). In recognition of this fact
this paper is structured relative to four seminal papergeoniing the formulation and exact solution of
the TSP, i.e. the arc formulation, the arc-node formulatiba spanning tree formulation, and the path
formulation. We give a detailed analysis of the formulasiofithe VRPTW and a review of the literature
related to the different formulations. There are two mairedi of development in relation to the exact
approaches for the VRPTW. One is concerned with the genecalrdposition approach and the solution
to certain dual problems associated with the VRPTW. Anothere recent direction is concerned with
the analysis of the polyhedral structure of the VRPTW. Wectwhe by examining possible future lines
of research in the area of the VRPTW.

1.1 Introduction

In 1959, a paper by Dantzig and Ramser [18] appeared in thegbiManagement Science concerning
the routing of a fleet of gasoline delivery trucks betweenli terminal and a number of service stations
supplied by the terminal. The distance between any two ilmeats given and a demand for a certain
product is specified for the service stations. The probleio iassign service stations to trucks such
that all station demands are satisfied and total mileageredugy the fleet is minimized. The authors
imposed the additional conditions that each service statiovisited by exactly one truck and that the
total demand of the stations supplied by a certain truck do¢gxceed the capacity of the truck. The
problem formulated in the paper by Dantzig and Ramser [18 gigen the name ‘truck dispatching

problem’. | do not know who coined the name ‘vehicle routinghdem’ (VRP) for Dantzig and Ramser’s



problem but it caught on in the literature and is the titlehaf nost recent book on the problem, and some
of its main variants, edited by Toth and Vigo [85]. In this lp@oth and Vigo [86] considered branch
and bound algorithms for the VRP, Naddef and Rinaldi [72hbraand cut algorithms for the VRP and
polyhedral studies, Bramel and Simchi-Levi [8] set covgrrased approaches for the VRP, Cordeau,
Desaulniers, Desrosiers, Solomon, and Soumis [15] the VRPtime windows, Toth and Vigo [87] the
VRP with backhauls, and Desaulniers, Desrosiers, Erdnm@olomon, and Soumis [20] the VRP with
pickup and delivery. Furthermore, the book reviews heigragiproaches and issues arising in real-world
applications. Now the basic version of the VRP is often gitles name ‘capacitated vehicle routing
problem’ (CVRP) to distinguish it from its variants. In tipaper we consider the variant of the VRP with
time windows (VRPTW), where each customer must be visitetinia specified time interval, called a
time window. We consider the case of hard time windows wheretdcle must wait if it arrives before
the customer is ready for service and it is not allowed tovariate. In the case of soft time windows a
violation of the time window constraints is accepted buhthgrice must be paid.

Dantzig and Ramser [18] described how the VRP may be coresides a generalization of the trav-
eling salesman problem (TSP). They described the genatialivof the TSP with multiple salesmen and
called this problem the ‘clover leaf problem’, a name thahisvery picture of the problem. If there are
m salesmen we will refer to the clover leaf problem asith€SP, a less lucid name. If in the- TSP we
impose the condition that specified deliveries be made aydoeation, excepting the start location, we
get Dantzig and Ramser’s problem. Obviously the VRP is idahtwith them- TSP if the total demand
of all locations is less than the capacity of a single vehidide standard reference book on the TSP
was edited by Lawler, Lenstra, Rinnooy Kan, and Shmoys [6b}this book Hoffman and Wolfe [42]
describe how the importance of the TSP comes from the fatittigtypical of other problems of its
genre: combinatorial optimization.

Dantzig had previously collaborated with Fulkerson anchdoim in developing an exact approach to
the TSP. The appearance of their paper ‘Solution of a lacgéedraveling-salesman problem’ (Dantzig,
Fulkerson, and Johnson, 1954) in the journal Operationsdek was according to Hoffman and Wolfe
[42] "one of the principal events in the history of combirrédboptimization". In this paper the authors
first associated with every tour a vector whose entries atexed by the roads between the cities. An
entry of this vector is 1 whenever the road between a pairtigfis traveled, otherwise it is 0. They also
defined the linear equations that ensure all cities areedsiactly once in all representations of tours.
These equations are called the degree constraints. Sdbeydiefined a linear objective function that
expressed the cost of a tour as the sum of road distances céssive pairs of cities in the tour. The
problem is then to minimize the linear objective functiortlsuhat the degree constraints are satisfied
and the solution forms a tour. Third, the authors made ailipeagramming problem out of this integer
programming problem by identifying just enough additioliaar constraints on the vectors to assure
that the minimum is assumed by some tour. This lead to theduottion of the subtour elimination
constraints, which excludes solutions where cities antedsexactly once, but in a set of disconnected
subtours. However, the authors pointed out that there hex ttpes of constraints which sometimes must
be added in addition to subtour elimination constraintsritieo to exclude solutions vectors involving
fractional entries.

By now the approach of Dantzig, Fulkerson, and Johnson is basombinatorial optimization. The
approach is concerned with identifying linear inequaditie cutting planes describing the polytope de-
fined by the convex full of the points in the Euclidean spaes tepresents the set of feasible solutions of
the combinatorial optimization problem. No full descraptiof the TSP polytope is known and because
the TSP belongs to the class of NP-complete combinatortahigation problems there is no hope for a
polynomial-time cutting plane method for the TSP, unless-NIP. However, as Dantzig, Fulkerson, and
Johnson showed the cutting plane approach can still beeggithe TSP by including the TSP polytope
in a larger polytope (a relaxation) over which we minimizere&r objective function. In this way the
TSP is formulated as a linear program that gives a lower bdanthe TSP which can be useful in a



branch and bound algorithm. Padberg and Rinaldi [75] refthedntegration of the enumeration ap-

proach of classical branch and bound algorithms with thghgadral approach of cutting planes to create
the solution technique called branch and cut. This methadban very successful in solving large-scale
instances of the TSP and different authors have therefqiedpthe polyhedral approach to other hard
combinatorial optimization problems. Laporte, Nobert] &esrochers [62] were the first to apply the

polyhedral approach to the VRP. Finally, we note that thel fafldiscrete mathematics where combina-
torial optimization problems are formulated as linear pawogs is called polyhedral combinatorics and
we refer to the recent work of Schrijver [80] for a detaileglament of this subject. For a treatment of
polyhedral theory we refer to Nemhauser and Wolsey [73].

Now we consider another basic method in combinatorial dgtition which is concerned with the
characterization of the objective function of the combamil optimization problem instead of its poly-
tope. Using relaxation and duality we can determine thenogdtbbjective function value, or at least a
good lower bound on it (assuming minimization), without koifly solving the integer problem. In par-
ticular, we are concerned with Lagrangian relaxation aralitiu A related technique is Dantzig-Wolfe
decomposition, which provides an equivalent bound to thgrdsagian dual bound. In Lagrangian relax-
ation a set of complicating constraints are dualized inéodbjective function by associating Lagrangian
multipliers with them. This gives us an infinite family of aglations with respect to the Lagrangian multi-
pliers. For a given set of values of the Lagrangian multigltbe relaxed problem is called the Lagrangian
subproblem. The problem of determining the largest lowamoidfor this family is called the Lagrangian
dual problem. A fundamental result in mathematical prograng is that the Dantzig-Wolfe (gener-
alized) linear programming problem of finding a convex camaltion of solutions to the (Lagrangian)
subproblem that also satisfy the complicating constramtiual to the Lagrangian dual problem. The
book by Shapiro [81] marked the first appearance of the tergndragian relaxation in a textbook. In this
book the treatment of duality takes a constructive rathem gxistential approach to Lagrangian multipli-
ers. Everett [27] was the first to take this constructive pofrview of Lagrangian multipliers, which is
different from the Karush-Kuhn-Tucker point of view of aptlity involving dual variables. For a treat-
ment of Lagrangian duality we refer to Hiriart-Urruty andmiaréchal [41, Chapter XII]. There exist two
classical algorithms for solving the Lagrangian dual peofl The simplest algorithm for the Lagrangian
dual problem is the subgradient algorithm. The other ata$silgorithm is the cutting-plane algorithm
(a row-generation algorithm), which in the primal versiantlie column-generation algorithm. These
algorithms are convex minimization algorithms and belanthe field of nonsmooth or nondifferentiable
optimization. For a treatment of nonsmooth optimizationalg® refer to Hiriart-Urruty and Lemaréchal
[41]. The combination of branch and bound and column geingratas by analogy to branch and cut
called branch and price by Savelsbergh [83]. Finally, wheth lvariables and constraints are generated
in the nodes of the search tree the procedure is called branttand price. In the last decade a number
of frameworks for implementing branch, cut, and price hgseaped, e.g. ABACUS [49], SYMPHONY
[78], and BCP [13].

The use of Lagrangian relaxation in combinatorial optirti@awas in fact also inspired by the suc-
cessful application of it to the TSP by Held and Karp [38, 3@hgrangian relaxation translates the
problem of minimizing our objective function over a set afdar inequalities to finding the maximum
of a concave piecewise affine function. There is a relatipnbhatween polyhedral combinatorics and
Lagrangian relaxation. It is defined by the set of inequeditiescribing the convex hull of the incidence
vectors of solutions to the (Lagrangian) subproblem. Held Karp [38] proved using general linear
programming theory that the maximization of the bound pitedi by the 1-tree Lagrangian relaxation
of the TSP gives the same bound as the linear programmingateda of the TSP proposed by Dantzig
and Ramser [18] using the subtour inequalities. In this viieyrelationship between these two seminal
contributions [18, 38, 39] is established, and thereby alsexample of the relationship between polyhe-
dral combinatorics and Lagrangian relaxation. If the cartgbet of inequalities of the subproblem was
known it could be included in the integer programming prabknd minimizing our objective function



over the set of complicating constraints and the ineqealitif the subproblem would give the Lagrangian
dual value.

The methods for the vehicle routing problem with time windaae in many aspects inherited from
the work done for the traveling salesman problem. In redégnif this fact this paper is structured
relative to the four seminal papers on the TSP formulatibasthe arc formulation, the arc-node formu-
lation, the spanning tree formulation, and the path foritimta We only give a detailed analysis of the
formulations in this paper but we do give a full review of titerdature related to the different formula-
tions. There are two main lines of development in relatiothexact approaches. One is concerned with
the general decomposition approach and the solution tataiicelual problem associated with the primal
VRPTW. Another direction is concerned with the analysidefpolyhedral structure of the VRPTW. The
idea of convexity is central to both directions.

This paper is structured according to the four differentrfolations that have formed the starting
point of the exact approaches to the VRPTW. The four fornmutathave also been considered in the
context of the TSP. In what follows we give the complete liteferences for the VRPTW relative to
the four seminal papers on the TSP. We give the name of themsuth the papers concerning the TSP
followed by a list of the papers on the VRPTW that considerreegalization of the approach for the TSP.

e Arc formulation, Dantzig, Fulkerson, and Johnson [17],,[62]
e Arc-node formulation, Miller, Tucker, and Zemlin [71], [4]
e Spanning tree formulation, Held and Karp [38, 39], [31]

e Path formulation, Houck, Picard, Queyranne, and Vemudaa8jj [60, 23, 37, 31, 58, 59, 63, 64,
14, 29,9, 16, 28, 46, 54, 48]

Cordeau, Desaulniers, Desrosiers, Solomon, and SounjisfitbKallehauge, Larsen, Madsen, and
Solomon [53] also give recent surveys in relation to the VRPThe survey of Kallehauge et al. [53] is
given in the context of column generation in general anddlced is therefore the path formulation of the
VRPTW which has been studied by several authors. Theseysalso give a status on the computational
success of the state of the art algorithms proposed in #radtiire.

This paper is organized as follows. In Section 1.2 we defia8MRPTW as a graph theoretic problem
and introduce notation used throughout the paper. We alsoribe the complexity of the VRPTW
and define its polytope. In Section 1.3 we consider the amddation of the VRPTW involving only
binary variables associated with arcs of an underlyingetie graph. In Section 1.4 we review the arc-
node formulation of the VRPTW where we also associate virsawith nodes of the directed graph.
Section 1.5 considers a method to find lower bounds for the ™MRRvith the help of time and capacity
constrained shortest spanning trees and Lagrangian tielaxdn Section 1.6 we consider a method to
find lower bounds for the VRPTW, with the help of time and catyaconstrained shortest paths and
Lagrangian relaxation. Finally, in Section 1.7 we presemia conclusions and discuss future directions
of research.

1.2 Problem definition and notation

In this section we define the VRPTW as a graph theoretic pnohled introduce notation used throughout
the paper.

Definition 1.2.1 A time and capacity constrained digraph= (V,A,c,t,a,b,d,q) is defined by a node
setV =V, U{0,n+1} for V. = {1,...,n} the set of customer nodes and 0 and1 respectively the start
and destination depot node, arc et A,UJd"(0)Ud~ (n+1) for A, = A(V.) the set of arcs spanned



by the customer nodes ardif (0) = {(0,i) | i € V..} the set of arcs leaving the start depot node and
&6 (n+1)={(i,n+1) | i € V.} the set of arcs entering the destination depot node, cosisosn € ZA
wherecij < ¢ +Cj fori, j,k € V, durations on ardsc NA wheretj; <ty +1t; fori, j,k €V, release and
due times on nodes b € {Z, U {+»}}V whereag = an 1 =0, bg = by, 1 = +o0, & > to andb; > a

fori eV, andb; > & +tj; for (i, j) € A, demands on nodese ZX wheredy = dn.1 = 0, and capacity
g€ Z, whereq > d; fori € V, andq > d; +d; for (i, j) € A..

Definition 1.2.2 For any pattP = (vi,...,Vk) in D, the arrival times of the set of nod&$P) of the path
is the vectors € Z\fP) defined by:

S\Il = aV17
Sy =max{s, , +ty_,ay} fori=2,...k

the demand of the path &§V (P)), and the cost of the path &A(P)).

Definition 1.2.3 We say that a patR = (v1,...,V) in D is feasible if

(1.1) sy <hy forieV(P)
and
(1L2)  dV(P)<q

Definition 1.2.4 We say that a patR = (vi,...,V) in D is infeasible if

1.3) s, > by, foranyi eV (P)
or
(1.4) div(P)) >a.

Definition 1.2.5 An infeasible pattP = (v1,...,v) in D is said to be minimal infeasible if the subpaths
of P induced by depriviny (P) of respectively the starting node

(15  V(P)\{v}

and the end node

(1.6) V(P)\ {vic}

are feasible. We denote b¥p the set of all minimal infeasible pathsih

Definition 1.2.6 A route inD is defined as a feasible path from Orte- 1
R=(0,v,...,Vk_1,n+1).

We denote byZ the set of all routes iD.

Definition 1.2.7 A k-route inD is the union ok routes
Kk =RiURU---UR,

such that each nodec V, belongs to exactly one sé{R;), 1 <i < k. The cost of &-route isc(A(kk)) =
C(UAR) |i=1,...,Kk).



For anyW C V,, computing the number
(1.7) k(W) = min{k | ak exists inD(WU{0,1})},

represents the problem of finding the minimum number of ®rrquired to visit the subset of customer
nodedV; we stress the fact that the notatkiiwV) represents at the same time a number and a problem to
solve.

Definition 1.2.8 A partition of the set of customer nod€sinduced by &-routeky is called a feasible
k-partition. We denote bi = {k(V.),...,n} the set of feasible partition sizes.

Definition 1.2.9 For eachk € K we denote by%y the set ok-routes with corresponding partition sike

Definition 1.2.10 The set of alk-routes inD for k € K is denoted byZk = {U%xk | k= k(Vs),...,n}.

The vehicle routing problem with time windows is defined aléofes. Given a time and capacity
constrained digrapDb, find ak-route of minimum cost, i.e.

(VRPTW) min{c(A(K)) | Kk € %k }.

1.2.1 Complexity

If we place the restrictions on the instances of the VRPTW dha: 0 andb; = + for everyi € V, the
resulting restricted problem will be identical to the CVRRve furthermore place the restriction on the
instances of the CVRP thgt> d(V.) the resulting restricted problem will be identical to thePr&ith
multiple salesmen [71], sometimes denotedB¥ SP wheram is the number of salesmen, and that can
be transformed to the standard TSP [7]. On the other handjuistion of whether there exists a feasible
solution for a given instance of the CVRP is an instance obthgacking problem (BPP). Finally, if we
place the restrictions on the instances of the VRPTWHkhat {1}, g > d(V.), andc; =0 for (i,j) € A

the resulting restricted problem is the nonpreemptivelsingachine scheduling problem with release
dates and deadlines (SS1). Garey and Johnson [32] provétPttoempleteness of TSP, BPP, and SS1.
This implies by proof of restriction the NP-completenesghaf VRPTW.

1.2.2 Polytope

Definition 1.2.11 With everyk-routeky € %x in D, we associate an incidence veckr ¢ R” defined
by:

g [ 1L D) € Ak,

0 (L) ¢ Ak
Definition 1.2.12 The VRPTW polytope of a time and capacity constrained digiap- (V,A,c,t,a,b,d,q)
is the convex hull of the incidence vectors of theoutes inZx:

PyrpTiv = CONY Xk € RA | Kk € %k}

The vehicle routing problem with time windows is equivalemminimizing the functiorc™x over the
VRPTW polytope. The NP-completeness of the VRPTW also iegpthat no description in terms of
inequalities of the VRPTW polytope may be expected. Howepelynomial-time computable lower
bounds for the VRPTW can be obtained by including the VRPT\Ytppe in a larger polytope (a relax-
ation) over whictcx can be minimized in polynomial time.
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1.3 Subtour and path inequalities

In this section we consider a formulation of the VRPTW inwotyonly binary variables associated with
the arcs irD.
The VRPTW polytope is the set of those B” satisfying the degree equations

(1.8) X(6F(i))=1 forieV,,
(1.9) x(0~(i))=1 forieV,,

the subtour inequalities

(1.10) X(AW)) < |W|—1 forW C V, with |W| > 2,
and the path inequalities

(1.11) X(A(P)) < |A(P)|—1 forPe .

The formulation (1.8)-(1.11) of the VRPTW was proposed bylé&tesmuge, Boland, and Madsen [52].
The subtour inequalities were proposed by Dantzig, Futkerand Johnson [17] in their seminal paper
on the TSP. The idea of using path inequalities to model tinredow restrictions was presented by
Ascheuer, Fischetti, and Grotschel [1] in their paper onARSPTW.

Laporte, Nobert, and Desrochers [62] generalized the sultequalities for the CVRP

(1.12) x(A(W))<|W|—{@-‘ for W C V, with W 0.

Naddef and Rinaldi [72] reviewed capacity inequalities leé CVRP polytope including the rounded
capacity inequalities (1.12). Kohl, Desrosiers, Madsenp®on, and Soumis [59] further generalized
the subtour inequalities for the VRPTW

(1.13) X(AW)) < W|—k(W) forW CV, withW #£ 0,

and denoted thekpath inequalities. If we in the formulation of the VRPTW lage the subtour inequal-
ities (1.10) with the capacity inequalities (1.12) thersisufficient to only include condition (1.1) and
(1.3) in Definition 1.2.3 and Definition 1.2.4, respectiveThen we denote by?[" the set of minimal
time infeasible paths of Definition 1.2.5 and redefine (1tt1)

(1.14) X(A(P)) < |A(P)|—1 forPe V.

However, further replacing the capacity inequalities 2} Mith thek-path inequalities (1.13) is not suffi-
cient to drop (1.14) in the formulation (1.8), (1.9), (1.120d (1.14).

Kallehauge et al. [52] presented a class of strengthenddmpequalitiesS; for the VRPTW based on
the polyhedral results obtained by Mak [70] in the contexhefasymmetric traveling salesman problem
with replenishment arcs. Furthermore, Kallehauge et &]. f'etermined the dimension of the VRPTW
polytope and proved that ti# inequalities are facet defining under certain assumptidhese were the
first polyhedral results for the VRPTW. Kallehauge et al][8i®o transferred the precedence constraints
of Balas, Fischetti, and Pulleyblank [3] to the VRPTW cont&inally, the authors implemented a branch
and cut algorithm that showed promising results and redarolution to a previously unsolved 50-node
test problem of Solomon [82].

Mak and Ernst [69] have also studied a formulation of the VRPJimilar to (1.8)-(1.11) and pre-
sented five new classes of valid inequalities for the VRPTWe Tirst four classes are based on the
well-known Dy cycle inequalities [35] and the last is a class of path inétiesrelated to thes, class.
The authors also proved that the new classes of inequalitesfacet defining under certain assumptions.
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1.4 Resource inequalities

Next we introduce a formulation of the VRPTW where we alsmaisge variables with the nodesin
The integer solutions of (1.8)-(1.11) are exactly the ircick vectors df-routes, so it gives an inte-
ger programming formulation of the VRPTW. The class of subinequalities (1.10) have a cardinality
growing exponentially witm. An equivalent class of inequalities with polynomial cawality was pro-
posed by A. W. Tucker in 1960 [71]. He introduced node vadable ZV+ and proposed the inequalities

(1.15) ui—uj+px; <p-1 for(i,j) €A..

wherep < n. The node variableg; play the role of node potentials in an electrical network #mel
inequalities involving them serve to eliminate routes tatnot begin at the start depot node 0 and end
at the destination depot node- 1. This is already achieved by the subtour inequalities aftBig et al.
[17]. Theu; can be adjusted so thet= j if customeri is the jth customer visited in the route which
includes customeir The node variables; therefore represent the accumulated number of visits adong
route. The inequalities (1.15) ensure that no more thanstomers are visited in one route. FoP n
we have the standard VRPTW. In this wpys a resource limit on the number of visits in a route and we
generally denote (1.15) resource inequalities.

Kulkarni and Bhave [61] generalized A. W. Tucker’s ineqtiati for the CVRP, i.e. introduced a class
equivalent to (1.12) but with polynomial cardinality. Ifey demand); for i € V. represents a pick-up at
customei andy € ZV* then

(1.16) Vi—yj+ax; <q-—d; for(i,j) €A,

whered; <y; < qfori € V., are denoted pick-up inequalities. For any roRte (0,v,...,W_1,n+1)
wherek > 3, the node variables of the routg € Z, i = 2,...,k— 1, can be adjusted so that:

i
117) y =Y dy,
Vi JZZ VJ

whereyy, , <. In case every demartifor i € V. represents a delivery to custoniemdy’ € 7V« then
(1.18) Y —y;—ax;>dj—q for(i,j) €A,

wherey; < g—d; for i € V;, are denoted delivery inequalities. For any roRte (0,vs,...,W_1,n+ 1)
wherek > 3, the node variables of the roqt(g: €7Z,i=2,...,k—1, can be adjusted so that:

(1.19) ¥, =d(V(R) - izde
=

wherey,, < q—dy,. In the standard VRPTW it is required that all demands reprea pick-up or
alternatively that all demands represent a delivery.

Desrochers and Laporte [22] further generalized A. W. Tuskeequalities for the VRPTW, but in
the case of time windows the resource inequalities are nigt eguivalent to the generalized subtour
inequalities (1.13) of Dantzig et al. [17], but also equérglto the path inequalities (1.14).9& ZV then

(1.20) s —sj+ (bi+tij —aj)x; <b—a; for(i,j) €A,

whereg < 5 < b fori € V,, are denoted the time inequalities.

Forany routdR= (0, Vo, ..., W_1,n+1) wherek > 3, the node variables of the rolgec Z,i = 2,... ,k—
1, can be adjusted so that:

(1.22) Sy, = 8y,

(1.22) Sy = max{s, ,+ty v,a,} fori=2,...k,



wheres, <b,, fori=2,...,k—1.
The VRPTW polytope is the set of those BA, y € ZY+, ands € Z'+ satisfying the degree equations

(1.23) x(6t(i))=1 forieV,,
(1.24)  x(&6()=1 forieV,,

the pick-up inequalities

(1.25) Yi—yj+ax%; <q-dj for(i,j) €A,

the time inequalities

(1.26) s —sj+ (bi+tj —aj)x; <bj—a; for(i,j) €A,
and the bounds

(1.27) s <b forieV,,
(1.28) s>a forieV,,
(1.29) yi<q forieV,,
(1.30) yi >di forieV..

The formulation (1.23)-(1.30) of the VRPTW was proposed layd3 Kontoravdis, and Yu [4]. How-
ever, the authors considered the problem (1.7) of findingrtimmum number of routes required to visit
the set of customeks.. This problem is equivalent to minimizing the functie@®* (0)) over the VRPTW
polytope. Bard et al. [4] proposed the first branch and cutritlgm for the VRPTW based on this for-
mulation. They considered a number of well-known ineqiedifrom the TSP and VRP and proposed
two new types of path inequalities taking into account theetivindows of the problem. However, from
a computational point of view the generalized subtour iditjas were the most effective. A reason for
this is that the authors developed efficient heuristicsiergeparation of subtour inequalities. Further-
more, these path inequalities are quite weak compared tthe§; inequalities proposed in the context
of the VRPTW by Kallehauge et al. [52]. Bard et al. [4] alsodiaeso-called greedy randomized adaptive
search procedure (GRASP) for finding feasible solutiongomen bounds in the search tree. The branch
and cut method of Bard et al. [4] showed promising computatioesults.

Formulating the integer programming model is only the fitspsvhen hard optimization problems
are solved by branch and cut. The crucial part is the subgetomsiders of the finite family of defining
inequalities of the associated polytope. Itis well-knohaittA. W. Tucker’s inequalities generally provide
worse linear programming bounds than families of ineqieslivith exponential cardinality. In the context
of the ATSPTW Ascheuer, Fischetti, and Grétschel [2] noteat their model involving only binary
variables e.g. cannot handle as general objective furetisna model involving node variables. One
example could be a makespan type of objective where thettotalspent is minimized, i.e. including
waiting time. Depending on the application this should ¢fi@re be the criterion for considering node
variables or not because strengthened path inequalitregate Tucker’s inequalities.

1.5 Trees

In this section we consider a method to find lower bounds ferMRPTW, with the help of time and
capacity constrained shortest spanning trees and Lagmang/axation.

Definition 1.5.1 A 0-arborescence iD is a subseB of A such thaB forms a shortest spanning tree on
V\ {n+ 1} rooted at node 0 and such that for each nedeV., there is a feasible path from 0o

9



Definition 1.5.2 A routed arborescence, or just arborescencd,ima subset of Asuchthall \ 6~ (n+

1) is a O-arborescence and such tiatontains a subset of arcs enterimgt 1, sayF =TNd (n+1),
where|F| = |TNd*(0)|. We denote byZ the collection of all arborescencesin For any arborescence
T in D, the cost is defined by(T).

The shortest=£ minimum cost) arborescence problem with time windows aféciy constraints is
defined as follows. Given a time and capacity constraineaghD, find an arborescendeof minimum
cost, i.e.

(SAPTWCC) midc(T) | T € J}.

Papadimitriou [76] proved the NP-completeness of the dégtad tree problem and therefore by
proof of restriction the SAPTWCC is also NP-complete.

Definition 1.5.3 With every arborescendec .7 in D, we associate an incidence vectbre R” defined
by:

g1 iriDeT,
10 if (i) ¢T.

Definition 1.5.4 The SAPTWCC polytope of a time and capacity constrainedagigD is the convex
hull of the incidence vectors of the arborescencedin

f@SAPTWCC: COI’]V{XT c RA | Te f}

The shortest arborescence problem with time windows anaaiyonstraints is equivalent to minimiz-
ing the functiorc”x over the SAPTWCC polytope.
The SAPTWCC polytope is the set of those B” satisfying the indegree equations

(1.31) X0~ (i))=1 forieV,,

the cut-set inequalities

(1.32) X(6~(W))>1 forW CV, with W # 0

the path inequalities

(1.33) X(A(P)) < |A(P)|—1 forPe p

and the flow balance equation

(1.34) X(67(0)) —x(6~(n+1))=0.

The SAPTWCC can be solved by considering two separate prsble

e the determination of a shortest 0-arborescedici D, defined by those € BA satisfying (1.31),
(1.32), and (1.33), and

o the determination of a subget of minimum cost arcs entering the destination depetl, defined
by thosex € BA satisfying (1.34).
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To see the relationship between the VRPTW and the SAPTWCCansider a slightly different
formulation of the VRPTW equivalent to (1.8)-(1.11). Theadaegree (1.8) and indegree (1.9) equations
give us a mean to alter the "inside" form of the subtour inéijesa (1.10). By subtracting (1.8) from
(1.10) we obtain the "outside" form defined by the set of and3 ieavingW

(1.35) X(6T(W))>1 forW CV, with W # 0,

and by subtracting (1.9) from (1.10) we obtain the outsidenfdefined by the set of arcs I entering
w

(1.36) X(6~(W))>1 forW CV, with W # 0.
Furthermore, the degree equations (1.8) and (1.9) togefitiethe subtour inequalities (1.10) imply that
(1.37) X(6T(0)) —x(6~(n+1))=0.

The formulation (1.8)-(1.11) of the VRPTW is therefore e@lént to

(1.38) X(6T(i))=1 forieV,

(1.39) X(07(i))=1 forieV,,

(1.40) X(0~(W))>1 forW CV, withW # 0,
(1.41) X(A(P)) <|A(P)|—1 forPe Pp,
(1.42) X(67(0)) —x(6~(n+1))=0.

In the formulation (1.38)-(1.42) of the VRPTW, the outdemeguations (1.38) appear as the compli-
cating constraints. If these constraints were not prebenYRPTW would reduce to the SAPTWCC. To
take advantage of this problem structure we therefore dengle Lagrangian relaxation with respect to
the outdegree equations (1.38). For ang RY we consider the Lagrangian function defined by:

1.43 L(A,X) = X — S A 1
@ =g g o 331
(1.44) =E&"X+A (),

where

(1.45) c?,-—{z””i forieV,,jev,
1]

fori=0,] €V..
The Lagrangian problem associated witlis defined by:
(1.46) z(A) =min{& x| x € B” satisfies conditions (1.39)(1.42)} + A (V.)

where) is fixed inRY+. Problem (1.46) is a SAPTWCC with the cost function givercbA™ R.
The Lagrangian dual problem is defined by:

(1.47) maxz(A) | A € RY:}.

Definition 1.5.5 Let the set of arborescencésbe indexed wittk =1,...,|7| so Tk is thekth arbores-
cence and define the cost of tkih arborescence

— -y Tk

(i,))€Tk
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and the outdegree of node V, in thekth arborescence
aFZX}} fori=1,....n.
je

The Lagrangian problem (1.46) is then defined by:

(1.48) zZ(A) = 1Sr|1(1£i‘r]% {ok—agA}+A(Vs)

and the Lagrangian dual problem is defined by:

H Al
(1.49) A?R%i({lgrpgl??\ {ok—ag A} +A (Vo))

Since.7 is finite it allows us to express (1.49) as the following linpeogram with many constraints or
rows:

(1.50) max0 + Y A
1€V
subject to
0 <c— axAi fork=1,... |7,
1E€Vy
A eR forieV,,
0 cR.

The LP dual of (1.50) is a linear program with many variablesalumns:

17|
(1.51) min z CVYk
K=1

subject to

|7]

z axyk=1 forieV,,
K=1

|7

> w=1,

&

w>0 fork=1,...,|7].

Problem (1.51) withyy required to be integral is equivalent to the VRPTW. In caséntdgrality
constraints an optimal solution to (1.51) must satigfy—= 1 for someT € .7 andy, = 0 for all Ty €
I\ {T}. Problem (1.51) is the LP relaxation of the Dantzig-Wolfeadm®mposition obtained when
any solution to the VRPTW is expressed as a non-negativeezocmmbination of resource-constrained
directed spanning trees. The relaxation of the VRPTW preseim this section has never been used
directly in a branch and bound algorithm. The idea of usingt&st spanning trees has been considered
in the VRPTW context but only one paper [31] in the literatorethe VRPTW has considered this
classical approach in vehicle routing.

Held and Karp [38] explored the relationship between theragtnic and asymmetric traveling sales-
man problem and shortest spanning trees in undirected aedteli graphs, respectively. Consider the
symmetric TSP and the complete undirected graph (V,E) onn nodes. A 1-tree is a subgrafhof
G with nodes 12,...,nconsisting of a tree on the nodes32 .., n together with two edges incident with
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node 1. In fact, a 1-tre&@ in G consists of exactly arcs, whereas a tree @ consists ofn— 1 arcs.

So a 1-tree is a tree with an additional arc added explairtiagerm 1-tree. A solution to the STSP
is precisely a 1-tree in which all nodes have degree 2. Thedraian relaxation of the STSP with re-
spect to the degree constraim{®(v)) = 2,v € V \ {1}, gives a shortest 1-tree Lagrangian problem and
the Lagrangian dual problem can be expressed as a pair af [megrams similar to (1.50) and (1.51).
Held and Karp [38] gave a column generation method and amasuethod for finding the Lagrangian
dual value. The column generation method was able to sob/pribgram (1.51) for most problems with
n= 12 and some problems with £3n < 20. On larger problems the convergence was always too slow
and the authors noted that this was consistent with the l@hafvother column generation techniques at
that time referring to the work of Gilmore and Gomory [34].l#land Karp [38] also described how the
approach for the symmetric TSP carry over to the asymmaedse cln this case the authors introduced a
type of directed subgraph they called a 1-arborescencegtkdis an arborescence (directed tree) rooted
atnode 1 plus an ar®, 1) joining some node € V \ {1} to node 1. We remark that the authors notion of
a l-arborescence is slightly different from auarborescence, which is defined as an arborescence rooted
at noder. Held and Karp [38] also described the extension of the & dpproach to thex STSP in which

the degree at node 1 ist2 This would later be further generalized to the symmetridcRPVHeld and
Karp [38] already added in the proof of their paper that a nathwmd for computing the Lagrangian dual
value would be presented in a sequel to the paper. The faltppaper [39] was a milestone in the sub-
ject of Lagrangian relaxation in integer programming. Hatdl Karp [39] successfully introduced what
became known as the subgradient algorithm (a term intratlbgeHeld, Wolfe, and Crowder [40]) and
influenced future research dramatically [5]. In 1974 Geoifff33] coined the term Lagrangian relaxation
to describe the method of Held and Karp [38, 39]. Becausesoifitial use of the subgradient algorithm,
Lagrangian relaxation to some extent became synonymobshétsubgradient algorithm, which is un-
fortunate because this algorithm is the simplest algoritbnconcave maximization and suffers from
several drawbacks [41]. Indeed the method is mainly at@because it is so simple to implement.

The earliest generalization of the approach by Held and K&8jwas proposed by Christofides, Min-
gozzi, and Toth [11] for the SCVRP based on khéegree center tre&-DCT) relaxation of the SCVRP.
The approach allow for the possibility of single customertes. Fisher [30] presented a different relax-
ation of the SCVRP using shortdstrees. Consider the symmetric CVRP and the complete wtdile
graphG = (V,E) onn nodes. Ak-tree is a subgraph d& consisting ofn — 1+ k edges that span the
nodes. The degree of the depot node 1kisARs the name suggests this is a generalization of the 1-tree
approach of Held and Karp [38]. The author dualized the dapaconstraints (1.12) of Laporte, Nobert,
and Desrochers [62] and solved the Lagrangian dual probséng the subgradient algorithm and gener-
ation of violated capacity constraints. The Lagrangiarl guablem expressed as an LP similar to (1.50)
is exponential in size since it has exponentially many Vdeis as well as constraints corresponding to
the number of capacity constraints aatrees, respectively. Instead of using the subgradiertriign
a cut and column generation algorithm similar to the one psed by Kallehauge, Larsen, and Madsen
[54] could be used for solving the dual problem.

Fisher [30] also described an extension of his method to REMV. He introduced path inequalities
(1.112) in a formulation of the VRPTW and relaxed these to iobtiae samek-tree Lagrangian problem
considered for the CVRP. He did not report any computatioesilts. The extension to time windows
was developed with K. Jornsten and O.B.G. Madsen and togeitieer, Jornsten, and Madsen [31] later
presented computational results using khteee method. However, the shortest tree relaxation of the
VRPTW has not been the subject of the same amount of resesitbie ghortest path relaxation and in
our view it is at this point an open question whether the fdation described in this section is effective.

We do not consider a formulation of the SAPTWCC with a fixedrdegat the root node because we
consider the variant of the VRPTW with a free number of vedsciThis is different from the TSP (VRP)
where the authors consider rooted trees with a degree eartsdt the root node because they consider
problems with a fixed number of tours (routes). Toth and VB proposed an algorithm for the shortest

13



arborescence problem with capacity constraints (SAPC@yekier the extension to time windows has
not been considered in the literature. Finally, we refer¢brfver [80, Section 50.6a] for a complexity
survey for shortest spanning trees.

1.6 Paths

We next consider a method to find lower bounds for the VRPTWh wie help of time and capacity
constrained shortest paths and Lagrangian relaxation.

Definition 1.6.1 We denote byDg .1 the time and capacity constrained digraph obtained fibioy
adding the ar¢0,n+ 1) to the set of arcé of D. For notational convenience we denote the extended set
of arcs byA. The costty ;1 and duratiorig n1 on arc(0,n+ 1) is zero.

The elementary shortest path problem with time windows apacity constraints is defined as fol-
lows. Given a time and capacity constrained digrBgh 1, find a path from 0 te+ 1 of minimum cost,
ie.

(ESPPTWCC) mific(A(R)) | Re #}.

Dror [26] proved the NP-completeness of the ESPPTWCC. Nexdsfine a relaxation of the ESPPTWCC.
Awalk in Dgnyq from O ton+1is a sequence of nodes

(152) R(k) = (O,Vz,...,Vm,]_,n-i- 1),

wherevy,...,vym_1 are not necessarily distinct. ¥, # v for 2 < p < k the walk is called a non-
elementary route with nk-cycles. The (non-elementary) shortest path problem witle wvindows and
capacity constraints and rkecycles is defined as follows. Given a time and capacity cairstd digraph
Do 1, find a walk from O tan+ 1 of minimum cost containing ni-cycles, i.e.

Pseudo-polynomial time algorithms exist for th&PPTWCC [21, 43, 23, 46]. If no cycle elimination is
performed the problem is called the SPPTWCh1 we have thatZp) 2 Z(3) 2 -+ 2 Z(n-1) 2 %-

Definition 1.6.2 With every routeR € & in Dg -1, We associate an incidence veotBre R” defined by:
R 1 if(i,j) e AR),
170 it (i) 2AR).

Definition 1.6.3 The ESPPTWCC polytope of a time and capacity constrainedplitPo .1 is the
convex hull of the incidence vectors of the routeszn

PEsppTWCC= COI’]\I{XR S RA | Re ,@}

The elementary shortest path problem with time windows amécity constraints is equivalent to mini-
mizing the functiorc™x over the ESPPTWCC polytope.
The ESPPTWCC polytope is the set of thaseBA satisfying the degree equations

(1.53)  x(5+(0)) =1,
(1.54)  x(5~(n+1))=1,
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the balance equations

(1.55) X(6~(i)) —x(67(i)) =0, forieV,,

the subtour inequalities

(1.56) X(AW)) < |W|—1 forW C V, with |W| > 2,
and the path inequalities

(1.57) X(A(P)) <|A(P)|—1 forPe %p.

To see the relationship between the VRPTW and the ESPPTWQiefivee the VRPTW in a slightly
different way. Given a time and capacity constrained digfagn+ 1, find a collection of route$Ry | k =
1,...,n} of minimum cost such that each node V, is visited exactly once, i.e.

1.58 i A
(1.58) mlnlgggnC( (Ro)

subject to
|U1<k<nAR) NS (V)| =1 forveV,,
Rce# fork=1,....n.

Remark 1.6.1 Since we have introduced the d@;n+ 1) in Do .1 the solution to (1.58) may contain a
number of zero-cost routes not visiting any customer noddpaoblem (1.58) is therefore equivalent to
the VRPTW.

Definition 1.6.4 With every collection of routeg, = {R¢ | k= 1,...,n} in Dgn1, We associate an
incidence vectorn € RA" defined by:

1t j) € AR,
0 if (i, ) ¢ A(R).

The polytope of (1.58) is the set of those BA" wherex € B satisfy (1.53)-(1.57) fok=1,...,n
and:

(1.59) Z Z/X”k:1 fori € V,.
1<k<nj€

The vehicle routing problem with time windows is thereforpizalent to minimizing the function
3 1<k<nC' X Over the polytope of (1.58).

In the formulation (1.53)-(1.59) of the VRPTW, the congttai(1.59) appear as coupling constraints,
which link the individual variableg. If these constraints were not present the VRPTW would redoic
n ESPPTWCC problems, each with the simpler formulation ((83%7), and thus become considerable
simpler. To take advantage of this problem structure wesfloee consider the Lagrangian relaxation with
respect to the constraints (1.59). For ang RY* we consider the Lagrangian function defined by:

(1.60) HAX) = 1;9%/ j;/ e i;ﬁ)\i <1<Z<nje;)qj B 1)

(1.61) = Z EMx+A(Va),
1<k<n

Kn __
Xijk =
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where

Gj—Ai forieV,,jeV,
Cij fori=0,j € V..

(1.62) G = {

The Lagrangian problem associated witlis defined by:

(1.63) Z(A) =min{ E"x | x« € B* satisfies conditions (1.53)(1.57) fork =1,...,n} + A (V,)

1<k<n

where) is fixed inRY+. Problem (1.63) can be solved by considenmgSPPTWCC problems with the
cost functionc™ A — R. Since then ESPPTWCC subproblems are identical, one only needs todsmsi
one subproblem and the Lagrangian problem takes the form:

(1.64) z(A) = nmin{&"x | x € B" satisfies conditions (1.53)(1.57)} + A (V,)
The Lagrangian dual problem is defined by:
(1.65) maxz(A) | A e R%}.

Definition 1.6.5 Let the set of routes? be indexed wittk = 1,...|#| soRy is thekth route and define
the cost of thekth route

Ck = Z cijxﬁk
(i.))eAR)

and the number of times node V, is visited by thekth route
Rk .
ag= Y x* fori=1,...,n

The Lagrangian problem (1.64) is then defined by:

(1.66) zZ(A) = nlSTSiT%‘{ck—a[[)\}Jr)\(V*)

and the Lagrangian dual problem is defined by:

1.67 Z) = max{n min {cc—alA}+A(V,)}.
(167)  2o(#) = max{n min {o—alA}+A(V.)}
In (1.67) we have tha p (%(2)) < zp(%3) <+ <24D0(#(n-1)) < 4D(Z%).
Since# is finite it allows us to express (1.67) as the following linpeogram with many constraints
Of rows:

(1.68) maxnf + 'y A
i€V,
subject to
0<c— ) akAi fork=1,...,|Z|,
i€V,
A eR forieV,,
6 eR.
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The LP dual of (1.68) is a linear program with many variablesaumns:

||
(1.69) min z CVYk
K=1

subject to

|Z|

z axyk=1 forieV,,
K=1

||

> Yk=n,

k=1

=0 fork=1,...,|Z|.

Problem (1.69) withy, required to be integral is equivalent to the VRPTW. This distds true if
we formulate the linear program with respect#y, for some 2< k <n-1. Problem (1.69) is the
LP relaxation of the Dantzig-Wolfe decomposition obtaiveten any solution to the VRPTW is ex-
pressed as a non-negative convex combination of routegveywbecause the subproblems are identical
the convexity constraints have been aggregated [53]. Theeggted formulation is equivalent to the
standard set-partitioning formulation of vehicle routprgblems [8]. There is a benefit in working with
the decomposed formulation; it does not suffer from the thesk of symmetry present in the original
formulation using the three-index variableg where a given solution can be represented in several ways
by permuting thé& indexing. The formulation of the VRPTW presented in thistieecusing three-index
variables have never been used in a branch and bound algofttoblem (1.69) have been an important
construct in the formulation of algorithms for the VRPTW babre recently the dual point of view of
(1.68) has also been considered.

Houck, Picard, Queyranne, and Vemuganti [43] presenteldaaton of the symmetric and asymmet-
ric traveling salesman problem based on resource-consti@iaths. The resource in their path definition
is the number of arcs contained in the path and the limit ocdimsumption of this resource is the number
of nodes in the graph. They called a path containingarcs am-path. They called a path elementary if
its nodes are all distinct except possibly the first and lasten If we fix a node 1 of the (directed) graph
ann-path from node 1 to node 1 is a Hamilton tour if and only if ielementary. The problem of finding
an elementary-path of minimum cost from node 1 to node 1 is equivalent tottheeling salesman
problem and hence NP-complete. The authors thereforeaeglthe condition that the path should be
elementary. IP = (1,i1,...,in—1,1) denotes am-path and there existskesuch thaiy = iy, » for somek
then the patlP is said to contain a 2-cycle. It was observed that mapaths contained 2-cycles. They
proposed a tighter relaxation by forbidding paths contejrd-cycles and presented a dynamic program-
ming algorithm for finding am-path of minimum cost which does not contain 2-cycles. HoetcK. [43]
also showed that the problem of maximizing the bound deriethis relaxation could be expressed as
linear programs similar to (1.68) and (1.69). They propasedlumn generation scheme for solving the
master problem but noted that the column generation wasslewin converging to the optimal solu-
tion. This is a typical observation in early research iniredcolumn generation. An American pioneer in
linear programming computing techniques, Orchard-Ha$s 34, p. 240] said: "Nevertheless, the D-W
(Dantzig-Wolfe) (generalized programming) algorithmsaets difficulties, and overall experience with
its use has been mixed. This has led to some disappointménti@composition algorithms". Houck
et al. [43] then proposed to use the subgradient algoritHloviong the earlier approach of Held and
Karp [39] and embedded this method in a branch and bounditdgor The authors made an impor-
tant concluding remark that thepath relaxation can easily accommodate extra conditiom$act the
computational work required in the dynamic programmingéathm is just reduced when additional con-
straints are handled. In relation to this observation Eieard Queyranne [77] had previously considered
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a time-constrained variant of the TSP.

Christofides, Mingozzi, and Toth [11, 12] generalizednkgath relaxation of Houck et al. [43]. They
formulated the capacitated vehicle routing problem us@spurce-constrained paths where the resource
is the accumulated demaigdalong the path and called these patpgaths. They also considered the
set-partitioning formulation of the CVRP similar to (1.68)t instead of solving the linear programming
relaxation of this master problem they proposed a relaratibich could be solved by dynamic pro-
gramming. In this way their method is a two-level dynamicgreanming approach. In 1987 Kolen,
Rinnooy Kan, and Trienekens [60] introduced the first metfaydthe exact solution of the VRPTW.
Kolen et al. [60] extended the two-level dynamic prograngrapproach of Christofides et al. for the
VRPTW by introducing the accumulated time along the pathteesdditional resource. The importance
of this research comes from the introduction of the shopatt problem with time windows and capacity
constraints SPPTWCC, which has played a prominent rolednré¢kearch on the VRPTW. The method
of Kolen et al. [60] was only capable of solving problems wighto 15 customers. The reason for this
is the relaxation of the master level problem and the use v&nyc programming for solving the master
problem.

The appearance of ‘A new optimization algorithm for the ehrouting problem with time windows’
(Desrochers, Desrosiers, and Solomon, 1992) in the jo@patations Research was a breakthrough in
the history of the VRPTW and furthermore an important papeelation to the successful application of
Dantzig-Wolfe decomposition and column generation in gain&he method of Desrochers, Desrosiers,
and Solomon is also based on the resource-constrainedqratilation of the VRPTW but they used
column generation to solve the linear programming relaxatf the set-partitioning master problem
(1.69). The idea of embedding column generation in a bramchteund algorithm was previously
introduced by Desrosiers, Soumis, and Desrochers [24]h@ntTSP with time windows. Another
important contribution of Desrochers, Desrosiers, ane®oh was the introduction of the set of test
problems developed by Solomon [82]. The introduction ofadard set of test problems is important
because it enables relative evaluation of competing appesa Of course different authors also need
to consider the same problem variant and adhere to certaventions with respect to the precision
of problem data. Finally, the Desrochers, Desrosiers, aidn$on paper introduced the label setting
algorithm of Desrochers [21] in the context of the VRPTW folving the shortest path problem with time
windows and capacity constraints. The authors extendegl¢foeithm to include the 2-cycle elimination
scheme of Houck, Picard, Queyranne, and Vemuganti [43]rd2esrs’ algorithm has been an important
component in the solution of a large class of resource caingttl routing and scheduling problems [25]
but as far as we are aware the manuscript ‘An algorithm forstiertest path problem with resource
constraints’ (Desrochers, 1988) has not yet been publishaal international journal.

Lagrangian decomposition is an approach that attemptseagthen the bounds of Lagrangian re-
laxation [36]. This approach splits the original probleroitwo or more different types of subproblems.
Halse [37] describes three different Lagrangian decontiposi of the VRPTW: VS1, VS2, and VS3.
In the VS1 decomposition the VRPTW is formulated using a t&@sbipath problem with time windows
(SPPTW) and a generalized assignment problem (GAP). Thedé8@mposition considers a shortest
path problem with time windows and capacity constraintdqfBRCC) and a semi-assignment problem
(SAP). Finally, the VS3 decomposition considers an SPPTVE@Ca GAP by including vehicle capacity
constraints in both subproblems. The Lagrangian dual problof the three Lagrangian decomposition
approaches involves more multipliers than in the Lagramgédaxation of the VRPTW (1.61). In fact,
if nis the number of vehicles then the Lagrangian decompositiequires times as many multipliers
as the Lagrangian relaxation (1.61). Kohl [57] made an aiwallycomparison of the bounds provided
by the Lagrangian decompositions and the Lagrangian rétaxand proved that the VS1 and VS2 de-
compositions give the same bound as the Lagrangian retexxaEurthermore, he also proved that the
VS3 decomposition gives the same bound as the Lagrangiaxaten under the assumptions that the
vehicles are identical and a feasible solution exists ferWRPTW. This proof is non-trivial since the
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two subproblems SPPTWCC and GAP do not have the integraiitggrty. Since the Lagrangian de-
compositions increase the dimension of the Lagrangianghadllem, but do not strengthen the bound of
the Lagrangian relaxation, the conclusion of the analygikdhl [57] is that the Lagrangian decompo-
sitions are not attractive for the identical-vehicle VRP.TM&her, Jornsten, and Madsen [31] presented
computational results based on the VS2 decompositionraphie Lagrangian dual problem using the
subgradient algorithm. Although the Lagrangian decomjmrsconsidered by Fisher et al. [31] is not
attractive compared to the Lagrangian relaxation the astivere the first to consider a path formulation
of the VRPTW from the dual point of view. It would later becomlear that it was the choice of the
subgradient algorithm that impeded the dual approach.

Kohl and Madsen [58] proposed a method for the VRPTW basedehdgrangian relaxation (1.61).
They implemented a bundle algorithm of Lemaréchal, Stipdiad Bihain [67] with an Euclidean steep-
est descent direction finding problem and the line-seardbeafaréchal [66] for determining the step-
size. In relation to line-searches Hiriart-Urruty and Leéwhal [41, p. 403] mentioned that "the modern
tendency goes towards the so-called trust-region teckhigd number of important issues were ad-
dressed by Kohl and Madsen [58]. First, the dimension of thgrangian dual problem is smaller in the
Lagrangian relaxation than in the Lagrangian decompasiticSecond, the convergence of the bundle
algorithm is better compared to the subgradient algoritfimird, using a bundle algorithm it is possi-
ble to obtain a primal solution equivalent to the variabléthe Dantzig-Wolfe master problem (1.69).
Finally, in the bundle algorithm one can choose a startingtpaith relatively small multiplier values
and gradually increase the multipliers to the optimal levihe dual approach therefore creates easier
shortest path subproblems because the modified arc costssauregative, hence less negative cycles are
introduced. Kohl and Madsen [58] only considered problemas tequired very little branching so a full
computational study of the path formulation from a dual pofrview was not performed.

Kohl [57] and Kohl, Desrosiers, Madsen, Solomon, and So{B8Sikaddressed the need for improving
the bounds provided by the non-elementary path formulatitim 2-cycle elimination. They introduced
thek-path inequalities (1.13) fde= 2 in the Dantzig-Wolfe master problem (1.69). The path fdatian
then has exponentially many variables as well as constraim a column and cut generation approach
was used for solving the master problem. They embedded thmoand cut generation in a branch and
bound algorithm and their work is one of the early examplesgluit became known as branch, price, and
cut algorithms.

Larsen [63] parallelized the branch and bound search ingogithm of Kohl et al. [59]. Furthermore,
Larsen [63, 64] proposed column deletion and forced eanly f&tr improving solution times. The column
deletion procedure deletes columns in the master problairisasimilar to the concept of the bundle
reduction technique used by Kohl and Madsen [58], i.e. tatlilme size of the coordinating master
problem. The forced early stop terminates the SPPTWCCngrialgorithm as soon as one path with
negative reduced cost is generated. The forced early stomiivated from a dual point of view. In
the column generation algorithm the initial master problamst be initialized with a feasible solution.
If this primal solution corresponds to a dual solution withatively high multiplier values compared
to the optimal level then the difficulty of the SPPTWCC sulighem is relatively higher in the initial
phase of the column generation algorithm. In the first iterst forced early stop therefore gives rapid
improvements of the dual solution cutting down on solutiomess in the subproblem. Forced early stop
is also called partial pricing whereas solving the subprbio optimality is called full pricing.

Rich [79] and Cook and Rich [14] extended the work of Kohl et[&B]. They proposed a new
separation algorithm for thk-path inequalities fok > 2. The authors used the randomized algorithm
given by Karger and Stein [55] that findsminimal cuts in undirected graphs @(n?® log?n) time
wheren is the number of nodes. By settimg= k, setsW for whichx(W) < k are found. Ifk(W) > kin
(1.7) therW induces a validk-path inequality (1.13). Moreover, they parallelized thparation ok-path
inequalities and the branch and bound search.
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The bounds provided by the path formulation is also improWesle require the solution to the
resource-constrained shortest path problem to be elemyenBeasley and Christofides [6] proposed
to add a visitation resource for each node V, with a lower and upper limit of zero and one, respec-
tively. The visitation resource usage when passing throwgtev is one. This new resource definition
ensures we generate only elementary paths. However, th@tthe state space increases dramatically
and Beasley and Christofides [6] expected that this forrnmrlatould only be suitable for solving prob-
lems with a small number of resources and made no furthetestu@he approach of Desrochers et al.
[23] is attractive from a computational point of view becatlse SPPTWCC can be solved in pseudo-
polynomial time. However, the method has the disadvantdgeeakening the lower bound provided
by the path formulation. In an effort to address this issuddteDejax, Gendreau, and Gueguen [29],
Chabrier [9], and Danna and Le Pape [16] adapted the ideaasfi®gand Christofides [6] to Desrochers’
algorithm. The authors also generalized the consumptighefisitation resource. A nodeis called
unreachable with respect to a p&tfif the path already has visitador there is no way to extend the path
to v due to other resource limitations, i.e. time or capacitye Visitation resources of a path are therefore
consumed either because the nodes have already been visibedause of other resource constraints.
The concept of unreachable nodes is attractive becausarjiests the dominance relation. Chabrier [9],
Danna and Le Pape [16], and Feillet, Gendreau, and Rous28hprpposed other heuristic and exact
improvements incorporated in their algorithms for the oluof the elementary shortest path problem.
The developments in the solution of the subproblem aredsterg because the VRPTW polytope in the
elementary approach is embedded in a larger polytope bua potytope over whicke” x can be mini-
mized in polynomial time. In fact, the authors propose tos@nother NP-complete problem instead of
the VRPTW. In our view this raises the following researchsiiom: Can one find an algorithm for the
VRPTW that compute polynomial-time lower bounds that aredmminated by the bounds obtained by
the elementary path formulation? We believe that furthezstigations of the VRPTW polytop@&yrptw
of Definition 1.2.12 will prove valuable in answering thisagtion.

Kallehauge [50] presented some measurements of the effaetisixing the condition that paths must
be elementary. The measurements followed a suggestion tasiNa Boland, who raised the following
research question: What are the gaps between the soluti¢h$9) with elementary routes and solutions
to (1.69) with non-elementary routes and 2-cycle elimorafor Solomon’s data sets? She suggested that
a good start would be to look at the non-elementary LP soiatibat are produced, and check how many
non-elementary paths are assigned non-zero LP values, aasuning the sum of the non-elementary
LP variables over the sum of the LP-variables, i.e. the ivaatf the non-elementary paths. Kallehauge
[51] made these measurements for all Solomon'’s short-twrlD0 customer problems (excluding C1
problems) and it showed that the problems that remainedvetbave a high fraction of flow on non-
elementary paths. In Table 1.1 we present these measurgmdnith are made in the root node of the
branch-and-boundtree before inserting any autsusTomerss the number of customers that are visited
more than oncene paTHS/ ALL PATHS IS the number of corresponding paths in the LP-solutiondbatain
cycles compared to the total number of paths, i.e. the numbeariables greater than zerae FLow
ToTAL is the sum of the LP-variables that correspond to paths withes and the total sunmsne FLow
shows the percentage of the non-elementary compared tottidlow.

Following a suggestion by Jacques Desrosiers, Kalleh&jefesented the same measurements as
in Table 1.1 after the total flow is integer, i.e. when the nemtif vehicles is integer. It is also possible
to include e.g. subtour inequalities and 2-path inequalith the LP-model before branching on vehicles.
Table 1.2 shows these measurements after subtour inégsialitd 2-path inequalities are generated for
the LP problem of the root node and we have branched on vehMle keep generating these inequalities
as long as we only branch on vehicles. The number of times aechron vehicles is relatively small
because the number of vehicles quickly becomes integere If@mpare the columsmne FLow in Table
1.1 with the equivalent column in Table 1.2 we see that the dowhe non-elementary paths is decreased
after inserting cuts and branching on vehicles but it i$ significant, i.e. above 20% for all unsolved
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NE CUSTOMERS | NE PATHS/ALL PATHS | NE FLOW/ TOTAL FLOW | %NE FLOW
R101 0 0/26 0/19.5 0
R102 0 0/18 0/18.0 0
R103 8 7139 1.22/14.06 8.7
R104* 49 41/78 4.18/10.16 411
R105 0 0/59 0/14.88 0
R106 8 9/74 1.37/13.00 10.5
R107 23 29/78 2.42/10.95 221
R108* 34 32/73 3.63/9.82 37.0
R109 14 14/78 1.70/12.23 14.0
R110 24 25/89 2.86/10.96 26.1
R111 17 20/91 1.87/11.43 16.4
R112* 41 36/86 2.79/9.49 29.4
RC101 0 0/60 0/14.58 0
RC102 11 10/61 1.88/13.51 14.0
RC103 20 24172 3.11/10.69 29.0
RC104* 53 48/85 4.22/9.88 42.7
RC105 2 2/35 0.40/13.53 3.0
RC106* 29 32/89 3.42/12.34 27.7
RC107* 31 30/74 2.87/11.48 25.0
RC108* 40 38/65 3.58/10.73 33.4

*: unsolved instance by September 2000

Table 1.1: Measuring the effects of the non-elementaryxagian in the root node before any inequalities
are generated.

instances.

Table 1.3 shows for each instance the numbé¢ofcles on the paths with non-zero LP-values in the
optimal solution to the LP problem of the root node:zvcLes shows the number of cycles by type: 3-
cycle/4- cycle/5-cycle/etc. It is characteristic for thetances that remained unsolved that a high fraction
of the total number of cycles in the non-elementary LP sofuts 3-cycles. At that time we therefore
were interested in trying 3-cycle elimination on theseanses [51]. Oli B. G. Madsen [68] presented our
results at a GERAD seminar in Montreal where Stefan IrnieH {das visiting at that time. Following
this seminar Stefan Irnich [45] generalized the 2-cyclmilation of Houck et al. [43] and Irnich and
Villeneuve [46] further extended this work with detailedhputational results available in [47]. Indeed
thek-cycle elimination gave improvements in the lower boundsaas still computationally attractive
as long ask is not too large. Irnich and Villeneuve [46] presented cotapianal results for values of
k=2,...,5. Irnich and Villeneuve [46] gave an upper bound on the iaseein the number of labels.
This bound is(k — 1)!2 for k > 3 so there are limits to how large valueskoghould be used. Fdr= 2
the increased number of labels is a factor 2 kfer 3 it is a factor 6.

Kallehauge, Larsen, and Madsen [54] presented a stabitiméithg-plane algorithm for the La-
grangian dual problem. The idea is to force the next dualtiolwf the cutting-plane algorithm to
be a priori in a ball or trust-region associated with the gimerming. The authors use the max-norm so
the master problem is an LP problem with bounds on the du#@blas. This is an acceleration of the
cutting-plane algorithm of Kelley [56] and Cheney and Guéits[10]; the original reference for the col-
umn generation variant is Dantzig and Wolfe [19]. The tmegfion ensures stability of the dual solution
from one iteration to the next. Instability refers to thaiation where the current iterate is closer (with
respect to some norm) to the optimal solution than the nexitié. Kallehauge et al. [54] was motivated
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NE CUSTOMERS | NE PATHS/ALL PATHS | NE FLOW/ TOTAL FLOW | %NE FLOW
R101 0 0/29 0/20.00 0
R102 0 0/18 0/18.00 0
R103 4 41742 1.00/15.00 6.7
R104* 45 29/81 2.95/11.00 26.8
R105 0 0/74 0/15.00 0
R106 6 7174 1.11/13.00 8.5
R107 16 20/87 1.69/12.00 14.1
R108* 35 35/85 2.90/10.00 29.0
R109 6 6/65 0.85/13.00 6.5
R110 23 23/92 2.51/11.00 22.8
R111 18 19/90 1.97/12.00 16.4
R112* 40 31/91 2.70/10.00 27.0
RC101 0 0/77 0/16.00 0
RC102 12 19/97 1.91/14.00 13.6
RC103 22 25/85 2.97/11.00 27.0
RC104* 42 37/93 2.93/10.00 29.3
RC105 0 0/25 0/15.00 0
RC106* 28 30/99 3.03/13.00 23.3
RC107* 37 35/101 2.85/12.00 23.8
RC108* 40 48197 2.95/11.00 26.8

*: unsolved instance by September 2000

Table 1.2: Measuring the effects of the non-elementaryatian after inequalities are generated and
branching on vehicles.

by the work on acceleration strategies at the master prolgeeh by Kohl and Madsen [58]. However,
using the simple max-norm trust-region method the autharislad solving the quadratic problems of the
version of the bundle algorithm Kohl and Madsen [58] constdeand they also avoided the line-searches
associated with the bundle algorithm. To obtain feasibieger solutions the cutting-plane algorithm is
embedded in the branch, cut, and price framework ABACUS.[#BACUS is a C++ class library for
solving mixed-integer linear-programs (MILP) by brancht,@nd price. It is interesting to note that the
authors’ formulation of the MILP presented to ABACUS onlyafves continuous variables (sic!). Obvi-
ously, that is because it is the dual problem (1.68) thatésgmted to ABACUS. Branching decisions are
then based on the dual variables of the master problemhéeegdth variables of (1.69). The authors also
introduce inequalities in the master problem. Because tmsten problem is stated on the dual variables,
subtour and 2-path inequalities are added as columns tethidem. Thienel [83] noted that although
ABACUS was designed for linear programming relaxationseheere no reasons that the branch and
bound algorithm of ABACUS was restricted to this type of xalion. However, Thienel [83] thought
that it would require a generalization of ABACUS to use thetegn for Lagrangian relaxation. In fact
Kallehauge et al. [54] showed that by remaining within thateat of linear programming when solving
the Lagrangian dual problem it is already possible to emtsgtdngian relaxation in this system. The
trust-region method of Kallehauge et al. [54] can be useakeesany Lagrangian dual problem associ-
ated with a hard optimization problem and its implementailABACUS would allow the developer to
concentrate on the problem specific parts, i.e. the cuttiamggoand the column generation, the branching
rules, and the primal heuristics.

Recently Jepsen, Spoorendonk, and Petersen [48] intrdd+castomer clique inequalities that are
valid for the set-partitioning polytope of (1.69). Thesedualities change the structure of the shortest
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k-CYCLES
R101 0
R102 0
R103 4/1/1/1/1/0/0/1
R104* 29/7/11/10/6/6/8/417
R105 0
R106 1/0/1/1/3/3
R107 7/5/1/916/5/3/2
R108* 26/2/4/5/2/8/6/8/5
R109 19/0/1
R110 24/4/2/1/2/0/1
R111 10/4/3/0/2/1/2/1
R112* 54/7/14/8/0/0/0/1
RC101 0
RC102 5/2/2/1/2/2/3/1
RC103 18/5/6/3/2/1/2
RC104* 55/9/8/9/5/9/6/7/4
RC105 2
RC106* 36/8
RC107* 38/3/6/3/3/2
RC108* 55/7/3/1/5/1/3/3

*: unsolved instance by September 2000

Table 1.3: Number dk-cycles (3-cycles/4-cycles/5-cycles/etc.) on paths with-zero LP-values in root
node.

path subproblem and the authors describe how the dominatat®n of the subproblem is modified to
incorporate these clique inequalities. This is the firsihepie of strengthening the path formulation by
introducing inequalities defined directly with respecthie path variables of the master problem.

1.7 Conclusions

In this paper we have reviewed four different formulatiohthe VRPTW and the exact approaches as-
sociated with them. We have identified and organized a tdtallaeferences on the VRPTW relative
to four seminal papers on formulations of the TSP: arc foatioih, arc-node formulation, spanning tree
formulation, and path formulation. Out of these 24 refeesnare 20 references related to the path for-
mulation of the VRPTW. The polyhedral approach of the aroiaation is in our opinion promising and
relatively little research has been conducted along thiees tompared to the decomposition approach of
the path formulation. Furthermore, the spanning tree féatian of the VRPTW has not been the subject
of the same amount of research as the path formulation anelxteasion of the shortest spanning tree
subproblem to time windows has not been considered in #gm@titre. In our view it is at this point there-
fore an open question whether the spanning tree formuld#saribed in this paper is effective compared
to the path formulation.

The exact approaches based on the path formulation has beesuccessful and the most important
contributions of the research on the VRPTW lies in this arBlae developments in the solution of the
subproblem are interesting because the VRPTW polytopearelkbmentary path formulation approach
is embedded in a larger polytope but not a polytope over wihietobjective function can be minimized
in polynomial time. In fact, the authors propose to solvetheapNP-complete problem instead of the
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VRPTW, i.e. aresource-constrained elementary shortélstgzablem. In our view this raises the ques-
tion of one can find an algorithm for the VRPTW that computeypomial-time lower bounds that are
not dominated by the bounds obtained by the elementary patiuiation. We believe that further inves-
tigations of the VRPTW polytope will prove valuable in ansing this question. The developments in
the solution of the (dual) master problem associated wighptdith formulation are also very interesting.
There are at least three important developments. Firsgdattion of strong valid inequalities for the
VRPTW polytope in the master problem, e.g. generalizedaukihequalities. Second, development
of acceleration techniques that addresses the instaisities with the cutting-plane algorithm for con-
vex minimization or equivalently the column generationoaithm of the Dantzig-Wolfe decomposition.
Third, and more recently, strong valid inequalities haverbiatroduced for the set-partitioning polytope
and thereby strengthening the lower bounds provided byé¢lagation. The inequalities can also be used
from a dual point of view in the Lagrangian dual problem.

It is clear that ‘A new optimization algorithm for the vehéctouting problem with time windows’
(Desrochers, Desrosiers, and Solomon, 1992) was a vertesuilag achievement. It is important both for
introducing the path formulation and the column generatilgorithm to the VRPTW and for the future
developments it inspired. It is remarkable how much of thepscand methodology of combinatorial op-
timization has been applied in the attack on the VRPTW. Thaoirrance of the research described in this
paper comes not from the number of applications where theenatical model of the VRPTW precisely
fits, but from the fact that the vehicle routing problem wiitme windows is typical of other resource-
constrained problems in combinatorial optimization.

References

[1] N. Ascheuer, M. Fischetti, and M. Grotschel. A polyhddtady of the asymmetric traveling sales-
man problem with time window\etworks 36:69—79, 2000. [7]

[2] N. Ascheuer, M. Fischetti, and M. Grétschel. Solving #symmetric travelling salesman problem
with time windows by branch-and-cuMathematical Programming Series 80:475-506, 2001.

[9]

[3] E. Balas, M. Fischetti, and W. R. Pulleyblank. The premmsuk-constrained asymmetric traveling
salesman polytopeévlathematical Programming8:241-265, 1995. [7]

[4] J. F. Bard, G. Kontoravdis, and G. Yu. A branch-and-cwaigadure for the vehicle routing problem
with time windows.Transportation Scien¢&6:250-269, 2002. [4, 9]

[5] J. E.Beasley. Lagrangeanrelaxation. In C. R. Reevémrefodern Heuristic Techniques for Com-
binatorial Problems Advanced topics in computer science, pages 243—-303. Me@lit, London,
1995. [13]

[6] J. E. Beasley and N. Christofides. An algorithm for theotese constrained shortest path problem.
Networks 19:379-394, 1989. [20]

[7] M. Bellmore and S. Hong. Transformation of multisalesmaroblem to the standard traveling
salesman problendournal of the Association for Computing Maching2y:500-504, 1974. [6]

[8] J. Bramel and D. Simchi-Levi. Set-covering-based atpans for the capacitated VRP. In P. Toth
and D. Vigo, editorsThe Vehicle Routing Problen$IAM Monographs on Discrete Mathematics
and Applications, pages 85-108. SIAM, Philadelphia, 2Q2217]

[9] A. Chabrier. Vehicle routing problem with elementaryostest path based column generation. To
appear in Computers & Operations Research. [4, 20]

24



[10] E. W. Cheney and A. A. Goldstein. Newton’s method forwnprogramming and tchebycheff
approximationNumerische Mathematii:253-268, 1959. [21]

[11] N. Christofides, A. Mingozzi, and P. Toth. Exact algbnits for the vehicle routing problem, based
on spanning tree and shortest path relaxatidahematical Programming0:255-282, 1981. [13,
18]

[12] N. Christofides, A. Mingozzi, and P. Toth. State-spadeaxation procedures for the computation of
bounds to routing problem&letworks 11:145-164, 1981. [18]

[13] COIN/BCP User's Manual. 2001. [3]

[14] W. Cook and J. L. Rich. A parallel cutting-plane algbnt for the vehicle routing problem with
time windows. Technical report, Rice University, 1999. 18]

[15] J.-F. Cordeau, G. Desaulniers, J. Desrosiers, M. Mor®oh, and F. Soumis. VRP with time win-
dows. In P. Toth and D. Vigo, editor§he Vehicle Routing Probler81AM Monographs on Discrete
Mathematics and Applications, pages 157-193. SIAM, Phifatuia, 2002. [2, 4]

[16] E. Danna and C. Le Pape. Branch-and-price heuristicsage study on the vehicle routing prob-
lem with time windows. In G. Desaulniers, J. Desrosiers, BhdV. Solomon, editorsColumn
generation GERAD 25th Anniversary Series, pages 99—-129. Springew, Xk, 2005. [4, 20]

[17] G. Dantzig, R. Fulkerson, and S. Johnson. Solution @frgd-scale traveling-salesman problems.
Operations Resear¢l2:393-410, 1954. [2, 4, 7, 8]

[18] G. B. Dantzig and J. H. Ramser. The truck dispatchindplenm. Management Sciencé:80-91,
1959. [1, 2, 3]

[19] G. B. Dantzig and P. Wolfe. A decomposition principle fimear programsOperations Research
8:101-111,1960. [21]

[20] G. Desaulniers, J. Desrosiers, A. Erdmann, M. M. Solopamd F. Soumis. VRP with pickup and
delivery. In P. Toth and D. Vigo, editor§he Vehicle Routing ProblenSIAM Monographs on
Discrete Mathematics and Applications, pages 225-242V5hiladelphia, 2002. [2]

[21] M. Desrochers. An algorithm for the shortest path peobiwith resource constraints. Technical
report, GERAD, 1988. [14, 18]

[22] M. Desrochers and G. Laporte. Improvements and extesdb the Miller-Tucker-Zemlin subtour
elimination constraintsOperations Research Letters0:27-36, 1991. [8]

[23] M. Desrochers, J. Desrosiers, and M. Solomon. A newigttion algorithm for the vehicle routing
problem with time windowsOperations Resear¢d0:342—-354, 1992. [4, 14, 18, 20, 24]

[24] J. Desrosiers, F. Soumis, and M. Desrochers. Routittly tivhe windows by column generation.
Networks 14:545-565, 1984. [18]

[25] J. Desrosiers, Y. Dumas, M. M. Solomon, and F. Soumisi€ltonstrained routing and scheduling.
In M. Ball, T. Magnanti, C. Monma, and G. L. Nemhauser, editdtetwork Routingvolume 8
of Handbooks in Operations Research and Management Sgipages 35-139. Elsevier Science
Publishers B.V. (North-Holland), Amsterdam, The Netheds, 1995. [18]

[26] M. Dror. Note on the complexity of the shortest path misder column generation in VRPTW.
Operations Researcd2:977-978, 1994. [14]

25



[27] H. Everett, lll. Generalized lagrange multiplier methfor solving problems of optimum allocation
of resourcesOperations Researci1:399-417, 1963. [3]

[28] D. Feillet, M. Gendreau, and L.-M. Rousseau. New refiapta for the solution of vehicle routing
problems with branch and price. Submitted. [4, 20]

[29] D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen. Arceakgorithm for the elementary shortest
path problem with resource constraints: Application to samhicle routing problemsaNetworks
44:216-229, 2004. [4, 20]

[30] M. L. Fisher. Optimal solution of vehicle routing praphs using minimum K-treesOperations
Research42:626—642, 1994. [13]

[31] M. L. Fisher, K. O. Jornsten, and O. B. G. Madsen. Vehidating with time windows: Two
optimization algorithmsOperations Researcid5:488-492,1997. [4, 12,13, 19]

[32] M. R. Garey and D. S. JohnsonComputers and Intractability, A Guide to the Theory of NP-
Completenesgreeman, New York, 1979. [6]

[33] A. M. Geoffrion. Lagrangian relaxation for integer gramming. Mathematical Programming
Study 2:82-114, 1974. [13]

[34] P. C. Gilmore and R. E. Gomory. A linear programming aygmh to the cutting-stock problem —
part Il. Operations Resear¢ii1:863—-888, 1963. [13]

[35] M. Grotschel and M. W. Padberg. Polyhedral theory. InLELawler, J. K. Lenstra, A. H. G.
Rinnooy Kan, and D. B. Shmoys, editofBhe Traveling Salesman Problem - A Guided Tour of
Combinatorial Optimizationpages 251-305. Wiley, New York, 1985. [7]

[36] M. Guignard and S. Kim. Lagrangean decomposition: a @hgikelding stronger Lagrangean
bounds.Mathematical Programming39:215-228, 1987. [18]

[37] K. Halse. Modeling and solving complex vehicle routing problenhD thesis, Department of
Mathematical Statistics and Operations Research, Teghditversity of Denmark, 1992. [4, 18]

[38] M. Held and R. M. Karp. The traveling-salesman problerd minimum spanning tree€perations
Research18:1138-1162, 1970. [3, 4, 12, 13]

[39] M. Held and R. M. Karp. The traveling-salesman problemd aninimum spanning trees: Part Il.
Mathematical Programmingl:6-25, 1971. [3, 4, 13, 17]

[40] M. Held, P. Wolfe, and P. Crowder. Validation of subgeat optimization Mathematical Program-
ming, 6:62—88, 1974. [13]

[41] J.-B. Hiriart-Urruty and C. Lemaréchal.Convex Analysis and Minimization Algorithms I-I|
Grundlehren der matematischen Wissenschaften 304-30tg8pVerlag, Berlin Heidelberg,
1993. [3, 13, 19]

[42] A.J.Hoffman and P. Wolfe. History. In E. L. Lawler, J. Kenstra, A. H. G. Rinnooy Kan, and D. B.
Shmoys, editorsThe Traveling Salesman Problem - A Guided Tour of CombiiedtOptimization
pages 1-15. Wiley, New York, 1985. [2]

[43] D.J. Houck, Jr., J. C. Picard, M. Queyranne, and R. R.\gamnti. The travelling salesman problem
as a constrained shortest path problem: Theory and congmabexperience OPSEARCH17:
93-109, 1980. [4, 14, 17, 18, 21]

26



[44] S. Irnich. The mixed direct and hub flight problem, a lmfarand-price approach for simultaneous
network design and scheduling, September, 2000. GERADnsen{R21]

[45] S. Irnich. The shortest path problem witttycle elimination k > 3): Improving a branch and price
algorithm for the VRPTW. Technical report, Lehr- und Forsefsgebiet Unternehmensforschung,
Rheinisch-Westfélische Technische Hochschule, Nove2®eg2000. [21]

[46] S. Irnich and D. Villeneuve. The shortest-path probigitih resource constraints akecycle elim-
ination fork > 3. To appear in INFORMS Journal on Computing, . [4, 14, 21]

[47] S. Irnich and D. Villeneuve. Online supplement for th®dest-path problem with resource con-
straints ank-cycle elimination folk > 3, .
http://joc. pubs.informns.org/ OnlineSuppl enents. htmi . [21]

[48] M. Jepsen, S. Spoorendonk, and B. Petersen. A brandicatrand-price framework for VRP
applied on CVRP and VRPTW. Master’s thesis, Department eh@uer Science, University of
Copenhagen, 2005. [4, 22]

[49] M. Junger and S. Thienel. The ABACUS system for branct-aut-and-price algorithms in integer
programming and combinatorial optimizatioBoftware: Practice and Experiencg0:1325-1352,
2000. [3, 22]

[50] B. Kallehauge. A hybrid optimal method to the vehiclauting problem with time windows.
In ROUTE 2000 - International workshop on vehicle routit8kodsborg, Denmark, August 16-
19, 2000. Presentation availablehatt p: / / www1. ctt. dt u. dk/ ROUTE2003/ r out €2000/
presentations/ presentation_brian. pdf.[20]

[51] B. Kallehauge. Ideas for solving VRPTW, September ZM® Private communication to Jacques
Desrosiers, Oli B.G. Madsen and Jesper Larsen. [20, 21]

[52] B. Kallehauge, N. Boland, and O. B. G. Madsen. Path iadities for the vehicle routing problem
with time windows. Submitted. [4, 7, 9]

[53] B. Kallehauge, J. Larsen, O. B. G. Madsen, and M. M. S@omVehicle routing problem with
time windows. In G. Desaulniers, J. Desrosiers, and M. Mo®ain, editorsColumn generation
GERAD 25th Anniversary Series, pages 67-98. Springer, Nawk,2005. [4, 17]

[54] B. Kallehauge, J. Larsen, and O. B. G. Madsen. Lagranduglity applied to the vehicle routing
problem with time windowsComputers & Operations Reseay@8:1464-1487, 2006. [4, 13, 21,
22]

[55] D.R. Karger and C. Stein. A new approach to the minimutpcablem.Journal of the Association
for Computing Machiner3:601-640, 1996. [19]

[56] J. E. Kelley. The cutting-plane method for solving ceryprogramsJournal of SIAM 8:703-712,
1960. [21]

[57] N. Kohl. Exact methods for time constrained routing and related dahirg problems PhD thesis,
Department of Mathematical Modelling, Technical Universif Denmark, 1995. [18, 19]

[58] N. Kohland O. B. G. Madsen. An optimization algorithnt the vehicle routing problem with time
windows based on Lagrangean relaxati@perations Resear¢chd5:395-406, 1997. [4, 19, 22]

[59] N.Kohl, J. Desrosiers, O. B. G. Madsen, M. M. Solomord &nSoumis. 2-path cuts for the vehicle
routing problem with time windowsTransportation Scien¢&3:101-116, 1999. [4, 7, 19]

27



[60] A. W. J. Kolen, A. H. G. Rinnooy Kan, and H. W. J. M. Triereals. Vehicle routing with time
windows. Operations Resear¢l35:266-273, 1987. [4, 18]

[61] R. V. Kulkarni and P. R. Bhave. Integer programming fatations of vehicle routing problems.
European Journal of Operational Reseay@0:58-67, 1985. [8]

[62] G. Laporte, Y. Nobert, and M. Desrochers. Optimal rogtinder capacity and distance restrictions.
Operations Resear¢i33:1050-1073, 1985. [3, 7, 13]

[63] J. Larsen.Parallelization of the Vehicle Routing Problem with Timen#éws PhD thesis, Depart-
ment of Mathematical Modelling, Technical University of ireark, 1999. [4, 19]

[64] J. Larsen. Refinements of the column generation prdoesise vehicle routing problem with time
windows. Journal of Systems Science and Systems Engined®ngR6—-341, 2004. [4, 19]

[65] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. 8amoys, editors. Wiley, New York,
1985. [2]

[66] C.Lemaréchal. A view of line-searches. In A. Auslend®rOettli, and J. Stoer, editor®ptimiza-
tion and Optimal Contrglvolume 30 ofLecture Notes in Control and information Sciengeages
59-78. Springer, Berlin Heidelberg, 1981. [19]

[67] C. Lemaréchal, J. J. Strodiot, and A. Bihain. On a burdi@rithm for nonsmooth optimization.
In O. L. Mangasarian, R. R. Meyer, and S. M. Robinson, edifdoslinear Programming 4dpages
245-282. Academic Press, New York, 1981. [19]

[68] O. B. G. Madsen. Vehicle routing problems with time wings - some recent developments,
September, 2000. GERAD seminar. [21]

[69] V. Mak and A. Ernst. New cutting-planes for the time ardprecedence constrained ATSP and
directed VRP. Submitted. [4, 7]

[70] V. H. Mak. On the Asymmetric Travelling Salesman Problem with Regienént ArcsPhD thesis,
Department of Mathematics and Statistics, The Univerditielbourne, 2001. [7]

[71] C. E. Miller, A. W. Tucker, and R. A. Zemlin. Integer pr@mnming formulation of traveling sales-
man problemsJournal of the Association for Computing Machingry326—329, 1960. [4, 6, 8]

[72] D. Naddef and G. Rinaldi. Branch-and-cut algorithms tfee capacitated VRP. In P. Toth and
D. Vigo, editors,The Vehicle Routing ProblensIAM Monographs on Discrete Mathematics and
Applications, pages 49-78. SIAM, Philadelphia, 2002. [2, 7

[73] G. L. Nemhauser and L. A. Wolseynteger and Combinatorial OptimizationViley, New York,
1988. [3]

[74] W. Orchard-Hays. Advanced Linear-Programming Computing TechniquéscGraw-Hill, New
York, 1968. [17]

[75] M. Padberg and G. Rinaldi. A branch-and-cut algoritlemthe resolution of large-scale symmetric
traveling salesman problemSIAM Review33:60-100, 1991. [3]

[76] C. H. Papadimitriou. The complexity of the capacitatiexst problemNetworks 8:217-230, 1978.
[10]

[77] J. C. Picard and M. Queyranne. The time-dependentltraysalesman problem and its application
to the tardiness problem in one-machine scheduligerations Resear¢l26:86-110, 1978. [17]

28



[78] T. Ralphs and M. Guzelsoy. The SYMPHONY callable lilgréor mixed integer programming.
Technical report, Department of Industrial and Systemsrtgaging, Leheigh University, 2004. [3]

[79] J. L. Rich. A Computational Study of Vehicle Routing ApplicatioRhD thesis, Rice University,
1999. [19]

[80] A. Schrijver.Combinatorial Optimization, Polyhedra and Efficienéygorithms and Combinatorics
24. Springer, Berlin Heidelberg, 2003. [3, 14]

[81] J. F. ShapiroMathematical Programming: Structures and Algorithridgiley, New York, 1979. [3]

[82] M. M. Solomon. Algorithms for the vehicle routing andhscluling problems with time window
constraintsOperations Resear¢i35:254—-265, 1987. [7, 18]

[83] S. Thienel. ABACUS A Branch-And-CUt Syster®hD thesis, Mathematisch-Naturwissenschaft-
lichen Fakultat, Universitat zu Kéln, 1995. [3, 22]

[84] P. Toth and D. Vigo. An exact algorithm for the capaa@thshortest spanning arborescen®enals
of Operations Research1:121-141, 1995. [13]

[85] P. Toth and D. Vigo, editorsThe Vehicle Routing ProblenSIAM Monographs on Discrete Mathe-
matics and Applications. SIAM, Philadelphia, 2002. [2]

[86] P. Toth and D. Vigo. Branch-and-bound algorithms fa tlapacitated VRP. In P. Toth and D. Vigo,
editors, The Vehicle Routing ProblensIAM Monographs on Discrete Mathematics and Applica-
tions, pages 29-51. SIAM, Philadelphia, 2002. [2]

[87] P. Toth and D. Vigo. VRP with backhauls. In P. Toth and [g¢/ editors,The Vehicle Routing
Problem SIAM Monographs on Discrete Mathematics and Applicatigresyes 195-224. SIAM,
Philadelphia, 2002. [2]

29



30



Chapter 2

Lagrangian duality applied to the
vehicle routing problem with time
windows

Brian Kallehauge
Centre for Traffic and Transport, Technical University ofribeark

Jesper Larsen
Informatics and Mathematical Modelling, Technical Uniigy of Denmark

Oli B. G. Madsen
Centre for Traffic and Transport, Technical University ofribeark

Abstract

This paper considers the vehicle routing problem with timiedows, where the service of each cus-
tomer must start within a specified time interval. We conside Lagrangian relaxation of the constraint
set requiring that each customer must be served by exac#lyehicle yielding a constrained shortest
path subproblem. We present a stabilized cutting-planerigiign within the framework of linear pro-
gramming for solving the associated Lagrangian dual prablEhis algorithm creates easier constrained
shortest path subproblems because less negative cycl@straduced and it leads to faster multiplier
convergence due to a stabilization of the dual variablesh@ve embedded the stabilized cutting-plane
algorithm in a branch-and-bound search and introduce gtvalid inequalities at the master problem
level by Lagrangian relaxation. The result is a Lagrangiembh-and-cut-and-price (LBCP) algorithm
for the VRPTW. Making use of this acceleration strategy &t taster problem level gives a signifi-
cant speed-up compared to algorithms in the literaturedbaseraditional column generation. We have
solved two test problems introduced in 2001 by Gehring anchblerger with 400 and 1000 customers
respectively, which to date are the largest problems eveeddo optimality. We have implemented the
LBCP algorithm using the ABACUS open-source framework favigg mixed-integer linear-programs
by branch, cut, and price.
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2.1 Introduction

This paper considers the following variant of the vehicletiog problem with time windows (VRPTW):
Consider a directed gragh = (V,A) onn+ 2 nodes. The node 0 corresponds to a depot and the node
n+1is a copy of node 0. Let the sktcorrespond to a fleet of identical vehicles available at tyeotl
source node 0 and each with a capaqitiNodes € N={1,...,n} correspond to customers to be served
by a vehiclek € K. With each customer node= N we associate a demand0d; < g, a service time

st > 0, a release tim@; > 0 and a due timdy; > a;. The release tim@; and the due timdy; is the
earliest possible and the latest possible starting timgectively for serving customeérc N. We refer

to the time intervala;, bj] as the time window of customérc N andb; — & as the width of the time
window. We assume thal = sty = 0 and w.l.0.g thafag, bg] = [0,0). LetA={(0,j) | j e N}U{(i,]) |
ieN,jeN,a+tj <bjandd +d; <q}uU{(i,n+1)|ieN}. With each ardi, j) € A, we associate
an arc costi; > 0 and an arc travel timg; > 0, which include any service tims; at nodei. We
assume that demands, service times, release times, dws tiosts, travel times, and vehicle capacity are
integer values. It is also assumed that the triangle inégual the costs and travel times is satisfied, i.e.
Cij < Gih + Chj andtij < tin +thj, for all (i, j) € A. Given a vehiclé € K a pathpy consists of the arc set
{0,vy)}U{(vi,viy1) | i =1,...,h—1}U{(wn,n+ 1)}, wherev; # vj, fori # j. Such a path represents
the trip of one vehiclk € K leaving the depot source node 0, collecting the dendamd the nodes;,

i =1,...,h, and going back to the depot sink node- 1. We consider the case where a vehicle K
waits if it arrives at a nodec N before the release tire, i.e. given a patlpy let s,, denote the earliest
start of service of node, i =1,...,h, defined as follows.

SV]_ - aV17
Sy =max{s, ,+ty ;v,ay} fori=2... h

This gives a waiting timew, = max{0,a,, — (S,_, +tv_,v)}, which is positive when a vehicle arrives at
a node before its release time. We allow vehicles to remaimeatlepot. This is modeled by introducing
the arc(0,n+ 1) € A, with copn+1 = ton1 = 0 and thereby the "empty patigk = {(0,n+ 1)}, which
represents an unused vehikle K. We assume that the number of vehicles used is free. Thisdelad
by setting|K| = n or another valid upper bound. A path is called feasible with respect to a vehicle
k € K if the total deman(zih:ldi of the nodes impy does not exceed the vehicle capacjignd each node
v; is visited within its time window, i.ea,, < s, < by, fori=1,...,h. Given a vehiclk € K we denote
the set of all feasible path&.

For a subsef of A, D(F) denotes the subdigraghl (F),F) induced byF, whereV (F) is the set of
nodes incident to at least one edgd-of

The cost of a path is the sum of the costs of arcs used in theipatfi; j)cp, Cij. An m-path is the
union of m pathspy, ..., pm, such that each node= N belongs to exactly one s&i(py), k=1,...,m,
and|K| — mpaths representing unused vehicles,meg |K| denotes the number of vehicles used to serve
the customerse N. An m-path is feasible if it consists only of feasible paths. Thetof anm-path is
Yke1(i.j)ep Gij- The problemis to find a minimum cost feasibepath. We would like to note that our
presentation of the VRPTW problem is inspired by Ascheuat.di] and Naddef and Rinaldi [30].

The VRPTW reduces to the VRPSf = 0, ay = 0, andb; = « for everyi € N. Therefore the VRPTW
is NP-hard. Indeed, it is strongly NP-complete to find a fiel@ssolution for the VRPTW with a fixed
number of vehicles [33].

The VRPTW variant we are considering has been attacked hgusamethods of integer program-
ming. In Cordeau et al. [6] a review of the research until 200@xact methods for this variant is given.
The most successful methods in this period are based on thdguenulation of Desrochers et al. [10],
involving binary variables associated with feasible paththe underlying time and capacity constrained
digraph. Kohl and Madsen [23] proposed an equivalent mebfas@d on Lagrangian relaxation. Both
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decomposition methods split the constraints into the savoeséts, yielding the same constrained short-
est path subproblem and hence the same lower bound on theWRRIE subproblem is NP-hard in the
strong sense [11] and a non-elementary state-space fielaa#ibwing cycles of length greater than two
is solved. In the Dantzig-Wolfe decomposition method thateraproblem is a set-partitioning problem.
The linear programming relaxation of the master problenvoigezl using the column generation algo-
rithm. In the Lagrangian relaxation method the master mobtan be formulated as the maximization
of a concave nonsmooth function, piecewise affine in the dagian multipliers [14]. This problem is
denoted the Lagrangian dual problem. Kohl and Madsen [28kddhe Lagrangian dual problem using
a combination of a subgradient algorithm and a bundle dlgori A bundle algorithm can be viewed as
an acceleration of the column generation algorithm [17,g8#raXIl and XV]. Kohl et al. [24] proposed

a strengthening to the path formulation involving constisfor general subtour elimination and Cook
and Rich [5] extended this approach. This strengthenedfpattulation is exponential in size since it
has exponentially many variables as well as constraintsasacmlumn and cut generation approach was
used for solving the problem. Recently Irnich and Villene{d9] proposed a strengthening to the bound
provided by the path formulation involving elimination ofates of length greater than two in the sub-
problem. Algorithms for the elementary shortest path sobl@m have also recently been proposed in
Feillet et al. [13] and Chabrier [2].

The research in this paper was motivated by the work on a@tia strategies at the master problem
level by Kohl and Madsen [23]. However we have chosen to reméthin the context of linear pro-
gramming and the focus is therefore on accelerating thsickiscutting-plane algorithm of Kelley [21]
and Cheney and Goldstein [3]; the original reference forablemn generation variant is Dantzig and
Wolfe [7]. In a different application du Merle et al. [12] pposed ways to accelerate the cutting-plane
and column generation algorithm. The algorithm we presezgtes easier constrained shortest path sub-
problems because less negative cycles are introduced kadié to faster multiplier convergence due to
a stabilization of the dual variables.

The main contributions of this paper are:

¢ Developing a stabilized cutting-plane algorithm withire thamework of linear programming for
solving the Lagrangian dual problem associated with thedagjan relaxation of the assignment
constraints of the VRPTW.

¢ Embedding the stabilized cutting-plane algorithm in a breand-bound algorithm and introducing
strong valid inequalities at the master problem level byrhagian relaxation. The result is a
Lagrangian branch-and-cut-and-price (LBCP) algorithntfie VRPTW.

e Decreasing the solution times significantly for a large nandf Solomon VRPTW problems com-
pared with a traditional column generation based algorithm

The paper is organized as follows. In Section 2, we give agggrtlinear programming (ILP) for-
mulation of the VRPTW. Section 3 presents a Lagrangian e¢iam of the VRPTW and shows that the
Lagrangian dual problem can be formulated as a linear pnogiag problem. Section 4 briefly describes
the algorithm used for solving the Lagrangian problem, Wwhian be split into a subproblem for each
vehicle. In Section 5, we present a stabilized cutting-plalgorithm for solving the Lagrangian dual
problem and in Section 6 we present the LBCP algorithm useélrfding integer solutions. Section 7
presents computational results. We compare the numerictdimance of the stabilized cutting-plane
algorithm to a traditional column generation algorithm aveltest the LBCP algorithm on the Solomon
[34] problems and on a number of larger problems created byigand Homberger [15]. Finally,
Section 8 presents our conclusions.
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2.2 An ILP formulation of the VRPTW

The model involves binary arc variablgg as well as integer node variablgg for each vehicle. For a
given vehiclek € K the binary arc variables;i for each ardi, j) € Aare defined as follows.

o — 1 (i,j) € Ais used by vehiclé&in them-path
k= 0 otherwise.

The decision variables are defined for each nodlec N and each vehiclk € K and represent the time
vehiclek starts to service customerln case the given vehicledoes not service customiesy does not
mean anything. The VRPTW is formulated as the followinggetelinear program:

(2.1) 2VRPTW = minimizez Z Cij Xijk
KeK (i,])eA

subject to
(2.2) Xik=1 VieN,
(2.3) Xojk = 1 VvkeK,

2
(2.4) Xihk — Xhik =0 VhEN,VkE K,
(2.5) Xinp1k=1 VkeK,

% N+,
(2.6) dd xik<qg VkeK,
(2.7) Sk +tij — Lij (1 —xijk) <Sjk  Vi,j eN,VkeK,
(2.8) a<sk<h VieNVkeK,
(2.9) Xijk € {0,1} V(i,j) e AVkeK,

(2.10) sk €Z, VieN,vkeKk,

whereLjj = bj —aj andZ, denotes the set of nonnegative integers.

The objective function (2.1) expresses the total cost. Hips(2.2) are the assignment constraints
requiring each customer to be served by exactly one vehigtpialities (2.3)-(2.5) are the out-degree,
flow balance, and in-degree constraints forcing the saiuticconsist of a set of paths. Inequalities (2.6)
are the capacity constraints and inequalities (2.7) ai®) é2e used to model the time window restrictions.
Finally, (2.9) and (2.10) are the binary and integer comnstsa

2.3 A Lagrangian relaxation of the VRPTW

We consider the Lagrangian relaxation of the VRPTW with eespo the constraints (2.2), by introducing
a vector of Lagrangian multipliers = (A1,...,An) € R", where; is associated with thigh constraint in
(2.2):

(2.11) zD()\):mini_mizeER z CijXijk — » Ai <Z< xijk—1>.
(gfg;{‘(’gfltg)ke (i.7eA ieZw Ke j;/
We call (2.11) the Lagrangian problem. The minimal valuehia Lagrangian problem (2.11) is called
the dual function and is denotegl. The set of feasible solutions to the Lagrangian problerhl(?.
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defined by (2.3)-(2.10) is denot&j. P, splits into|K| disjoint subsets, i.€2, =Py x P, x -+ x Py =
{(p1,---,Pk|) | P1 € Pu,..., p| € Pk|}, where eacti is defined by (2.3)-(2.10) for a givéne K. The
Lagrangian problem (2.11) therefore splits ifitd “simpler” subproblems, one for each vehicle, and the
kth subproblem is then the integer linear program:

(2.12) Z(A) = minimize ; CijXij
(i,])eA

subject to

(2.13) Xoj = 1,
2
(2.14) Xh—S Xi=0 VYheN,

(2.15) Xini1=1,

(2.16) i; di j€Z/Xij <q,

(2.17) s +tij —Lij(1—xj) <sj Vi,jEN,
(2.18) g <s<b VieN,

(2.19) xij €{0,1} Vi,jeV,

(2.20) se€Zs VieN,

wherecij = ¢jj — A fori € N, j €V, &j = ¢jj otherwise, and admitting thay; stands for;jc, but withk
fixed.

Constraints (2.13)-(2.15) force the solutippe P to represent a path starting in the depot source node
0 and ending in the depot sink node- 1, whereas the capacity constraints (2.16) and the timereonts
(2.17) and (2.18) forbid infeasible paths to be part of thetsm. This subproblem (2.12)-(2.20) is an
elementary shortest path problem with time windows and@apeonstraints (ESPPTWCC), where each
node can participate at most once in the patke R.. Note that whilecjj, (i, j) € A, is a non-negative
integercij, i € N, j €V, may be any real number.

The subproblems (2.12)-(2.20) fkre K are identical, which means the Lagrangian problem (2.11)
is expressed as:
21)  2(A) = |K|(minimize 5 &x;) +3 A

(2.13)-2.20f ")) €A €

Since the subsef for k € K are identicaP), = P/, whereP denotes the set of feasible solutions to
the ESPPTWCC subproblem (2.12)-(2.20) for any vehicteK. Letz(A) denote the minimal solution
value forA € R". We describe each pathe P with the integer variablesjp, (i, j) € A. Given a path
p € Plet cp be the cost of patp € P and letaj, be the number of times customigs served on patip:

Cp= z CijXijp, forp=1,...,|P|,
(i,))eA

ajp = _Z/xijp, fori=1,...IN|, p=1,...,|P.

IS

SinceP is finite, we can considez(A) to be determined by minimization over the §ebf constrained
shortest paths. Then (2.11) is expressed as:

2.22) (M) = K| (mirgiergizecp— _Zwa@p/\i) +3 A
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The fact thatzp(A) < zvrpTw, fOr A € R", provides us with lower bounds in a branch-and-bound
algorithm for the VRPTW. Clearly, we wish to find the best lewweund by solving the Lagrangian dual
problem:

(2.23) z p = maximizezp(A)
A€RN
= maximizgK|( minimizecy — inAi Ai.
NeRn q |( peP p ieZla‘p |)+i;‘ i

SinceP is finite it allows us to express (2.23) as the following linpeogram with many constraints
or rows:

2.24 = maximizgK |06 Ai
(2.24) Zp axim gK| +i; [
6eR
subject to

0 <cp— Z‘a;p)\i forallpeP.
i€

The LP dual of (2.24) is a linear program with many variablesaumns:

(2.25) Z p = Minimize zpcpyp
pE

subject to
Zba.pyp =1 forallieN,

ZPYP_ K],
yp=0 forallpeP

Problem (2.25) witly, required to be integral is equivalent to the original VRPTakhiulation (2.1)-
(2.10). Problem (2.25) is the LP relaxation of the Dantzigh&/ decomposition obtained when any
solution to the VRPTW is expressed as a non-negative convmbimation of constrained paths [6].
The method of Desrochers et al. [10] can be characterizedlamo generation on the problem (2.25)
and their formulation of the VRPTW can therefore be viewed &antzig-Wolfe decomposition of the
formulation (2.1)-(2.10). Note thgt0,n+ 1)} € P, con+1 = 0, and requiring a fixed number of vehicles
|K| is equivalent with having a free number of vehicles in (2.25)

Let R” be the set of real vectors whose components are indexéd bt x = (xg, ... ,Xk|), where

X« € RA. Now consider the Lagrangian functionleagrangian

226) LA, = qu- ;Acim,-k +Y A (1- kgk j;m,-k)
€K (i,)e ic €K j€

= |K] Z C”XIJ—’_ZI)\( |K|_Z/Xij)’
i€

(i,j)eA

which shows that the Lagrangian is a function of sag R” only. For a fixed solutiolp = x1p € P, the
Lagrangian is an affine function i

(2.27) L(A,Xp) = (sp,A) + [K]cp,
where(-,-) denotes the ordinary dot-product asd= (Sip, .. .,Sp) € R", where:
2
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The dual function becomes:

(2.29) p(A) = rqgggg‘dspw + [Klep,
which shows that the dual functian (2.11) is the minimum of a finite number of affine functions @nd
therefore piecewise affine and concave [32].

The dual function is non-differentiable or non-smooth at paint A € R" where the solution of the
Lagrangian problem (2.11) is not unique. This correspondhi¢ subproblem (2.12) - (2.20) having
several shortest path solutions.

The subdifferential of the dual function atis given by the convex hull of the gradients of the La-
grangian functions that give the minimal value:

(230)  0zp(A)=com{OL(A,xp) | L(A,%p) = 20(A)}
= con{sp | (Sp.A) + [Klcp = 2p(A)}

and the elements of the subdifferential are called subgrasli

However, any suboptimal solution of the Lagrangian probfeay also be used. Neame et al. [31]
presents an outer approximation of the subdifferentiabimnection with Lagrangian duality. First define
an index set:

(2.31) Pe(A) = {p(sp;A) +Klep <2p(A) +E, E >0},

which is the set of solutions to the Lagrangian problem whieeesolution values are less or equal to the
dual function value plus a positive constant. Then the cayp@roximation to the subdifferential is:

(2.32) Jezp(A) =conysp | pe Pe(A)}.

2.4 Solving the Lagrangian problem

We compute a solution to the Lagrangian problem (2.11) byisglan ESPPTWCC. However, Dror [11]
proves that the ESPPTWCC is NP-hard in the strong sensehyustifies the approach of considering
the non-elementary state-space relaxation SPPTWCC inaperp by Desrochers et al. [10], Kohl and
Madsen [23] and Kohl et al. [24] on decompositions method$ife VRPTW.

In the SPPTWCC non-simple or non-elementary paths are etlpiwe. paths including cycles, and
for this problem pseudo-polynomial dynamic programmirgpathms are known [9, 8].

In order to tighten the state-space relaxation and inctb&dewer bound provided by the SPPTWCC
subproblem a standard procedure is to use the 2-cycle @iimmscheme proposed by Houck et al. [18],
in which cycles of the form— j — i are eliminated.

In this paper we also consider the non-elementary relax&PPTWCC of the subproblem (2.12)-
(2.20). The SPPTWCC is solved using a label setting algorithith 2-cycle elimination developed by
Larsen [25]. The algorithm not only computes the shorteshi palution, but may also return a number
of non-dominated paths with negative reduced cost in tHedspot.

2.5 Solving the Lagrangian dual problem
We state our Lagrangian dual problem (2.23) as the followrnagimin problem:

(2.33) Z_p = maximizeminimizeL (A, Xp)
A€ERN 1<p<|P|
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which is equivalent to solving the linear program:
(2.34) Z.p = maximized
AERN

subject to
egl—(/\7xp) p:13|P|7

Now, since the Lagrangian function (2.27) is an affine fuorcin A for a fixed solutiorxp, we have:
(2.35) L(A,Xp) =2p(Ap) + (Sp.A —Ap)

so the dual problem (2.34) can be written using only dualabjé.e. dual function values and subgradi-
ents:

(2.36) Z p = maximized
subject to
0 < zp(Ap) + (Sp,A —Ap) forp=1,....|P|.

The idea of the cutting-plane algorithm is to accumulatectivgstraints one after the other in (2.36) [17].
Now we will describe the rules that our algorithm follows irler to generate the constraints of (2.36).

Ideally we want to only generate the constraints that ieteirat the optimal point. Suppose at iteration

we have generated the iterajes. . ., . At each iteratgig, = 1,...,uwe generate the information:

(237) ZB:ZB(“q)a Sp:Sp(qu) p:177|PE(IJq)|7

whereP: (Lq) is an index set that contains at least one “optimal subgnétierresponding to an optimal
solution to (2.12)-(2.20) and then any “suboptimal subigaid corresponding to any suboptimal solution
to (2.12)-(2.20). This approach is equivalent to “multiptecing” in column generation in which one may
choose not only the non-basic variable with the most negatistuced cost but a set of non-basic variables
with negative reduced costs [4]. Note that it is possibledwotiml the number of subgradients generated
|Pe(1gq)| by adjustingE but we simply fix the maximum number of returned gradienth@dimension
of u.

To generate the next sampling pojnt. 1 we maximize the cutting-plane model of our original prob-
lem (2.34):

(2.38) Z'5 (1) = maximized
subject to

QQZB(Uq)+<Sp7U_Uq> forqzla"'au p:177|PE(uq)|a
but we add bounds on the variables, which is similar to thendewsed by Griffith and Stewart [16]:

(2.39) u < Au+Ay,
U= Ay— Ay,

whereA, is the current solution at iteratian which we refer to as the stability center. Instability rsfe
to if the current iterate is closer (with respect to some pdmthe optimal solution than the next iterate.
We refer to the parameté;, as the trust-region since we assume the cutting-plane gippaiion of the
dual function is good within this region. The idea of impagthe bounds of Griffith and Stewart [16] is
in a nonlinear programming context used by Madsen [27] inlgordhm for minimizing a function that
is expressed as the maximum of a finite number of explicitineal functions. Madsen [27] also gives
rules for updatingy, that we will fit to the case of linear functions we are consiugr Independently,
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Marsten et al. [29] also imposes the bounds of Griffith anav&te[16] in the context of maximizing a

concave function but do not assume that the function coresidie explicitly available. However the box

is kept constant, i.&), is not updated. The authors conclude that the method mayrfiitéif application

in Lagrangian relaxation and indeed our method can be vieaseoh extension of the BOXSTEP method.
When we have computegd,.; we compute the decreadgof our model (2.38) and (2.39):

& = Z'p (Hut1) — Z|13(/\u)7

wherez} (A,) is the current best dual solution value agig (L 1) the LP-solution value of (2.38) and
(2.39). Now, ifd is smaller than some user provided toleradoge have found ad-optimal solution.
Marsten et al. [29] shows that in the case of linear functidnsay be zero.

Next we solve the Lagrangian problem with respect to the §ampoint 1,1 and get the informa-
tion:

ZB(tur1), Sp="Sp(Hut1), forall pe Pe(tuia).

The trust-region parameter is adjusted automaticallyeddimg on the ratio between the actual de-
crease of the dual function and the decrease predicted pttirg-plane model (2.38) and (2.39):

Z|13(Nu+1) - lea(AU)
5 )

If p is equal to 1 then we have just taken a step along one of thegp@dahe dual function and no new
information has been included. In this case we increaseitleco$ the trust-region in order to quickly
discover new constraints. { is less than zero we have taken a step into a region where owantu
model is not a good approximation of the dual function and weréase the trust-region in order to
collect additional information in this region.

The algorithm is an ascent method since we use the conditior®.01 in order to move to the next
sampling pointuy,1, i.e. to take a serious step. If the ascent condition is nidgfead we stay at the
current point, i.e. we take a null-step. The complete athoriis as follows.

p:

Algorithm 1 (Stabilized cutting-plane Algorithm) Choose an initial poim,, a stopping tolerance >
0 and a trust-region siz#&; > 0. Initialize the iteration-countar= 1 andu; = Ay; computezg(ul) and
sp, forall p e Pe(p1).

STEP 1 (Master problem). Solve the following relaxation of the bablem:

(2.40) Z'5 (1) = maximized
subject to

GQZB(Uq)+<San_Uq> forq:17"'7u p:177|PE(uq)|a
U< Ag+ Ay,
= A=Ay,

to get a solutionuy, 1 and compute:
& = 2Zp(Hut1) — Z|13()\U)-

STEP 2 (Stopping criterion). 1%, < J then stop.

STEP 3 (Local problem). Find a solution to the Lagrangian probIcengEtzB(LlUH) andsy, for all
p € Pe(Hut)-
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STEP 4 (Update). Compute the gain rao= (z5(Hy+1) — z5(Au))/du.
If p=1thense,,; =A;*1.5.
If p <0thensef 1 =4,/1.1.
If0 < p <1thensef, 1 =A,.
If p > 0.01then sef, 1 = Hy+1 (ascent-step). Otherwise skt 1 = Ay (null-step).
Setu=u+1and go to step 1. o

This type of algorithm is called a trust-region algorithmtroduced by Levenberg [26] and Marquardt
[28] in connection with least squares calculations. Forceme presentation on ways to stabilize the
cutting-plane algorithm we refer to Hiriart-Urruty and Laréchal [17, Chapter XV].

2.6 The Lagrangian branch-and-cut-and-price algorithm

In order to find integer solutions we embedded the stabilzeting-plane algorithm in the open-source
framework ABACUS [20]. ABACUS is a C++ class library for sadg mixed-integer linear-programs
by branch, cut, and price. Note that because we are usinguhleLdgrangian based decomposition
principle we perform cutting instead of pricing and vice sseicompared to the primal Dantzig-Wolfe
decomposition principle. ABACUS provides a general irde€f to linear programming solvers and we
used the ILOG CPLEX solver (www.ilog.com). The overall s@n procedure can be described as
follows. First we solve the root which corresponds to sajvihe dual problem. If the dual optimum
corresponds to an integer solution then we have found thmapsolution to the VRPTW. Else we start
to generate strong valid inequalities. We generate suleloumation constraints (SECS) and 2-path cuts
using separation algorithms developed by Kohl [22]. Howgthee strong valid inequalities are added
as columns in our linear program and the dual variables sparding to the valid inequalities are also
stabilized. We generate 2-path cuts only in the root nodeS#(@S in all nodes of the branch-and-bound
tree. If the generation of valid inequalities in the root aatbes not terminate with an integer solution
branching is performed on the number of vehicles and orxghesariables of the original formulation
(2.1)-(2.10) [25]. We set the dual multipliers of child nede the optimal values from their parent node.
In ABACUS each node in the enumeration tree also inheritéitiaéconstraint and variable system of the
father node. This avoids tedious recomputations and issthgon why a cutting-plane method is superior
to a simple subgradient based method. However we modifysrigem according to the branching rule
on the arc variables since paths can be viewed as locall§ gatistraints in our method.

2.7 Computational results

The LBCP algorithm presented in this paper is implementéthustandard C++ except the SPPTWCC
algorithm developed by Larsen [25] and the separation délgos for the SECS and 2-path cuts developed
by Kohl [22], which are implemented in standard C. The corapahal experiments were performed on
two different machines. The hardware and software conftguraf the machines is given in Table 2.1.
The LBCP algorithm was tested on the 56 Solomon [34] probleitis 100 customers. This set of test
problems was enlarged by only considering the first 25 anduS@mers of each original problem. This
brings the total number of problems up to 168. In addition wechalso tested the algorithm on a number
of the problems created by Gehring and Homberger [15], wienebed the Solomon problems to sizes of
up to 1000 customers. In the Solomon and Homberger testgaratthe nodes=0, . .., nare specified by
integer coordinate<, y;) in the plane and the vehicle capacity by an integdfor each node=0,...,n

the following integer values are gived;, &, b, andst. In order to fulfill the assumptions stated in this
paper regarding the model parameters in (2.1)-(2.10) wiperthe following transformations of the
test problem data [22]. Step 1. Create a copy of node 0 andt calt 1. Step 2. For=0,...,n+ 1 set
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Machine Sun Fire 15K Dell Inspiron 7500

CPU UltraSPARC Ill Cu 900MHz | Intel Pentium Il 600MHz
RAM 384Gb 256Mb

Operating system Solaris Microsoft Windows XP
Compiler g++2.95 Microsoft Visual C++ 6.0
Compiler options -0 NDEBUG, Maximize Speed
ABACUS version 2.4 2.3

ILOG CPLEX version | 8.1 7.5

Table 2.1: Hardware and software configuration for the caatmnal experiments.

X = 10X, yi = 10y, & = 10a;, bj = 10b{, andst = 10s{. Step 3.cij = [/(x —Xj)2+ (yi —y;j)?] and

tij =st+gqjfori,j=0,...,n+1,i # j. Step 4. Add 1 to alt; for i # 0 in order to fulfill the triangle
inequality. In steps 3 and 4 we have for notational convesgerssumed that we have a fully connected
digraph on then+ 2 nodes. Clearly in the algorithms we only consider &rcg € A. The solution value
for the original problem is calculated &&/rptw — n)/10, wherezyrprw denotes the solution value for
the transformed problem. Note that we also apply the pressing of the time windows described in
Desrochers et al. [10].

2.7.1 Comparison of column generation and stabilized cuttig-planes

First we wish to compare the numerical efficiency of the diedd cutting-plane algorithm to an unsta-
bilized column generation algorithm by solving respedsitke Lagrangian dual problem (2.23) and the
relaxed set-partitioning problem (2.25). This correspotalsolving the root node in the branch-and-
bound tree. All computational experiments described i $kiction were performed on the Sun Fire 15K
machine.

Let B denote the basis of the constraint matrix of (2.25) agglthe cost coefficients of the basis
variablesygs.

The column generation algorithm is as follows.

Algorithm 2 (Column generation Algorithm) The Dantzig-Wolfe master problem (2.25) is initialized
with a feasible basis. Initialize the column countet n, the iteration counten = 1 and compute the
initial simplex multipliersit = cgsB™2.

STEP 1 (Subproblem). Return a solution of SPPTWCC (and any negatist non-dominated path in
the sink depot) with respect to the modified casts="cij — 75 to obtain candidate columiyg, with
reduced costsy, for p € R,.

STEP 2 (Stopping criterion). Iz, > —4, for p € R, then stop (all variables price out correctly). Oth-
erwise adjoin théR,| columns with negative reduced cost to the restricted mastdnlem and set
r=r+|Ryl.

STEP 3 (Master problem). Compute a solution to (2.25), i.e. deteena new basis and calculate the
new simplex multiplierst= cgsB~1, setu=u+1 and go to step 1. o

Assume we have initialized (2.25) with the paffi®,i,n+ 1)}, Vi € C, and supposep = 10000 for
p=0,...,n—1, thenrg = 10000 fori € C. Figure 2.1 illustrates the effect of the size of the muikird
on the computational difficulty of the SPPTWCC subprobleinshe Dantzig-Wolfe column generation
algorithm the multipliers are large, compared to the optimeel, in the beginning of the solution process,
while the multipliers in the cutting-plane algorithm areamAs would be expected the number of labels
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100,000 Stabilized Cutting-Plane Algorithm

80,000 Column Generation Algorithm
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Figure 2.1: Development of the number of labels generatdderSPPTWCC subproblem against the
iteration number when solving the dual problem (2.23) fob@ ¢ustomer Solomon problem (R104.100).

generated for solving the subproblems in the two algoritaresalmost the same when the optimal level
is reached.

Figure 2.2 illustrates the instability of the column gerniera algorithm compared to the stabilized
cutting-plane algorithm. We have observed the same behasidlustrated in figure 2.1 and 2.2 when
solving several other problems. In fact, the total compaoieat time for solving the dual problems for the
R1, C1 and RC1 problems with 100 customers was decreasegttvgty by a factor 15, 46, and 2 by
using the stabilized cutting-plane algorithm comparechtndolumn generation algorithm. We present
the results in Table 2.2-2.4, which show the following: Nash&olomon problem with suffix indicating
the number of customers (Problem), value of lower bound {l.Blimber of times the subproblem is
solved (Iterations), and total CPU-time in seconds to rehelspecified stopping tolerance (Seconds).
The stabilized cutting-plane algorithm uses the initidbimationA; = 0, = 107 andA; = 1. The
maximum number of constrained paths with negative reduastreturned in each call of the SPPTWCC
algorithm is fixed to the number of customers. For the coluemegation algorithm we used the stopping
toleranced = 10~/ and the maximum number of constrained paths returned aftér execution of the
SPPTWCC algorithm was fixed to 100.

2.7.2 Solutions for the Solomon problems

Next we perform computational experiments with the LBCRogthm on the Solomon problems. Our
experiments were performed on the Sun Fire 15K machine. dson for this is that we initially experi-
enced extensive memory use in ABACUS 2.3 when the numbebgireblems becomes large. ABACUS
2.4 provides a new interface to ILOG CPLEX 8 which solves thermary problem. However currently
this version is available on Unix platforms only. Given threaunt of memory available on the Sun Fire
15K machine memory is not a restriction in our experimentsweler we restricted the maximal CPU
time to 1 h. Making use of the stabilized cutting-plane ailfpon in the branch-and-bound search we were
able with the one hour restriction to solve 119 out of the 16B®on test problems. Table 2.5 gives an
overview of the results compared to leading algorithms énliterature. We present a detailed overview
of the results in Table 2.7-2.12 and describe the assodtaledns in Table 2.6.

Compared to our method the additional R1 and RC1 solutiotisdtiterature are found using exten-
sive parallel branching [5] or 3-cycle elimination [19]. @dditional R2 and RC2 solutions are found
using 3-, 4-, or 5-cycle elimination [19] or elementary ghet paths [2]. The C204.100 problem is solved
by Irnich and Villeneuve [19] using 2-cycle elimination. Wever the computational time is more than
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Figure 2.2: The Euclidian distance between the current daidbles and the optimum dual variables.

Observe the different scales.

Column Generation Cutting-Plane
Problem LB1 lterations ~ Seconds| Iterations ~ Seconds
R101.100 | 1631.150 30 1.36 85 1.08
R102.100 | 1466.600 48 42.08 102 4.70
R103.100 | 1206.312 64 183.82 143 20.05
R104.100 949.134 57 782.75 122 67.22
R105.100 | 1346.142 33 4.95 46 1.47
R106.100 | 1226.440 50 78.21 81 9.76
R107.100 | 1051.844 58  1538.29 108 31.38
R108.100 | 907.162 51 628.50 83 67.35
R109.100 | 1130.587 42 40.46 87 7.40
R110.100 | 1048.482 40 150.35 79 22.87
R111.100 | 1032.028 51 178.84 71 17.45
R112.100 919.192 41 872.47 59 45.56
Total 565 4502.08 1066 296.29

Table 2.2: Comparing the stabilized cutting-plane algonitto a column generation algorithm on R1

problems with 100 customers.
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Column Generation Cutting-Plane
Problem LB1 Iterations ~ Secondg lIterations  Seconds|
C101.100 | 827.300 83 8.53 53 0.84
C102.100 | 827.300 123 45.59 30 1.15
C103.100 | 826.300 115 172.05 55 5.58
C104.100 | 822.900 82 1195.66 73 18.50
C105.100 | 827.300 92 9.61 47 0.93
C106.100 | 827.300 85 7.77 34 0.81
C107.100 | 827.300 113 18.59 32 0.71
C108.100 | 827.300 92 16.09 47 1.44
C109.100 | 825.640 55 17.50 42 2.20
Total 840  1491.39 413 32.16

Table 2.3: Comparing the stabilized cutting-plane aldonitto a column generation algorithm on C1
problems with 100 customers.

Column Generation Cutting-Plane
Problem LB1 Iterations ~ Secondg lIterations  Seconds|
RC101.100 | 1584.094 31 1.92 50 1.13
RC102.100 | 1403.646 37 13.82 98 7.23
RC103.100 | 1218.495 44 50.46 72 19.76
RC104.100 | 1094.333 47 321.49 112 148.09
RC105.100 | 1471.160 38 6.94 106 6.82
RC106.100 | 1308.781 31 7.77 81 6.96
RC107.100| 1170.689 35 42.67 58 21.23
RC108.100 | 1063.011 44 133.77 78 77.44
Total 307 578.84 655 288.66

Table 2.4: Comparing the stabilized cutting-plane alf@ponito a column generation algorithm on RC1
problems with 100 customers.

Author R1 Cl1 RC1 Typell R2 C2 RC2 Type2| Total
Cook and Rich [5] 33 27 20 80 8 20 2 30 110
Irnich and Villeneuve [19] | 29 27 20 76| 21 24 14 59 135
Chabrier [2] 19 24 17 60

This paper 28 27 18 73| 17 23 6 46 119
Total solved 34 27 22 83| 21 24 17 62 145
Total number of problems| 36 27 24 87| 33 24 24 81 168

Table 2.5: The number of Solomon problems solved.

44



Problem Name of Solomon problem with suffix indicating numdtfecustomers.

LB1 Value of root node before any strong valid inequalitiess generated. For some problems we were not
able to solve the root node to optimality. This is indicatgdatblank entry.

LB2 Value of root node after strong valid inequalities aregmted. Only printed if LB2>LB1.

LB3 Value of global lower bound in the search tree when otation was terminated. Only printed if

LB3>max{LB1, LB2}. If the problem is solved mgxB1, LB2, LB3 } is equal to the optimal integer
solution value.

Vehicles Number of vehicles corresponding to UB.
B&B nodes  Number of selected nodes in the branch-and-baeerd t

Cuts Number of generated strong valid inequalities in tlé node and the search tree.
Iterations Number of times the SPPTWCC algorithm is exatute
Seconds Total CPU-time in seconds to solve problem to ofitin{e: time limit of 3600 CPU seconds exceeded).

Table 2.6: Description of columns in Table 2.7-2.12 and 2.17

10 h. Compared to Irnich and Villeneuve [19] and Chabriertf# conclusion is that our algorithm is
not competitive with respect to the R2 and RC2 problemsesthe bound provided by the SPPTWCC
with 2-cycle elimination is not tight enough. However comgzhto Cook and Rich [5] the acceleration
strategy made it possible to solve more and larger probleni®i R2 and RC2 sets.

Irnich and Villeneuve [19] performed all their computat&bexperiments on a Pentium |l 600MHz
machine with 512Mb RAM. The Dell Inspiron 7500 machine is iimexcept that it only has 256Mb
RAM. We should therefore be able to compare computationadifor experiments performed on the
Dell Inspiron 7500 with the results reported in Irnich andlérieuve [19]. We tried to solve the 119
problems on the Dell Inspiron 7500 machine. However becafitack of memory we solved only 117
out of the 119 problems (R112.50 and R205.50 were not sgh@&dput of the 117 solved problems
were solved faster than the minimum time reported in Irniuth ¥illeneuve [19] corresponding to a total
decrease of 20437 seconds; 26 were solved with a longer datigmal time corresponding to a total
increase of 940 seconds. Note that Irnich and Villeneuvé f@Bort solution times using 2-, 3-, and
4-cycle elimination. We compare our method with theycle elimination method with the minimum
solution time. In Table 2.13 we compare the total solutiomes per problem set for the LBCP algorithm
with Irnich and Villeneuve [19]. In Table 2.15 and 2.16 wewsttbe 10 problems for which we observed
respectively the largest increase and decrease in thésolumhe by our method compared to the minimal
solution time reported in Irnich and Villeneuve [19]. We deke the associated columns in Table 2.14.

2.7.3 Solutions for the Homberger problems

We have solved 9 problems from the Homberger test sets intestiin Gehring and Homberger [15],
among them problems with 400 and 1000 customers. In 8 of thielgms the customers are clustered
(C-problems), while we succeeded in solving a 200 customadsiem where the customers are randomly
located. The results are presented in Table 2.17.

2.8 Conclusions

The algorithm has been tested on the Solomon VRPTW testemwband a range of extended Solomon
problems created by Homberger. Using a stabilized cutiage algorithm in a branch-and-bound
scheme gives a significant speed-up compared to an algobiéised on traditional column generation.
We have solved two Homberger problem with 400 and 1000 custenespectively, which to date is the
largest problems ever solved to optimality. The conclugsaherefore that it is an efficient acceleration
strategy that performs significantly better than a traddla@olumn generation based algorithm on a large
number of test problems.
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Problem LB1 LB2 LB3 | Vehicles B&Bnodes Cuts Iterationg Seconds
R101.25 617.100 8 1 0 30 0.1
R101.50 1043.367 1044.000 12 1 2 43 0.2
R101.100 | 1631.150 1634.000 1637.70 20 15 9 385 8.4
R102.25 546.333 547.100 7 1 3 32 0.1
R102.50 909.000 11 1 0 53 0.5
R102.100 | 1466.600 18 1 0 99 4.8
R103.25 454.600 5 1 0 39 0.2
R103.50 765.950 767.300 772.900 9 57 7 516 10.0
R103.100 | 1206.312  1206.376  1208.70 14 69 3 821 123.0
R104.25 416.900 4 1 0 32 0.2
R104.50 616.500 620.758 625.40! 6 103 13 1129 303.9
R104.100 949.134 950.987 956.49¢ 100 158 10 4057 -*
R105.25 530.500 6 1 0 24 0.1
R105.50 892.120 893.650 899.30! 9 23 15 181 1.9
R105.100 | 1346.142 1348.632 1355.30 15 151 23 1573 102.9
R106.25 457.300 465.400 5 1 15 41 0.3
R106.50 791.367 793.000 8 1 7 57 0.9
R106.100 | 1226.440 1227.404 1234.60 13 1457 11 15173| 2187.5
R107.25 422.925 423.800 424.30( 4 3 41 0.3
R107.50 704.438 704.814 711.10 7 83 776 215
R107.100 | 1051.844 1052.714 1061.88 100 421 12 9568 -*
R108.25 396.139 396.720 397.30! 4 3 2 61 0.5
R108.50 588.926 595.624 611.785 50 209 33 4854 -*
R108.100 907.162 910.603 915.265 100 234 17 4927 -*
R109.25 441.300 5 1 0 21 0.1
R109.50 775.096 775.890 786.80! 8 247 1904 25.8
R109.100 | 1130.587 1133.164 1141.97 100 1011 34 26904 -*
R110.25 437.300 437.938 444.10( 5 25 263 1.4
R110.50 692.577 694.150 697.00¢ 7 5 4 83 2.2
R110.100 | 1048.482 1049.939 1058.60f 100 491 9892 -*
R111.25 423.788 424.583 428.80 4 5 3 83 0.5
R111.50 691.812 692.635 707.20 7 461 14 4348 114.5
R111.100 | 1032.028 1041.850] 100 528 6 10646 -*
R112.25 384.200 385.391 393.00¢ 4 13 25 208 6.6
R112.50 607.219 612.374 630.20¢ 6 5263 36 65983 3166.4
R112.100 | 919.192 922.398 930.12§ 100 171 41 4063 -*

Table 2.7: Solution overview for the R1 problems.
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Problem LB1 LB2 | Vehicles B&Bnodes Cuts lterations Seconds
C101.25 | 191.300 3 1 0 24 0.1
C101.50 362.400 5 1 0 19 0.2
C101.100 | 827.300 10 1 0 50 0.8
C102.25 190.300 3 1 0 20 0.2
C102.50 | 361.400 1 0 38 0.5
C102.100 | 827.300 10 1 0 27 1.2
C103.25 190.300 1 0 26 0.2
C103.50 361.400 1 0 39 1.1
C103.100 | 826.300 10 1 0 52 5.7
C104.25 | 186.900 1 0 27 0.4
C104.50 | 357.250  358.000 1 3 67 7.3
C104.100 | 822.900 10 1 0 70 18.9
C105.25 191.300 1 0 26 0.1
C105.50 362.400 5 1 0 18 0.2
C105.100 | 827.300 10 1 0 44 0.9
C106.25 | 191.300 1 0 25 0.1
C106.50 | 362.400 5 1 0 28 0.2
C106.100 | 827.300 10 1 0 31 0.8
C107.25 191.300 3 1 0 24 0.1
C107.50 362.400 1 0 22 0.2
C107.100 | 827.300 10 1 0 29 0.7
C108.25 | 191.300 1 0 26 0.2
C108.50 362.400 1 0 34 0.3
C108.100 | 827.300 10 1 0 44 1.6
C109.25 191.300 1 0 25 0.2
C109.50 | 362.400 1 0 27 0.4
C109.100 | 825.640  827.300 10 1 3 104 6.1

Table 2.8: Solution overview for the C1 problems.
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Problem LB1 LB2 LB3 | Vehicles B&Bnodes Cuts Iterations Seconds
RC101.25 406.625 461.100 4 1 9 53 0.2
RC101.50 850.021 942.625 944.00 8 3 38 99 1.9
RC101.100 | 1584.094 1617.276  1619.80p 15 27 68 340 32.9
RC102.25 351.800 3 1 0 22 0.2
RC102.50 719.902 813.037 822.50! 7 683 12 6804 115.0
RC102.100 | 1403.646 1437.000 1450.32y 100 1152 40 30698 -*
RC103.25 332.050 332.800 3 3 0 42 0.4
RC103.50 643.133 710.667 710.90! 6 5 10 118 4.3
RC103.100 | 1218.495 1241.705 1250.706 100 423 44 12506 -*
RC104.25 305.825 306.600 3 7 0 75 0.7
RC104.50 543.750 545.800 5 17 5 247 18.4
RC104.100 | 1094.333 1112.354 100 3 32 360 -*
RC105.25 410.950 411.300 4 3 0 46 0.3
RC105.50 754.443 852.858 855.30! 8 33 23 441 7.3
RC105.100 | 1471.160 1509.800 1513.70p 15 41 34 686 65.6
RC106.25 342.829 343.200 345.50! 3 13 1 135 0.6
RC106.50 664.433 714.788 723.20 6 37 12 532 11.9
RC106.100 | 1308.781 1332.510 1347.34p 100 927 46 22511 -*
RC107.25 298.300 3 1 0 40 0.4
RC107.50 591.476 632.336 642.70! 6 123 2095 193.6
RC107.100 | 1170.689  1178.484  1193.33 100 392 39 8850 -*
RC108.25 293.791 294.500 3 1 5 48 0.9
RC108.50 538.957 596.867 598.10 6 9 10 144 29.8
RC108.100 | 1063.011 1091.555 1096.17} 100 95 52 2319 -*

Table 2.9: Solution overview for the RC1 problems.
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Problem LB1 LB2 LB3 | Vehicles B&Bnodes Cuts Iterationg Seconds
R201.25 460.100 463.300 4 3 0 45 0.2
R201.50 788.425 791.900 6 1 1 67 0.8
R201.100 | 1136.248  1138.650  1143.200 8 183 2 3000 253.4
R202.25 406.350 408.350 410.50 4 5 1 87 0.8
R202.50 692.737 696.525 698.50( 5 11 2 291 11.4
R202.100 | 1009.828 1009.859 1012.776 100 46 12 2143 -*
R203.25 379.882 381.625 391.40(¢ 3 37 3 426 54
R203.50 590.930 593.430 605.30! 5 491 20 7906 923.4
R203.100 | 846.489 847.097 847.379 100 6 6 507 -*
R204.25 333.075 335.350 355.00(¢ 2 777 42 11052 190.6
R204.50 474.562 482.324 487.944 50 64 38 3874 -*
R204.100 100 1 378 -*
R205.25 381.283 388.425 393.00! 3 15 205 11
R205.50 666.604 672.350 690.10! 4 5255 34 98061| 2558.7
R205.100 | 916.976 923.025 931.29 100 179 34 9884 -*
R206.25 363.132 365.908 374.400 3 85 12 946 14.2
R206.50 609.590 611.363 624.26( 50 617 54 25518 -*
R206.100 | 835.326 840.751 844.619 100 16 12 1170 -*
R207.25 347.592 349.741 361.60! 3 125 20 1568 30.2
R207.50 539.067 544.324 554.20 50 194 44 8821 -*
R207.100 100 1 13 588 -*
R208.25 318.105 318.911 328.20¢ 1 75 24 1531 58.2
R208.50 462.412 471.563 472.779 50 14 30 1184 -*
R208.100 100 1 222 -*
R209.25 353.875 358.321 370.70! 2 65 8 781 6.5
R209.50 582.926 588.413 600.60¢ 4 525 49 9077 530.4
R209.100 819.847 823.734 829.175 100 45 28 2582 -*
R210.25 395.844 397.906 404.60( 3 71 8 760 75
R210.50 624.421 638.524 50 1086 67 35729 -*
R210.100 | 849.477 855.852 860.32§ 100 21 17 1231 -*
R211.25 330.140 330.472 350.90! 2 1513 84 23178 515.3
R211.50 507.950 512.567 523.607 50 235 58 7923 -*
R211.100 705.811 710.753 100 3 25 401 -*

Table 2.10: Solution overview for the R2 problems.
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Problem LB1 LB2 LB3 | Vehicles B&Bnodes Cuts Iterations Seconds
C201.25 214.700 2 1 0 48 0.2
C201.50 360.200 3 1 0 103 1.1
C201.100 | 589.100 3 1 0 40 2.0
C202.25 | 214.700 2 1 0 139 1.3
C202.50 | 360.200 3 1 0 574 20.3
C202.100 | 589.100 3 1 0 32 5.7
C203.25 214.700 2 1 0 102 5.7
C203.50 | 359.800 3 1 0 808 203.1
C203.100 | 588.700 3 1 0 77 73.9
C204.25 | 211.004 211.042  213.10 1 13 4 364 46.0
C204.50 350.100 2 1 0 471 402.2
C204.100 100 4 1 277 -*
C205.25 212.050 214.700 2 1 3 86 0.4
C205.50 | 357.350 359.000  359.80! 3 3 1 400 7.2
C205.100 | 586.400 3 1 0 47 4.6
C206.25 | 197.700  214.700 2 1 6 112 0.9
C206.50 344.200  359.000 359.80 3 5 5 989 33.9
C206.100 | 585.400 586.000 3 1 2 64 14.9
C207.25 | 207.981 214.400 214.50 2 7 12 208 3.7
C207.50 | 356.269  359.600 3 1 13 236 22.3
C207.100 | 581.969  585.800 3 1 6 429 74.6
C208.25 193.280 214.500 2 1 10 165 1.8
C208.50 340.425 350.500 2 1 190 8.4
C208.100 | 581.767 585.800 3 1 159 57.0

Table 2.11: Solution overview for the C2 problems.
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Problem LB1 LB2 LB3 | Vehicles B&Bnodes Cuts lterations Seconds
RC201.25 356.650 360.200 3 1 1 39 0.2
RC201.50 670.150 681.983 684.90 5 15 5 285 3.0
RC201.100 | 1240.398 1253.430 1261.80p 9 679 18 16461 1205.9
RC202.25 290.408 313.389 338.00! 3 665 30 12772 222.3
RC202.50 504.140 548.224 572.35% 50 705 80 42784 -*
RC202.100 | 1004.398 1013.888 1028.258 100 126 30 6683 -*
RC203.25 214.475 260.811 295.86 25 984 111 49000 -*
RC203.50 409.246 480.052 486.95 50 23 42 2942 -*
RC203.100| 815.276 831.971 834.201 100 7 38 714 -*
RC204.25 188.593 244.810 260.494 25 127 39 8907 -*
RC204.50 50 1 0 199 -*
RC204.100 100 1 0 196 -*
RC205.25 307.600 320.788 338.00! 3 23 6 791 6.9
RC205.50 541.592 579.905 617.81¢ 50 1093 59 84589 -*
RC205.100 | 1056.111  1070.859  1087.132 100 162 32 10709 -*
RC206.25 250.106 288.983 324.00 3 503 39 14526 195.5
RC206.50 441.336 532.192 551.37 50 375 73 35262 -*
RC206.100 952.406 982.887 995.911 100 126 40 7947 -*
RC207.25 217.961 263.894 292.13 3 2427 98 123256 -*
RC207.50 390.837 468.865 475.274 50 15 38 1693 -*
RC207.100 866.668 877.849 888.93] 100 47 36 2988 -*
RC208.25 169.671 233.078 243.127 25 56 34 4095 -*
RC208.50 50 1 21 408 -*
RC208.100 100 1 13 389 -*

Table 2.12: Solution overview for the RC2 problems.

Author R1 C1 RC1 Typel R2 Cc2 RC2 Type 2 Total
Irnich and Villeneuve [19] | 3783.1  1011.8  2651.1  7446.0 5847.1 101469 3673.2 19667.p 27113.2
This paper 2550.0 48.2 397.1 2995.3 1981.0 1155.6 1484.5 4621.2 7616.4
Speed-up 1.5 21.0 6.7 25 3.0 8.8 25 4.3 3.6

Table 2.13: Total solution time in seconds for each problenfics the 117 problems solved by the LBCP
algorithm on the Dell Inspiron 7500 vs. the correspondingimum solution time reported by Irnich and
Villeneuve [12].

Problem Name of Solomon problem with suffix indicating numiecustomers.
LB1 Value of root node before any strong valid inequalities generated.
LB2 Value of root node after strong valid inequalities aregm@ted.

B&B nodes  Number of selected nodes in the branch-and-baeed t
k k-cycle elimination used in obtaining minimum the solatiime.
Seconds Total CPU-time in seconds to solve problem to ofitima

Table 2.14: Description of columns in Table 2.15 and 2.16.
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Irnich and Villeneuve [19] LBCP Algorithm
Problem LB1 LB2 B&Bnodes k  Seconds| LB1 LB2 B&Bnodes Seconds| Increase
R104.50 616.500  620.758 34 2 212.6 616.500 620.758 117 406.9 194.3
R203.50 598.350  598.350 23 3 470.4 590.930  593.430 479 661.7 191.3
RC202.25| 308.033  321.425 7 3 12.6 290.408  313.389 741 196.¢ 184.0
RC206.25 | 318.950 318.950 9 4 12.3 250.163 288.983 517 194.2 181.9
R209.50 599.813 599.813 7 4 255.4 582.877 588.413 531 421.1 165.7
R206.25 373.600  373.600 7 3 5.1 363.132 365.908 85 15.7 10.6
RC205.25 | 338.000  338.000 1 3 1.4 307.600 320.788 23 6.5 5.0
C203.25 214.700  214.700 1 2 3.7 214.700 214.700 1 4.9 1.2
RC106.25 | 345.500 345.500 1 3 0.4 342.829 343.200 13 1.2 0.8
R101.25 617.100 617.100 1 2 0.1 617.100 617.100 1 0.7 0.6

Table 2.15: Top 10 increases in computational time usind-B@P algorithm compared to Irnich and
Villeneuve [12].

Irnich and Villeneuve [19] LBCP Algorithm
Problem LB1 LB2 B&Bnodes k  Seconds| LB1 LB2 B&Bnodes Seconds| Decrease
R201.100 1140.300  1140.300 35 4 3537.p 1136.222  1138.650 203 281.6 3255.6
RC201.100 | 1255.770  1256.260 39 4 3620.44 1240.398  1253.430 679 1082.f 2537.7
C208.100 581.767 585.800 2 2 2183.3 581.767 585.800 1 374 21459
C207.100 581.969 585.800 5 2 2068. 581.969 585.800 1 52.1 2016.7
C203.100 588.700 588.700 1 2 1706. 588.967 588.967 7 509.( 1197.3
RC105.100 | 1471.160  1509.800 25 2 899.0 1471.160  1509.800 41 56.4 842.6
C204.50 350.100 350.100 1 2 1159.4 350.100 350.100 1 332.4 826.6
C206.100 586.000 586.000 1 3 814.4 585.400 586.000 1 11.4 802.8
C202.100 589.100 589.100 1 2 585. 589.100 589.100 1 6.9 579.1
R211.25 339.981 339.981 139 4 876.3 330.140 330.477 1127 335.8 541.0

Table 2.16: Top 10 decreases in computational time using B@P algorithm compared to Irnich and
Villeneuve [12].

Problem LB1 LB2 LB3 | Vehicles B&Bnodes Cuts lterations Seconds
R1_2_1.200 4654.913 4661.033 4667.20p 23 521 21 7980| 1363.39
C1_2 1.200 2698.600 20 1 0 127 7.7

C1_2 2.200 2682.187 2694.300| 20 75 6 2816 | 992.61
C1l_2_5.200 2694.900 20 1 0 112 9.64

C1l_2_6.200 2694.900 20 1 0 126 14.15
C1_2_7.200 2694.900 20 1 0 105 11.18
C1_2_8.200 2667.870 2668.118 2684.00p 20 137 19 2409| 601.15
C1_4_1.400 7138.767 7138.800 40 1 1 97 28.59
C110_1.1000| 42444.400 42444.683  42444.800 100 5 3 858 | 1298.21

Table 2.17: Overview of the solved Homberger problems.

52



Acknowledgements The authors would like to thank Professor Kaj Madsen frontifygartment of In-
formatics and Mathematical Modelling, Technical Universif Denmark, for all the fruitful discussions
regarding the development of Algorithm 1.

References

[1] N. Ascheuer, M. Fischetti, and M. Grétschel. Solving #symmetric travelling salesman problem
with time windows by branch-and-cuMathematical Programming Series 80:475-506, 2001.
[32]

[2] A. Chabrier. Vehicle routing problem with elementarystest path based column generation. Tech-
nical report, ILOG, 2003. [33, 42, 44, 45]

[3] E. W. Cheney and A. A. Goldstein. Newton’s method for cexprogramming and tchebycheff
approximationNumerische Mathematii:253-268, 1959. [33]

[4] V. Chvatal. Linear Programming Freeman, New York, 1983. [38]

[5] W. Cook and J. L. Rich. A parallel cutting-plane algonttor the vehicle routing problem with
time windows. Technical report, Rice University, 1999. [83, 44, 45]

[6] J.-F. Cordeau, G. Desaulniers, J. Desrosiers, M. M. 18olp, and F. Soumis. VRP with time win-
dows. In P. Toth and D. Vigo, editor§he Vehicle Routing Probler81AM Monographs on Discrete
Mathematics and Applications, pages 157-193. SIAM, Phlfaida, 2002. [32, 36]

[7] G. B. Dantzig and P. Wolfe. A decomposition principle fiorear programsOperations Research
8:101-111, 1960. [33]

[8] M. Desrochers. An algorithm for the shortest path prableith resource constraints. Technical
report, GERAD, 1988. [37]

[9] M. Desrochers and F. Soumis. A generalized permanestiliag algorithm for the shortest path
problem with time windowsINFOR, 26:191-211, 1988. [37]

[10] M. Desrochers, J. Desrosiers, and M. Solomon. A newigttion algorithm for the vehicle routing
problem with time windowsOperations Researcd0:342-354, 1992. [32, 36, 37, 41]

[11] M. Dror. Note on the complexity of the shortest path misder column generation in VRPTW.
Operations Researcd2:977-978, 1994. [33, 37]

[12] O. du Merle, D. Villeneuve, J. Desrosiers, and P. Hansgtabilized column generatioiscrete
Mathematics194:229-237, 1999. [33]

[13] D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen. Arcealgorithm for the elementary shortest
path problem with resource constraints: Application to sarmahicle routing problems. Technical
report, Laboratoire d’'Informatique d’Avignon, Universit’ Avignon, 2004. [33]

[14] M. L. Fisher. The Lagrangian relaxation method for sofyinteger programming problemslan-
agement Scien¢c@7:1-18, 1981. [33]

[15] H. Gehring and J. Homberger. A parallel two-phase mataistic for routing problems with time
windows. Asia-Pacific Journal of Operational Reseayd8:35-47, 2001. [33, 40, 45]

53



[16] R. E. Griffith and R. A. Stewart. A nonlinear programmiteghnique for the optimization of con-
tinuous processing systentdanagement Sciencé:379-392, 1961. [38, 39]

[17] J.-B. Hiriart-Urruty and C. Lemaréchal.Convex Analysis and Minimization Algorithms I-11
Grundlehren der matematischen Wissenschaften 304-30%g8pVerlag, Berlin Heidelberg,
1993. [33, 38, 40]

[18] D. J. Houck, J. C. Picard, M. Queyranne, and R. R. Vemtigdihe travelling salesman problem
as a constrained shortest path problem: Theory and conymabexperience OPSEARCH17:
93-109, 1980. [37]

[19] S. Irnich and D. Villeneuve. The shortest path probleitik-cycle elimination k > 3): Improving
a branch-and-price algorithm for the VRPTW. Technical redeehr- und Forschungsgebiet Oper-
ations Research und Logistik Management, Rheinisch-\lesthe Technische Hochschule, 2003.
[33, 42, 44, 45,51, 52]

[20] M. Junger and S. Thienel. The ABACUS system for branct-aut-and-price algorithms in integer
programming and combinatorial optimizatioBoftware: Practice and Experiencg0:1325-1352,
2000. [40]

[21] J. E. Kelley. The cutting-plane method for solving ceryprogramsJournal of SIAM 8:703-712,
1960. [33]

[22] N. Kohl. Exact methods for Time Constrained Routing and Relateddstihng Problems PhD
thesis, Department of Mathematical Modelling, Technicaivgrsity of Denmark, 1995. [40]

[23] N.Kohland O. B. G. Madsen. An optimization algorithnt the vehicle routing problem with time
windows based on Lagrangean relaxati@perations Researcd5:395-406, 1997. [32, 33, 37]

[24] N. Kohl, J. Desrosiers, O. B. G. Madsen, M. M. Solomord &nSoumis. 2-path cuts for the vehicle
routing problem with time windowsIransportation Scieng83:101-116, 1999. [33, 37]

[25] J. Larsen Parallelization of the Vehicle Routing Problem with Timenddws PhD thesis, Depart-
ment of Mathematical Modelling, Technical University of ireark, 1999. [37, 40]

[26] K. Levenberg. A method for the solution of certain pratols in least squareQuarterly Applied
Mathematics2:164-168, 1944. [40]

[27] K. Madsen. An algorithm for minimax solution of overdemined systems of non-linear equations.
Journal of the Institute of Mathematics and Its Applicatoh6:321-328, 1975. [38]

[28] D. Marquardt. An algorithm for least squares estimatid nonlinear parameterSIAM Journal of
Applied Mathematigsl1:431—-441, 1963. [40]

[29] R. E. Marsten, W. W. Hogan, and J. W. Blankenship. The BOEP method for large-scale opti-
mization. Operations Resear¢23:389-405, 1975. [39]

[30] D. Naddef and G. Rinaldi. Branch-and-cut algorithmstfee capacitated VRP. In P. Toth and
D. Vigo, editors,The Vehicle Routing ProblensIAM Monographs on Discrete Mathematics and
Applications, pages 49-78. SIAM, Philadelphia, 2002. [32]

[31] P. Neame, N. Boland, and D. Ralph. An outer approximatedgferential method for piecewise
affine optimization Mathematical Programming Series 87:57-86, 2000. [37]

54



[32] G. L. Nemhauser and L. A. Wolseynteger and Combinatorial OptimizationViley, New York,
1988. [37]

[33] M. Savelsbergh. Local search in routing problems wiithetwindows. Annals of Operations Re-
search 4:285-305, 1985. [32]

[34] M. M. Solomon. Algorithms for the vehicle routing andhsculing problems with time window
constraintsOperations Resear¢l35:254-265, 1987. [33, 40]

55



56



Chapter 3

Path inequalities for the vehicle routing
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Abstract

In this paper we introduce a new formulation of the vehiclgireg problem with time windows (VRPTW)
involving only binary variables associated with the archmunderlying digraph. The new formulation is
based on the formulation of the asymmetric traveling saggsproblem with time windows by Ascheuer
et al. [3] and has the advantage of avoiding additional temand linking constraints. In the new
formulation of the VRPTW time windows are modeled using pagqualities. The path inequalities
eliminate time and capacity infeasible paths. We presemvaaiass of strengthened path inequalities
based on the polyhedral results obtained by Mak [17] in thteod of the asymmetric traveling salesman
problem with replenishment arcs. We study the VRPTW polgtapd determine the polytope dimension.
We show that the lifted path inequalities are facet definindax certain assumptions. We also introduce
precedence constraints in the context of the VRPTW. Contiputa experiments are performed with
a branch-and-cut algorithm on the Solomon test problemis witle time windows. Based on results
on 25-node problems the outcome is that the algorithm shaamiping results compared to leading
algorithms in the literature. In particular we report a siolo to a previously unsolved 50-node Solomon
test problem R208. The conclusion is therefore that the fmathulation of Desrochers et al. [9] is no
longer the unchallenged winning strategy for solving thePIRy.

3.1 Introduction

This paper presents a polyhedral and computational studyafiant of the vehicle routing problem with
time windows.
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Throughout this papeBb = (V,A) will be a directed graph, whei = {0,1,...,n+ 1} is the set of
nodes,V| =n+2, andA is the set of arcs. Node O amdt 1 represent the start and destination depot,
respectively. The remainingnodes represent the set of custonérs: V \ {0,n+ 1}. With every arc
(i,j) € Aacostgj € Z and timetj; € Z, is associated. We assume that the triangle inequality on the
costs and travel times is satisfied, cg.< Ch + Chj andtjj <t +ty; for all (i, j) € A. With every node
j € N we associate a demauigl € Z, a release dataj € Z, and a due datbj € Z,, wherea; > to;
andb; > a; for all j € N, andb;j > & +tjj for all (i, j) € A. The release data and the due datk; are
the earliest, respectively the latest possible startimg tior servicing nodé For the nodes 0 anal+ 1
we assume thadyg = dny1 =0, a9 = apr1 = 0, andbg = by 1 = +. With the graphD we associate
a vehicle capacity] € Z.., whereq > d; for all i € N, andq > d; +d;j for all (i, j) € A. As usual, for
eachW c V let 3~ (W) ={(i,j) e A|i e V\W,j e W}, 6t (W) ={(i,j) e Ali eW,j e V\W}, and
AW) = {(i,j) € Ali,j e W}. We assume thaAn{(0,n+1)} =0, [67(0)] =|0 (n+1)| =n and
0 (0)=0"(n+1)=0. Letm=|A(N)| so|A| = 2n+m.

A k-route consists of a partitiofiN; | i = 1,...,k} of the set of customer nodésinto k subsets, and
an associated sequence, or route, of each subsetvy, ..., vy|) specifying the order of service of the
customers. A routg represents a vehicle leaving the start depot 0, servicmgéhof customens; in the
order defined by; and entering the destination depot 1. Note that a partition of the customer nodes
may correspond to severkiroutes. LetRL\‘r be the set of nonnegative real vectors whose components
are indexed byN. With eachk-route we associate a vectse RY, defined as followss,, = a,, and
Sy = max{s,jf1 +tv;_pvj, 3y Hforj=2,...,|Njjandi=1,... k. We say that &route is time and capacity
feasible ifs,; < by, for j=1,...,INif andy ey dj < gfori=1,....k We say that the partition size
or vehicle fleet size, is feasible, if a corresponding fdaditroute exists and we denote lyN) the
minimum feasible fleet size. We denote Ky= {k(N),...,|N|} the set of feasible fleet sizes. For each
k € K we denote byZ, the set of feasibl&-routes using exactli¢ vehicles. The set of feasibleroutes
forallk € K is denotedZx = {U%k | k=Kk(N),...,|N|}. LetR € Z« denote any feasibleroute and let
¢(R«) be the corresponding cost defineccéR) = (3 c(ri) [ i = 1,...,k) wherec(ri) = Coy, + (3 Cy;_yy; |
i=2,...,IN|)+ Cuj 1 The vehicle routing problem with time windows is

(VRPTW) min{c(Ry) | Rq € %k }.

The VRPTW reduces to the capacitated vehicle routing prolf&VRP) ifa; = 0 andb; = + for every
i € N. Therefore the VRPTW is NP-hard. Indeed, it is strongly Mifaplete to find a feasible solution
for the VRPTW with a fixed number of vehicles [19].

Bard et al. [6] present an integer linear programming foatiah of a different variant of the VRPTW
where the objective is to minimize the number of vehiclesthis formulation binary variables are as-
sociated with arcs in the underlying digraph. Integer noaléables are introduced to model the time
and capacity restrictions following the approach of Milédgral. [18]. In the context of the asymmetric
traveling salesman problem with time windows (ATSPTW) Aeaér et al. [3, 4] modeled time window
restrictions using “infeasible path elimination” conétita and they noted that similar constraints can
also be used to model any other kind of path infeasibility. fdllow this suggestion and present a new
formulation of the VRPTW involving binary arc variables gnlin our formulation time and capacity
restrictions are modeled using infeasible path elimimationstraints (IPECs), which we denote path in-
equalities. We present a class of strengthened path inégsélased on the polyhedral results obtained by
Mak [17] in the context of the asymmetric traveling salesmpiasblem with replenishment arcs (RATSP).
Our formulation is exponential in size since there are expdially many path inequalities. We present
the first polyhedral results on the VRPTW polytope by prouimgt the new class of strengthened path
inequalities are facet-defining for the VRPTW polytope urzkrtain conditions. We solve the problem
by a branch-and-cutalgorithm based on the new path indipsadind other classes of inequalities adopted
from the asymmetric traveling salesman problem (ATSP) hagtecedence constrained ATSP [5].

The reasons for this line of research were the followingsti-the polyhedral approach to the related
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ATSPTW indicates that most instances in the range of up td®0edes can be solved to optimality
via branch-and-cut codes in a few minutes [3]. Second, wieveethat the polyhedral approach may
outperform the dynamic programming approach of the pathddation when the time windows are wide.
Third, the results of Bard et al. [6] indicate that in theisednstances with 50 nodes can be routinely
solved using a branch-and-cut code. Finally, no polyheésallts on the VRPTW polytope were known
when this investigation started and further research mdhea could show what the relative advantages
of the different solution methods are.

This paper reports some computational results on VRPTWytestems developed by Solomon [20].
We focus on test problems having a long planning horizon argklvehicle capacity making it possible
for each vehicle to visit many customers on a route.

The paper is organized as follows. In Section 3.2 we preseetebinary integer programming (BIB)
formulation of the VRPTW and determine the dimension of thgoaiated polytope. In Section 3.3 we
prove that a new class of strengthened path inequalitiesedafproper face of the VRPTW polytope and
that the inequalities are facet defining under certain dandi. In Section 3.4 we describe how classes of
valid inequalities for the precedence constrained ATSKtppk can be transferred to the VRPTW. Sec-
tion 3.6 reviews preprocessing routines for the VRPTW baseiime windows and their implications. In
Section 3.7 we describe the test problems providing thefdataur computational study and the compu-
tational platform for performing the experiments. Sec8oBis dedicated to the implementational details
of the branch-and-cut algorithm. In Section 3.9 we reporémrsive computational results following the
approach of Ascheuer et al. [4]. Finally, we present our kgions in Section 3.10.

3.2 A BIP formulation of the VRPTW

A pathin the graplb is a sequence of nodes= (v, ...,vp) suchthatvi,vi,1) € Aforalli=1,...,p—1.
LetV(P) andA(P) denote respectively the set of nodes and arcs of the path pdtheis always open
and simple, i.e|]A(P)| = p— 1 andyv; # v;j for i # j. We say that a patR is infeasible if it does not
occur as a subpath in any feasible route, i.e. if eim’égd\,i >qors, > by, forsome € {1,...,p}. An
infeasible pattP is said to be minimal infeasible if the truncated subpatti;dd by A(P) \ {(v1,V2)}
andA(P) \ {(vp-1,Vp)} are feasible. We denote by’p the set of all minimal infeasible paths i A
necessary and sufficient condition fok#oute to be feasible is that no route that defines it contaiiys
minimal infeasible path.

Let Rﬁ be the set of nonnegative real vectors whose componentadegdad byA; the incidence
vector of ak-route in%x is x € R%, defined as followsx;j = 1 if (i,]) € Ais used in thek-route and
xij = 0 otherwise. For notational convenience we do not diststybietween &-route and its incidence
vector. For anyQ C A, we writex(Q) for 3 jcoXij. With this notation, the set of feasibleroutes
Zy for the VRPTW is the set of thoderoutes for which the incidence vectoe BA satisfy the degree
equations

(3.1) x(6T(i)) =1, VieN,

(3.2) x(07(i)) =1, VieN,

the subtour inequalities

(3.3) X(AW)) < W|—1, YO£WCN,
and the path inequalities

(3.4) X(A(P)) < JA(P)| -1, VPe 9.
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We denote byZ?yrptw C Rﬁ the VRPTW polytope, i.e. the convex hull of the incidencetees of all
the k-routes in%k, PvrpTw = CON Zx }. As for the dimension of the VRPTW polytope, we have
dim(@VRpTw) =m

Proposition 3.2.1 dim(ZyrpTw) = M.

Proof: Clearly dim(Zvrptw) < |A| — 2n = m, since Zyrptw C RA and the system (3.1) and (3.2) of
degree equations has rank. 2

Next we show that there ane+ 1 affinely independemtroutes ind?yrprw. First consider th&-route
Rn € Zk consisting ofn routes, one for each customer

Ra={(0,i,n+1)]ieN},

and then consider the following kroutes denoted bR,_1(i, j), each of them containing an aficj) in
A(N) which is not used by any other of tme— 1 k-routes or by thé&-routeR,, thus proving the affine
independence.

Ro-1(i,) ={(0,i,j,n+1)}u{(0,i",\n+1) [I"e N\ {i,j}}, V(i.]) € AN).

This gives a total o+ 1 affinely independerit-routes and so dif®yrptw) > m. Therefore, from
dim(ZPyvrprw) < mand dim{ Pyrptw) > Mit follows that dim ZPyrprw) = M. ]

3.3 Lifted path inequalities

The path inequalities (3.4) can be very weak. Mak [17] pregosays to strengthen path inequalities
for the ATSP with Replenishment Arcs (RATSP) and introdueetass of valid inequalities she called
S constraints. In what follows we transfer MalSg inequalities to the VRPTW adopting the definitions
used therein.

Definition 3.3.1 Suppose we have a minimal infeasible pBt& (v4,...,vp) € Zp. Then we define the
following arc sets.

1. AT(P)= Aj;( P) is the set of non-path arcs starting at nodeB,iwhereA; (P) = {(vh, ]) €
Alj ;évhH} forh 1,...,p—1.

2. A t(P) = Up 1A+( P) is the set of time and capacity feasible forward and escapamgpath arcs

w.r.t. the minimal infeasible path, where&,;(P) ={(Vh, J) €ANN) | j # V1, Ve, ST 0y +
dj <gandsy, +ty,j <bj}U{(vh,n+1) €A}, forh=1,...,p—1.

3. A ( ) = UE 1A+ . (P) is the set of time and capacity infeasible forward and esgapon-path arcs

w.r.t. the m|n|mal infeasible path, whereA_ﬁ,;(P) ={(Vh, J) EAN) | j # V1, Ve, ST 0y +
dj >qors, +ty,j>b;}, forh=1,....,p—1. Since all arcéi, j) € Aare time and capacity feasible

we haved] (P) =

4. AB(P) = R 1AB( P) is the set of backward arcs w.r.t. the minimal infeasiblehat where
A3 (P)={(vh,[) €AN) | j € {va,....vn-1}}, forh=2,..., p— 1 andA] (P) = 0.

5. 0 (vy) = A(,r( )UAjh( ) UAZ (P) U{(Vh,Vny1}) is the set of all arcs leaving nodg, for h =
1,...,p—1
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The outdegree equations (3.1) give us a means to alter thedbthe path inequalities (3.4) (the "in-
side" form). By subtracting the outdegree equatief@" (i)) = 1 for the nodes € {v1,...,vp_1} of an
infeasible path in (3.4) and dividing the inequality by we obtain the "outside" form

(3.5) X(AT(P)>1 VPe Pp.
From definition 3.3.1, we get
A*(P) =At(P)UAT(P)UAB(P),
and therefore (3.5) is equivalent to
X(A* (P)) +x(A* (P)) +x(AB(P) =1 VP e Pp.
Inequalities (3.5) can be lifted to give
(3.6) X(AT(P) =1 VPe Pp,
and we now prove that this is a valid class of inequalitiegtierVRPTW.
Proposition 3.3.1 ForP € &7p, the path inequality
(3.7) X(B*(P) > 1
is valid for the VRPTW polytope.

Proof: Assume to the contrary that there existsxanZy such that (3.7) does not hold, ix(A™ (P)) = 0

and sox(E\J,;](P)) =0,forh=1,...,p— 1. We now prove by induction that if (3.7) does not hold, then
Xy = L, forh=1,..., p— 1, contradicting our assumption that Zx.

Initial step. Whenh = 1 the outdegree constraint for nodegives usx(d+(v1)) = x(ﬁi{l(P)) er(E\J;1 (P
+X(8 (P))+ Xy, = 1. By assumption we havéA;; (P)) = 0 and by definition we hava? (P
0, hencex(A? (P)) = 0. Recall that\/, (P) = 0 and thereforg(A], (P)) =0. So forh=1xyy,,, =
is true.

~—

)

=

Inductive step. Assume thereista for2<t < p—1, such thak,y , = listrueforl =1,...,t—1. We
now prove thak,y_, = 1 is true forl =t. Whenl =t the outdegree constraint for nodegives
usx(dt(w)) = x(E\J,;(P)) +X(8y (P)) + X(AB(P)) + Xyw,, = 1. Again, by assumption we have
x(By (P)) = 0 and by the inductive assumptiagy,, = 1, forl = 1,...,t—1, and therefore we must
haveA;; (P) = 0, otherwise the solution would induce a minimal infeasitrhth. Now, assume there
is anl, for 1< | <t—1, such thakyy, = 1. Then by the inductive assumption the solution would
induce a subtour and therefore we must heai (P)) = 0. Now, from the outdegree constraint
we havexyy, , = 1. This completes the inductive step and hence the propositiproved.

The inside form of the inequality (3.7) is
(3.8) X(P) +X(A* (P)) +x(AB(P)) < |A(P)| — 1.

Definition 3.3.2 (Mak [17]) Given a time and capacity constrained digrépbhnd a minimal infeasible
pathP € &p we denote b)SlD’P the constraint (3.8).
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Ascheuer et al. [3] propose ways to strengthen path inetesafor the ATSPTW and introduce a
class of lifted path inequalities they call tournament ¢rists. To begin we define additional arc sets.

Definition 3.3.3 Suppose we have a minimal infeasible pBt& (v1,...,Vp) € &p. Then we define the
following arc sets.

1. AF(P) = UﬁjAEh(P) is the set of escaping non-path arcs w.r.t. the minimal sifga pathP,

WhereAEh(P) ={(Vh,J) €AN) | j & {v1,...,Vp}} U{(Vn,n+1) €A}, forh=1,....,p—-1

2. AF(P) =UP_1 Af, (P) is the set of non-path forward arcs w.r.t. the minimal inflelespathP, where

NG (P)={(Vh,]) €ANN) | j =Vhi2,...,Vp}, forh=1,...,p—2 andA\fpfl(P) =0.

3. & (wn) = AF (P)UAL (P)UAY (P)U{(Vn,Vhi1)} is the set of all arcs leaving nodg, for h =
1...,p—1

We note that the relationship between the arc sets of defin®i3.1 and 3.3.3 is given by
(3.9) At (P)UA* (P) = AF(P)UAF (P).

Given aP € Zp, Ascheuer et al. [3] denote BP] = {(vi,vj) € A| 1<i < j < p} the transitive closure
of P=(v1,...,Vp). Ascheuer et al. [3] show that for evelPyc &7p the tournament constraint

(3.10) x([P) < |A(P)| -1
is valid for the ATSPTW polytope. Using definition 3.3.3 wencarite (3.10) as
(3.11) X(P) +x(A" (P)) < |A(P)| — 1.
Observe that (3.11) expands to
p—1

@12) 5 (o +XOGP) ) < AP -1

By the outdegree equation, this is equivalent to

(3.13) pf(l—x(AVE (P) - X(05,P) ) <IAP)| - 1
& h h

and soto

(3.14) pzl<x(AE (P)) +X(0% (P))) >1
h=1 o o ’

and also

(3.15) X(AE(P)) +x(AB(P)) > 1.

We now prove that (3.15) is a valid constraint for the VRPTW.
Proposition 3.3.2 For P € &7p, the path inequality

(3.16) X(AE(P)) +x(AB(P)) > 1

is valid for the VRPTW polytope.
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Proof: Assume to the contrary that there existsxanZy such that (3.16) does not hold, ix¢AE (P)) +
X(AB(P)) = 0 and sax(Af (P)) +x(A8 (P)) =0, forh=1,...,p— 1. We now prove by induction that if
(3.16) does not hold, theg, ,, =1, forh=p,...,2, contradicting our assumption that Zx .

Initial step. Whenh = p the outdegree constraint for nodg 1 gives usx(6" (vp_1)) = XA (P)) +

Vp-1
x(A\'fpfl(P)) + x(A\E,‘pfl(P)) + Xy, 1vp = 1. By assumption we ha\x{AEpfl(P)) + x(A\E,‘pfl(P)) =0

and by definition we havaﬁpfl(P) =0, hence<(A\'fp71(P)) = 0. So forh= p x,_,y, = Lis true.

Inductive step. Assume there is & for 2 <t < p— 1, such thaky, ,, = 1istrue forl = p,...,t41.
We now prove thak, _,y, = 1 is true forl =t. Whenl =t the outdegree constraint for node
gives usx(d™ (w)) = X(AE (P)) + x(Af (P)) + X(A3 (P)) + Xy_,w = 1. Again, by assumption we
havex(AE (P)) + (A2 (P)) = 0 and by the inductive assumptioqy ,y, = 1, forl = p,...,t+1,
and the indegree constraint® (i) = 1, fori = p,...,t +1 we must have(Af, (P)) = 0. Now,
from the outdegree constraint we hayg,y, = 1. This completes the inductive step and hence the
proposition is proved.

3.3.1 Facet proof

Definition 3.3.4 Given any minimal infeasible path e &p, we define the face of?yrpTw induced by
SP to beFP” = {x € Pvrprw | X(A(P)) +X(B* (P)) + X(AB(P)) = |A(P)| - 1}.

Lemma 1 For any time and capacity constrained digrép# (V,A) with N = {1,...,n} where|N| > 5,
and any minimal infeasible path= (vq,...,vp) € &p with 3< p<|N| -2, F1D7P is a proper face of
PURPTW-

Proof: To show thaFlD Pisa proper face 02 rpTw, We need to show thatf FlD*p %+ PyrpTv. We
first show that @ F1D7P by showing that there is at least one solutioig that satisfies constraiﬁ}?’P at
equality. Without loss of generality, we assume tRat {1,..., p}. Consider a feasible solutiof € %k
defined byxt = 1if (i,j) € {(kk+1) [k=1,...,p—2}U{(0,j) | j > p}U{(j,n+1)| | > p} and

xilj = 0 otherwise. Since this is clearly a feasikleoute using exactlyA(P)| — 1 arcs, constrairfﬂf’P is
satisfied at equality. Next we show tH?a_Ll?P %+ PyrpTw by showing that there is at least one solution in
Zk that does not satisfy constrai@’P at equality. Consider another feasible solutidre Zx where

x5 =1if (i,j) €{(0,)) | j=1,...,n}U{(j,n+1) | j = 1,...,n} andxj = O otherwise. Clearly, as none
of the arcs inA(P) UA™ (P) UAB(P) are used in th&-route, constrair‘nﬁf’P is not satisfied at equalityo

Given a pathP € Zp let Q(P) = U,ﬁ’;inh(P), whereQy, (P) = {keV | (j,k) € E\J;h(P)}. Let cy,
denote any arbitrary node in the $&j, (P).

Theorem 3.3.1 For any time and capacity constrained digréph- (V,A) with N = {1,... p+2} and
any minimal infeasible patR = (vi,...,vp) € Hp, constrainSfP defines a facet fo?yrpTw if the
following conditions hold:

1. all arcs inA are time and capacity feasible, ilg.> & +t; andqg > di +d; for all (i, j) € A,

2. if (i,vnh) exists iNA(N) for i € N\V(P) andv, € V(P) \ {v1,Vp}, then there must exist an arc
(Vh, wy,) € A(N) and(i, v, wy,) must be feasible,

3. if (vi,vn) exists inA(N) for anyh € {3,...,p— 1}, then there must exisw,, w,,) € A(N) and
(Vh-1, Wy, ;) € A(N) wherew, is distinct for distinctl and (v1,vn, wy,) and(va,...,Vh_1, Wy, ,)
must be feasible.
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4. if (va,Vp) or (Vp,v1) exists INA(N), then there must exigtp_1, @y, ;) € A(N) and(vz,..., Vp_1,
w(,pfl) must be feasible.

5. if (vn,v1) exists inA(N) for anyh € {3,..., p— 1}, then there must exigtn_1, wy, ,) € A(N) and
(V2,...,Vh-1, Wy, ,) Must be feasible.

6. if (Vp,Vh) exists inA(N) for anyh e {1,...,p— 1}, then there must exisw,, w,,) € A(N) and
(Vp-1, @y, ;) € A(N) wherewy, is distinct for distinct and(vp, v, a,) and(Vhi1, - .-, Vp-1, Wy, ;)
must be feasible.

7. if (v, Vp) exists inA(N) for anyh € {2,..., p— 2}, then there must exigt, 1, wy, ;) € A(N) and
(Vhets---5Vp-1, va,l) must be feasible.

8. if (vi,vj) existsinA(N), fori, j € {2,...,p—1},i < j— 1, then there must exitj, w,; ) € A(N) and
(ijl,fﬂ/jil) € A(N) wherew, is distinct for distinct and(vl,...,vi,vj,m,j) and(Viy1,...,Vj_1,
wy;_,) must be feasible.

9. if (vi,vj) exists iNA(N), fori, j € {2,...,p—1},i > j, then there must exigvj, wy,) € A(N) and
(Vi-1,@y_,) € A(N) whereay, is distinct for distinctl and (vi,vj, w;) and(Vji1,...,Vi-1, Wy_;)
must be feasible.

Proof: We now show that under the conditions of the Iemlﬁth’,P has dimension dif??yrptw) — 1.
From proposition 1 we know th&tiD’P has dimension at most di@#yrptw) — 1. We therefore have
to show that the dimension Eﬁ)’P is at least difl?vrpTw) — 1. We show this directly by constructing

dim(ZvreTw) affinely independent feasibleroutes that satisfy constraiﬁif’P at equality. First we split
A(N) into the following disjoint sets:

AL =AP),
Az = (V(P)\ {v1,vp},V\V(P)),
VAV(P),V(P)\ {v1,Vp}),
{vi,vp},VAV(P)),
VAV(P),{v1,Vp}),
vih,V(P)\ {vi}) \ A(P),
V(P)\{vi},{va}),
{Vph, V(P {v1, vp}
V(P)\ {v1,Vp}, {Vp}
Alo—( (P)\{v1,vp},V(P
Ar1= (V(P)\ {va,vp},V(P
A= (V\V(P),V\V(P)).

Il
—

As
A4
A6
A7
Aa

)

\A(P),
\ {v1,Vp}) \A(P), with i < j for (vi,Vvj) € Aqo,
\ {V1,Vp}), withi > j for (vi,vj) € Aqg,

AAA/—\/—\/—\

\./\./\/\/

Then for everyA, | = 1,...,12, we construct &route for all (i, j) € A that satisfy constranﬁil3 at
equality. We also make sure that the &rg) € A/ for which we construct &-route is not contained in
any of the other previously introducé&eoutes, thereby ensuring the affine independence. Notéhiba
k-routes constructed f@x; are special because we actually ensure the affine indepembgnhe absence
of the arc(i, j) € A; in the correspondink-route.

Lo{(ve, - V) FU{(Vhts -5 Vp) FU{ (W) | ke N\V(P)}, V(Vh, Vhi1) € As.
2. @ {(V, o Vi YU (Vg Vp) YU (W) [ k€ NALV(PY UL} I (vi, ) & A (P),
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®) {(V1,- - Vo) FU{ (Vi 1)} U{ (Vi1 - Vp) U { (Vi) | k€ N\ {V(P)U{j}}} otherwise,
V(Vh ) € Ao

{2 Vhy @4 ) FUL(VL - V1) FUL (Vs V) FUL (W) [ K€ N\ LV (PY Ui, oy, } 1 V(0 V) € As.

(8) {(ve, )} U{(Var... Vp)} U{(w) [KE N\ (V(PYU{j}}} if h=1,
(b) {(vp, N} U{(V,...,Vp-1)} U{(Vi) [ k€ N\{V(P)U{j}}} otherwise¥(vh, j) € As.

5. (@) {(i,ve)}U{(va,...,vp)} U{(v) [ke N\ {V(P)U{i}}} if h=1,
(b) {@i,vp)}U{(va,...,vp_1)} U{(w) | ke N\ {V(P)U{i}}} otherwisey(i,vn) € As.

6. (a) {(Ve, Vi 62)} U{(Var o Vi1, @ 3} UL (Vs Vp) U (W) | K€ NN V(P) Uf
wy,_, }Hif h#p,

(6) {(vi,Vp)}U{(Var- Vo1, 1)} UL (W) [ K€ N\ {V(P)U {ay, , }}} otherwise(va,vu) €

oW

As.
7@ L)t D} {990} () TSNV (P)U ey 1)
7P
(b) {(Vp.Va)} U{(Va,... V1,0, 1)} U{(vi) [ K€ N\ {V(P)U{ay, ,}}} otherwisel(vn, i) €
A7.
8. {(Vp, Vhs @) ULV, Vi) FU{ (Vi o5 Vp1, @ 1) FU{ (Vi) [KENNRV (P)U{ ey, v, 4 1
V(Vp, Vh) € As.
9. (@ {(Vh,vp)} U{(v1,.-;¥h-1)} U{(Vhi1,- -5 Vp1, a0y, o) U { (W) [ KENN{V(P)U{ew, ,}}}

if (Vn,Vp) € A7 (P),

(b) {(va,---,Vn,Vp) } U{(Vhia,-- -, Vp-1, 0, o) FU{(W) | K€ N\{V(P)U{wy, ,}}} otherwise,
V(Vh,Vp) € Ag.

10 {(a, - Vi Vi, @)U { (et V2,03 } ULV, V) U (0 [k E NV (PJU
{oy, @y 1 V(WL Y)) € Ao

11. {(vi,vj,o.x,j)} U{(va, .., Vj—1) FUL(Vjg1,- - Vi, @y ) U { Vit -+, Vp) FU{ (i) |
ke N\{V(P)U{ay, @y ; 1} V(. V)) € Awr

12, {(i, )} U{(va .. Vp-1) } U{ (Vi) | K€ N\ {i, j,va, ... Vp_1} ) (0, ) € Ara.

3.4 Precedence constraints

Time windows induce precedences among the nodes [4], thathisnever a set of customexs € N

are served on the same route {1,...,k} andb; < a; +t; fori,j € N;, we can conclude thathas to
precedej in any feasible route. Ldt—< j denote the fact thdathas to precedg in any feasible route
and letP = (V,R) denote an additional precedence digraph defined on the mode=sV of D. An arc

(i,j) € Rrepresents a precedence relationshipj. Note that by definitio*(0),d~(n+ 1) € Rand

RN {(0,n+ 1)} = 0. In the context of the ATSPTW which Ascheuer et al. [4] ddass, the precedence
digraph is acyclic and transitively closed. However naitiserue for the VRPTW, because in our case
the nodes € N are not required to all be visited on the same route as in tH&PAW, e.g. if a 2-cycle
exists(i — j —i) it means that the node pdir, j) cannot belong to the same route and we refer to it as an
incompatible pair. This term was introduced by Bard et gl. f8so, if i < j andj < k it does not mean
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thati < k becausg may be served by a different vehicle thamvhich means it may be possible foto
precede on the same route. Now, let

3.17)  mv) ={ieV|(v) eR},
(3.18) ov)={jeV|j)eR},

represent the set of the predecessors and successors ahaqad(d respectively.

Balas et al. [5] derived families of valid inequalities fbietprecedence constrained asymmetric trav-
eling salesman (PCATS) polytope that can be seen as stemiggs of the subtour inequalities (3.3).
These inequalities can also be written in the equivalentarut

(319) XxWW)>1 VO£WCN

Now we present two strengthenings of (3.19) in the VRPTW exintThe results we present follow easily
from Balas et al. [5], but these strengthenings have not beesidered previously in our context:

Proposition 3.4.1 ForW C N and any giverj € W, W =V \ W, the weak predecessor-inequality (weak
m-inequality)

(3.20) X(WA\ i(j),W\ m(j)) > 1
is valid for the VRPTW polytope.

Proof: Letr be any feasible route and I¢t r. Let W be the last node AV served byr, and note that
W e W\ (). The successor af ih r cannot be irv(j). O

Balas et al. [5] presented a second class of inequalitieshinh the successors ®¥ play a role
analogous to that of the predecessor§\in (3.20). The authors describe how the role of predecessor
and successor can be switched by basically replacing tiraphd with the transpose®’ = (V,AT"),
whereA” = {(i,j) €V xV | (j,i) € A}. Thisimmediately gives us the following result.

Proposition 3.4.2 ForW C N, and any giverj € W, W =V \ W, the weak successor-inequality (weak
o-inequality)

(3.21) x(W\a(j),W\a(j)) >1
is valid for the VRPTW polytope.

Note that the generai- ando —inequalities are not generally valid for the VRPTW, sinogythare derived
from the fact that in the PCATSP context all nodes have to beegeby the same vehicle. Balas et al. [5]
also presented a predecessor-successor inequality-ar-inequality and a precedence cycle breaking
inequality or pcb-inequality but it is easy to show that th&snilies of inequalities are not generally valid
for the VRPTW polytope. These inequalities are also derfvenh the fact that in the PCATSP context
all nodes have to be served by the same vehicle. However, wstitamake use of these families of
inequalities when we are considering the VRPTW with exaatig vehicle:

(1-VRPTW) min{c(Ry) | Ry € Z1}.

The 1-VRPTW is an important subproblem in the solution of WRPTW. The 1-VRPTW is identical
with the ATSPTW if the total demand is not greater than theiclercapacity, i.eSjcndi < 0. The
strengthened precedence inequalities can be used in thehtimg strategy where nodes with the number
of vehicles set to one is bounded using these inequaliti®y, = 1. The inequalities can also be used
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in the separation of the 2-path inequalities proposed byl Kbhl. [15], in which one has to determine
whether it is feasible to serve a subset of customer nodeg esiactly one vehicle. It is also possible
to use these inequalities in the case constraint branchipgriormed on a subset of custom&s, N,
dividing the problem into (ix(S) = 1 and (ii)x(S) > 2. In subproblem (i) the strengthened inequalities
are valid with respect t8 C N, and the separation problem can be solved for this subset.

3.5 ATSP inequalities

In this section we describe the classes of inequalities fimmATSP that we use in our implementation
of the branch-and-cut algorithm:

e Odd Closed Alternating Trail (CAT) inequalities [10]
Two distinct arcs(i, j) and (u,v) are called incompatible if=u, or j =v, ori =vandj =u;
compatible otherwise. L€, j) <~ (u,v) denote the fact thdi, j) and(u,v) are incompatible and
(i,]) < (u,v) that they are compatible. An odd CAT is a sequence

(3.22) T={a,...,a} €AN), t>3andodd
of t distinct arcs, such that fde=1,...,t
A =&
A1 =ax
A <~ A1
A < Ak—1
a—a, i=1..titk+1,andi£Ak—1
We denote by7p the set of all CATs in the directed graph ForT € % let
(3.23) s(N)={ieN [|6"(I)nT| =2}
and
(3.24) t(N)={ieN ||o(())nT| =2},
denote the set of source and sink nodel pfespectively. Moreover, let
(3.25) Q=A{(,]) eAN)\T |ies(N),jet(N)}.
For anyT € 9p the odd CAT inequality is
TI-1
(3.26) X(TUQ) < %
e D -inequalities [10]
k k-1 k-1
(3.27) Xigig D Xigin 1 T2 Y Xigin+ Y X({iz,-..,ih-1},in) < k=1,
h=2 h=2 h=3
where(iy, ...,ik) is any sequence &< {3,...,n— 1} distinct nodes.
e D, -inequalities [10]
k k-1 k-1
(3.28) Xigip T D Xinoain T2 Y Xiip + Y X(in, {iz,-. ih-1}) Sk—1,
h=2 h=2 h=3
where(iy,...,ik) is any sequence &fc {3,...,n— 1} distinct nodes.
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3.6 Preprocessing

For the VRPTW, preprocessing includes three main stegstetigng of the time windows, deducing from
the time windows the precedence relationships among cestoates, and eliminating arcs.

3.6.1 Tightening of the time windows

Kontoravdis and Bard [16] presented criteria (3.29) an8QBfor removing the time windows of the
depot nodes:

(3.29) ax = max{a,a+tok} VKEN,

(3.30) by = min{by,bni1 —tknr1} VkeEN.

Desrochers et al. [9] presented criteria (3.31)-(3.32)roreasing the release time of the time windows
and criteria (3.33)-(3.34) for decreasing the due time eftime windows:

(3.31) ax = max{a, (T)inA{a; +tk}} VkeNs.to (k) #0,
1L,K)e
(3.32) ax = max{ay, min{by, ({r])inA{aj —tj}}} VkeNs.t.ot (k) #0,
J)e
(3.33) by = min{by, max{a, (_nlz)az(\{bi +tikt}} VkeNs.t.o (k) #0,
1L,K)e

(3.34) bk = min{bk,(ﬂn?ﬁ{bj —tj}} VkeNst.dt (k) £0.
J)e

In a fully connected directed graph it is obvious that ciiter(3.29) is equivalent to (3.31), i.€(0,k)} €
Argming ,yca{@ +tic}, and criterion (3.30) is equivalent to (3.34), i{¢k,n+ 1)} € Argmax j)ca{bj —
tx;}. However, if we do not have a graph with all possible arcs Wwithd in 0 or tail in+ 1 we need
criterion (3.31) and (3.34). This is for example the casedflwanch on the arc variables, i.e. we apply
criterion (3.31) on the subproblem havirg =0, j € N, and (3.34) is used wheg,, 1 = 0,i € N.

3.6.2 Precedence relationships and elimination of arcs

In Section 3.4 we described how the time windows impliedaierprecedence relationships. The con-
struction of precedence relationships in the VRPTW folltesdescription in Ascheuer et al. [4] except
that the precedence digraph in our case is neither acyclid¢ransitively closed. The time windows
of the VRPTW and the construction of precedence relatigusshioves our problem from a fully con-
nected graph to a graph where certain arcs are eliminatedoBstruction, if(i, j) is in the seR of the
precedence digraph, the diici) cannot be contained in any feasible solution to the VRPTW.

3.7 Test problems and computational platform
The test problems that we use in this paper were developedaloyn®n [20] and are divided into two

classes, these are denoted by the number 1 and 2. For eachal@iskes he generated three subclasses,
these are denoted by the letter R, C, and RC. We present ani@vef the test problemsin Table 3.1. The
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number of problems #P in class 1 and 2 is respectively 29 andldyoblems contaim = 100 customer
nodes denoted by, 1 .,n and a single depot node denoted by 0. We enlarged the set pftddems by
only considering the first 25 and 50 customer nodes of eagimatiproblem. The nodes are specified by
integer coordinate§<,y) in the Euclideari0, 1002 plane and the vehicle capacity by an integeAll

test problems have an upper bound on the number of vehicl&s. ¢for each node=0,...,na demand

di, start timea{, due timeb{, and service timsf is specified. For the R, C, and RC subclasses the service
times are respectively 10, 90, and 10 foriadl N, O otherwise. All node parameters are integer values.
The depot start time{ is 0 and all customer due timé§ i € N, are less than the depot due tilme In
order to fulfill the assumptions stated in Section 3.1 reigarthe model parameters of the VRPTW we
perform the following transformations of the test problested Step 1. Create a copy of node 0 and call it
n+1, sethg=0. Step 2. For=0,...,n+ 1 set = 10x, y; = 10y;, & = 10a], b; = 10b}, andst = 10st.
Step 3. Setij = | /(% —Xj)2+ (i —Yj)?] andtij = st +cj fori, j =0,....,n+1,i # j. Step 4. Add 1

to all ¢ij for i # 0 in order to fulfill the triangle inequality; the service &nis positive hence the triangle
inequality on the travel times is also satisfied. Step 5. pipé preprocessing steps of Section 3.6. The
solution value for the original problem is calculated a&R;) — n)/10, wherec(Ry) denotes the solution
value for the transformed problem.

Subclasses R, C, and RC consists of problems where thebdtbr of nodes in the plane is respec-
tively random, clustered, and semi-clustered. Problessclaconsists of problems with a relatively small
vehicle capacity| compared to the total customer demand; in problem class\&thiele capacity is rela-
tively large. Now we want to assess whether the length of lening horizor|0, by 1] is a constraining
factor. As noted in Section 3.1 this can be seen as anothetragrt associated with the vehicles. We
consider the complete grafidxz = (Ac,V) on then+ 2 nodes invV. We compute the Hamilton path in
D¢ starting in 0 and ending in+ 1. Note that concerning subclasses R and RC the nodes atieadign
distributed in class 1 and 2, while this is not the case fockds C. This means that in relation to sub-
classes R and RC the Hamilton path solution is identical fassc1 and 2; this is not true for subclass
C. In Table 3.1 we present the depot due tioge; and the duration of the Hamilton path, i.e. the time
the vehicle visits the destination depot 1. Problem class 1 consists of test problems with a relativel
short planning horizon compared to the duration of the Hamipath while class 2 consists of problems
with a relatively long planning horizon. In class 2 the 25d &®-customer test problems in subclasses
R and RC are not constrained by the vehicle capacity nor tigtheof the planning horizon, whereas in
subclass C this is only true for the 25-customer problemsldss 1 all test problems are constrained by
vehicle capacity and the length of the planning horizon.

Next we turn to the individual time constraints associaté@t the customers. Solomon designed two
different methods for assigning time windows to customéhe first method was designed for the random
generation of time windows and used in the subclasses R an@RCsecond method was designed for
assigning time windows in a structured way to the clusterelllpms in subclass C. In method 2 Solomon
used a 3-opt method on each cluster to create routes and ¢nenaged time windows by choosing the
center as the arrival time at each customer. The time wind@nsrated in method 2 therefore allows for
cluster-by-cluster solutions to the C-problems. In terithe number of customers that received a time
window smaller than the depot time window, Solomon createthlepms where 25, 50, 75, and 100% of
the customers received such a time window. However, in thesorements we made the test problems
R110, R111, R112, RC105, RC107, RC108, and R210 had a tintowidensity of 86-99%. In Table
3.2 we present a grouping of the test problems based on imeintindows density. Note that we have
included the test problems in the range 86-99% in the 100&goay.

The computational experiments were conducted on two éiffiemachines. The hardware and soft-
ware configuration of the machines is given in Table 3.3. Ta@th-and-cut algorithm presented in this
paper is implemented using the ILOG CPLEX Concert Technofog C++ and the ILOG CPLEX 9.1
Mixed Integer Optimizer [11]. In Section 3.8 we will des@ibmplementational details of the branch-
and-cut algorithm.
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Subclass| #P q S1<i<ndh bni1 Hamilton path duration

n=25 | n=50 | n=100 n=25 | n=50 | n=100
Problem class 1
R 12 200 332 721 1458 230 562.3 959.7 1635.9
9 200 460 860 1810 | 1236 | 2381.8 | 4739.5 9501.1
RC 8 200 540 970 1724 240 475.6 869.6 1640.7
Total 29
Problem class 2
R 11 1000 332 721 1458 | 1000 562.3 959.7 1635.9
C 8 700 460 860 1810 | 3390 | 24455 | 4825.2 9542.3
RC 8 | 1000 540 970 1724 960 475.6 869.6 1640.7
Total 27
Table 3.1: Solomon'’s test problems
R C RC
Problem class 1
100% | 1,5,9,10,11,12| 1,5,6,7,8,9 1,56,7,8
5% | 2,6 2 2
50% | 3,7 3 3
25% | 4,8 4 4
Problem class 2
100% | 1,5,9,10, 11 1,56,7,8 1,56,7,8
5% | 2,6 2 2
50% | 3,7 3 3
25% | 4,8 4 4

Table 3.2: Time window density of Solomon’s 100-customst pgoblems

Machine Sun Fire 15K Dell Inspiron 7500

CPU UltraSPARC Ill Cu 900MHz | Intel Pentium Ill 600MHz
RAM 384Gb 256Mb

Operating system Solaris Microsoft Windows XP
Compiler Sun Studio CC 9 Microsoft Visual C++ .NET 7.1
Compiler options -fast -xarch=v8plusb /02 /IMD

ILOG CPLEX version | 9.1.0 9.1.0

Table 3.3: Hardware and software configuration for the caatnal experiments
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3.8 The branch-and-cut algorithm

According to the ILOG CPLEX 9.1 User’'s Manual [11] the Mixeutéger Optimizer of CPLEX solves
MIP problems using a general branch-and-cut algorithm.Wecfore assume that the CPLEX algorithm
follows the basic steps of a branch-and-cut algorithm desdrin e.g. Wolsey [21, Fig. 9.5]. In this
section we describe the parts of the branch-and-cut atgonhich are specific for our approach to
solving the VRPTW:

Formulation of the initial binary integer program

e Separation routines
e Branching
e Enumeration strategy

The separation routines, branching, and enumeratioregiras implemented as three CPLEX callback
functions, which are executed respectively in the CUT, BRANNG, and NODE step of the branch-

and-cut algorithm described in Wolsey [21, Fig. 9.5]. Wedawned off the presolve routines and the
general valid inequalities of CPLEX, i.e. clique cuts, Gaynfractional cuts etc. We also set CPLEX

to emphasize optimality over feasibility. For all other gaweters in CPLEX we use the default value.
Note that our approach for solving the VRPTW could have beaplemented in any branch-and-cut
framework available, e.g. the open-source framework AB&JWL3]. The result of our implementational

work is a basic Dantzig-Fulkerson-Johnson branch-an@BiedBC) algorithm [2] for the VRPTW.

3.8.1 Formulation of the initial binary integer program

We generate all the variables € A, the integer constraints € BA, and the degree constraints (3.1)
and (3.2). Finally, we add a lower bound on the number of vebi(N) > [Ticndi/q]. A common
approach to solving large-scale integer linear programiraypch-and-cut is to combine cutting-planes
with the dual concept of column generation [8]. In CPLEX 9i% hot possible to combine cutting-planes
and column generation, however, this is possible in ABACU& @ther open-source frameworks.

3.8.2 Separation routines

In this section we describe the separation procedureséarlttss of inequalities used in our branch-and-
cut algorithm.

e Subtour, 11, 0-, (1T, 0)-inequalities: For the subtour andr-inequalities we use the algorithm
proposed by Balas et al. [5] that simultaneously solvesepaation problem for both the subtour
inequalities and the (weakJ-inequalities. The maxflow step of the algorithm is implenteen
using the ILOG CPLEX 9.1 Network Optimizer, which solves amium cost flow problem using
a network simplex method. The maxflow problem is thereformfdated as a minimum cost flow
problem [1]. The overall complexity of the algorithm @n*). For the separation of- and
(T, 0)-inequalities we also use the algorithms proposed by Balas €5] with complexities of
respectively migin, |R|} - O(n®) andO(|R| - n®).

o Lifted path inequalities: For the tournament constraints we use the enumeration guoe@ro-
posed in Ascheuer et al. [4]. We adopt this procedure for épamsation ofS;-inequalities. We
detect paths where (AT (P)) is less than 1. Given a pakhfrom the start depot O to a node N
we backtrack ifc (A* (P)) > 1, otherwise we extend the path toiadl N\ {V(P)}. If an infeasible
path is detected and it is minimal we have found a violateduadity; otherwise we backtrack
again.
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e Odd CAT-inequalities: We use the separation routine described in [10].

e Dy-inequalities: We use the separation routine described in [10].

Separation order Suppose we are considering a node in the branch-and-baendith the branching
constraintk < X(N) < k. The separation routines are called in the following order:

1. Subtour andr-inequalities (ifx(N) < 1 we lift the r-inequalities)
. o-inequalities (ifx(N) < 1 we lift the g-inequalities)
. If x(N) < 1 separation of, 0)-inequalities is performed

. Tournament inequalities

2

3

4

5. Si-inequalities
6. Odd CAT inequalities
7. Dy -inequalities

8. D, -inequalities

We skip all the subsequent routines whenever one of the gunes generate an inequality.

3.8.3 Branching

We have used two branching strategies: branching on the ewaflehicles and branching on arcs:

e Branching on vehicles
Given a poinx* € RA letk = [x*(N)]. We create two subproblemsxf(N) is fractional: one by
adding the constrain{N) < k and the other by adding the constraifi) > k+ 1.

e Branching on arcs
If it is not possible to branch on the number of vehicles wenbheon thex-variables. We use the
default variable selection strategy of CPLEX [11].

3.8.4 Enumeration strategy

We have used best bound search as the enumeration strategly,means that the node with the lowest
objective function value will be selected.

3.9 Computational results
The DFJBC algorithm was tested on the class 2 Solomon telstggns. The total number of test problems

in this class is 81 when we include the test problems creayeanly considering the first 25 and 50
customers of each original 100 customer problem.
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Key to Table 3.4: (preprocessing results)

ITER : Number of preprocessing loops
TW2... H#TW : Number of release time adjustments according to (3.32)
TIME : Totalincrease in release times
TW3... H#TW : Number of release time adjustments according to (3.33)
TIME :  Total decrease in due times
REDUCTION : Total time of adjustments in percent; calcutatey (TW2.TIME + TW3.TIME) /Sicn(bi —
max{a;, toi })
TW2 TW3
| ITER #TW | TIME #TW TIME REDUCTION
25 customers
R101 4 7 32.0 3 21.8 21.5
C101 4 2 11.0 3 13.8 1.6
C106 4 2 17.5 2 21.2 2.1
RC101 3 1 9.8 0 0.0 1.3
R201 3 1 10.9 3 49.9 2.1
C201 11 14 940.1 16 | 2556.7 87.4
C205 3 1 320.0 2 0.8 4.0
C206 3 0 0.0 1 70.9 0.6
C208 3 0 0.0 1 47.2 0.3
RC201 3 0 0.0 1 17.9 0.6
50 customers
R101 3 6 15.0 3 5.8 4.2
RC101 3 1 9.0 0 0.0 0.6
C201 6 7 5.0 8 4.7 0.1
C205 3 0 0.0 1 0.4 0.0
RC201 3 0 0.0 1 17.9 0.3
100 customers
riot | 3] 3] 89| 1| 70] 16

Table 3.4: Preprocessing results

3.9.1 Preprocessing

First we present the results of the preprocessing routi@edy in 16 out of the 168 test problems do
we observe adjustments according to criteria (3.32)-(3.BBe criterion (3.34) (or (3.30)) has no effect
on the test problems. We do not include the adjustments tdrizn (3.31) (or (3.29)); an additional
151 problems have adjustments only related to this critdsecause of release times of zero. Note that
there are also some minor adjustments due to the distanctdunve use. The number of remaining arc
variablegA| after preprocessing is presented in Section 3.9.2. Thetestems would havén+ 1)narcs

in case the graphs were fully connected, i.e. the 25, 50, @8dastomer test problems would have 650,
2550, and 10100 arcs (variables), respectively. The numiemaining arcs in a test problem is the
difference between the number of arcs in the complete graghtre number of precedence relationships
|IR| induced by the time windows, i.A| = (n+1)n—|R|.
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3.9.2 Solomon'’s test problems

In this section we present the results for the class 2 Solaesirproblems. Table 3.5 gives an overview
of the results compared to algorithms in the literature. &lgorithm of Chabrier [7] is an elementary
shortest path decomposition of the VRPTW. In Irnich andéviBuve [12] non-elementary paths are
allowed but the formulation is strengthened by eliminatingycles k > 3). In addition 1-path and 2-path
inequalities are generated at the root node of the brandkhannd tree. Kallehauge et al. [14] use a non-
elementary shortest path with 2-cycle elimination but thestar algorithm is accelerated by stabilizing
the dual multipliers. Also, 2-path inequalities are getestdn the root node and 1-path inequalities in all
nodes of the branch-and-bound tree. It is clear that ouinguplane algorithm can be combined with all
path pricing algorithms above. The question is where ttegivel advantages of the different algorithms
lie. The results presented in this paper show that the pdighapproach in certain cases outperform the
shortest path decomposition of the VRPTW when the time wirsdare wide and therefore shows that
the shortest path decomposition method is no longer thealleciyed winning strategy. Including arc
pricing in our method would further improve the computatibefficiency [2].

The new test problem reported solved in Table 3.5 by the DRalIB&ithm was R208.50. The solution
consists of two routes with a total length of 487.7. In ordesdlve R208.50 we removed the 1 h CPU
time limit. The solution time was 53815.2 s on the Sun Fire 15Kis brings the total number of solved
test problems up to 63 out of 81. Itis clear that the brandal+@ut code presented in this paper overall is
not competitive, however, based on results on the 25-namtdgms the DFJIBC algorithm shows that the
polyhedral approach is promising for problems with widegimindows. We solved 44 problems within
the 1 h CPU time limit, i.e. 24, 14, and 6 test problems out efaii 25-node, 50-node, and 100-node test
problems, respectively.

Now we compare our computational times for the class 2 Sototast problems with Irnich and
Villeneuve [12], Kallehauge et al. [14], and Chabrier [7]otd that [7] only reports solution times for
new solutions found and it is therefore only possible to carasolutions for 6 test problems.

Irnich and Villeneuve [12] performed all their computatdexperiments on a Pentium |1l 600MHz
machine with 512Mb RAM. The Dell Inspiron 7500 machine is iEimexcept that it only has 256Mb
RAM. We should therefore be able to compare computationadifor experiments performed on the
Dell Inspiron 7500 with the results reported in Irnich andldfieuve [12]. We tried to solve the 44
problems on the Dell Inspiron 7500 machine. However becatigek of memory we solved only 43 out
of the 44 problems (RC203.25 was not solved). Irnich andeW@uve [12] report solution times using
2-, 3-, and 4-cycle elimination. We compare our method whihkicycle elimination method with the
minimum solution time. In Table 3.6 we compare the total Soiutimes per subclass and number of
customers. In Table 3.7 we show the 10 problems for which vgeed respectively the largest increase
and decrease in the solution time by our method comparee tmithimal solution time reported in Irnich
and Villeneuve [12]. We describe the associated columnalter3.9.2. The results demonstrate that our
method reduces the computational times significantly foumlmer of the 25-node problems, however,
our method experienced problems with the R211.25 test pnolsblved by [12]. We will comment on
this in Section 3.9.2. The DFJBC algorithm is also compatitvith respect to the 50-node C-problems,
however, for the remaining 50- and 100-node problems ouhatkis not completive compared to [12].
Kallehauge et al. [14] also performed computational experits on the Sun Fire 15K machine. In Table
3.8 and 3.9 we compare our results on the Sun Fire 15K machithetiae results in [14]. Also in
this comparison the DFJIBC algorithm performs significafiijter on the 25-node problems than the
algorithm of [14]. The only exception is again the R211.25 fgoblem. Finally, in the comparison with
Chabrier [7] in Table 3.10 we note that for the problems wihdomly distributed customers and wide
time windows (R208.25 and R204.25) the DFJBC algorithmaoens well. However, it is also clear
that our algorithm is not competitive in relation to the sethistered RC-problems nor 50- and 100-node
problems. The results of Chabrier [7] has been obtainedyusih 5GHz Pentium IV with 256Mb RAM
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Problem C IV KLM  This paper | Total solved
Subclass R
1 3 3 3 2 3
2 2 2 2 1 2
3 2 2 2 1 2
4 1 @2 1 1 2
5 2 2 2 2 2
6 2 2 1 1 2
7 1 1 1 1 1
8 1 1 1 @2 2
9 2 2 2 2 2
10 2 2 1 1 2
11 1 @2 1 0 2
Total 19 (@21 17 14 22
Subclass C
1 3 3 3 3 3
2 3 3 3 3 3
3 3 3 3 2 3
4 3 3 2 2 3
5 3 3 3 3 3
6 3 3 3 3 3
7 3 3 3 3 3
8 3 3 3 3 3
Total 24 24 23 22 24
Subclass RC
1 3 3 3 2 3
2 3 3 1 1 3
3 2 2 0 1 2
4 @1 0 0 0 1
5 3 3 1 2 3
6 2 2 1 2 2
7 @2 1 0 1 2
8 €)1 0 0 0 1
Total ()17 14 6 9 17
Grandtotal | (3)60  (2)59 46 (1) 45 63

Table 3.5: The number of Solomon problems solved in Chapfl€iC), Irnich and Villeneuve [12] (1V),
Kallehauge et al. [14] (KLM), and this paper. 1 = 25 custom®aibtem solved, 2 = 25- and 50-customer
problem solved, 3 = 25-, 50-, and 100-customer problem sloliéne numbers in parenthesis indicate
solutions not reported elsewhere
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Key to Table 3.7, 3.9, and 3.10

k : k-cycle elimination used in obtaining minimum solutiome
RLB1 : Value of root node before any strong valid inequaditiee generated
RLB2 : Value of root node after strong valid inequalities gemerated
RLB : Value of root node
#N : Number of processed nodes in the branch-and-bound tree
CPU(TOTAL) : Total CPU-time in seconds to solve problem tdimality
Subclass | #P | IV | This paper
25 customers
R 10 684.10 206.74
C 8 329.90 49.28
RC 5 1420.80 200.04
Total 23 2434.80 456.06
50 customers
R 3 1353.20 5046.78
C 8 2136.90 1108.80
RC 3 1043.00 1462.51
Total 14 4533.10 7618.09
100 customers
C 6 5973.80 6749.14
Total 6 5973.80 6749.14
Grand total | 43 | 12941.70 14823.29

Table 3.6: Total solution time in seconds for the 43 classRgeoblems solved by the DFIBC algorithm
on the Dell Inspiron 7500 vs. the corresponding minimumtsofutime reported by Irnich and Villeneuve
[12] (IV)

and using the Java version of ILOG CPLEX 7.5. We have useddimpatational times obtained on the
Dell Inspiron for comparison.

Results for 25-node problems

In this section we demonstrate in detail the performancehefliranch-and-cut code on the class 2
Solomon test problems with 25 customer nodes. The reswdtsianmarized in Tables 3.11-3.14. Ta-
ble 3.11 provides an overview of the results, Table 3.12qmssthe number of generated cutting planes,
Table 3.13 gives information on the branch-and-bound taad, Table 3.14 summarizes the percentages
of computing time spent in the various parts of the algorithm

The branch-and-cut code shows promising results on theo@&-problems. However, three 25-node
problems could not be solved within 1 h (R211.25, RC204.28, RC208). For example the R204.25
and R208.25 problems are solved significantly faster by taadh-and-cut code than any other algorithm
in the literature. It should be noted that these two probleem& an optimal solution value close to the
Hamilton path length of 312.3, see Table 3.1. This is notsirgly an indication that the code will
work well on problems where the capacity and time constsa@né not very tight, i.e. with a solution
structure close to the traveling salesman problem. It sr@sting to note the columA| in Table 3.11.
We can see that RC208.25 is a "pure" time-constrained prghble. the time windows do not imply any
precedence relationships. Also R211.25 has only 3 precedatationships. These two problems are
special because the time windows share a common band, wiakésthe problems very hard compared
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Irnich and Villeneuve [12] This paper
k RLB1 RLB2 #N CPU(TOTAL) RLB #N CPU(TOTAL) DELTA
Top 10 increases
R205.50 4 682.8 682.8 136 1091.40 662.5 2479 3722.51] 2631.11
R209.50 4 599.8 599.8 6 255.40 582.4 420 1302.49| 1047.09
C205.100 | 3 586.4 586.4 0 221.90 586.4 0 980.35 758.45
C206.100 | 3  586.0 586.0 0 814.40 586.0 0 1315.11| 500.71
RC205.50 | 4 621.6 630.2 4 82.40 621.0 106 495.95| 413.55
RC201.50 | 4 683.1 683.1 4 25.70 680.1 11 103.11 77.41
C202.100 | 2 589.1 589.1 0 585.60 589.1 0 659.13 73.53
R202.25 3 4105 4105 0 0.80| 393.1 66 30.69 29.89
R203.25 4 3914 3914 0 5.80| 373.0 111 28.38 22.58
R210.25 3 403.6 403.6 2 8.00| 389.0 65 30.58 22.58
Top 10 decreases
RC207.25| 4 264.6 280.4 133 1393.70 268.3 2455 186.98| 1206.72
C204.50 2 350.1 350.1 0 1159.4Q 347.8 70 648.20| 511.20
R208.25 3 323.3 323.4 15 363.50 319.8 29 16.23| 347.27
C208.100 | 2 581.8 585.8 1 2183.30 585.8 0 1884.58| 298.72
C204.25 2 2110 2110 10 279.80 204.9 283 37.72| 242.08
R204.25 4 349.1 349.1 34 231.70 332.2 83 29.70| 202.00
C207.50 2 356.3 359.6 5 274.00 359.4 2 74.50 199.50
C207.100 | 2 582.0 585.8 4 2068.80 585.6 2 1887.45| 181.35
C208.50 2 3404 3505 1 138.50 350.5 0 28.98| 109.52
C202.50 2 360.2 360.2 0 196.80 354.1 12 92.00( 104.80

Table 3.7: Top 10 increases and decreases in computatioralising the DFIBC algorithm compared
to Irnich and Villeneuve [19]

Subclass | #P | KLM | This paper
25 customers

R 10 314.62 138.33

C 8 59.96 23.43

RC 4 424.84 13.49

Total 22 799.42 175.25
50 customers

R 3 | 3089.91 2359.87

C 8 698.36 433.51

RC 1 3.04 42.30

Total 12 | 3791.31 2835.68
100 customers

C 6 158.82 2065.03

Total 6 158.82 2065.03

Grand total | 40 | 4749.55 5075.96

Table 3.8: Total solution time in seconds for the 40 classs? peoblems solved by both the LBCP
algorithm in Kallehauge et al. [14] (KLM) and the DFJBC aliglom in this paper. All test problems are
solved on the Sun Fire 15K machine
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Kallehauge et al. [14] This paper
RLB1 RLB2 #N CPU(TOTAL) RLB #N CPU(TOTAL) DELTA
Top 10 increases
C208.100 | 581.8 585.8 0 57.02| 585.8 0 569.74| 512.72
C207.100 | 582.0 585.8 0 74.58| 585.6 1 527.52| 452.94
C206.100 585.4 586.0 0 14.90| 586.0 0 418.99| 404.09
C205.100 586.4 586.4 0 4.62| 586.4 0 334.44| 329.82
R209.50 582.9 588.4 524 530.41 582.4 626 816.31| 285.90
C202.100 | 589.1  589.1 0 5.74| 589.1 0 202.86 197.12
C202.50 360.2  360.2 0 20.34 354.1 13 62.55 42.21
RC201.50 | 670.2  682.0 14 3.04| 680.1 8 42.30 39.26
R202.25 406.4 408.4 4 0.77| 393.1 85 23.89 23.12
R203.25 379.9 381.6 36 5.41] 373.0 111 24.13 18.72
Top 10 decreases

R205.50 666.6 672.4 5254 2558.66 662.5 2320 1527.47) 1031.19
RC202.25| 290.4 3134 664 222.24 311.8 56 10.13| 212.12
RC206.25| 250.1  289.0 502 195.49 324.0 0 1.55| 193.94
C204.50 350.1 350.1 0 402.18 347.8 113 214.02| 188.16
R204.25 3331 335.4 776 190.64 332.2 68 17.60| 173.04
C203.50 359.8 359.8 0 203.11f 352.3 23 75.28| 127.83
R208.25 318.1  318.9 74 58.23 319.9 17 7.33 50.90
C204.25 211.0 2110 12 46.000 204.9 155 15.64 30.36
C206.50 3442  359.0 4 33.88| 359.8 0 15.22 18.66
R207.25 347.6 349.7 124 30.20 347.4 54 15.33 14.87

Table 3.9: Top 10 increases and decreases in computatiorealsing the DFIBC algorithm compared
to Kallehauge et al. [20]

Chabrier [7] This paper

RLB  #N CPU(TOTAL) RLB #N CPU(TOTAL) DELTA

Increases
R205.50 6829 94 531.00| 662.5 2479 372251 3191.51
R209.50 599.8 4 195.40| 582.4 420 1302.49| 1107.09
RC206.50 | 610.0 0 9.40| 594.1 411 863.45| 854.05
RC205.50 | 630.2 0 10.60| 621.0 106 495.95| 485.35

Decreases
R208.25 328.2 0 741.50| 319.8 29 16.23| 725.27
R204.25 350.5 16 171.60| 332.2 83 29.70| 141.90

Table 3.10: Comparing the DFJIBC algorithm to solutions reggbin Chabrier [18]
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Key to Table 3.11,

A
SOLUTION...

ROOT...

BC-TREE...

#CUTS
#LP
CPU

3.15, and 3.18:

k
OPT

GAP
BOUNDS
GAP

QUAL
#N
LEV

Number of arcs after preprocessing
Number of vehicles in optimal solution

Value of an optimal solution. If the instance is not solto optimality, the global lower bourgib
and global upper boungubare given in the forniglb, gub

Optimality gap in percent; calculated fyub— glb)/glb- 100
Lower boundlb and upper bouncub at the root LP

Optimality gap at the root node of the branch-and-cut)Bee in percent; calculated kyub —
rlb)/rlb - 100

Quality of lower bound at the root of the BC tree in pettecalculated by 108 (gub—rlb)/rlb - 100
Number of processed nodes in the branch-and-cut tree

Depth of the BC tree

Number of generated cutting planes

Number of linear programs solved

Total CPU-time in seconds to solve problem to optimalitthe problem could not be solved within
a certain time limit we give the maximum CPU-time for comiatas before termination

Key to Table 3.12, 3.16, and 3.19:

SEC/m
Lifted T

o
Lifted o

(m.0)
TOURN
S1

CAT

D

D,

Number of generated SEC / Number of generatédequalities / Number of calls of combined SEC
and 7t separation routine

Number of generated stronginequalities in BC-nodes where lower and upper bound on eurob
vehicles are both 1

Number of generated inequalities / Number of calls af separation routine

Number of generated stror@inequalities in BC-nodes where lower and upper bound on reurob
vehicles are both 1

Number of generate@it, o) inequalities / Number of calls dfrt, ) separation routine

Number of generated tournament constraints / Nurabealls of tournament separation routine

Number of generate® inequalities / Number of calls &, separation routine

Number of generated odd CAT inequalities / Number ofscal CAT separation routine

Number of generateB,” inequalities / Number of calls d3; separation routine

Number of generateD, inequalities / Number of calls d, separation routine

Key to Table 3.13:

#N
#NVEH
#NARC
k

BC-TREE

Total number of processed nodes / Total number of gesetraides

Number of processed vehicle branching nodes / Nurabgenerated vehicle branching nodes

Number of processed arc branching nodes / Numberrafrgéed arc branching nodes

Number of vehicles in optimal solution (or best incumbehew algorithm is terminated)

In each generated interval of the lower and uppantmn the number of vehicléibk,Ibk] we show

the total number of processed nodes vs. total number of g&tenodes

Key to Table 3.14, 3.17, and 3.20:

INIT
LP
SEP
MISC
TOTAL

Computing time spent in initialization phase (in %)

Computing time spent in LP solver (in %)

Computing time spent in separation routines (in %)

Computing time spent in other parts of the program (jn %

Total CPU time in seconds
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to R208.25 and R204.25 which both also have very few preasderiationships. Actually RC203.25
and RC204.25 have less precedence relationships thanZE20&. the semi-clustered distribution of the
customers make these problems very hard. The conclusiberisfore that the code performs better on
randomly distributed problems than semi-clustered probland that problems with the special band-
structure of time windows are much harder than problems avtier time windows are non-overlapping.

Table 3.12 shows that the precedence constraints not simgdsi are important for problems with
precedence constraints. In problems with little or no pdecee structure the path inequalities are critical
in achieving a tight lower bound (R211.25, RC208.25) androwements are needed here. The lifted
precedence constraints are seldomly generated and the @MDaconstraints are mainly found in the
R-subclass.

In our algorithm we simultaneously determine the numberaifisles and the design of the corre-
sponding number of routes. In branch-and-cut algorithm#hfe CVRP it is standard to consider a fixed
number of vehicles. The purpose of Table 3.13 is to providewanview of the computational work of
the separation of inequalities relative to the bounds omtimeber of vehicles. We note that for the class
2 problems with 25 customers a large proportion of the coatrial work is related to branch-and-
bound nodes where the number of vehicles leaving the demrtasi.e. we are in fact trying to solve
an ATSPTW. We have taken advantage of this observation bieimgnting a separation routine for the
(m, 0)-inequalities, but for the hard (and unsolved) instancehéu work is required in the case where
we are considering one vehicle. We would also like to notettimoptimal number of vehicles is always
greater than one (except for R208.25) so the purpose ofrephodes withk(N) = 1 efficiently is being
able to quickly prune that part of the search tree.

Table 3.14 gives the percentage of computing time spenffierdnt parts of the algorithm. We can
conclude that the majority of computing time is spent in thpagation routines. However, for the hard
problems (e.g. R211.25, RC204.25) a significant part of tmputing time is spent in the LP solver.
The reason for this is simply that as the number of generaittthg planes increases the LP problems
become larger and more difficult.

Results for 50-node problems

In this section we present similar information as in theisaavith the 25-node results except we do not
show details on the branch-and-bound tree. For the 50-naidegms the algorithm is only effective in
relation to the C-problems. However, the algorithm is olleraimprovement compared to the algorithm
of Kallehauge et al. [14] but especially compared to thewtigm of Chabrier [7] it is clear that the bounds
are not tight enough for the R- and RC-problems comparedaddtunds provided by the elementary
shortest path decomposition. It is not possible to compadetails the results for the C-problems with
[7], because the author does not provide computationastiorahis subclass. Itis also clear that even for
these relatively small problems the separation of subtodipaecedence constraints with a complexity of
O(n*) is a bottle-neck. Heuristic separation algorithms shoeladnsidered following the approach of
e.g. Bard et al. [6].

Results for 100-node problems

In this section we provide similar information as in the gativith the results for the 50-node problems.
Itis clear that the algorithm breaks down for the R- and R@sfgms. In many cases it is not possible
to finish the root node within the 1 h limit. For the 100-nodeldems the algorithm is also inefficient in
relation to the C-problems compared to the algorithm of étzdiuge et al. [14]. However the bounds are
still tight for the C-problems and therefore we believe p@ssible to achieve an acceptable performance
by introducing arc pricing.
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SOLUTION ROOT BC-TREE

A | K oPT | cAP BOUNDS | GAP | QUAL #N | LEV | #cuTs | #LP CPU
R201 | 397 | 4 4633 | 0.00 4633 | 0.00 | 100.00 0 0 11 24 0.64
R202 | 518 | 4 4105 | 0.00 | [393.1,1244.6]| 216.60 | 95.58 85 17 308 589 23.89
R203 | 59 | 3 391.4 | 0.00 | [373.0,1244.6]| 233.69 | 9506 | 111 | 21 347 691 24.13
R204 | 627 | 2 355.0 | 0.00 | [332.2,1244.6]| 274.64 | 93.14 68 10 309 576 17.60
R205 | 488 | 3 393.0 | 0.00 | [390.6,393.0]| 061 | 99.39 2 1 26 03 1.20
R206 | 565 | 3 3744 | 0.00 | [356.6,405.4]| 13.70 | 94.99 82 12 302 597 19.29
R207 | 609 | 3 361.6 | 0.00 | [347.4,392.9]| 13.09 | 95.92 54 16 284 543 15.33
R208 | 631 | 1 3282 | 000 | [319.9,336.9]| 533 | 97.39 17 9 161 324 7.33
R209 | 545 | 2 370.7 | 0.00 | [364.2,372.6]| 230 | 98.22 17 10 120 289 7.32
R210 | 560 | 3 404.6 | 0.00 | [389.0,448.4]| 1527 | 95.99 64 17 309 571 21.60
R211 | 647 | 2 | [347.7,352.7]| 1.44 | [312.7,1244.6]| 297.96 | 87.22 | 12792 | 255 6704 | 22279 _*
c201 | 353 | 2 2147 | 0.00 2147 | 0.00 | 100.00 0 0 0 1 0.15
c202 | 498 | 2 2147 | 0.00 | [209.8,214.7]| 236 | 97.64 2 1 22 52 1.04
c203 | 584 | 2 2147 | 0.00 | [209.8,214.7]| 236 | 97.64 2 1 54 158 2.12
c204 | 622 | 1 2131 | 0.00 | [204.9,227.8]| 11.19| 9598 | 155 | 22 279 605 15.64
c205 | 391 | 2 2147 | 0.00 2147 | 0.00 | 100.00 0 0 7 8 0.35
c206 | 415 | 2 2147 | 0.00 2147 | 0.00 | 100.00 0 0 22 47 0.94
c207 | 463 | 2 2145 | 000 | [2143,277.0]| 29.26 | 99.91 1 1 42 90 1.81
c208 | 438 | 2 2145 | 0.00 2145 | 0.0 | 100.00 0 0 35 75 1.38
RC201 | 401 | 3 360.2 | 0.00 360.2 | 0.00 | 100.00 0 0 10 21 0.51
RC202 | 522 | 3 3380 | 0.00 | [311.8372.8]| 19.56 | 91.60 56 29 181 | 403 10.13
RC203 | 59 | 3 3269 | 0.00 | [264.0,986.3]| 273.62 | 76.17 | 14498 | 68 4629 | 21250 | 1834.85
RC204 | 627 | 3 | [276.7,300.3] | 854 | [246.7,368.1]| 49.19 | 78.29 | 15101 | 81 | 13723 | 31972 _*
RC205 | 483 | 3 338.0 | 0.00 338 0.00 | 100.00 0 0 33 120 1.30
RC206 | 492 | 3 3240 | 0.00 324 0.00 | 100.00 0 0 39 134 1.55
RC207 | 561 | 3 298.3 | 0.00 | [268.3,1884.4]| 602.28 | 88.83| 765 | 35 474 | 1593 | 5055
RC208 | 650 | 3 | [230.8,334.7]| 45.02 | [226.5,1884.4]| 732.12 | 52.20 | 11856 | 327 8836 | 23865 _*

__*:time limit of 1 CPU hour exceeded

Table 3.11: Computational results for the DFJIBC algorithma:25)
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SEC/mt Lifted 1t o | Lifted o (o) TOURN S1 CAT D; D,
R201 0/9/14 0/0 15 0/0 0/0 0/4 0/4 14 0/3 0/3
R202 2/129/ 379 5/49 85/191 0/3 52/ 69 10/ 106 16/ 96 9/ 80 0/ 71 0/ 71
R203 7/146/ 421 2/30 92/195 0/15 71/ 84 1/103 11/102 12/91 3/ 79 2/ 76
R204 16/ 141/ 362 0/28 58/ 148 0717 57/83 1/90 13/ 89 13/ 76 7163 3/56
R205 3/20/31 0/0 18 0/0 0/0 2/7 0/5 0/5 0/5 0/5
R206 5/ 108/ 369 2/22 105/ 221 0/0 33/35 6/116 10/ 110 25/ 100 6/ 75 2/ 69
R207 12/111/ 334 1/9 83/176 5/10 34/51 6/ 88 5/ 82 24/ 77 2/53 1/51
R208 20/ 76/ 183 0/3 30/ 85 0/0 2/ 2 0/ 55 5/ 55 16/ 50 8/34 4/ 26
R209 5/ 47/ 139 0/15 24/ 72 0/13 15/30 6/ 48 13/ 42 5/ 29 3/24 2/21
R210 9/ 122/ 371 1/39 71/181 0/12 58/ 90 8/ 110 20/ 102 17/ 82 1/65 2/ 64
R211 2771 439/ 17650 0/166 | 398/ 16422 0/63 | 512/5171| 1133/16024| 3092/ 14891 | 640/11799 | 111/11159 | 102/11048
C201 0/0/1 0/0 0/1 0/0 0/0 0/1 0/1 0/1 0/1 0/1
C202 1/16/ 26 0/0 5/9 0/0 0/0 0/4 0/4 0/4 0/ 4 0/ 4
C203 7140/ 61 0/1 5/13 0/0 11 18 0/7 0r7 07 0/7
C204 33/ 84/ 386 0/17 29/ 266 0/0 3/43 80/ 237 18/ 157 13/ 139 10/ 126 9/116
C205 0/7/8 0/0 0/1 0/0 0/0 0/1 0/1 0/1 0/1 0/1
C206 0/ 22/ 25 0/0 0/3 0/0 0/0 0/3 0/3 0/3 0/3 0/3
C207 0/ 30/ 48 0/0 0/18 0/0 0/0 9/18 2/9 0/7 0/7 u7
C208 2/31/38 0/0 15 0/0 0/0 14 0/3 0/3 0/3 0/3
RC201 0/9/12 0/0 13 0/0 0/0 0/2 0/2 0/2 0/2 0/2
RC202 3/92/ 229 2/ 29 49/ 125 0/0 777 4176 16/ 72 5/ 56 2/51 1/49
RC203 | 27/1238/12810| 65/1563 446/ 8896 0/9 | 2584/2590 2/ 8450 141/ 8448 101/8307 11/ 8206 14/ 8195
RC204 | 89/3008/27272| 324/4911 | 1242/15447 0/71 | 8404/8762 28/ 14205 370/ 14177 | 230/13807 | 14/13577 14/ 13563
RC205 2/ 25/ 34 0/0 6/7 0/0 0/0 0/1 0/1 0/1 0/1 0/1
RC206 5/ 30/ 41 0/0 4/6 0/0 0/0 0/2 0/2 0/2 0/2 0/2
RC207 23/155/913 3/41 131/ 692 1/13 40/ 60 18/ 560 34/542 43/508 14/ 465 12/ 451
RC208 536/ 0/ 20687 0/0 0/20151 0/0 0/2658 | 2806/20151| 4376/17345| 850/ 12969 | 134/12119 | 134/11985
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#N #NVEH #NARC | k BC-TREE
R202 85/ 134 9/ 12 76/122 | 4 [1,111/3 [2,2133/51 [2,25] 16/ 19 [3,3]17/30 [3,25] 17/ 27 [4,25]1/4
R203 111/ 144 8/8 103/136 | 3 [1,111/3 [2,2143/61 [2,25] 56 / 67 [3,25]11/13 0 0
R204 68/96 212 65/94 | 2 [1,119/13 [2,25] 58/ 83 0 0 0 0
R205 2/2 0/0 202 | 3 [1,25]12/2 0 0 0 0 0
R206 82/ 124 10/ 10 721114 | 3 [1,111/3 [2,2113/22 [2,25]55/ 81 [3,25] 13 /18 0 0
R207 54/ 84 22 52/82 | 3 [1,111/3 [2,25] 53/ 81 0 0 0 0
R208 17/ 28 212 15/26 | 1 [L,11/1 [1,25] 14/ 22 [2,25]12/5 0 0 0
R209 17/ 22 212 14/20 | 2 [L,11/1 [2,25] 15/ 21 0 0 0 0
R210 64/ 114 9/14 55/100 | 3 [1,111/3 [2,2114/ 24 [2,25]47 /79 [3,25]2/8 0 0
R211 | 12792/21880| 304/ 656 | 12488/21224| 2 | [1,1]2000/3394 | [1,25]10607/17922| [2,25]185/564 0 0 0
C202 2/2 2/2 00 | 2 [L,11/1 [2,25]1/1 0 0 0 0
€203 212 212 00 | 2 [L,11/1 [2,25]11/1 0 0 0 0
C204 155/ 204 11/12 144/192 | 1 [1,1]25/32 [1,25] 125/ 166 [2,25]5/6 0 0 0
C207 1/4 0/0 14| 2 [1,25]1/4 0 0 0 0 0
RC202 56/ 86 78 49/78 | 3 [L,11/1 [2,2136/55 [2,25]17 /27 [3,25]2/3 0 0
RC203 | 14498/16326| 1547/1826 | 12951/14500| 3 [1,1] 463 / 486 [1,211/1 | [1,25]1211/1238 [2,21685/924 | [2,25] 11848 /13238| [3,25]290 /439
RC204 | 15101/27076| 1632/6496 | 13469/20580| 3 | [1,1]925/3413 | [1,25] 12060 /16350 [2,2]30/95 | [2,25]2083/7177 [3,25]3/41 0
RC207 765/ 870 40/ 40 725/830 | 3 [1,12/4 [1,25]12/2 [2,2]156/196 |  [2,25]587 /644 [3,25] 18/ 24 0
RC208 | 11856/23692 21/42 | 11835/23650| 3 | [1,1]947/1905 | [1,25] 10909 /21766 [2,25]0/21 0 0 0




INIT LP | SEP | MISC | TOTAL
R201 14.1 4.7 | 734 7.8 0.64
R202 0.3 6.7 | 83.6 9.3 23.89
R203 0.3 9.4 | 70.2 20.1 24.13
R204 05 | 134 | 69.6 16.5 17.60
R205 6.7 8.3 | 783 6.7 1.20
R206 0.3 6.9 | 78.7 14.1 19.29
R207 0.5 8.3 | 742 17.0 15.33
R208 11 49 | 79.7 14.3 7.33
R209 1.0 3.4 | 86.3 9.3 7.32
R210 0.3 7.0 | 78.9 13.8 21.60
R211 0.0 | 58.2 | 39.1 2.7 | 3652.21
C201 53.3 0.0 | 333 13.3 0.15
C202 6.7 58 | 76.9 10.6 1.04
C203 3.8 5.2 | 821 9.0 2.12
C204 0.4 6.2 | 86.1 7.3 15.64
C205 20.0 0.0 | 743 5.7 0.35
C206 7.4 43 | 83.0 5.3 0.94
C207 3.9 3.9 | 856 6.6 1.81
C208 5.1 29 | 86.2 5.8 1.38
RC201 | 15.7 20 | 745 7.8 0.51
RC202 0.7 4.7 | 86.1 8.5 10.13
RC203 0.0 | 635 | 34.7 1.8 | 1834.85
RC204 0.0 | 60.0 | 37.4 2.6 | 3691.98
RC205 6.2 54 | 77.7 10.8 1.30
RC206 4.5 45 | 79.4 11.6 1.55
RC207 0.1 | 132 | 795 7.1 50.55
RC208 0.0 | 50.3 | 46.2 3.5 | 3643.42

Table 3.14: Percentage of computing time spent in diffepants of the DFJIBC algorithnm(= 25)
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SOLUTION ROOT BC-TREE

A OPT | GAP BOUNDS | GAP | QuaL | #N | LEV | #cuTs | #LP CPU
R201 | 1518 | 6 791.9 |  0.00 791.9 | 0.0 | 100.00 0 0 32 90 16.09
R202 | 1984 | 50 | [638.8,2620.8]| 310.25 | [635.8,2620.8] | 312.24 | -212.24 | 1927 | 617 2879 | 6362 _*
R203 | 2295 | 50 | [552.5,2620.8]| 374.35 | [541.1,2620.8]| 384.31 | -284.31 | 1893 | 507 3477 | 6698 _x
R204 | 2514 | 4 | [4835,543.2]| 12.34 | [471.8,2620.8]| 455.48 | 84.87 | 2570 | 921 3604 | 7548 _x
R205 | 1878 | 4 690.1 | 000 | [662.5707.6]| 681 | 9583| 2320| 32 772 | 4502 | 1527.47
R206 | 2183 | 4 | [596.4,722.4]| 21.13| [572.1,2620.8]| 358.09 | 73.73 | 2209 | 510 3007 | 7310 _*
R207 | 2380 | 3 | [532.8,610.1]| 14.52 | [520.9,2620.8]| 403.13 | 82.88 | 2419 | 873 3199 | 6846 _*
R208 | 2525 | 3 | [471.6,534.4]| 13.31 | [464.1,2620.8]| 464.65| 84.86 | 3514 | 500 3070 | 8167 _*
R209 | 2150 | 4 600.6 | 0.00 | [582.4,2620.8]| 349.98 | 96.88 | 626 | 124 883 | 2253 | 816.31
R210 | 2188 | 4 | [594.0,670.9]| 12.95 | [582.7,2620.8]| 349.79 | 84.86 | 2001 | 517 3221 | 6592 _x
R211 | 2523 | 50 | [467.8,2620.8]| 460.26 | [464.6,2620.8]| 464.12 | -364.12 | 2466 | 854 3351 | 6962 _*
c201 | 1339 | 3 360.2 |  0.00 360.2 | 0.00 | 100.00 0 0 1 0.83
c202 | 1890 | 3 360.2 | 000 | [354.1,3821]| 7.92| 98.26| 13 117 | 174 62.55
c203 | 2253 | 3 359.8 | 000 | [352.3,350.8]| 214 | 97.86| 23 9 159 | 354 75.28
c204 | 2505 | 2 350.1| 000 | [347.8,363.1]| 4.40| 99.34| 113 | 63 411 | 759 | 214.02
c205 | 1476 | 3 359.8 |  0.00 359.8 | 0.00 | 100.00 0 0 22 65 11.11
c206 | 1589 | 3 359.8 |  0.00 359.8 | 0.00 | 100.00 0 0 33 | 118 15.22
c207 | 1814 | 3 359.6 | 0.00 | [359.4,366.2]| 1.89| 99.94 2 2 75 | 208 37.48
c208 | 1601 | 2 350.5 |  0.00 3505 | 0.00 | 100.00 0 0 34 | 129 17.02
RC201 | 1495 | 5 684.8 | 0.00 | [680.1,775.6]| 14.05| 99.30 8 3 67 | 166 | 42.30
RC202 | 1971 | 5 | [591.2,621.9]| 520 | [515.2,872.8]| 69.42 | 79.28 | 2657 | 265 2399 | 6536 _x
RC203 | 2291 | 50 | [480.2,4056.0]| 744.65 | [446.4,4056.0] | 808.52 | -708.52 | 2168 | 792 3156 | 6634 _*
RC204 | 2513 | 3 | [396.9,499.3]| 25.80 | [389.6,4056.0]| 940.97 | 71.86 | 3958 | 790 2713 | 8250 _*
RC205 | 1834 | 5 630.2 | 000 | [621.0,738.6]| 18.94| 9851 | 90 13 212 | 547 | 149.71
RC206 | 1860 | 5 610.0 | 0.00 | [594.1,4056.0] | 582.69 | 97.33| 470 | 22 208 | 1151 | 329.28
RC207 | 2173 | 50 | [500.7,4056.0] | 710.09 | [495.2,4056.0] | 719.11 | -619.11 | 2459 | 963 2268 | 6062 _x
RC208 | 2548 | 50 | [373.6,4056.0] | 985.76 | [372.4,4056.0] | 989.07 | -889.07 | 3079 | 785 3161 | 7373 _*

__*:time limit of 1 CPU hour exceeded

Table 3.15: Computational results for the DFIBC algorithra:(50)

85




98

0 SuUnNOJ OkRSIJO S|[ed Jo Jagquinp / S1INd palelauab Jo Jaquinp 9T € a|gel

(05 =

SEC/mt Lifted i1 g Lifted o (m,0) TOURN S1 CAT Dy D,
R201 2/ 24134 0/0 5/8 0/0 0/0 1/3 0/2 0/2 0/2 0/2
R202 7/ 1407/ 4802 25/ 786 974/ 3101 2/ 25 262/ 290 32/2125 120/ 2093 37/ 1973 9/ 1936 4/ 1927
R203 15/ 1819/ 5358 13/486 | 1286/ 3306 0/13 205/ 221 32/ 2020 65/ 1988 26/1923 | 10/1897 6/ 1887
R204 106/ 1421/ 6173 31/545 893/3921 0/57 694/ 803 16/ 3028 38/3012 | 318/2974 | 50/2656 | 37/ 2606
R205 9/ 230/ 2173 0/0 141/1934 0/0 0/0 69/1793 166/ 1724 | 130/1558 | 17/1428 | 10/1411
R206 17/ 1265/ 5210 8/170 | 1108/3828 0/10 92/108 62/ 2720 310/ 2658 | 116/2348 | 18/2232 | 11/2214
R207 47/ 1682/ 5609 9/68 | 1034/3820 0/12 51/ 59 67/ 2786 196/ 2719 81/2523 | 19/2442 | 13/2423
R208 175/ 1146/ 6583 6/ 448 502/ 4833 3/89 423/538 | 121/4328 149/ 4207 | 439/4058 | 58/3619 | 48/ 3561
R209 23/ 355/ 1295 0/0 226/ 917 0/0 0/0 44/ 691 130/ 647 70/ 517 18/ 447 17/ 429
R210 21/ 1544/ 5215 5/108 887/ 3508 1/48 137/162 | 132/2620 421/ 2488 63/ 2067 6/ 2004 4/ 1998
R211 120/ 736/ 5811 | 394/1297 301/4414 | 288/560 | 147/4940 | 365/3825 790/ 3460 | 131/2670 | 52/2539 | 27/2487
C201 0/0/1 0/0 0/1 0/0 0/0 0/1 0/1 0/1 0/1 0/1
C202 2/ 68/131 0/0 28/61 0/0 0/0 6/ 33 11/27 0/ 16 2/ 16 0/ 14
C203 14/101/ 178 0/0 34/63 0/0 0/0 3/29 6/ 26 1/20 0/ 19 0/ 19
C204 37/137/515 0/0 87/341 0/0 0/0 39/ 254 30/ 215 39/ 185 24/ 146 18/ 122
C205 0/21/24 0/0 0/3 0/0 0/0 1/3 0/2 0/2 0/2 0/2
C206 4/29/ 34 0/0 0/1 0/0 0/0 0/1 0/1 0/1 0/1 0/1
C207 3/62/83 0/0 1/18 0/0 0/0 4/ 17 2/13 2/11 1/9 0/8
C208 4/ 27137 0/0 3/6 0/0 0/0 0/3 0/3 0/3 0/3 0/3
RC201 2/ 40/ 83 0/0 2/41 0/0 0/0 12/ 39 8/ 27 3/19 0/ 16 0/ 16
RC202 16/ 1112/ 4916 36/ 824 762/ 3692 0/0 60/ 60 28/ 2930 342/ 2902 26/ 2560 | 10/ 2534 712524
RC203 32/1526/5319| 28/1025 819/ 3309 0/5 424/ 435 61/ 2490 168/ 2429 65/2261 | 22/2196 | 11/2174
RC204 | 117/1004/6672 22/371 638/ 5103 3/72 4261477 46/ 4462 118/ 4416 | 244/ 4298 | 56/4054 | 39/3998
RC205 6/ 112/ 292 0/0 43/ 174 0/0 0/0 24/131 20/ 107 6/ 87 0/ 81 1/81
RC206 15/ 126/ 586 0/0 77/ 445 0/0 0/0 12/368 34/ 356 22/ 322 5/ 300 7/ 295
RC207 22/ 761/ 4724 15/ 169 651/ 3563 3/45 363/ 808 34/2909 299/ 2875 67/2576 | 29/2509 | 24/ 2480
RC208 308/ 169/ 6228 31/184 121/5602 17/85 | 118/6670 | 744/5464 | 1344/4720| 181/3376 | 83/3195 | 45/3112




INIT LP | SEP | MISC | TOTAL
R201 1.0 15 | 96.0 1.6 16.09
R202 0.0 5.2 | 89.2 5.6 | 3710.71
R203 0.0 | 114 | 793 9.3 | 3675.22
R204 0.0 | 159 | 76.5 7.5 | 3660.86
R205 0.0 | 10.6 | 86.9 25 | 1527.47
R206 0.0 | 134 | 819 4.7 | 3672.94
R207 0.0 | 10.7 | 77.7 11.6 | 3657.81
R208 0.0 | 124 | 83.6 4.0 | 3662.96
R209 0.0 9.3 | 853 5.3 816.31
R210 0.0 9.3 | 81.9 8.8 | 3678.79
R211 0.0 8.4 | 815 10.1 | 3709.52
C201 20.5 12 | 723 6.0 0.83
C202 0.3 0.7 | 975 15 62.55
C203 0.2 1.2 | 96.2 2.3 75.28
C204 0.1 2.0 | 945 3.4 214.02
C205 1.6 1.0 | 953 21 1111
C206 11 1.2 | 95.0 2.8 15.22
C207 0.4 1.1 | 96.7 1.7 37.48
C208 1.0 1.1 | 954 2.5 17.02
RC201 0.4 0.7 | 975 1.3 42.30
RC202 0.0 | 17.3 | 80.4 2.4 | 3647.85
RC203 0.0 75 | 841 8.4 | 3682.08
RC204 0.0 9.0 | 847 6.3 | 3653.89
RC205 0.1 1.2 | 970 1.7 149.71
RC206 0.1 20 | 955 2.4 329.28
RC207 0.0 45 | 895 6.0 | 3759.56
RC208 0.0 9.8 | 82.0 8.2 | 3639.20

Table 3.17: Percentage of computing time spent in diffepants of the DFIBC algorithnm(= 50)
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SOLUTION ROOT BC-TREE

A k OPT | GAP BOUNDS | GAP | QUAL | #N | LEV | #cuTs | #.P | cCPU
R201 5917 9 | [1132.7,1155.6]| 2.03 | [1123.6,4980.0]| 343.23 | 97.15| 72 26 295 | 666 o
R202 7718 | 100 | [888.6,4980.0] | 460.42 | [888.6,4980.0]| 460.42 | -360.42 | 0 0 464 | 1165 o
R203 9050 | 100 | [748.1,4980.0]| 565.70 | [748.1,4980.0]| 565.70 | -465.70 | 0 0 538 | 1219 o
R204 9845 | 100 | [661.9,4980.0]| 652.39 | [661.9,4980.0]| 652.41 | -552.41 | 14 11 563 | 1070 o
R205 7327 | 100 | [900.0,4980.0] | 453.33 | [899.7,4980.0]| 453.53 | -35353 | 7 4 402 | 865 o
R206 8521 | 100 | [783.6,4980.0]| 535.52 | [783.6,4980.0]| 535.53 | -43553 | 2 2 463 | 1108 o
R207 9378 | 100 | [714.8,4980.0]| 596.69 | [714.8,4980.0]| 596.70 | -496.70 | 2 2 543 | 1231 o
R208 9936 | 100 | [651.8,4980.0]| 664.02 | [651.6,4980.0]| 664.29 | -564.29 | 21 16 571 | 1065 o
R209 8518 | 100 | [785.8,4980.0]| 533.79 | [785.2,4980.0]| 534.22 | -43422| 8 5 476 | 1010 o
R210 8568 | 100 | [798.3,4980.0]| 523.85 | [798.2,4980.0]| 523.87 | -42387| 5 4 456 | 1074 o
R211 9997 | 100 | [645.1,4980.0]| 671.99 | [645.1,4980.0]| 672.01 | -572.01 | 37 31 553 | 958 o
c201 5221 3 589.1 | 0.00 589.1 | 0.00 | 100.00| 0 0 0 1| 11.48
C202 7350 3 589.1 | 0.00 589.1 | 0.00 | 100.00| 0 0 26 70 | 202.86
C203 8866 | 4 [586.0,632.3]|  7.90 [584.4,643.8]| 1017 | 91.79 | 66 19 447 | 821 o
C204 9789 3 [584.4,597.1]| 2.18 | [583.5,5934.4]| 917.06 | 97.67 | 95 a7 509 | 929 o
C205 5698 3 586.4 |  0.00 586.4 | 0.00| 10000| 0 0 38 85 | 334.44
C206 6212 3 586.0 | 0.00 586 0.00 | 10000 | 0 0 50 | 158 | 418.99
C207 6578 3 585.8 |  0.00 [585.6,585.8]| 0.03 | 99.97| 1 1 57 | 212 | 527.52
C208 6665 3 585.8 |  0.00 5858 | 0.00 | 100.00| 0 0 65 | 206 | 569.74
RC201 | 5918 7 | [1250.1,1288.2]| 3.05 | [1249.2,6609.4]| 429.09 | 96.88 | 61 48 309 | 693 o
RC202 | 7752 | 100 | [940.1,6609.4]| 603.03 | [940.1,6609.4]| 603.03 | -503.03| 0O 0 467 | 1071 o
RC203 | 9056 | 100 | [781.6,6609.4]| 745.67 | [781.6,6609.4]| 74567 | -645.67 | 1 1 522 | 1239 o
RC204 | 9854 | 100 | [692.7,6609.4]| 854.19 | [692.7,6609.4]| 854.21 | -754.21 | 18 13 562 | 1043 o
RC205 | 7173 | 100 | [1081.7,6609.4]| 511.00 | [1081.5,6609.4]| 511.12 | -411.12 | 7 5 414 | 893 o
RC206 | 7366 | 100 | [974.8,6609.4]| 578.01 | [974.8,6609.4]| 578.01 | -478.01 | 1 1 416 | 955 o
RC207 | 8619 | 100 | [832.4,6609.4]| 694.03 | [832.4,6609.4]| 694.03 | -594.03| 0 0 480 | 1095 o
RC208 | 10091 | 100 | [647.7,6609.4]| 920.43 | [647.7,6609.4]| 920.44 | -820.44 | 226 | 221 372 | 907 o

__*:time limit of 1 CPU hour exceeded

Table 3.18: Computational results for the DFJIBC algorithm:(100)
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(00T =

SEC/m | Lifted o | Litedo | (mo) | TOURN S1 CAT Dy D,
R201 5/ 120/ 367 0/0 60/ 242 0/0 0/0 35/182 | 37/147 | 34/110 3/76 173
R202 5/ 383/ 464 0/0 76/ 76 0/0 0/0 0/0 0/0 0/0 0/0 0/0
R203 13/ 439/ 538 0/0 86/ 86 0/0 0/0 0/0 0/0 0/0 0/0 0/0
R204 33/357/578 0/0 | 127/188 0/0 0/0 3/61 8/58 | 18/50 9/32 8/23
R205 14/ 221/ 411 0/0 | 104/176 0/0 0/0 5/72 | 33/67 | 21/34 2/13 2/11
R206 9/ 314/ 467 0/0 | 118/144 0/0 0/0 2/ 26 9/ 24 7115 1/8 3/7
R207 23/ 369/ 547 0/0 | 126/155 0/0 0/0 0/29 7129 11/ 22 5/11 2/6
R208 50/ 294/ 594 0/0 | 143/250 0/0 0/0 0/ 107 7/107 | 52/100 19/ 48 6/29
R209 22/ 251/ 486 0/0 | 171/213 0/0 0/0 5/42 | 20/37 6/ 17 0711 1/11
R210 9/ 273/ 463 0/0 | 156/181 0/0 0/0 2/25 | 12/23 4711 0/7 0/7
R211 62/ 223/ 592 0/0 | 79/307 0/0 0/0 | 20/228 | 77/208 | 48/131 | 26/83 | 18/57
C201 0/0/1 0/0 0/1 0/0 0/0 0/1 0/1 0/1 0/1 0/1
C202 0/ 26/ 27 0/0 0/1 0/0 0/0 0/1 0/1 0/1 0/1 0/1
C203 28/ 228/ 509 0/0 44/ 253 0/0 0/0 98/209 | 37/111 8/ 74 2/ 66 2/ 64
C204 53/ 225/ 603 0/0 | 60/325 0/0 0/0 | 73/265| 52/192 | 23/140 | 17/117 | 6/100
C205 1/ 35/ 41 0/0 0/5 0/0 0/0 15 1/4 0/3 0/3 0/3
C206 5/ 42/ 52 0/0 2/5 0/0 0/0 0/3 13 0/2 0/2 0/2
C207 1/ 47/ 63 0/0 3/15 0/0 0/0 2/12 3/10 0/7 0/7 u7
C208 9/ 48/ 70 0/0 3/13 0/0 0/0 2/ 10 1/8 27 0/5 0/5
RC201 | 3/138/372 0/0 | 51/231 0/0 0/0 | 35/180 | 47/145| 26/98 5/72 4/ 67
RC202 | 12/ 373/ 467 0/0 82/ 82 0/0 0/0 0/0 0/0 0/0 0/0 0/0
RC203 | 12/371/525 0/0 | 115/142 0/0 0/0 2/27 | 14/25 3/11 1/8 417
RC204 | 30/314/582 0/0 | 150/238 0/0 0/0 1/88 28/ 87 21/59 9/38 9/29
RC205 2/ 263/ 423 0/0 | 103/158 0/0 0/0 5/ 55 34/50 4/ 16 3/12 0/9
RC206 | 17/243/ 419 0/0 | 98/159 0/0 0/0 7161 | 45/54 2/9 417 0/3
RC207 | 16/303/ 481 0/0 | 134/162 0/0 0/0 3/28 | 15/25 3/10 217 415
RC208 | 115/43/600 0/0 | 25/442 0/0 0/0 | 23/417 | 84/394 | 41/310 | 22/269 | 19/247




INIT LP | SEP | MISC TOTAL
R201 0.0 | 0.2 | 99.1 0.7 | 3616.18
R202 0.0 | 09 | 98.6 0.5 | 3615.42
R203 00| 16 | 97.8 0.6 | 3623.32
R204 0.0 | 19 | 93.0 5.0 | 3616.80
R205 0.0 | 0.7 | 96.1 3.3 | 3655.33
R206 0.0 | 1.2 | 941 4.7 | 3655.12
R207 0.0 | 1.9 | 925 5.6 | 3736.64
R208 0.0 | 1.6 | 93.9 4.5 | 3635.19
R209 00 | 1.0 | 951 3.9 | 3872.42
R210 0.0 | 1.2 | 942 4.6 | 3650.14
R211 0.0 | 1.5 | 943 4.2 | 3621.49
C201 44 | 03| 943 1.0 11.48
C202 0.3 | 03 | 99.0 0.5 202.86
C203 0.0 | 0.3 | 99.2 0.5 | 3605.29
C204 00 | 06 | 98.1 1.3 | 3605.84
C205 0.2 | 0.2 | 99.4 0.3 334.44
C206 0.1 | 0.2 | 99.1 0.5 418.99
Cc207 0.1 | 0.2 | 99.1 0.6 527.52
C208 0.1 | 0.2 | 99.2 0.5 569.74
RC201 0.0 | 0.2 | 99.1 0.7 | 3617.12
RC202 0.0 | 0.9 | 98.7 0.4 | 3614.09
RC203 0.0 | 1.7 | 934 4.9 | 3740.49
RC204 0.0 | 1.8 | 928 5.3 | 3634.98
RC205 00 | 05 | 973 2.2 | 3665.94
RC206 00 | 0.7 | 96.4 29 | 3626.73
RC207 00 | 1.2 | 96.5 2.2 | 3615.31
RC208 0.0 | 0.8 | 959 3.4 | 3614.08

Table 3.20: Percentage of computing time spent in diffepants of the DFIBC algorithmm= 100)
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3.10 Conclusions

In this paper we presented a new formulation of the VRPTWIing only binary arc variables. The
new formulation is based on the formulation of the ATSPTW Isgleuer et al. [3] and has the advantage
of avoiding additional variables and linking constraintsthe new formulation of the VRPTW time win-
dows are modeled using path inequalities. A path inequaliityinates a path that is infeasible because of
some deadline or vehicle capacity is violated. We presemtezlv class of strengthened path inequalities
based on the polyhedral results obtained by Mak [17] in theteod of the TSP with replenishment arcs.
We studied the VRPTW polytope and determined the polytopeedsion. We shoved that the new class
of path inequalities is facet defining under reasonableragians. These are the first polyhedral results
for the VRPTW. We introduced precedence constraints in theext of the VRPTW. We designed a
branch-and-cut algorithm for the exact solution of the VRWP&nd evaluated the computational perfor-
mance on the long-horizon Solomon test problems. The owdsibased on 25-node problems that the
algorithm shows promising results compared to leadingréfyos in the literature. In particular we re-
port a solution to a previously unsolved 50-node Solomamteslem R208. The conclusion is therefore
that the path pricing algorithm is no longer the unchallehganing strategy for solving the VRPTW.
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Abstract

In this chapter we discuss the vehicle routing problem wiithetwindows in terms of its mathemati-
cal modeling, its structure and decomposition alternatiWe then present the master problem and the
subproblem for the column generation approach, respégctiext, we illustrate a branch-and-bound
framework and address acceleration strategies used aiseithe efficiency of branch-and-price meth-
ods. Then, we describe generalizations of the problem gmottreomputational results for the classic
Solomon test sets. Finally, we present our conclusions &ttiss some open problems.

4.1 Introduction

The vehicle routing problem (VRP) involves finding a set afites, starting and ending at a depot, that
together cover a set of customers. Each customer has a giweard, and no vehicle can service more
customers than its capacity permits. The objective is tamiie the total distance traveled or the number
of vehicles used, or a combination of these. In this chapteigonsider the vehicle routing problem with

time windows (VRPTW), which is a generalization of the VRPamhthe service at any customer starts
within a given time interval, called a time window. Time wiwls are called soft when they can be
considered non-biding for a penalty cost. They are hard whey cannot be violated, i.e., if a vehicle
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arrives too early at a customer, it must wait until the timedaw opens; and it is not allowed to arrive
late. This is the case we consider here.

The remarkable advances in information technology havbledacompanies to focus on efficiency
and timeliness throughout the supply chain. In turn, the V®Fhas increasingly become an invaluable
tool in modeling a variety of aspects of supply chain desiga @peration. Important VRPTW applica-
tions include deliveries to supermarkets, bank and postalaties, industrial refuse collection, school
bus routing, security patrol service, and urban newspapgitaition. Its increased practical visibility has
evolved in parallel with the development of broader and deegsearch directed at its solution. Signifi-
cant progress has been made in both the design of heuristidh@ development of optimal approaches.

In this chapter we will concentrate on exact methods for tRPVW based on column generation.
These date back to Desrochers, Desrosiers, and Solomowfit2]ised column generation in a Dantzig-
Wolfe decomposition framework and Halse [20] who impleneeind decomposition based on variable
splitting (also known as Lagrangean decomposition). L.dehl and Madsen [29] developed an al-
gorithm exploiting Lagrangean relaxation. Then, Kohl, idsgers, Madsen, Solomon, and Soumis [30],
Larsen [35], and Cook and Rich [7] extended the previousa@gres by developing Dantzig-Wolfe based
decomposition algorithms involving cutting planes angbarallel platforms. Kallehauge [25] suggested
a hybrid algorithm based on a combination of Lagrangeaxatilan and Dantzig-Wolfe decomposition.
Recently, Chabrier [5], Chabrier, Danna, and Le Pape [6]leEeDejax, Gendreau, and Gueguen [18],
Irnich and Villeneuve [23], and Rousseau, Gendreau, anaf®¢38] have proposed algorithms based on
enhanced subproblem methodology. Advancements in mastblem approaches have been made by
Danna and Le Pape [10] and Larsen [34].

This chapter has the following organization. In sectionwWe2describe the mathematical model of
the VRPTW and in section 4.3 we discuss the structure of thblem and decomposition alternatives.
Next, sections 4.4 and 4.5 present the master problem arsdiipgoblem for the column generation ap-
proach, respectively. Section 4.6 illustrates the braemth-bound framework, while section 4.7 addresses
acceleration strategies used to increase the efficiencyaofch-and-price methods. Then, we describe
generalizations of the VRPTW in section 4.8 and report caatmnal results for the classic Solomon
test sets in section 4.9. Finally we present our conclusamaisdiscuss some open problems in 4.10.

4.2 The model

The VRPTW is defined by a fleet of vehicles, a set of customer;, and a directed graphi. Typically
the fleet is considered to be homogeneous, that is, all \eshéck identical. The graph consist$éf + 2
vertices, where the customers are denotét.1.,n and the depot is represented by the vertices 0 (“the
starting depot”) and+ 1 (“the returning depot”). The set of all vertices, thatisl,0..,n+ 1 is denoted
A . The set of arcs¢Z, represents direct connections between the depot and shencers and among
the customers. There are no arcs ending at vertex O or ofiilggiaom vertexn+ 1. With each ardi, j),
wherei # j, we associate eost ¢; and atime {j, which may include service time at customer

Each vehicle has a capaciyand each customéra demand;. Each customerhas atime window
[ai,bi] and a vehicle must arrive at the customer befprdf it arrives before the time window opens, it
has to wait untily; to service the customer. The time windows for both depotassamed to be identical
to [ap, bo] which represents thecheduling horizonThe vehicles may not leave the depot befagend
must return at the latest at tinbg ;.

It is assumed thal, a;, bj, d;, ;j are non-negative integers atidare positive integers. Note that this
assumption is necessary to develop an algorithm for theestquath with resource constraints used in
the column generation approach presented later. Furtherinis assumed that the triangle inequality is
satisfied for botlt;; andt;j.

The model contains two sets of decision variallleads. For each ar¢i, j), wherei # j,i #n+1, | #
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0, and each vehiclewe definex;jx as

o — 1, ifvehiclek drives directly from vertexto vertexj
k= 0, otherwise

The decision variablgy is defined for each vertexand each vehiclk and denotes the time vehicle
k starts to service customer In case vehiclk does not service customersyg has no meaning and
consequently it's value is considered irrelevant. We assage- 0 and thereforeg = 0, for all k.

The goal is to design a set of routes that minimizes total sosth that

e each customer is serviced exactly once,
e every route originates at vertex 0 and ends at varted, and
¢ the time windows of the customers and capacity constrafrtteeovehicles are observed.

This informal VRPTW description can be stated mathemayieal a multicommodity network flow prob-
lem with time windows and capacity constraints:

4.1) min z z z Cij XijkS.t.

keVien jes

(4.2) Z Z Xijk =1 Vie?
ke? jeV

(4.3) Z di z Xijk < q ke v
i€¢ jenN

(4.4) > Xojk =1 vke ¥
jenN

(4.5) z Xihk — Z Xhjk = 0 VhE%,VkE'V
eV jenN

(4.6) S Xiniik =1 vke ¥
etV
Xijk(Sk +tij —sk) < O

4.7) Vi,je N VkeV

(4.8) a <sk<hb Vie A vke ¥

(4.9) Xijk € {0,1} Vi,je N, Vke ¥V

The objective function (4.1) minimizes the total travel tto¥he constraints (4.2) ensure that each
customer is visited exactly once, and (4.3) state that acleeban only be loaded up to it's capacity. Next,
equations (4.4), (4.5) and (4.6) indicate that each velnitlst leave the depot O; after a vehicle arrives at
a customer it has to leave for another destination; and iralllvehicles must arrive at the depot- 1.
The inequalities (4.7) establish the relationship betwtbenvehicle departure time from a customer and
its immediate successor. Finally constraints (4.8) afftrat the time windows are observed, and (4.9) are
the integrality constraints. Note that an unused vehiakeddeled by driving the “empty” rout@®,n+1).

The model can also incorporate a constraint giving an uppenth on the number of vehicles, as is
the case in Desrosiers, Dumas, Solomon, and Soumis [14]:

(4.10) z z Xoik<|¥| Yke ¥V Vje N
ke? jeV

Note also that the nonlinear restrictions (4.7) can be fized as:

(4.12) Sk +tij — Mij (L —Xjk)<Sjk Vi,j € A ,VkeV
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The large constantd; can be decreased to mdx+ti; —a;}, (i,j) € A.

For each vehicle, the service start variables impose a enigute direction thereby eliminating any
subtours. Hence, the classical VRP subtour eliminatiorsitaimts become redundant. Finally, the ob-
jective function (4.1) has been universally used when sgltihe VRPTW to optimality. In the research
on heuristics it has been common to minimize the number atlehwhich may lead to additional travel
cost.

The VRPTW is a generalization of both the traveling salesprablem (TSP) and the VRP. When
the time constraints (4.7) and (4.8)) are not binding thélem relaxes to a VRP. This can be modeled
by settinga; = 0 andb; = M, whereM is a large scalar, for all customerdf only one vehicle is available
the problem becomes a TSP. If several vehicles are avaitatulethe cost structure isp; = 1,j € €
andgj = 0, otherwise, we obtain the bin-packing problem. Sincesttiptween customers are “free”,
the order in which these are visited becomes unimportantredbjective turns to “squeezing” as much
demand as possible into as few vehicles (bins) as possibleade the capacity constraints (4.2) are not
binding the problem becomes@aTSPTW, or, if only one vehicle is available, a TSPTW.

4.3 Structure and decomposition

A closer look at the above model reveals that only the assitroonstraints (4.2) are coupling the
vehicles while the remaining constraints are dealing wétbhevehicle separately. This strongly suggests
the use of Lagrangean relaxation (LR) or decompositiorexample Dantzig-Wolfe (DWD), to break up
the overall problem into a subproblem for each vehicle andsten problem. To date, the most successful
decomposition approaches for the VRPTW cast the subproé¢eanconstrained shortest path structure.
The master problem is an integer program whose solutionatdr@obtained directly, so its LP relaxation
is solved. The column generation process alternates betsgeing this linear master problem and the
subproblem. The former finds new multipliers to send to tktedavhich uses this information to find new
columns to send back. A lower bound on the optimal integerteni of the VRPTW model is obtained at
the end of this back and forth process. This is then usedmétiranch-and-bound framework to obtain
the optimal VRPTW solution. If the vehicles are identicalyee have assumed here, all subproblems will
be equivalent and therefore it is necessary to only solve dihe master problem and the subproblem
will be discussed in more detail in sections 4.4 and 4.5,aetbely. The complete column generation
process is described in Chapter 1, while the subproblemgtmsubject of Chapter 2.

In addition, other LRs are possible but not promising. Oneg mensider relaxing the time and
capacity constraints (4.3), (4.7) and (4.8). This yieldgadr network flow problem which possesses
the integrality property. The corresponding bound can beutated very fast, but is not likely to be
very strong unless capacity is not binding and time windoresvery narrow (see Desrosiers, Dumas,
Solomon, and Soumis [14]). Relaxing only the capacity oetimindow constraints also does not seem
sensible since the relaxed problem is not generally easmslve than the original.

Desrochers, Desrosiers, and Solomon [12] were the firstaty @D with a free number of vehicles.
The assignment constraints were considered the couplimgraints, while the subproblem was a shortest
path problem with resource constraints. Relaxing the sammstraint set and applying LR was first
proposed by Kohl and Madsen [29]. Desrosiers, Sauvé, anthi8d3] have used a similar relaxation
to calculate a lower bound for the minimum fleet size fortr&@SPTW.

Jornsten, Madsen, and Sgrensen [24] suggested solvindRR&W by variable splitting (later called
Lagrangean decomposition, or LD). In follow-up work, Ha[2€] described three different variable
splitting methods wherg ; x;jx was replaced byix in constraint set (4.2) and possibly (4.3). In turn,
the constrainyx =  ; ijx was introduced and Lagrangean relaxed. The problem dec®@soto two
problems, one in th& ands-variables and the other in thevariables. The former problem is further
decomposed by vehicle and it is a shortest path problem egburce constraints. The latter is an
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assignment-type problem. Specifically, the approaches are

e VS1: Keep constraints (4.2) and (4.3) in tizgoroblem. This represents a generalized assignment
problem (GAP) and the/s-problem becomes a shortest path problem with time wind8RSTW).
The GAP has the special structure where all right hand sitdé%.8) are identical and; does not
depend ork.

e VS2: Keep constraints (4.2) in theproblem. They-problem becomes a "Semi assignment” prob-
lem (SAP) consisting of constraints (4.2) only. Tkie-problem is equivalent to a shortest path
problem with time windows and capacity constraints (SPPTINThe SAP is easily solvable and
possesses the integrality property.

e VS3: Keep constraints (4.2) in the y-problem and constraint8)(#h both they- and thex/s-
problem. They-problem is a GAP and thes-problem constitutes a SPPTWCC.

In the LD master problem, whose role is to find multipliers he relaxed equation relatingand
y, the number of multipliers is larger than in the LR consideadove. This clearly makes the master
problem more difficult. Also the subproblems are no longentital since the LD multipliers depend on
both customer and vehicle. Note that only VS1 and VS2 have lmeplemented.

We now define LB(VS1), LB(VS2) and LB(VS3) as the best lowentds obtainable from the three
variable splitting approaches, respectively. It can beashthat the previous LR and the DWD yield
the same lower bound LB(LR/DWD). Provided that the vehielesidentical, Kohl [28] has derived the
following results:

LB(VS3) > LB(VS1)
LB(VS3) > LB(VS2)
LB(LR/DWD) = LB(VS2)

There exist instances for which LB(VS3)LB(VS1). He further showed that LB(VSZLB(VS3) under
some weak supplementary conditions. This is surprisingb&e it implies there is no additional gain
to be derived from solving two hard integer problems (the BREC and GAP) instead of just one
(the SPPTWCC). However, in the more general case wherelestiave different capacities it might be
possible that the VS3 model yields a better bound than VS2.

To conclude, in VRPTW case, the variable splitting methodstioned above generally provide
similar lower bounds to those obtained from the ordinary LtRW/D.

4.4 The master problem

The column generation methodology has been successfulijedpto the VRPTW by numerous re-
searchers. It represents a generalization of the linear BWWEe the master problem and the subproblem
are integer and mixed-integer programs, respectivelyerOftie master problem is simply stated as a
set partitioning problem on which column generation is agghlthereby avoiding the description of the
DWD on which it is based. To gain an appreciation for différeatting and branching opportunities
compatible with column generation, here we present theanasbblem by going through the steps of
the DWD based on the multicommaodity network flow formulat{dml) - (4.9).

The column generation approach exploits the fact that oahstraint set (4.2) links the vehicles
together. Hence, the integer master problem is definedghrédi1) - (4.2) and (4.9), that is, it contains
the objective function, the assignment of customers totéxane vehicle and the binary requirement on
the flow variables. The rest of the constraints and (4.9) areqf the subproblem which has a modified
objective function that decomposes int6| independent subproblems, one for each vehicle. In the rest
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of this section we will focus on the linear master probleni)4.4.2). Branching, necessary to solve the
integer master problem, will be discussed in section 4.6.
Let 22X be the set of feasible paths for vehiklé € 7. Hence p € #K corresponds to an elementary

path which can also be described by using the binary va{‘ﬂgyvherex}‘jp =1, if vehiclek goes directly

from vertexi to vertexj on pathp, andx}‘jp = 0, otherwise. Any solution}j to the master problem (4.1)
- (4.2) can be written as a non-negative convex combinatiarfinite number of elementary paths, i.e.,

(412)  Xi= 5 Xy vke 7 V(i) e o

pe 7%
(4.13) S ¥y=1 vke”
pe 2k
(4.14) ys>0 vke 7, vpe 2K

Usingxﬁjp we can define the cost of a pad'g, and the number of times a customés visited by vehicle
k, ak, as:

CE = Yijes hXp Vke“//,vlpee@k
a‘ip = ZJE=/1/U{n+1}X=(jp VkE’V,VIEe/V,VDEe@k

Now we can substitute these values into (4.1) - (4.2) angeat the revised formulation of the master
problem:

(4.15) miny Y chys sit.

ke pe gk

(4.16) S S ang= 1 Vie?
kev pe,@k

(4.17) S ¥ =1 vke ¥
pe X

(4.18) v > 0 VkeV¥,Vpe 2K

The mathematical formulation (4.15) - (4.18) is then thedinrelaxation of a set partitioning type prob-
lem with an additional constraint on the total number of etds and a set of convex combination con-
straints.

In the usual case of a single depot and a homogeneous fleehiofagwith the same initial condi-
tions for all vehicles, allZZk are identical, that is??X = 22 k € ¥. Furthermore, the networks for the
subproblems are also identical. Therefore constraintsj4an be aggregated. By lettigg = Ekey/yk,
the indexk can be eliminated from the formulation (4.15) - (4.18). Thsulting model given below is
the classical linear relaxation of the set partitioningriatation:

(4.19) min z Cpyp St

pe?
peZ?
(4.21) Yp > 0 VpeZ

In the column generation methodology, the set of columnierihear master problem is limited to only
those that have already been generated, hence thadstrictedmaster problem. It consists of finding
a set of minimum cost paths among all paths presently in th&en@aroblem. The restricted master
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problem can mathematically be stated as:

(4.22) min z Cpyp S-t.

pes’
pe’
(4.24) Yp > 0 Vpe o

Each decision variablg, counts the number of times paphis used. This is not necessarily integer,
but can be any real number in the inter{@l1]. The set?”’ contains all the paths generateg, denotes
the number of times customers serviced on patip, and,cp is the cost of the path. The paramedgy
should in principle be either 0 or 1, but since the subprobteralaxed (see section 4.5) it can take larger
integer values.

Solving the restricted master problem yields a solufiea(y1,Yz,. .., Y|s) which might be integer
but this is not guaranteed. If it is integer, a feasible butmexessarily optimal solution to the VRPTW
has been found. In addition to the primal solution, a dualteh @ = (@1, @, .., @) is also obtained.

An initial start for the restricted master problem is oftée set of routes visiting a single customer,
that is, routes of the type depbtepot (cf. section 4.8). When the optimal solution to thetrieted
master problem is found, the simplex algorithm asks for a waniable (i.e. a column/pathe &2\ &)
with negative reduced cost. Such a column is found by soleirsmbproblem, sometimes called the
pricing problem. For the VRPTW, the subproblem should stiesproblem “Find the path with minimal
reduced cost.” Solving the subproblem is in fact an impkeiumeration of all feasible paths, and the
process terminates when the optimal objective of the suidnois non-negative (it will actually be 0).

Itis not surprising that the behavior of the dual variablegga pivotal role in the overall performance
of the column generation principle for the VRPTW. It has bebserved by Kallehauge [25] that dual
variables do not converge smoothly to their respectivenagti Assume that the patfi6,i,n+ 1) are
used to initialize the algorithm. Figure 4.1 illustrates thstability of the column generation algorithm
compared to the stabilized cutting-plane algorithm presgin the above paper. Furthermore, Figure
4.2 illustrates the effect of the size of the multipliers e tomputational difficulty of the SPPTWCC
subproblems. Whereas the multipliers are large in the DguWiblfe process, they are small in the
cutting-plane approach. This problem originates in thedimation between the master problem and the
subproblem.

100,000 Labels — Stabilized Cutting-Plane Algorithm
80,000 Column Generation Algorithm
60,000
40,000
20,000

0 u
0 20 40 60 80 100 120

Figure 4.1: Number of labels generated in the subproblerh véspect to the iteration number for
the Dantzig-Wolfe method and the bundle method on the Satoimstance R104 with 100 customers
(from Kallehauge [25]).
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(a) Column Generation Algorithm

Distance

1,000
750
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(b) Stabilized Cutting-Plane Algorithm

Figure 4.2: The Euclidian distance between the current darddbles and the optimum dual variables.
Observe the different scales.

This corresponds to the principle of stabilization of colugeneration as discussed in du Merle,
Villeneuve, Desrosiers, and Hansen [16]. StabilizatiohaVRPTW context is reported by Kallehauge,
Larsen, and Madsen [27]. Here a speedup factor of 6 is repfmiehe root node of all R1 instances.

Finally, in many routing problems the optimal solution rénsaunchanged even if overcovering rather
than exact covering of customers is allowed. Due to the gi@mequality in the VRPTW, overcovering
will always be more expensive than just covering and theesém optimal solution will always be one
where each customer is visited exactly once. The advantiagiéowing overcovering is that the linear
relaxation of the Set Covering Problem is easier to solva that of the Set Partitioning Problem, and
this will in turn lead to the computation of good estimateshaf dual variables.

4.5 The subproblem

In the column generation approach for the VRPTW, the sublproldecomposes into”| identical prob-
lems, each one being a shortest path problem with resourtsgtramts (time windows and vehicle ca-
pacity). More specifically, the subproblem is an Elemengingrtest Path Problem with Time Windows
and Capacity Constraints (ESPPTWCC), where elementarpsritbat each customer can appear at most
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once in the shortest path. It can be formulated as:

(4.25) min z z GijXij s.t.
eV jeV
(4.26) Z di z Xij < q
i€e jeN
(4.27) X0j = 1
2
(4.28) Xih — Xhij = 0 Yhe ¥
iEZ/V jEZ/V
(4.29) T Xini1 -1
etV
(4.30) s+t —Mjj(1-xj) < s Yi,jenN
(4.31) a8 <s<b Vie Vs
(4.32) xij € {0,1} Vi,je N

Constraint (4.26) is the capacity constraint, constradn3Q) and (4.31) are time constraints, while
constraint (4.32) ensures integrality. The constraint®q¥ (4.28) and (4.29) are flow constraints result-
ing in a path from the depot O to the depot 1. When solving the ESPPTWCC as the subproblem
in the VRPTW,cjj is themaodified cosbf using arc(i, j), wherecj = ¢;j — 75. Note that whilecjj is a
non-negative integec;;"can be any real number.

This subproblem does not posses the integrality propeanty/tlaerefore solving it as a linear mixed-
integer programming problem will potentially result in alvetion of the integrality gap between the
optimal solution of the LP-relaxed version of the VRPTW amel dptimal integer solution to the problem.

Since the ESPPTWCC is NP-hard in the strong sense (see Dspafitl Kohl [28]), the usual ap-
proach has been to slightly alter the problem by relaxingesofrthe constraints. In particular, allowing
cycles changes the problem to the Shortest Path Probleninmith Windows and Capacity Constraints
(SPPTWCC). Since arcs can now be used more than once (aman&rstmay therefore be visited more
than once), the decision variabbes ands are replaced b)(}j ands. The variable<}j is set to 1 if the

arc (i, j) is used as thé&'th arc on the shortest path, and 0 otherwise, and the varghs$ set to the

start of service at customeas customer numbéyrwherel € £ ={1,2,...,|.Z4|}, |-€| = Lnt:i”;tiljj. The
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SPPTWCC can now be described by the following mathematioaleh

(4.33) min &iX:, s.t.
(4.34) IR -1
eV jeV
(4.35) X — X 1< 0 vleZ —{1}
i;/jeZ/V . eV jeN !
(4.36) d X < q
|ez<6 Ilezfje/i/ .
(4.37) X5j =1
jenN
(4.38) Xpt— S X = 0 VhedVieg—{1}
eV jenN
(4.39) S S Xt =1
leZieV
#'HIJ K(l_xilj) < §J
(4.40) Vi,je ¥/ Vle 2 {1}
(4.41) a<g<b Vie s
(4.42) x; € {0,1} Vi,jeN

In this formulation, (4.34) forces the first arc to be used/anice, while (4.35) states that drcan
only be used provided that are- 1 is used. The remaining constraints are the original caimir (4.3)
to (4.9) extended to include the additional supersdrighd the changes related to its inclusion. Note
that (4.34) is redundant as it is covered by (4.37), but ittheen kept in the model as to indicate the
origin node.

This problem can be solved by a pseudo-polynomial algoriflescribed in Desrochers, Desrosiers,
and Solomon [12]. This and all other current approaches asedon dynamic programming. Even
though negative cycles are possible, the time windows aacdc#pacity constraints prohibits infinite
cycling. Note that capacity is accumulated every time aamast is serviced in a cycle. If the distance
used to compute the cost of routes satisfies the trianglaualityg the optimal solution contains only
elementary routes. Solving the SPPTWCC instead of the EBRRT augments the size of the set of
admissible columns generated for the master problem. Qoesdly the lower bound on the master
problem may decrease. A slight improvement can be obtaigéchplementing 2-cycle elimination in
the solution process which dates back to Kolen, Rinnooy liad,Trienekens [31].

While the SPPTWCC relaxation was at the time a computatioeed¢ssity, the ESPPTWCC has re-
cently been tackled directly. Work on this problem dadycle elimination, wherd > 3, proved very
successful in expanding the scope of the VRPTW problem&dolZven though the ESPPTWCC con-
tinues to be regarded as difficult to solve when time windogsrde, two research groups have recently
used it directly in VRPTW optimal algorithms. Chabrier [5jcaChabrier, Danna, and Le Pape [6],
and independently Feillet, Dejax, Gendreau, and GuegwmHve extended the dynamic programming
approach of Desrochers, Desrosiers, and Solomon [12] t&8RPTWCC by adapting the path domi-
nance rule. They then incorporated several heuristic nuadifins to make the algorithm much faster.
Chabrier [5] and Chabrier, Danna, and Le Pape [6] obtainegridoounds superior to those based on
the SPPTWCC resulting in excellent computational reswoltse described in section 4.9. A different
approach that has not yet been tried on the VRPTW is presémtedmitrescu and Boland [17]. The
authors compare three scaling techniques and a standatesketting method. They show that integrating
preprocessing information within the label-setting methan be very beneficial in terms of both memory
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and run time. Further improvements of the label-settinghoétcan be obtained by using Lagrangean
relaxation.

Instead of dealing with the computational burden of the EBREC or the weakened lower bound
provided by the SPPTWCC, one could consider a middle of tad approach. That is, disallow cycles of
small length. As discussed above, cycle elimination cpoading tok = 2 has been a common technique.
In the SPPTWCk-cyc, paths with cycles of length of at mdsare eliminated. The case> 3 has been
considered by Irnich and Villeneuve [23] with encouragiegults presented in section 4.9. Recently
Rousseau, Gendreau, and Pesant [38] have presented welseits Constraint Programming is used to
solve the subproblem. Taking into account the differenceoimputer power, the authors conclude that
their approach is not any faster than that of Desrocherg,dd3ess, and Solomon [12].

4.6 Branch-and-bound

The column generation approach does not automaticallyagtee integer solutions and often the solu-
tions obtained will indeed be fractional. Therefore a breaod-bound framework has to be established.
The calculations are organized in a branching tree. For tREMV only binary strategies have been
proposed in the literature although it should be noted thigt generally not difficult to come up with
non-binary branching trees for the problem. The branchiewsions are generally based on considera-
tions related to the original 3-index flow formulation (4:2%.9). The column generation process is then
repeated at each node in the branch-and-bound tree.

4.6.1 Branching on the number of vehicles

Branching on the number of vehicles was originally propdsgdesrochers, Desrosiers, and Solomon
[12]. If the number of vehicles is fractional we introducecaihd on the number of vehicles. Note that this
branching strategy does not require that the flow and timialvias of the original model be computed.

This branching rule can be implemented fairly easily and/@muncerns the master problem. We
denote the flow over an arc bfy; and this is the sum of all flows over that arc, thafiiis= 3 < Xijk-
The fi; values can easily be derived from the solution of the mastaslem. When we branch on the
number of vehicles, two child nodes are created, one imgasinthe master problem parent node the
additional constrain§ ;¢ foj > [I] while the other forcing jc foj < [I], wherel is the fractional sum
of all variables in the master problem.

Note that branching on the number of vehicles is not neciéssaiough to obtain an integer solution
as it is possible to derive solutions where the sum of theclesis integer, but yet there are fractional
vehicles driving around the network.

4.6.2 Branching on flow variables

Branching on a single variablg is possible only if each vehicle can be distinguished. Inewoi gen-
eration this can be achieved by solving the subproblene&@hvehicle individually and by introducing
an additional constraint in the master problem

pe

whereR, is the set of routes generated for each vetkiaadyy, is the binary variable indicating whether
routep is used.

Since most cases described in the literature assume a hosmgefleet, it doesn’t make sense to
branch on individual vehicles. Instead, branching can beedm sums of flows, that is either g xjjx
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oronyXjk (equivalent tofjj). Branching ony ; xijx results in a different subproblem for each vehicle,
even though the vehicles are identical. Thatis becausesimgy ; xjx = 1 forces custometto be visited
by vehiclek, while ¥ j xijx = 0 implies that customeris assigned to any vehicle bkt

The standard practice has been to brancly pxx since the branching decision can easily be trans-
ferred to the master problem and subproblem. This was peabmglependently by Halse [20] and
Desrochers, Desrosiers, and Solomon [12]. WHg®;jx = 1, customerj succeeds customeon the
same route, while i xjx = 0, customer does not immediately precede If there is more than one
candidate for branching, that is, there are several fraativariables, we would generally like to choose
a candidate that is not close to either O or 1 in order to makmpact. When selecting among the nodes
to branch on, a common heuristic is to branch on the varialabeimmizing cjj (min{x;jx, 1 — Xijx }) using
a best-first strategy In order to create more complex stiegehe branching schemes can be applied
hierarchically, such as first branching on the number ofalebiand then ofy x;jx, or mixed.

4.6.3 Branching on resource windows

Branching on resource windows was first proposed by GéliDasyrochers, Desrosiers, and Solomon
[19] and is presently the only alternative to branching owflariables. In the VRPTW model resource
windows can be interpreted as either the time windows or éipacity constraints. We will only discuss
branching on time windows, as capacity is significantly lesastraining in many cases. In Gélinas,
Desrochers, Desrosiers, and Solomon [19] only branchirntgmeawindows was used.

Branching on time windows results in splitting a time windimto two smaller ones. Branching has
to be done in such a way that at least one route is infeasitdadh of the two sub-windows.

In order to branch on time windows three decisions have tekent

1. How should the node for branching be chosen?
2. Which time window should be divided?
3. Where should the partition point be?

In order to decide on the above issues, we ddasibility intervalg]l!, uf] for all vertices € .4” and
all routesr with fractional flow.I] is the earliest time that service can start at vertex router, anduf
is the latest time that service can start, thafl[sy{] is the time interval during which routemust visit
vertexi to remain feasible.

The intervals can easily be computed by a recursive fornAdditionally we define

(4.43) L = _ max {IN}, iens
fractional routes
min {ul, ies

(4.44) Ui )
fractional routes

If Lj > U; at least two routes (or two visits by the same route) haveidisfeasibility intervals, i.e., the
vertex is a candidate for branching on time windows. We camdf on a candidate verteky dividing
the time windowsa;, bj] at any integer value in the open interfidi, L;[. It should be noted that situations
can arise where there are no candidates for branching omtinews, but the solution is not feasible.

Three different strategies were proposed by Gélinas, @hsrs, Desrosiers, and Solomon [19] aim-
ing at the elimination of cycles, the minimization of the nugnof visits to a customerand the balancing
of flow in the two branch-and-bound nodes.

After having chosen the candidate verterr branching, an integere [U;,Li[ has to be selected in
order to determine the division. Herrés chosen in order to divide the time window of the customehsu
that 1) the flow is balanced and 2) the time window is divideehaenly as possible.
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4.7 Acceleration strategies

4.7.1 Preprocessing

The aim of preprocessing is to narrow the solution spaceghjidning the formulation before the actual
optimization is started. This can be done by fixing some em reducing the interval of values a
variable can take and so on. In the VRPTW, the time windowsheamarrowed if the triangle inequality
holds. Accordingly, Kontoravdis and Bard [32] propose thiéofving scheme. The earliest time a vehicle
can arrive at a customer is by arriving straight from the deypal the latest time it can leave is by going
directly back to the depot. Hence, for each custoimits time window can be strengthened fran by]

to [max{ag + toi, & }, Min{bny1 —ti ny1,bi .

A further reduction of the time windows can be achieved byrttethod developed by Desrochers,
Desrosiers, and Solomon [12]. The time windows are redugeapblying the following four rules in a
cyclic manner. The process is stopped when one whole cyglerfsrmed without changing any of the
time windows. The four rules are:

1. Minimal arrival time from predecessors:
a = max{a,min{by,min ) {a& +ti}}}

2. Minimal arrival time to successors:
a = max{a, min{b,min, j,{a; —t;}}}

3. Maximal departure time from predecessors:
by = min{by, max{ay, max; ) {bi +1t}}}

4. Maximal departure time to successors:
by = min{by, max{a, max j,{bj —t;}}}

The first rule adjusts the start of the time window to the eatltime a vehicle can arrive coming
straight from any possible predecessor. In a similar faghtee second rule modifies the start of the time
window in order to minimize the excess time spent before ithe windows of all possible successors
open if the vehicle continues to a successor as quickly asildes The two remaining rules use the same
principles to adjust the closing of the time window. Withpest to capacity, an ar@, j) can obviously
be removed it +-dj > q.

4.7.2 Subproblem strategies

A well known strategy for accelerating column generatiortoigeturn many negative marginal cost
columns to the master problem. Even though in principle amg needs to be returned, several can
be if they are available. Computational tests conducteddiy R8] and Larsen [35] confirm the benefits
of this approach.

4.7.3 Master problem strategies

Along with the novel perspectives on the subproblem satutdescribed in 4.5, master problem ac-

celeration strategies have been key to the evolution of MRRpproaches over the last few years. One
approach s to accelerate the solution at the root node dftliech-and-bound tree by using a local search
method to generate a set of initial columns. This helps tt&neo generation process get a fast increase
in the quality of the dual variables. It has been implemebtedumerous researchers and has finally been
discussed in the literature by Danna and Le Pape [10]. THeoetise a local search method based on
the savings algorithm incorporating time windows whichdaroes a set of routes better than the trivial
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depot-customer-depot ones. Furthermore, local searckeid along with a MIP solver throughout the

branch-and-price process to generate good integer sadufist. Two different heuristics, a local search
method based on large neighborhood search and a guidedsatmin swere tested and proved beneficial,
especially on Solomon’s R1 and RC1 problem classes.

Two new approaches have been suggested by Larsen [34] asehl[85]. First, during the execution
of the branch-and-price a large number of columns are gertbeand many of these only participate in
a few computations and will not be used afterwards. If kepthecolumn will increase computing time
when solving the relaxed set partitioning problem and whidnsding the upper bounds on variables due
to branching decisions. Therefore Larsen [34] suggesteep krack of how long a column is part of a
basis. If it does not participate in a basis for a given nunafdiranch-and-bound nodes it is removed
from the model. This was also suggested by Desaulnierspbiess, and Solomon [11] where it was also
noted that a certain number of nonbasic columns should reimahe problem. Larsen [34] reports that
deleting columns that have not been part of the basis forte?D branch-and-bound nodes outperforms
the code without column deletion by a factor o5 2aggregated over 27 instances.

The second acceleration approach is to stop the algorithirtheoSPPTWCC before it completes.
Computations can be stopped as soon as at least one routeagiive cost has been generated. This
approach is denoted “forced early stop” in Larsen [35] arslilts in dramatic running time reductions,
especially for problems with large time windows. For thake,values of the dual variables at the begin-
ning of the procedure will however be of poor quality. Onlyemhthe subproblem proves optimality it
cannot be stopped prematurely.

4.7.4 Cutting planes

The barebone column generation methodology for solving/lRETW is part of the popular approach
for solving difficult integer programming problems by reilag the integrality constraints of the original
problem. Typically, the optimal solution to the relaxed lpiem is not feasible for the original problem
and branch-and-bound is used in order to get integer sakitio

Cutting planes has been proposed to improve the polyhedsalrigtion of the relaxed problem in
order to get an integer solution or at least narrow the irtié@gigap. Kohl, Desrosiers, Madsen, Solomon,
and Soumis [30] suggested three cuts in order to tighten Ehiotmulation of the VRPTW problem. As
these cuts are only introduced at the root node, this is nodach-and-cut approach, where cuts can be
introduced at any node of the search tree.

The method is based on subtour elimination constraints anthdnequalities transferred from the
TSP, and 2-path cuts. To detect subtour elimination coins$rea separation algorithm by Crowder and
Padberg [9] was implemented. With respect to the comb in&@sa only combs with 3 teeth and 2
nodes were detected. The separation algorithm was a prén@tiumeration scheme. Neither of these
constraints had a large impact on tightening the bound.

A new idea introduced by Kohl, Desrosiers, Madsen, Soloraod, Soumis [30] was the inclusion
of 2-path cuts. The basis of this set of cuts is the subtoumiedition inequality in the strong form:
X(S) > k(S),¥SC ¥, wherex(S) is the flow leaving the se§, andk(S) is the minimum number of
vehicles needed to service the customelS iDeterminingk(S) is not an easy task, but using the triangle
inequality on the travel times we have tHatC S, = k(S1) < k(S). SetsS that satisfyx(S) < 2 and
k(S) > 1 must now be found. AK(S) is an integerk(S) > 1 impliesk(S) > 2. So we need to identify
setsSthat require at least two vehicles to be serviced, but anently serviced by less than two.

For a setS, two checks have to be performed: K(B) > 1 and 2) can the customers be serviced by
a single vehicle? The first check is easy, but the secondnegjthie solution of the TSPT\Wéasibility
problem. Since this problem is NP-hard the separation algorcan only be applied to small sets. This
is done heuristically using a simple greedy algorithm basetaporte, Nobert, and Desrochers [33].

The 2-path cuts outperformed the branch-and-price methidwbut 2-path cuts. The proportion of
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the integrality gap closed by the 2-path cuts varies from?4®0 10% in a few cases. Overall 12 new
unsolved Solomon instances were closed.

Cook and Rich [7] extended the above 2-path cut approakfptth cuts involving the solution of a
VRPTW with (k— 1) customers as part of the separation algorithm. The autlesfermed experiments
with k up to 6. For largek, the percentage of the integrality gap that is closed is ofsmlarger, but the
separation algorithm requires substantially more timethackfore it is not evident that it is preferable to
usek larger than 2.

Recently, Bard, Kontoravdis, and Yu [4] have proposed adiraand-cut algorithm for the arc formu-
lation of the VRPTW. This development parallels the initigks of this technique for the VRP (Naddef
and Rinaldi [37]). Based on the results obtained by Mak [88}ew arc formulation of the VRPTW is
presented in Kallehauge and Boland [26]. In this formulatite time and capacity restrictions are mod-
eled using infeasible path elimination constraints (IPEQ%is new class of inequalities can be viewed
as a strengthening of the IPECS described in Ascheuer,étigcdind Grotschel [1], Ascheuer, Fischetti,
and Grotschel [2], and Bard, Kontoravdis, and Yu [4] and daa be incorporated at the master problem
level in the path formulation considered in this chapter.

Another line of research involves valid inequalities ded\from the precedence relationships estab-
lished by the time windows. That is, if a set of customers isex by the same vehicle, the associated
time windows create a precedence structure among the pondsg nodes (Ascheuer, Fischetti, and
Grotschel [2]). In Kallehauge and Boland [26], two classésadid inequalities for the precedence-
constrained asymmetric traveling salesman polytope ateschetti, and Pulleyblank [3]) are trans-
ferred to the VRPTW.

4.8 Generalizations of the VRPTW model

The methods considered in this chapter can be generalizedlied to a number of related problems
as discussed by Desrosiers, Dumas, Solomon, and Soumis ifiletg we will concentrate on routing
generalizations and show how a number of more complex rgptioblems can be modeled based on the
framework introduced in the previous sections.

4.8.1 Non-identical vehicles

In the general case vehicles may differ with respect to tranee, travel costs, capacity and possibly
other characteristics. We define a class of vehicles as & s@¢mtical vehicles. There may be a cost
associated with the vehicles of a particular class, ancethey be bounds on their availability as well.
These bounds are modeled in to the master problem as supgmeonstraints.

The subproblem must be solved separately for each clashafles. The marginal costs of the arcs
originating at the depot of the subproblem for a particukdrigle class must be modified by the simplex
multiplier of the constraints on the availability of thisask in the master problem. One can chose to solve
one or more of the subproblems between each master iterafioe LP optimality criterion is that no
subproblem generates columns with negative reduced clbssslikely to be efficient to branch on the
number of vehicles of a particular class if this number istitmnal.

A special case occurs if vehicles do not differ with respectraveling time, travel cost and time
windows, but only have different capacities and possibkilability and fixed costs. This problem is
clearly solvable as described above, but it can also beftraned into the identical vehicle problem
described earlier in this chapter. The advantage of thisfeaimation is that only one subproblem must
be solved at each iteration. To illustrate how the trans&diom works consider a problem with two
classes of vehicles, with vehicle capacitigsand g, respectively, where; < gz. The fixed costs of
using the vehicles arg andc,, respectively. Two extra nodes are inserted in paralletben the depot
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and the customers and any path must go through exactly ohesd hodes. The two arcs from the depot
to the new nodes are pricegdandcy,, respectively. If node 1 is chosen, the capacity is redugap b-g;
since the resource window of node 1 starts at this quantitycesthe resource window of the depot is
[0,q2], a path going through node 1 cannot service customers withnaglated demand of more than
02— (d2 — 01) = q1. If there are bounds on the availability of the vehiclessthare inserted in the master
problem and the simplex multipliers modify the cost of the mew arcs between the depot and the new
nodes.

4.8.2 Multiple depots

If the vehicles are based at different depots, one subprobiast be solved for each depot. Constraints
on the availability of vehicles at a particular depot aretkepthe master problem, and the associated
simplex multiplier modifies the cost of arcs originating la¢ tdepot. This is equivalent to the general
non-identical vehicle case discussed above.

One may assume that the vehicles are allowed to finish theiesat a depot different from the one
the vehicles started, but that the number of vehicles staethd ending at any depot remains constant. In
this particular case it is sufficient to solve one subprobl®me extra node per depot is created "before"
the customers and one "after" the customers. For each deget will be a constraint in the master
problem requiring the number of vehicles housed at that tepdept constant. The right hand side
will be zero, and the left hand side coefficigntp) will be 1 if route p starts at the depot associated
with constraintr and ends at another depetl if the route starts at another depot and ends at the depot
associated with constraintand zero otherwise. The corresponding simplex multiplirodify the cost
of arcs originating at the depot (with opposite sign). It isoaeasy to introduce different fixed costs
associated with the vehicles housed at the depots.

4.8.3 Multiple or soft time windows

Customers may have several (disjoint) time intervals inclwhihey can be serviced. A vehicle arriving
between two time windows must wait until the beginning of thext time window. This doesn't truly
complicate the problem since the usual dominance criténidhe subproblem remains valid. A vehicle
arriving at a particular node at timg can do everything a vehicle arriving at tirgecan, provided that
t1 <to.

If there exist a cost(s ) dependent on the tinge service at customeéibegins, the time window is said
to be soft. If the cost is non-decreasing with increasingtthis is not problematic, since the dominance
criteria remain valid. The most general case whEsg) is a general function is not efficiently solvable.
loachim, Gélinas, Desrosiers, and Soumis [22] presentgoritim for the linear case.

4.9 Computational experiments

Almost from the first computational experiments, a set obfgms became the test-bed for both heuristic
and exact investigations of the VRPTW. Solomon [39] propasset of 168 instances that have remained
the leading test set ever since. For the researchers waskihguristic algorithms for the VRPTW a need
for bigger problems made Homberger and Gehring [21] propasgies of extended Solomon problems.
These larger problems have as many as 1000 customers amdl $&xe been solved by exact methods.

4.9.1 The Solomon instances

The test sets reflect several structural factors in vehmlgimg and scheduling such as geographical
data, number of customers serviced by a single vehicle andhhracteristics of the time windows (e.g.,
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tightness, positioning and the fraction of time-constdicustomers in the instances). Customers are
distributed within 0,100 square.

The instances are divided into 6 groups (test-sets) defite®2, C1, C2, RC1 and RC2. Each of the
test sets contain between 8 and 12 instances. In R1 and R2dheaphical data is randomly generated by
a random uniform distribution. In the test sets C1 and C2 tistarners are placed in clusters, and finally
in the RC1 and RC2 test-sets some customers are placed farsluwile others are placed randomly. In
the test sets R1, C1 and RC1 the scheduling horizon is sharifieg approximately 5 to 10 customers
to be serviced on each route. The R2, C2 and RC2 problems hawg acheduling horizon allowing
routes with more than 30 customers to be feasible. This nthlkeegroblems very hard to solve exactly
and they have not been used until recently to test exact methihe time windows for the test sets C1
and C2 are generated to permit good, maybe even optimateclog-cluster solutions. For each class
of problems the geographical position of the customersasstime in all instances whereas the time
windows are changed.

Each instance has 100 customers, but by considering onlfiréhe5 or 50 customers, smaller in-
stances can easily be generated. It should be noted thatddR€-sets this results in the customers
being clustered since the clustered customers appearlatgfirening of the file. Travel time between two
customers is usually assumed to be equal to the travel destalns the service time at the predecessor
customer.

4.9.2 Computational results

This section reviews the results obtained by the best eXgatithms for the VRPTW. All are based on
the column generation approach. The tables 4.1 throughrdsept the solutions for the six different sets
of the Solomon instances that have been solved to optim@alumnK indicates the number of vehicles
used in the optimal solution while the column “Authors” giederence to the first publication(s) of the op-
timal solution for the problem: Kohl, Desrosiers, Madseologon, and Soumis [30] (KDMSS), Larsen
[35] (L), Kallehauge, Larsen, and Madsen [27] (KLM), CooldaRich [7] (CR), Irnich and Villeneuve
[23] (IV), Chabrier [5] (C), and Danna and Le Pape [10] (DLR)should be noted that Desrochers,
Desrosiers, and Solomon [12] prior to Kohl, Desrosiers, &g Solomon, and Soumis [30] solved 50
of the 87 Solomon problems with narrow time windows, but vdiffierent travel times. Whereas all the
above mentioned papers compute the travel times using anmalgoint precision and truncation, time
and cost is computed differently in Desrochers, Desros@rd Solomon [12]. Furthermore, solutions
to all C1 instances were reported for the first time by Kohl Matlsen [29], who used a Lagrangean
relaxation approach.

As discussed in Cordeau, Desaulniers, Desrosiers, SoloamohSoumis [8], the optimal algorithm
of Kohl, Desrosiers, Madsen, Solomon, and Soumis [30] sbB8&of the 87 Solomon benchmark short
horizon problems to optimality. Eleven additional probfewere solved by Larsen [35], Cook and Rich
[7], and Kallehauge, Larsen, and Madsen [27]. Recentlyclirand Villeneuve [23] were successful in
closing three additional instances. Four 100-customéauircgs are still open.

As also reported in Cordeau, Desaulniers, Desrosiersn®@oipand Soumis [8], Larsen [35], Cook
and Rich [7], and Kallehauge, Larsen, and Madsen [27] alswiged exact solutions to 42 of the 81
Solomon long horizon problems. Since then, Irnich and Welgve [23], Chabrier [5] and Danna and Le
Pape [10] have solved an additional 21 instances, leavimydi@ems still unsolved.

4.10 Conclusions

In this chapter we have highlighted the noteworthy develepts for optimal column generation ap-
proaches to the VRPTW. To date, such methods incorporatimgching and cutting on solutions ob-
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Table 4.1: Optimal solutions for the R1 instances

Problem K Dist. Authors Problem K Dist. Authors
R101.25 8 617.1 KDMSS R107.25 4 4243 KDMSS
R101.50 12 1044 KDMSS R107.50 7 711.1 KDMSS
R101.100 20 1637.7 KDMSS R107.100 11 1064.6 CR+KLM
R102.25 7 547.1 KDMSS R108.25 4 397.3 KDMSS
R102.50 11 909 KDMSS R108.50 6 617.7 CR+KLM
R102.100 18 1466.6 KDMSS R108.100

R103.25 5 4546 KDMSS R109.25 5 441.3 KDMSS
R103.50 9 7729 KDMSS R109.50 8 786.8 KDMSS
R103.100 14 1208.7 CR+L R109.100 13 1146.9 CR+KLM
R104.25 4 416.9 KDMSS R110.25 5 4441 KDMSS
R104.50 6 625.4 KDMSS R110.50 7 697 KDMSS
R104.100 11 9715 IV R110.100 12 1068 CR+KLM
R105.25 6 530.5 KDMSS R111.25 4  428.8 KDMSS
R105.50 9 899.3 KDMSS R111.50 7 707.2 CR+KLM
R105.100 15 1355.3 KDMSS R111.100 12 1048.7 CR+KLM
R106.25 5 465.4 KDMSS R112.25 4 393 KDMSS
R106.50 8 793 KDMSS R112.50 6 630.2 CR+KLM
R106.100 13 1234.6 CR+KLM R112.100

tained through Dantzig-Wolfe decomposition are the bebpming algorithms. Valid inequalities have
proved an invaluable tool in strengthening the LP relaxatio this class of problems.
Recent advances have stemmed from work on parallel impletiens of the overall approach, accel-

eration strategies, primarily at the master problem lemead] the subproblem. Solving the subproblem as
a ESPPTWCC or a SPPTWGOGeyc has shown to be very beneficial. Nevertheless, 25% ansah’s
problems are still unsolved. Additional research in eacthe§e areas should lead to further advances.
We expect that the further study of polyhedral structuraslbelism, acceleration strategies, and the sub-
problem will constitute the backbone of research in thisdoe the next several years. Master problem
acceleration methods relying on local search heuristigsidbeginning.

Decomposition algorithms are also easily adaptable torathttings. This is because they comprise
modules, such as dynamic programming, that can handle etyaffiobjectives. Lateness, for one, is be-
coming an increasingly important benchmark in today’s spppains that emphasize on time deliveries.
Moreover, they can be run as optimization-based heuristiaaeans of early stopping criteria.

We hope that this chapter has shed sulfficient light on cudevilopments to lead to exciting further
research.
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