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Summary: Investigation of internal feedback in hear ing aids 
 

 
There are many aesthetics and structural design requirements to modern hearing aids and 

their size has been reduced considerably during the last decades. This has led to designs where the 
receiver (loudspeaker) and microphones are placed closely together. As a consequence, problems 
with vibroacoustic transmission from the receiver to the microphones often occur during the use of 
hearing aids. This transmission causes feedback at certain critical gain levels where it produces a 
loud uncomfortable squealing. Consequently feedback often constitutes the limiting factor for the 
maximum obtainable gain in the hearing aid and it therefore represents a critical design problem.  

Feedback in hearing aids is usually divided into external and internal feedback. External 
feedback is caused by the leakage of sound from the ear canal whereas internal feedback is due to 
transmission of sound and vibrations internally in the hearing aid. As a result of reducing the size of 
hearing aids, manufacturers have experienced an increase in internal feedback problems. The main 
objective of the present thesis is therefore to examine the vibroacoustic mechanisms responsible for 
internal feedback in hearing aids. This is approached by the development of a full vibroacoustic 
3D-model of a so-called “behind the ear” hearing aid manufactured by Widex A/S. The 3D-model 
is developed using finite element analysis and it is capable of simulating the so-called “open-loop” 
transfer functions. These open-loop transfer functions relate the microphone output voltages and the 
receiver driving voltage when the receiver and microphones are electrically disconnected. 

The main scientific part of the thesis consists in the study and extension of a relatively 
recent method. This method is the “Theory of fuzzy structures” and it is intended for predicting the 
vibrations of a deterministic “master” structure with one or more attached complex “fuzzy” 
substructures with partly unknown dynamic properties. An important part of the theory regarding 
the modeling of fuzzy substructures attached to the master through a continuous interface is 
thoroughly examined and reformulated in a more simple form. Such fuzzy substructures are 
modeled by including spatial memory in the fuzzy boundary impedance. The main effect of an 
attached fuzzy substructure is the introduction of high damping in the vibration response of the 
master structure, but, it is shown that spatial memory reduces this damping. The method of 
including spatial memory is hereafter extended such that it also comprises modeling of fuzzy 
structures with a two-dimensional interface. Furthermore, a novel experimental method for 
estimating the fuzzy parameters of complex substructures is developed by the author. Using this 
method the damping of the structural fuzzy is estimated and the fuzzy parameters are subsequently 
derived. The developed method is finally utilized for estimating the fuzzy parameters of certain 
internals in the considered hearing aid. The estimated fuzzy parameters are experimentally validated 
and they reveal a high spatial memory in the fuzzy boundary impedance. 

Different methods are used for determining the properties of the remainder components in 
the hearing aid. The determined properties include the stiffnesses of the rubber suspensions, 
vibration forces of the receiver and the vibration sensitivity of the microphones. Moreover, the 
sound pressure in the tube system from the receiver to the ear canal is simulated and validated 
experimentally. All the determined properties including the fuzzy parameters are incorporated into 
the full 3D-model. Simulated results for the open-loop transfer functions show good agreement with 
measurements on the hearing aid considered. By analyzing the simulations results, it is revealed that 
feedback is caused by local pressure generated by the vibrations of the shell close to the microphone 
inlets. These vibrations are mainly caused by the reaction forces from the high pressure in the tube 
system of the hearing aid.  
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Resumé: Undersøgelse af intern feedback i høreappar ater 
 

 
Der stilles mange æstetiske og konstruktionsmæssige krav til moderne høreapparater, og 

især deres størrelse er blevet reduceret i løbet af de sidste årtier. Dette har ført til konstruktioner, 
hvor højtaleren og mikrofonerne sidder meget tæt på hinanden. Under brug af høreapparater opstår 
der derfor ofte problemer med vibroakustisk tilbagekobling fra højtaleren til mikrofonerne. Denne 
tilbagekobling forårsager feedback ved kraftige forstærkninger af lyden, og der genereres herved en 
høj og ubehagelig hyletone. Dette betyder, at feedback ofte sætter grænsen for, hvor meget 
forstærkning, der kan opnås i høreapparater. Feedback udgør derfor et kritisk konstruktionsproblem.  

Feedback i høreapparater opdeles normalt i ekstern feedback og intern feedback. Ekstern 
feedback skyldes lækage af lyd fra øregangen, mens intern feedback forårsages af transmission af 
lyd og vibrationer internt i høreapparatet. Som konsekvens af at høreapparater er blevet mindre, har 
høreapparatproducenter i de seneste år oplevet en stigning af problemer pga. intern feedback. 
Målsætningen med denne afhandling er derfor at kortlægge de vibroakustiske mekanismer, som 
forårsager intern feedback i høreapparater. Dette opnås ved udvikling af en fuld vibroakustisk 3D-
model af et såkaldt ”bag-øret”-apparat, der produceres af Widex A/S. 3D-modellen er baseret på 
finite element analyse, og den er i stand til at simulere de såkaldte ”open-loop”-
overføringsfunktioner. Disse overføringsfunktioner beskriver sammenhængen mellem spænding 
genereret af mikrofonerne og drivspænding på højtaleren, når den elektriske forbindelse mellem 
mikrofoner og højtaler er afbrudt.  

Den videnskabelige del af afhandlingen består hovedsagelig i undersøgelse og udvidelse af 
en relativ ny metode. Denne metode hedder ”Theory of fuzzy structures”, og den er beregnet til at 
modellere vibrationerne i en deterministisk hovedstruktur (master struktur), der har en eller flere 
tilkoblede komplekse eller ”fuzzy” substrukturer med delvist ukendte dynamiske egenskaber. En 
vigtig del af teorien analyseres og forsimples i afhandlingen. Denne del omhandler modellering af 
fuzzy substrukturer, som er koblet til deres hovedstruktur gennem en kontinuer grænseflade. Den 
rumlige kobling i substrukturerne medtages ved at indføre ”rumlig hukommelse” i deres 
overfladeimpedans. Det vises, at indflydelsen af en tilkoblet fuzzy substruktur hovedsagelig er 
tilføjelse af høj dæmpning i hovedstrukturens frekvensrespons, men også at den rumlige 
hukommelse reducerer denne dæmpning. Metoden udvides herefter til at omfatte modellering af 
fuzzy strukturer, som har en 2-dimensionel kontinuer grænseflade. Tilmed udvikles en simpel 
eksperimentel metode til estimering af komplekse substrukturers fuzzy parametre. Ved brug af 
denne metode estimeres først den tilførte dæmpning, og derefter udledes de tilhørende fuzzy 
parametre. Endelig benyttes metoden til bestemmelse af fuzzy parametre for bestemte komponenter 
i det betragtede høreapparat. Disse fuzzy parametre valideres ved brug af vibrationsmålinger, og det 
afsløres, at der er høj rumlig hukommelse i komponenternes overfladeimpedans.  

Forskellige metoder bruges til bestemmelse af egenskaberne for de resterende 
komponenter i høreapparatet. Disse egenskaber omfatter bl.a. stivhederne af de bløde 
gummiophæng, højtalerens vibrationskræfter og mikrofonernes vibrationsfølsomhed. Desuden 
simuleres lydtrykket i rørsystemet fra højtaleren til øregangen og disse simuleringer valideres 
eksperimentelt. Alle de bestemte egenskaber, såvel som de bestemte fuzzy parametre, inkorporeres i 
3D-modellen af det betragtede høreapparat. Simulerede open-loop-overføringsfunktioner viser god 
overensstemmelse med målinger på det betragtede høreapparat. Ved analyse af 
simuleringsresultaterne afsløres det, at feedback skyldes lokalt tryk tæt på mikrofonernes indgang, 
som er genereret af skallens vibrationer. Disse vibrationer forårsages hovedsageligt af 
reaktionskræfter fra det høje lydtryk i høreapparatets rørsystem. 
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1 Introduction to the thesis 

 

1.1 Feedback 

 

There are many aesthetics and structural design requirements to modern hearing aids. 

Especially the size of hearing aids has been reduced during the last decades and, naturally, this has 

led to designs where the loudspeaker and microphones are placed very close to one another. As a 

consequence, problems with vibroacoustic transmission from the loudspeaker to the microphones 

often occur during the use of hearing aids. Sound and vibrations generated by the loudspeaker, 

which also is called the receiver, is picked up by the microphones and an unwanted sound loop is 

formed. This phenomenon is called feedback and occurs at certain critical gain levels in the hearing 

aid where it produces a very loud and uncomfortable squealing. Feedback often constitutes the 

limiting factor for the maximum obtainable gain in the hearing aid and it therefore represents a 

critical design problem.  

Feedback in hearing aids can be divided into two types of problems and these are; external 

feedback and internal feedback (see Dillon, 2001). External feedback is caused by the leakage of 

sound from the ear canal mainly through the vent in the earmould. The purpose of this vent is to 

reduce the occlusion effect (see Dillon, 2001), but, at the same time it represents an unwanted sound 

source close to the microphones. For many years external feedback has been the predominant 

problem and this subject has therefore received considerable attention in the open literature. In 

recent years, however, hearing aid manufacturers have experienced an increase in feedback 

problems due to internal transmission of sound and vibrations. The main reasons are that hearing 

aids have become considerably smaller and at the same time also more powerful. Hearing devices 

designed for severely hearing-impaired persons are now able to amplify the incoming sound by up 

to about 80 dB. To realize such extreme gain levels it is necessary to produce custom-made 

earmoulds without a vent. As these fit perfectly in the ear and ear canal of the user, the leakage of 

sound becomes negligibly small and the internal feedback thus becomes the gain-limiting factor.  
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1.2 Objective and scientific contribution 
 

The main objective of this thesis is to examine the general and fundamental vibro-acoustic 

mechanisms responsible for internal feedback in hearing aids. This is approached by developing a 

mathematical/physical model of the transmission of sound and vibrations from the receiver to the 

microphones. More specifically, the model aims to describe the transfer function relating the input 

driving voltage of the receiver to the output voltage from the microphones when the receiver and 

microphones are electrically disconnected. Such a frequency dependent function is a so-called 

“open-loop” transfer function (see Dillon, 2001). The present thesis considers a specific hearing aid 

series that is manufactured by Widex A/S. This series has been and still is particularly troublesome 

regarding internal feedback. 

The main scientific contribution of the thesis consists of the study and extension of a 

relatively recent method for predicting the vibrations of built-up structures with partly unknown 

dynamic properties of attached components. This method, which represents an alternative to 

conventional methods of vibration analysis, is called the “Theory of fuzzy structures” (see Soize, 

1986; Chabas et al., 1986; Soize et al., 1986). Part of the developments made by the author, are 

presented in two papers published in the Journal of the Acoustical Society of America. An 

experimental method for estimating the so-called “fuzzy parameters” defining a fuzzy structure is 

presented in the thesis. This method is developed by the author and it is utilized in the modeling of 

the hearing aid considered. To the best of the author’s knowledge, no applications of the theory of 

fuzzy structures to real-life practical problems have been reported in the open literature. Finally, the 

thesis presents a number of prediction methods for determining the acoustical and dynamical 

properties of miniature components. Some of these methods are well-known, but, the specific 

application to miniature components is unusual and their implementation thus represents significant 

new insight.  

 

 

1.3 State of the art 
 

The issue of modeling vibrations and acoustics in hearing aids has only received little 

attention in the open literature. With the main purpose of examining the external feedback paths, 

Egolf published a series of papers from 1977 to 1989 concerning the modeling of the acoustics in a 

hearing aid. This included the acoustics in the tube system comprising the receiver, transmission 

tubes and the ear canal in conjunction with the properties of the microphones. Furthermore, Killion 

(1975) presented a method for measuring the vibration sensitivity of hearing aid microphones. 
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Literature concerning the dynamic and acoustic behavior of the receiver and microphones are 

mainly found in the form of more or less complete technical reports supplied by the manufacturers 

(see Warren, 2001; Lopresti, 2003; Bukhard, 1965; Knowles electronics, 1969 and 1981). In the 

author’s opinion literature linking all these single topics is lacking in the open literature.  

The lack of well-founded knowledge about the internal feedback phenomenon in hearing 

aids has somehow given rise to mystification about its causes. In research and development groups 

some believe that sound pressure is built up inside the hearing aid and in one way or another leaked 

to the outside air close to the microphone inlets. Others think that strong vibrations are picked up by 

the vibration sensitivities of the microphones and thus generating electrical error output. And yet 

again, some blame imperfections in the construction and assembly of the hearing aid, such as 

imprecise mounting of the components or poor fitting of the tubes in the acoustic tube system.  

In real life, solutions for reducing feedback are often based on practical experience and 

trial-and-error procedures. So far, the main practical precaution for minimizing internal feedback is 

resiliently mounting of the receiver and microphones in soft rubber suspensions. Moreover, 

feedback canceling algorithms are a standard part of the digital processing in modern hearing aids 

and such algorithms are still subject to ongoing research. Despite of this, feedback is still a 

predominant problem. It is therefore the author’s intention and hope that this thesis will contribute 

with scientifically well-founded knowledge about the internal feedback phenomenon. Hopefully this 

knowledge will result in clear and practical design rules for minimizing the internal feedback 

problem. 

 

 

1.4 Structure of the thesis 
 

The remainder of part I of the thesis presents an introduction to the construction and 

principles of the considered hearing aid series. The complexity of modeling vibrations and acoustics 

in hearing aids is hereafter demonstrated by a simple model of the vibratory part of a hearing aid. 

This model is presented in the form of a conference paper (paper I) presented by the author at the 

13th International Congress of Sound and Vibration, 1996 (ICSV13). Finally, the last section of part 

I provides an overview of the methods used for modeling the various hearing aid components.  

Part II concerns the theoretical aspects and the practical use of the theory of fuzzy 

structures. First, the reader is introduced to the method. Second, the method development of the 

theory of fuzzy structures is presented and highlights are discussed. Hereafter an important part of 

the theory is studied thoroughly and extended in two journal papers. Results from these papers are 

further discussed in the thesis. Subsequently the reader is introduced to an experimental method for 
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estimating fuzzy parameters that is applied to certain parts of the hearing aid. Results for the fuzzy 

parameters are presented, discussed and finally experimentally validated.  

Methods for modeling other miniature components are outlined and applied in part III. The 

miniature components concerned are the receiver, microphones, resilient suspensions and the 

acoustic tube system in the hearing aid. After this, all modeling results are collected in Part IV 

where the full vibroacoustic 3D-model is presented. Simulation results from the developed model 

are first validated through open-loop measurements of a number of nominally identical hearing aids 

and then analyzed and discussed. Lastly conclusions on the results and knowledge obtained in the 

thesis are presented.   
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2 Modeling of the considered hearing aid 
 

 

2.1 Presentation of the considered hearing aid 
 

Full modeling of the vibrations and acoustics of a hearing aid is a complicated and 

elaborate task. The author has therefore chosen to focus on only one specific hearing aid model 

produced by Widex A/S. This hearing aid model belongs to the category of so-called BTE hearing 

aids (Behind The Ear hearing aids), which is placed behind the user’s ear as shown in fig. 2.1. 

Moreover, the considered model is a so-called “power hearing aid”, which is capable of amplifying 

the sound by up to about 65 dB at certain frequencies. Naturally, such powerful hearing aids are 

intended for users with severe hearing loss. Higher amplification is only achieved by the so-called 

“high-power hearing aids” that normally are slightly larger in size than the power hearing aids.  

 

 
Figure 2.1 BTE hearing aid placed behind the user’s ear. 

 

The hearing aid in question is shown in fig. 2.2 in a configuration with the top half-shell 

removed. Overall the hearing aid is only about 40 mm long and weighs about 3.5 g. As seen in fig. 

2.2, the two microphones are mounted in rubber suspensions with their inlets just below the 

microphone cover. Sound is picked up by both of these microphones and transformed into electrical 

signals. These signals are sent to the processor where they are digitalized, processed and amplified. 

Among other tasks, the processing includes determination of the direction of the sound by using the 

time difference between the two signals. Depending on the specific hearing aid type the processor 
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contains different sound processing programs that are targeted for typical everyday situations. After 

processing and amplification, the altered electric signal is fed to the receiver that produces an 

improved version of the sound, which has been customized for the user. As shown in figs. 2.1 and 

2.2 the sound is let from the receiver through a tube of steel, then through the ear hook and finally 

through a plastic tube to the earmould placed in the user’s ear. This relatively long tube system, 

which has a length of almost 80 mm, represents a very significant acoustic load on the receiver. The 

interaction of the receiver and this system governs the final sound product at the eardrum of the user. 

The membrane of the receiver, which is placed parallel to the large surface of the magnetic shield, is 

vibrating strongly during operation. In an attempt to isolate this excitation from the rest of the 

hearing aid, the receiver is mounted in a resilient rubber suspension. This suspension is only in 

contact with the magnetic screen in positions close to the steel pipe. The purpose of the screen is to 

shield the so-called telecoil and receiver magnetically from each other as well as enclosing the 

receiver acoustically.  

 

 

 

telecoil

front microphone mounted 
in a rubber suspension

rear microphone mounted 
in a rubber suspension

volume control

processor

half-shell

microphone cover

program switch

battery

battery compartment

magnetic shield with 
the receiver inside

sound tube

rubber 
suspension
in which the 
receiver is 
mounted

ear hook

40 mm

attachment of 
the plastic tube

20

10

0

30

sound tube

 
Figure 2.2 The structure of the BTE hearing aid considered. 
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2.2 Complexity of modeling sound and vibrations in hearing 

aids 

 

As shown in fig. 2.2, a hearing aid consists of a variety of different components and 

modeling of the acoustic and dynamic behavior of all these components is quite complicated. For 

illustration purposes the vibratory part of the vibroacoustic transmission from the receiver to the 

microphones was examined through a simplified vibration model including only simple elements 

such as lumped masses, springs and beams connected to one another. This model is presented in the 

succeeding congress paper presented on the 13th International Congress of Sound and Vibration, 

2006 (ICSV13). The paper gives a good introduction to the challenges of modeling sound and 

vibrations in hearing aids and it demonstrates that the interaction between the various components 

results in a complicated vibration pattern with many resonances in the important frequency range 

from 100 Hz to 10.000 Hz. The effect of mounting the receiver in rubber suspensions of different 

stifnesses is also examined in paper I.  
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2.2.1 Paper I:  

Two-dimensional model of the vibro-acoustic feedbac k in a hearing aid 

 

 

 



 

 
 

 

Eds.:  J. Eberhardsteiner, H.A. Mang, H. Waubke 

TWO-DIMENSIONAL MODEL OF  THE VIBRO-ACOUSTIC 
FEEDBACK IN A HEARING AID 

Lars Friis*1, Mogens Ohlrich2 

1Widex A/S, Ny Vestergårdsvej 25, DK-3500 Værløse, Denmark, and 
Acoustic Technology, Ørsted•DTU, Technical University of Denmark 

Building 352, DK-2800 Kgs. Lyngby, Denmark 
2Acoustic Technology, Ørsted•DTU, Technical University of Denmark, 

Building 352, DK-2800 Kgs. Lyngby, Denmark 
l.friis@widex.com 

Abstract 
In this paper we investigate the vibration patterns of a “behind the ear” hearing aid model. 
Due to the minimal structural design of hearing aids, problems with vibro-acoustic 
transmission from the loudspeaker to the microphones often arise. Vibrations and sound 
pressure are picked up by the microphones and an unwanted electrical/vibro-acoustical loop 
is formed. This phenomenon is also known as feedback. The vibratory part of the vibro-
acoustic transmission from the loudspeaker to the hearing aid shells is examined for a simple 
mathematical vibration model of the hearing aid. This simple model includes the main parts 
of the hearing aid such as the loudspeaker, hook, shells, battery and resilient connections. By 
employing mobility synthesis, these components are modelled as lumped masses, springs and 
beam components, which are connected to one another. Results from the vibration model 
reveal a complicated pattern of resonances governed by the various components and their 
interaction with one another. Furthermore, the vibration isolation effect of the loudspeaker 
suspension is investigated. 

INTRODUCTION 

There are many aesthetics and structural design requirements to modern hearing aids. 
These have resulted in designs where the loudspeaker and microphones are placed 
very close to one another. As a consequence of this, problems with vibro-acoustic 
transmission from the loudspeaker to the microphones often arise. Vibrations and 
sound pressure are “picked up” by the microphones and an unwanted electrical/vibro-
acoustical loop is formed. The phenomenon is called feedback and occurs at certain 
critical gain levels in the hearing aid where it produces an uncomfortable howling 
sound.  



L. Friis, M. Ohlrich 

This paper investigates the vibratory part of the vibro-acoustic transmission 
from the loudspeaker to the shells in a so-called “behind the ear” hearing aid. This is 
placed behind the user’s ear with the curved hook around the upper part of the ear. It 
has two microphones that monitor the sound pressure and converts this into an 
electrical signal, which is amplified in the hearing aid and is fed to the loudspeaker. 
The sound pressure from the loudspeaker is led through a canal in the hook and into a 
soft plastic tube, which is firmly connected to a moulded ear plug. In order to obtain 
good vibration isolation, the loudspeaker and the microphones are mounted resiliently 
in soft rubber suspensions. More general information about hearing aids is found in 
Reference 1.  

A full three-dimensional analysis of the vibration transmission is very difficult 
due to the interactions between structural components of complex shapes and because 
of mechanical properties and connections that are often uncertain. However, a 
fundamental understanding of certain overall transmission phenomena may be 
obtained from studies of less complicated models. Herein we consider only a two-
dimensional hearing aid model, consisting of masses, springs and beam components. 
In a first attempt wide simple beams are chosen to represent approximately modal 
behaviour and certain elastic properties similar to those of the complex shells. The 
simple mechanical model considered in this paper is based on the hearing aid shown 
in Figure 1.  

The simple vibration model 
considered includes the main parts 
of the hearing aid such as the 
loudspeaker, resilient suspensions, 
hook, shells, and battery. By 
employing mobility synthesis [2], 
these components are modelled as 
lumped masses and springs, and 
elastic beam components, which are 
connected to one another. 
Altogether the model has a total 
weight of about three grams.  

Examples of the use of mobility synthesis can be found in Ref. [2] where the 
method is described in details. Moreover, Gardonio [3] has examined a multi-degree-
of-freedom system consisting of a source and receiver separated by vibration isolating 
mounts by using mobility synthesis.  

HEARING AID MODEL AND OUTLINE OF THEORY 

Figure 2 shows sketches of the “behind the ear“ hearing aid and a two-dimensional 
model of masses, springs, and beams.  The vibration response of this system is 
governed by three motion degrees-of-freedom, comprising velocities xv , yv , and z�X  

in the x-direction, y-direction, and the rotational direction around z, respectively. 
Components are denoted by a capital letter, and the junctions where the components 

 

hook

shell

shell microphone cover

battery drawer

microphone

 
Figure 1 – “Behind the ear” hearing aid. 
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are connected are denoted with a number in a circle. Furthermore, springs are denoted 
by a capital S with a number as subscript and each spring represents a stiffness in all 
three motion coordinates.  

Component A represents the loudspeaker which is the vibration source of the 
hearing aid. The driving mechanism and loudspeaker membrane are primarily 
vibrating in the y-direction and the loudspeaker is modelled as a mass which is driven 
by a harmonic force ti

yexc eF �Z
,  in this direction at its centre of gravity. The air pipe, B, 

is modelled as an equivalent Bernoulli-Euler beam, which is connected to the 
loudspeaker through one part of the loudspeaker suspension represented by spring S1. 
Sound pressure from the loudspeaker is let through the air pipe and into the hook C, 
which is modelled as a beam with varying cross-section as shown in Figure 2. The 
hook is coupled to the air pipe and to the upper and lower shells D and E through the 
somewhat indefinable connection springs S2, S3 and  S6. These shells are represented 
by two simple beams with approximately the same dimensions as the actual shells. In 
the left-most end, the two shells are connected to one another through connection 
spring S9. Vibration isolation of the loudspeaker from the shells is obtained by the 
loudspeaker suspension represented by springs S4 and S7. Finally the battery G, which 
is modelled as a mass, is held into place by two springs S5 and S8 connected to the 
upper and lower shell, respectively. 

x

y

z

A
B

C

D

E

G
S1

S9

S4

S7

S5

S8

S2

S3

S6

13 1
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10
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9

5

4

7

11

8

12

0 4.5 18.9 22.8 39 59.4

Fexc,yei�&t

mm

battery loudspeaker shell hookair pipesuspension

 
Figure 2 – Vertical section of hearing aid and model consisting of masses, springs and beam 

components. 
 
Weight, dimensions and elastic properties of each component are given in Table 1-3. 
 
Table 1 – Properties of beam components. 
Symbol Component E-module 

[MPa] 
Weight 

[g] 
Loss factor Length 

[mm] 
Height 
[mm] 

Width 
[mm] 

B Air pipe 210 0.104 0.003 14.0 1.76 0.582 
C Hook 1.9 0.262 0.061 20.4 4.9-2.3 8.1-2.3 

D, E Shells 2.3 0.575 0.05 39.0 1.3 10.8 
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Table 2 -  Mass properties. 
Symbol Component Weight [g] Length x [mm] Length y [mm] 

A Loudspeaker 0.770 8.15 4.45 
G Battery 0.812 7.8 5.3 

 
Table 3 -  Properties of resilient elements. 

Symbol Component Stiffness Loss factor 
  sx  [N/m] sy  [N/m] sz  [Nm]  

S1 Loudspeaker 
suspension 

180 180 7.47·10-4 0.1 

S2, S3, S6, S9  Contact springs �’  �’  3.33 0.01 
S4, S7 Loudspeaker 

suspension 
180 180 

 
7.47·10-4 

 
0.1 

 
S5, S8 Battery springs �’  2475 �’  0.001 

 
The vibration model is developed by using mobility synthesis and each 

component is described in terms of its complex velocities and forces symbolized by 
the column vectors iv  and jF , respectively. By assuming harmonic motion at 

angular frequency �Z, the complex velocities iv  at position i  generated by the forces 

jF  at position j  can be related through a 33�u  mobility matrix ijY  as 
ti

jij
ti

i eFYev �Z�Z � . With the time dependence suppressed this is given by 
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Here subscript x, y, and z’ refers to the x-direction, y-direction and the rotational 
direction around z, respectively. By superposition of velocity contributions from 
forces in all positions the total complex velocities of each component can be 
described. The mobilities of the masses, mass-less springs and beams can all be found 
in [2] and the dynamic properties of the non-uniform hook, is obtained by using 
transmission theory according to Reference [4]. 

Now, the loudspeaker is excited at its centre by the harmonic force ti
excy eF �Z
, , 

and this results in a mixed force and moment excitation at junction 1. The excitation 
vector, excF , acting at junction 1 is thus given as  
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where xAl ,  is the length of the loudspeaker in the x-direction. In the following the 

harmonic responses for each component are derived by using mobility synthesis. 
Continuity in all junctions is already included in the equations. Further, it is assumed 
that velocities in the left end of the hook, denoted junction 4, are the same at  all three 
spring connections. Spring forces are defined as positive when the springs are 
compressed. Altogether, the equations of motion include 13 unknown velocity vectors 
and 9 unknown spring force vectors. In these equations the first subscript of the 
mobilities refers to the component, whereas the second and the third subscript refer to 
the position of the velocity vector and the force vector, respectively. The derived 
harmonic responses for the components or positions in Figure 2 are: 
 

Loudspeaker:  )( 7411 SSSexcA FFFFYv �������  (3) 

Pipe: 21 3,2,2,2,2 SBSB FYFYv ���  21 3,3,2,3,3 SBSB FYFYv ���  (4-5) 

Hook:  )( 6324 SSSC FFFYv �����  (6) 

Upper shell: 9543 8,5,7,5,6,5,5,5,5 SDSDSDSD FYFYFYFYv ���������  (7) 

9543 8,6,7,6,6,6,5,6,6 SDSDSDSD FYFYFYFYv ���������  (8) 

9543 8,7,7,7,6,7,5,7,7 SDSDSDSD FYFYFYFYv ���������  (9) 

9543 8,8,7,8,6,8,5,8,8 SDSDSDSD FYFYFYFYv ���������  (10) 

Lower shell:  9876 12,9,11,9,10,9,9,9,9 SESESESE FYFYFYFYv ���������  (11) 

9876 12,10,11,10,10,10,9,10,10 SESESESE FYFYFYFYv ���������  (12) 

9876 12,11,11,11,10,11,9,11,11 SESESESE FYFYFYFYv ���������  (13) 

9876 12,12,11,12,10,12,9,12,12 SESESESE FYFYFYFYv ���������  (14) 

Battery:  )( 5813 SSG FFYv ���  (15) 

Springs:  1121 SS FYvv � ��  2243 SS FYvv � ��  3345 SS FYvv � ��  (16-18) 

4461 SS FYvv � ��  55713 SS FYvv � ��  6649 SS FYvv � ��  (19-21) 

77110 SS FYvv � ��  881311 SS FYvv � ��  99812 SS FYvv � �� . (22-24) 
 
It should be kept in mind that all the unknown vectors include three motion 

coordinates and the matrix equations (3)-(24) therefore comprise of a system of 66 
equations with 66 unknown velocities and spring forces. Now, if all terms in the 
equations involving velocities and spring forces are collected on the left-hand side of 
the equality signs, and thus isolating the terms involving the excitation forces excF  on 
the right-hnd side, then the system of equations can be expressed as one matrix 
equation as 

 �œ�      excFX FHXH     , (25) �»
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where X  is a column vector with 66 elements containing all velocities and spring 

forces, XH  is a 6666�u  element matrix containing the terms in front of the velocities 

(zeros and ones) and the terms in front of the spring forces (mobilities), and FH  is a 
366�u  element matrix containing the terms in front of the excitation forces 

(mobilities). Finally, the system of equations can be solved numerically for X  for 

one frequency at a time by multiplying with the inverted matrix 
1��

XH  on both sides of 
eq. (25), which yields 
 

 excFX FHHX
1��

� . (26) 
 
Damping in the beam components and in the springs are included by 

introducing complex bending stiffness and complex spring constants, respectively, 
with corresponding damping loss factors. Furthermore, the loss factor of the hook, 
and the stiffness of the loudspeaker mounts have been determined experimentally. 
Other spring stiffnesses have been estimated theoretically.  

NUMERICAL RESULTS 

In the following numerical results from the vibration model are presented. In this 
preliminary study only two types of motion coordinates have been used. These are the 
velocities in the y-direction and in the rotational direction around z. The vibration of 
the hearing aid is here characterized in terms of the squared velocity ratio 

22 ||/ freevv �!��  where �!�� 2v  is the spatially averaged mean-square velocity of the 

shells and 2|| freev  is the squared magnitude of the free velocity of the loudspeaker in 

the y-direction. This free velocity is a convenient reference since it can be determined 
experimentally. The loudspeaker is modeled as a pure mass AM  and when this is 
excited by excyF ,  its free velocity becomes 

 
A

excy
free Mi

F
v

�Z
,� . (27) 

 
Figure 3 shows the normalized mean-square velocity of the shells for three 

different values of the spring stiffnesses of S2, S3, and S6. It is seen that several 
resonances occur within the frequency range considered. And although the complex 
system vibrates as a whole, it is possible to identify the main cause of most of these 
resonances by performing a parameter study. For the dimensions and elastic 
properties chosen each resonance peak can be assigned to an individual component 
mode as indicated in Figure 3. The occurrence of the two lowest resonances at 58 Hz 
and 264 Hz are primarily controlled by the soft loudspeaker suspension e.g. springs 
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S1, S4, and S7, because the hearing aid vibrates as a two-degree-of-freedom mass-
spring-mass system with the loudspeaker as one mass, the suspension as the spring 
and the rest of the hearing aid as the second mass. In the frequency range above the 
mass-spring-mass modes the suspension works efficiently as a vibration isolator. The 
overall decrease in vibration level of the shells is about 40 dB per decade. 

 

 
Figure 3. Frequency variation of normalized mean-square velocity of shells. For different 

values of stiffness  sz’ of the contact springs S2, S3, and S6: 
____, sz’=3.33 Nm; _ _ _, sz’=6.66 Nm; 

·····, sz’=10.0 Nm. 
 

Especially the shells produce many resonances in the frequency range from 840 
Hz to 11.4 kHz but also the resiliently connected battery, the hook and the more or 
less rigid connections (S2, S3, and S6) may contribute to feedback problems. The 
connections in particular are difficult to describe dynamically and in order to 
investigate how sensitive the model is to small changes the mean-square velocity of 
the shells has been plotted for three different cases of the connection springs. 
Focusing on the frequency range from about 2000 Hz to 5000 Hz it is seen from the 
“zoom” in Figure 3 that a doubling of the connection spring stiffness from 

Nm 33.3sz � to Nm 66.6  causes the resonance peak at 2823 Hz with a vibration level 
of -45.3 dB to almost vanish. Further, by increasing the stiffnesses to Nm 0.01 , the 
resonance peak moves up to 3102 Hz and becomes significant with a vibration level 
of -53.4 dB. Additionally, a large drop of more than 10 dB in vibration level of the 
resonant peaks caused by the shells can be observed. This parameter study reveals 
that small changes may remove or produce troublesome resonance peaks. 

Figure 4 shows the normalized mean-square velocity of the shells for four 
different values of the loudspeaker suspension stiffnesses 4S  and 7S . Also shown in 
Figure 4 is a case where the loudspeaker is rigidly connected to the shells. Vibration 
at this condition forms the basic or reference for evaluating the isolation effectiveness 
of the resilient suspensions. Naturally, when the stiffness of the springs 4S  and 7S  is 
increased then the previously mentioned two mass-spring-mass modes moves towards 
higher frequencies. The frequency range where the suspension works as a vibration 
isolator is accordingly moved upwards and gives a poorer isolation in the whole 
frequency range. An increase of the stiffness values of three and ten times thus result 
in an increase of the overall vibration level of about 9 and 20 dB, respectively. 
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Especially in the frequency range from about 400 Hz to 1000 Hz the vibration 
isolation is very poor due to modes caused primarily by the battery and the shells. 
Nevertheless, at 10 kHz the vibration level is significantly lower than the reference 
even in the poorest performing case.  

 
Figure 4. Frequency variation of the normalized mean-square velocity of the shells for 

different values of springs stiffnesses S4 and S7: 
____, nominal values as in Table 1.3 ; _ _ _, 

three times larger; ·····, ten times larger; �F · �F, infinitely stiff. 

CONCLUSIONS 

The vibration patterns of a so-called “behind the ear” hearing aid has been 
examined through a simple mathematical vibration model developed by using 
mobility synthesis. In a first attempt wide, simple beams were chosen to represent 
approximately the dynamic characteristics of the complex shells. For this choice of 
components it was revealed that several structural resonances occur in the frequency 
range from 58 Hz and up to 10 kHz and these are caused by the loudspeaker 
suspension and individual component modes. Further, it was shown that little changes 
in the structural parameters may have a large effect on the vibrations of the simulated 
shells. Finally, the effect of the loudspeaker suspension was investigated, and this 
showed that appreciable vibration isolation is obtained in the frequency range above 
1000 Hz.  
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[4] Rocke R. D., “Transmission matrices and lumped parameter models for continuous systems”, 
Research report from Dynamics Laboratory, California Institute of Technology, Pasadena, California 
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2.3 Overview of modeling methods 
 

Unfortunately the simple dynamical model presented in the congress paper is unable to 

reveal the specific mechanisms responsible for internal feedback as these involve both vibrations 

and acoustics in three dimensions. The overall goal of the present work is therefore to develop a 

total 3D-model of the considered hearing aid describing both the vibrations and acoustics and their 

mutual interaction.  

The 3D-model, which is presented in Part IV of this thesis, describes the vibrations and 

acoustics of the hearing aid in the frequency domain and it assumes stationary harmonic oscillation. 

Moreover, it only applies for small signals and does not take any nonlinear effects into account. For 

the sake of simplicity the hearing aid is considered to be ”free in space” and thus not placed behind 

the ear of a user. Also, it should be noted that the frequency range of interest regarding feedback is 

from 100 Hz to 10 kHz.  

Figure 2.3 gives an overview of the developed and the various implemented methods used 

for modeling the considered hearing aid. Also shown are methods for determining the acoustic and 

dynamic properties of the components in the hearing aid.  

 

Structural fuzzy
Boundary impedance of the processor, 
volume control, program switch, 
battery compartment, battery spring, 
battery, magnetic shield.

Massless springs with complex stiffness
Vibrations of the suspensions.

Pure mass (Finite element method)
Vibrations of the receiver, microphones and 
telecoil.

Two-port networks
Acoustics in the tube system consisting 
of the receiver, steel pipe, hook tube,
plastic tube and artificial ear.
Microphone pressure sensitivity.

Various measurements
Microphone vibration sensitivity.
Vibration forces of the receiver.

Finite element method
Vibrations of the shells, hook and plastic tube. 
Inner acoustics between shells and 
outer acoustics outside the shells.

plastic tube

outer acoustics

II

III

IV

artificial ear

PART OF
THESIS

 
Figure 2.3 Overview of methods used for modeling the considered hearing aid . 
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Because of the mentioned uncertainties of the dynamic coupling properties of many of the 

components it has been chosen to utilize the theory of fuzzy structures. This method represents an 

alternative to traditional methods of vibration analysis as it is capable of modeling the vibrations of 

complex structures with uncertain properties. These complex structures that are more or less 

compliantly attached have many degrees of freedom. As shown in the fig. 2.3, the so-called 

“structural fuzzy” comprises a number of components in the lower part of the hearing aid that are 

attached to the covering shell and to each other in a rather indefinable and uncertain way. It is 

characteristic for these components that only their influence on mainly the shell needs to be 

determined. Their specific vibrations during operation are not known and, as such, the components 

are regarded as a “black box”.  

In order to examine the mechanisms causing feedback, determination of the specific 

acoustical and mechanical properties of the receiver and microphones are very important. These 

properties have mainly been obtained by employing two-port networks. Also the acoustic tube 

system carrying the sound from the receiver to the ear canal has been modeled using these two-port 

networks. In this system the eardrum and ear canal of the user have been replaced with a so-called 

“artificial ear“ or a “coupler“ representing an average human ear. Further, to model the vibrations of 

the receiver and the microphones, stiffness properties of the rubber suspensions have been 

determined. This has been achieved through experiments involving specially designed setups for 

miniature components. Also the vibration forces of the receiver and the vibration sensitivity of the 

microphones have been determined experimentally by using such miniature arrangements.  

The dynamics of the remainder components such as the shell, tubes, hook as well as the 

inner and outer acoustics on each side of the shell have been modeled using the finite element 

analysis (see Cook et al., 2002). All the determined acoustical and dynamical properties have been 

prepared for implementation in the full 3D-model of the hearing aid. As mentioned this model is 

presented in part IV of the thesis where simulation results are also validated experimentally. 
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PART II:   

MODELING OF FUZZY STRUCTURES  
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3 Introduction 
 

 

The present part of the thesis first offers a short introduction to the “Theory of fuzzy 

structures”. Hereafter follows a presentation of the method development of this theory where the 

most important discussions and results are highlighted. This is succeeded by a thorough study and 

method extension of a specific part of the theory concerning fuzzy structures attached to the master 

through a continuous boundary.  New derivations, physical interpretations and results are presented 

in paper II and III. Finally, an experimental method for determining the fuzzy parameters is 

proposed. This method, developed by the author, is applied to the hearing aid device in question. 

Results from simulations are assessed experimentally. 

The theory of fuzzy structures is a relatively new topic that was introduced in 1986 by 

Christian Soize at ONERA in France (see Soize, 1986; Chabas et al., 1986; Soize et al., 1986). This 

theory is an alternative to conventional methods of vibration analysis such as mobility synthesis 

(see Bishop and Johnson, 1960), Finite element analysis (see Cook et al., 2002) etc. As opposed to 

these conventional methods, the theory of fuzzy structures is intended for modeling the vibrations of 

a deterministic main structure with one or more attached complex substructures having imprecisely 

known properties. These substructures are called “fuzzy substructures” and the main structure is 

denoted the “master structure”. Excitation of the fuzzy occurs only through the vibrations of the 

master. So to speak, the structural fuzzy is regarded as a “black box” and its specific motion 

displacements are not known. The main effect of the attached structural fuzzy is the introduction of 

strong damping in the frequency response of the master structure. 

Figure 3.1 shows examples of complicated systems that can be modeled using the theory of 

fuzzy structures. These systems are typical engineering constructions of both small and large size 

that basically consist of an outer shell and a number complicated internal substructures. The well-

defined outer shell is considered to be the master structure and it is modeled by using conventional 

methods of vibration analysis. In contrast, the dynamic properties of the internal substructures are 

only partly known and their dynamics and influence therefore have to be modeled by using an 

alternative method. The theory of fuzzy structures represents such a promising alternative method. 

For a more detailed introduction to the theory of fuzzy structures, the reader is referred to the first 

part of paper II. 
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a) c)

b)

 

Figure 3.1. Examples of complicated systems consisting of a well-defined outer shell-like structure 

(the master) and a collection of complicated and resonant internal structures (fuzzy substructures). 

Shown are (a) a submarine, (b) an airplane and (c) a hearing aid. 
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4 Method development 
 

 

4.1 The dynamic neutralizer 

 

For many years it has been commonly known from experiments that vibrations of a 

complicated system consisting of a main structure and a large number of small attached resonant 

substructures often appears to be more damped than structural losses in the main structure itself can 

account for. Already in 1928 Ormondroyd and Den Hartog revealed that a “dynamic absorber” 

could produce a considerable reduction in vibration level, however, only in a relatively narrow 

frequency band around its natural frequency. To be most effective such an auxiliary system is 

usually attached to the main structure at points where forcing occurs. Energy from the main 

structure is “drained” from the master structure into the auxiliary system vibrating strongly. 

Therefore, the term “dynamic neutralizer” has been adopted (see White and Walker, 1982). The 

bandwidth of influence can be slightly increased by a tuning that involves small adjustments of both 

stiffness and damping of the resilient part of the device. For a more recent and detailed treatment of 

this subject see the monograph by Mead (1999).  

 

 

4.2 Structural fuzzy of type I and type II 

 

It took almost sixty years before Soize and co-workers suggested that attached resonant 

substructures in effect behave like a multitude of different dynamic neutralizers. Since these 

dynamic neutralizers have different natural frequencies they introduce a high damping in the main 

structure over a broader frequency range. The first part of the theory of fuzzy structures was 

presented in 1986 (see Soize, 1986; Chabas et al., 1986; Soize et al., 1986) and concerns structural 

fuzzy modeled as a multitude of attached dynamic neutralizers. This kind of fuzzy was denoted 

“type I fuzzy” and it was intended for modeling complex structures attached to the master through a 

point or a small local area with dimensions that are small relative to the master’s wavelength (see 

Cremer et al., 1988). The structural fuzzy was represented by a probabilistic boundary impedance 
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acting on the so-called master. Several years after the presentation of type I fuzzy, Soize briefly 

introduced “type II fuzzy” (see Soize, 1993) that is intended for modeling the effects of complex 

structures attached to the master structure through a continuous boundary. This type therefore 

includes spatial coupling between different positions in the fuzzy. Some years later Soize (1998) 

and Soize and Bjaoui (2000) further extended and validated the method theoretically on a model of 

a master plate with a number of attached complex structures representing a real-life complex 

engineering structure. 

 

 

4.3 Interpretation of Soize’s theory 

 

In order to account for model uncertainties Soize’s theory of fuzzy structures involves 

probabilistic concepts and high-level mathematics. The methodology is carefully conceived and 

many aspects are taken into account. Furthermore, the theory was originally prepared for numerical 

modeling using the finite element method and was therefore formulated using a special 

terminology. Unfortunately this formulation makes rather difficult reading for most vibration 

researchers and engineers and to some extent this has overshadowed the important conclusions of 

the theory. Several researches have pointed out that the main results of the theory can be explained 

without using the full methodology. In particular it has been shown that some important results can 

be understood without the use of probabilistic concepts. Xu and Igusa (1992), Pierce et al. (1995) 

and Strasberg et al. (1996) introduced more simple and deterministic methods for predicting the 

smoothed average response of the master. These methods revealed that the fuzzy damping effect is 

practically independent of the structural losses in the fuzzy. And it was shown that the damping 

mainly depends on the resonating mass per unit natural frequency and that the dynamic properties 

of the fuzzy are governed by this fuzzy parameter. During the mid-nineties many of the main 

theoretical aspects were discussed and further exemplified. Ruckman and Feit (1995) published a 

tutorial on Soize’s method. Sparrow et al. (1994) and Russell (1995) investigated Soize’s fuzzy 

oscillators in great detail. Furthermore, Lyon (1995) compared the theory of fuzzy structures with 

the statistical energy analysis (SEA), and he stated that the fuzzy results also can be obtained by 

using SEA. Nevertheless, he also concluded that the theory of fuzzy structures was a new approach 

capable of providing valuable details of certain structural interaction phenomena. Moreover, 

Langley and Bremner (1999) presented a hybrid SEA method for modeling complex dynamic 
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systems, by partitioning the involved degrees of freedom into a “global set” and “local set”. To 

some extent, this method resembles the theory of fuzzy structures. 

 

 

4.4 The fuzzy damping effect 

 

From around the mid-nineties and up till now one of the most debated topics of the fuzzy 

theory has been the nature of the fuzzy damping effect. Langley (1997) investigated whether an 

undamped oscillator is capable of dissipating energy. He concluded that energy is not dissipated but 

“absorbed” since such an oscillator never reaches steady state vibration. Moreover, in a series of 

papers Weaver (1996, 1997a, 1997b, 1998, 2001) and Carcaterra and Akay (2004, 2007) examined 

the transient dynamic behavior of structural fuzzy consisting of both a finite and an infinite number 

of oscillators. It was concluded that the steady state results provided by Pierce et al. (1995) and 

Strasberg et al. (1996) are correct also for transient excitation when the fuzzy consists of infinitely 

many oscillators. In the case of a finite number of oscillators, however, it was revealed that the 

damping effect generally is apparent and only occurs for early and moderate time histories. At later 

time histories, the energy from the fuzzy returns to the master, resulting in a series of exponentially 

decaying pulses in the impulse response. It was further shown that the return time of the energy is 

short for a limited number of oscillators and long for a high number of oscillators. For the special 

case of a very long return time and relatively high loss factors in the structural fuzzy, the energy 

may dissipate before the energy returns to the master. The same damping effect as in the case of 

infinitely many oscillators is therefore obtained. For steady state vibration, Strasberg (1997) showed 

that the dissipation is real as vibratory power continuously is transferred from the master to the 

structural fuzzy and converted into heat. 

Another addressed subject during this period was the development of design criteria for 

maximizing the fuzzy damping effect. Already in 1993 Igusa and Xu addressed this subject. Above 

all Maidanik (1995), Maidanik and Dickey (1996) and Maidanik and Becker (1998a, 1998b, 1999a, 

1999b) published a series of papers that in great detail investigated the actual damping effect 

obtained for different distributions of resonating mass per unit frequency. From new definitions of 

different types of loss factors concerning the damping, design criteria for maximum effect were set 

up. Other authors have also contributed with investigations regarding design criteria for maximum 

damping. This includes Koc et al. (2005), Akay et al. (2005) and Carcaterra and Akay (2007).   
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In 1997 Strasberg addressed the central question of when a complex substructure can be 

regarded as structural fuzzy. He suggested that the term “structural fuzzy” only should be used 

when there is modal overlap of the oscillator resonances (see Strasberg et al., 1996). Maidanik 

(2001) and Maidanik et al. (2006) also investigated the modal overlap and offered a criteria for 

replacing a sum with an integral. This criterion is important when replacing the impedance of a 

finite number of oscillators with that of an infinite number of oscillators. 

  

 

4.5 Different local connections 

 

As the fundamental ideas of Soize’s theory became clearer, new investigations were 

initiated concerning the oscillator type, spatial distribution and direction of local oscillator 

attachments. Rochat and Sparrow (1995) investigated the damping effect of simple oscillators on 

compressional and shear waves. Strasberg (1996), Garrelick (1997) and Mencik and Berry (2005) 

addressed the problem of modeling one or more locally attached continuous structures as fuzzy 

substructures. Moreover, Drexel and Ginsberg (2001) examined the damping induced in a simple 

cantilever beam by a finite number of spatially distributed oscillators. Also Maidanik and Becker 

(2003a, 2003b) studied the induced damping resulting from a multitude of oscillators having more 

than one degree-of-freedom.  

 

 

4.6 Experimental work and fuzzy parameters 

 

The theoretical work published on the theory of fuzzy structures is extensive. But, to the 

best of the author’s knowledge no real-life applications of the theory have been reported in the open 

literature. One of the main reasons for this is presumably the lack of straightforward methods for 

estimating the fuzzy parameters. One method was presented by Soize in 1998 and this was applied 

to a prototype complex structure and later validated by Soize and Bjaoui (2000). This method 

estimates the fuzzy parameters by solving a constrained optimization problem, where it is assumed 

that the system mean energies can be estimated with an SEA model. In other words the technique 

requires that the internal damping as well as the modal density of the fuzzy can be estimated from 

the fuzzy design. But, how to perform such estimations is not clearly specified.  Moreover, Pierce 
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(1997) demonstrated the relationship between the distribution of resonating mass per unit natural 

frequency and the frequency dependent impedance matrix of the fuzzy. This method naturally infers 

that measurement of the fuzzy impedance matrix is feasible. Such experimental task, however, is 

not straightforward. 

A few experimental investigations on laboratory-designed fuzzy structures are 

reported in the open literature. This includes Nagem (1996) who compared simulations and 

measurements of the vibration response of a beam with many attached oscillators. Additionally, 

Brennan (1997) investigated the characteristics of a wideband vibration neutralizer consisting of a 

mass as the master structure and centre-driven beams as neutralizers. More recently, Koc et al. 

(2005) and Carcaterra et al. (2005) performed experimental investigations on beams with a finite 

number of oscillators tuned for maximum damping effect.  
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5 Modeling of structural fuzzy with 
continuous boundary 

 

 

5.1 Introduction 

 

With the exception of the papers published by Soize (1993, 1998) and Soize and Bjaoui 

(2000) all the mentioned literature concerns structural fuzzy attached to the master through a local 

point-like boundary. However, many real-life engineering structures consist of complex 

substructures attached to the master through a continuous boundary. One example is the attachment 

of the internals of a hearing aid in the form of the processor, magnetic screen, battery, battery 

compartment etc. All in all these internals comprise a complex structure, which is in contact with 

approximately half of the inner surface area of the hearing aid shell. These components are not 

rigidly attached but more or less compliantly mounted between the two half-shells. Moreover, the 

contact between the individual components is likewise more or less compliant and not well-defined.  

The method of modeling structural fuzzy with continuous boundary (see Soize, 1993) was 

only briefly presented 1993 and in the author’s opinion this method is not easily applied to real-life 

problems in its present form. Paper II therefore offers a derivation of the fuzzy boundary impedance 

in conjunction with new physical interpretations concerning the spatial coupling. Moreover, Soize’s 

elaborate formulation is simplified and extended, and the smoothed fuzzy boundary impedance 

including spatial memory is formulated from simple mathematics and without the use of 

probabilistic concepts.  

Paper III extends Soize’s method such that it allows modeling of fuzzy substructures with a 

two-dimensional continuous boundary. Additionally, Paper III presents a simple method for 

determining the so-called “equivalent coupling factor”, a quantity that determines the rate of spatial 

coupling. The validity of this developed method is demonstrated by numerical simulations of the 

vibration response of a master plate structure with fuzzy attachments. 

 



 30



31 

 

 

 

 

 

 

 

 

5.2 Paper II:  

Vibration modeling of structural fuzzy with  

continuous boundary 

 

 

 



Vibration modeling of structural fuzzy with continuous
boundary

Lars Friisa�

Acoustic Technology, Ørsted DTU, Technical University of Denmark, Building 352,
DK-2800 Kgs. Lyngby, and Widex A/S, Ny Vestergaardsvej 25, DK-3500 Vaerloese, Denmark

Mogens Ohlrichb�

Acoustic Technology, Ørsted DTU, Technical University of Denmark, Building 352,
DK-2800 Kgs. Lyngby, Denmark

�Received 29 June 2007; revised 5 November 2007; accepted 20 November 2007�

From experiments it is well known that the vibration response of a main structure with many
attached substructures often shows more damping than structural losses in the components can
account for. In practice, these substructures, which are not attached in an entirely rigid manner,
behave like a multitude of different sprung masses each strongly resisting any motion of the main
structure�master� at their base antiresonance. The “theory of structural fuzzy” is intended for
modeling such high damping. In the present article the theory of fuzzy structures is brie�y outlined
and a method of modeling fuzzy substructures examined. This is done by new derivations and
physical interpretations are provided. Further, the method is extended and simpli�ed by introducing
a simple deterministic approach to determine the boundary impedance of the structural fuzzy. By
using this new approach, the damping effect of the fuzzy with spatial memory is demonstrated by
numerical simulations of a main beam structure with fuzzy attachments. It is shown that the
introduction of spatial memory reduces the damping effect of the fuzzy and in certain cases the
damping effect may even be eliminated completely. ©2008 Acoustical Society of America.
�DOI: 10.1121/1.2823498�
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I. INTRODUCTION

It is commonly known from experiments that vibratio
of a complicated system consisting of a main structure a
large number of small attached resonant substructures
appears to be more damped than the main structure’s d
ing properties would imply. Already in 1928 Ormondro
and Den Hartog1 revealed that a “dynamic absorber” co
produce a considerable reduction in vibration level, howe
only in a relatively narrow frequency band around its nat
frequency. To be effective such an auxiliary system is usu
attached at the forcing point of the main structure. And
auxiliary system is predominantly a re�ecting device c
trolled by its stiffness and mass, although its bandwidt
in�uence can be slightly increased by a tuning, which
volves small adjustments of both stiffness and dampin
the device. Therefore, the term “dynamic neutralizer”
been adopted.2 For a more recent and detailed treatmen
this subject the reader is referred to the monograph
Mead.3 It took almost 60 years before Soize4 and Chabaset
al.5 suggested that attached resonant substructures, in
behave like a multitude of dynamic neutralizers with dif
ent natural frequencies that introduce a high damping in
main structure over a broader frequency range.

Many complicated engineering systems consist basi
of an outer shell- or a box-likemasterstructure and a com

a�Electronic mail: lf@oersted.dtu.dk
b�
Electronic mail: mo@oersted.dtu.dk
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plicatedinternal structure. Examples of such structures v
ing from small to large sizes are electromechanical he
aids, machines, aircraft, and ship hulls. The outer m
structure is often well de�ned and its vibration can be p
dicted using conventional methods of vibrational analysi
contrast, the dynamic properties of the internals may on
partly known and therefore their dynamics and in�ue
have to be modeled by using an alternative method su
that offered by “fuzzy structure theory.”4–9 This theory is
intended for an overall and simple prediction of the vibra
of the master structure, and the theory considers the int
parts as a single or several independent “fuzzy subs
tures,” which are known in some statistical sense only.

In some systems the fuzzy substructures are attach
the master through a continuous boundary or junction.
could, for example, be line-coupled machinery in a ship
or passenger seats and luggage compartments attached
main structure of an airplane. The continuous conne
boundary implies that spatial coupling within the fuzzy
to be considered, and it is only in special cases that
coupling can be neglected.

Often the motion of the continuous junctions is vary
signi�cantly with position due to the spatial variation of
bration in the master structure, and spatial coupling forc
the fuzzy have to be accounted for. The present article
dresses this problem of including spatial coupling in
modeling of structural fuzzy.

With frequency or vibration wavelength as a param

Fig. 1 shows three scenarios, each with three different cases

© 2008 Acoustical Society of America23�2�/718/11/$23.00
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of fuzzy substructures attached to a master. It is assume
a time harmonic force of amplitudeF and angular frequenc
� =2� f excites the master and generates vibration in
whole system. At very low frequencies the master struc
vibrates as a rigid body in translational motion�see Fig
1�a��, and the junction displacement at the boundary of
fuzzy substructures is almost constant. This implies tha
spatial coupling within each substructure has no signi�c
effect on the response of the system as a whole. Now
creasing the excitation frequency introduces elastic motio
the master structure and hence at the interface with the f
When the vibration wavelength of the master becomes
parable with the dimensions of the fuzzy connection
then the spatial coupling begins to take effect. This is
case in Fig.1�b� where the boundary displacement of s
structure 3 is varying whereas those of substructures 1
are nearly constant. In Fig.1�c� the frequency has been
creased further and the boundary displacements of both
structures 1 and 3 are varying, whereas the boundary
placement of substructure 2 remains close to constant.

Fuzzy structure theory was originally developed
Soize and co-worker and presented in a series of pap4–7

during a 10-year period starting in 1986. These paper
volve probabilistic concepts in order to take the model
certainties into account. In attempts to explain the main i
behind the theory, these papers have been subject to n
ous simpli�cations, interpretations, and extensions during
last 20 years.

In particular, Pierceet al.8 and Strasberg and Feit9 have
introduced more simple and deterministic methods in o
to predict the average responses of the master. In these
ods the main parameter describing the fuzzy is taken t
the distribution of resonating mass per unit frequency. On
the crucial steps in applying fuzzy structure theory is
very estimation of this mass distribution. Both Soize10,11 and
Pierce12 have addressed this problem throughout the
10 years.

In 1993 Soize brie�y presented a method6 for including
spatial memory in the modeling of structural fuzzy with c
tinuous boundaries. Despite this, elaborating literature h

FIG. 1. Three different fuzzy substructures attached to a master str
undergoing harmonic vibration:�a� low frequency rigid body motion,�b�
low frequency wave motion, and�c� mid-frequency wave motion.
far mainly been concerned with structural fuzzywithoutspa-
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tial coupling effects. However, in order to utilize Soize’s
novative theory on structural fuzzy with spatial mem
there is a strong need for a detailed examination of the
gested method in addition to a presentation of nece
supplementary derivations. Moreover, a simple method
implementing the structural fuzzy is still absent in the o
literature. The objective of the present article is to ex
Soize’s theory by using a simplifying approach, which
some extent is based on the methods introduced by Pieret
al.,8 and Strasberg and Feit.9 The outline of the present a
ticle is as follows. Succeeding a brief outline of the theor
fuzzy structures in Sec. II, the method of including spa
memory is discussed in details and extended in Sec. III
includes�i� derivation of the boundary impedance of Soiz
spatial oscillator,� ii � derivation of the boundary impedan
of an in�nite number ofidentical spatial oscillators even
distributed on the fuzzy connection area, and�iii � introduc-
tion to Soize’s localequivalent oscillatorandequivalent cou
pling factor and a presentation of new physical interpr
tions. Further, in Sec. IV we present a new approach
determining the boundary impedance of structural fuzzy
spatial memory. Finally, numerical simulations based on
approach are presented in Sec. V in order to illustrate
damping effects of structural fuzzy, which includes spa
memory.

II. STRUCTURAL FUZZY WITHOUT SPATIAL MEMORY

The purpose of the fuzzy structure theory is to mode
overall vibrational response of a master structure, which
an attachment of one or moreresonantsubstructures. A fuzz
substructure is considered as being composed of
simple oscillators resonating at different frequencies and
ing attached to the master at their base. When modeling
a system it is an advantage to separate the fuzzy fro
master. Each fuzzy substructure is conveniently repres
in terms of itsboundary impedance.4,5 Using this approac
the modeling of the response of the master with fuzzy at
ments can be achieved without exceeding the number o
grees of freedom required for predicting the response o
master structure itself. As mentioned previously, one can
glect the spatial coupling effects in the fuzzy when a fu
substructure of multiple resonators is connected to the m
over a small length or over a small area of virtually cons
motion.

This is illustrated in Fig.2 showing a fuzzy substructur
which is modeled byN simple oscillators that is attach
locally at an areaA of the master structure. An expression
the total boundary impedancez� fuzzy� f� of this substructur
can be derived by superposition and by assuming, say
the nth simple oscillator of the fuzzy is de�ned by the ma
Mn, the undamped resonance frequencyfr,n and the loss fac
tor � . By introducing the complex stiffness of the oscilla
s� n=sn�1+i� � , wheresn=�2� fr,n� 2 Mn is the impedance of th

9

e

oscillatorZ� n=F� n/v� n at the attachment base yields

iis and M. Ohlrich: Structural fuzzy with continuous boundary 719
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Z� n =
s� n

i�
�1 �

s� n

s� n � � 2Mn
� = � i2� f� fr,n

2

f2 ��1 + i� �

� Mn�1 �
fr,n
2 �1 + i� �

f r,n
2 �1 + i� � � f2�. �1�

Figure3 shows the frequency variation of this oscilla
impedance in a normalized form for different values
spring damping� . Below and above its resonance freque
the oscillator is, respectively, mass controlled and sp
controlled. Further, at resonance of the oscillator, where
impedance is very large and almost purely real, it
strongly oppose any movements of its base. It is this par
lar feature of the oscillator, which results in the damp
effect of the fuzzy substructure.

Generally, the different oscillators of a fuzzy substr
ture have different masses and natural frequencies and
are attached randomly to the master structure within the
sidered fuzzy connection area. Also, the total mass of a
oscillators equals the mass of the fuzzy substructureMfuzzy

FIG. 2. Master structure exemplifying an attached fuzzy substructure, w
is composed ofN simple oscillators resonating at different frequencies
without spatial memory.

FIG. 3. Frequency variation of normalized impedance,Z� n/ �2� fMn� for dif-

ferent values of spring damping� : —, 0.005; ---, 0.01;̄ , 0.02.
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=� n=1
N Mn. Below a certain frequency, sayfr,lower, the oscilla

tors will all be mass controlled. By increasing the freque
gradually fromfr,lower to an upper limit, sayfr,upper, the os
cillators will resonate one by one. Now, at each freque
within this “resonant” frequency bandfr,lower� f r � f r,upperat
least one oscillator will be close to its base antiresonanc
it will therefore oppose the motion of the master. If the
cillators are attached close to one another within the arA,
which has a nearly constant displacement, then the effe
boundary impedance of all the oscillators,z� fuzzy� f� , can be
approximated by the sum of each oscillator’s impeda
Z� n� f� divided by the attachment areaA:

z� fuzzy� f� =
1

A�
n=1

N

Z� n� f� = �
i2� f

A �
n=1

N � fr,n
2

f2 ��1 + i� �

� Mn�1 �
fr,n
2 �1 + i� �

f r,n
2 �1 + i� � � f2�. �2�

This boundary impedance, however, requires spe
knowledge about the properties of each oscillator and
therefore conveniently replaced by an asymptotic
smoothed version.8,9 This is obtained by considering in
nitely many oscillators resonating within the frequency b
of fr,lower� f r � f r,upper and having a total massMfuzzy. This
smoothed impedance yields8,9

z� fuzzy� f� = �
i2� f

A
�

fr,lower

fr,upper� fr
2

f2��1 + i� �

� mfuzzy� f r��1 �
fr
2�1 + i� �

f r
2�1 + i� � � f2�dfr , �3�

where the quantitymfuzzy� f r�dfr represents the mass reson
ing between the frequenciesfr and fr +dfr; this means tha
the total mass of the fuzzy substructure now is express

Mfuzzy = �
fr,lower

fr,upper

mfuzzy� f r�dfr . �4�

The damping effect of the fuzzy substructure is ma
governed by this frequency dependent resonating mas
tribution mfuzzy� f r� .

8,9 Methods for �nding this paramete
were suggested by Soize10,11 and Pierce,12 and different pro
totype mass distributions were proposed by Pierceet al.8 and
Strasberg and Feit.9

As an example of the damping effect of structural fu
Fig. 4 shows computed results for the velocity vibration
sponse per unit harmonic force,Y� =v� /F� , of a �exurally vi-
brating master beam, free in space, both without and wi
attached substructure represented by 16 different simp
cillators. The resonance frequencies of these oscillator
spaced in geometric progression from 500 to 5000 Hz.
ther, the oscillators have identical point masses, weighti
total 10% of the master beam and a spring loss factor�
=0.05. It is clearly observed that the attached substru
has a strong effect on the master response; this is seen
reduced considerable over a broad band of frequencie
by up to 18 dB around 1300 Hz. Further, it is seen that
substructure can be modeled successfully as a smo

structural fuzzy by using the expression in Eq.�3�. An ap-

L. Friis and M. Ohlrich: Structural fuzzy with continuous boundary
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proximate condition for using this expression is suggeste
Ref. 9 as � � 2� fr,n/ f r,n where� fr,n is the spacing betwee
adjacent resonance frequencies. In other words this
strict condition requires that� fr,n� � f3 dB/2 where� f3 dB
denotes the 3 dB bandwidth of the oscillator at resona
However, in the present example it applies that the spa
between resonances is� fr,n	 65·� f r,n,3 dB/2 around
2000 Hz, that is, 65 wider than the suggested requireme
is therefore evident that acceptable results can be obt
with a much relaxed condition.

III. SOIZE’S STRUCTURAL FUZZY WITH SPATIAL
MEMORY

A. Soize’s spatial oscillator

Consider a fuzzy substructure connected to the m
through a continuous boundary. A fuzzy substructure is
erally attached to the master within an area, but for the
of simplicity we shall here consider a fuzzy attached to
master through a one-dimensional boundary of lengthLfuzzy.
Soize incorporates a spatial memory in the structural f
by introducing a “spatial oscillator” as sketched in Fig.5�a�.
A structural fuzzy with spatial memory is composed oN
different sets�n� �1 ,N�� of such spatial oscillators. Each
theseN sets consists of in�nitely manyidentical spatial os
cillators spread on the fuzzy connection area—or length
us �rst consider only one spatial oscillator, say theith � i
� �1 ,	 �� of the nth set of spatial oscillators of a fuzzy su
structure, see Fig.5�a�. This oscillator is de�ned by the res
nance frequencyfr,n, the lossfactor� and the point massMn,i
located at positionx� . Further, the point mass is assum

FIG. 4. Vibration velocity response per unit harmonic force,Y� =v� /F� , of a
master beam free in space. Beam: —, without structural fuzzy;¯ , with an
attached fuzzy substructure represented by 16 simple oscillators, —;
smoothed layer of structural fuzzy without spatial memory.
supported by spring elements of stiffness densitys� 
 ,n,i�x� ,x�
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that are attached to the master structure at different pos
x� �x� � 
 ,x� +
 � . Moreover, the spatial variation of the
bration displacement of the master is shown asu�x� in Fig.
5�a�. The actual width 2
 of the distributed springs Soi
denotes “the spatial memory” and the stiffness densit
de�nes as6

s� 
 ,n,i�x� ,x� = s� n,ig
 �x� ,x� = �Mn,i� r,n
2 �� 1 + i� �g
 �x� ,x� . �5�

Here,s� n,i is the total complex stiffness of theith oscil-
lator belonging to thenth set, and the quantityg
 �x� ,x� is an
even and positive-valued function of area 1. As a o
dimensional spatial memory Soize suggests a simple tria
lar distribution functiong
 �x� ,x� as shown in Fig.5�b�. This
is determined as

g
 �x� ,x� =

 � 
x� � x



 2 1�x� � 
 ,x�+
 � �6�

where 1�x� � 
 ,x�+
 � is a function, which is equal to 1 forx
� �x� � 
 ,x� +
 � and which is 0 elsewhere. As the area un
the curveg
 �x� ,x� is 1, the oscillator in Fig.5�a� has the
same natural frequencyfr,n as the simple oscillator with ma
Mn and stiffnesssn that was considered in Sec. II. From
expression in Eq.�6� it is seen that the distributiong
 �x� ,x�
only is dependent on the differencex� � x and therefore it ca
be written as

g
 �x� � x� =

 � 
x� � x



 2 1�x� � 
 ,x�+
 � �7�

where it applies thatg
 �x� � x� =g
 �x� x� � and further tha
s� 
 ,n,i�x� � x� =s� 
 ,n,i�x� x� � .

B. The nth set of spatial oscillators

Next, consider the in�nitely many identical oscillato

a

FIG. 5. Fuzzy oscillator with spatial coupling.�a� Oscillator attached to
boundary of motionu� �x� and�b� stiffness density distributiong
 �x� ,x� of the
oscillator spring elements.
belonging to thenth set. Let us assume that the oscillators

iis and M. Ohlrich: Structural fuzzy with continuous boundary 721
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are distributed evenly over the fuzzy boundary, so that
locationx� is associated with a point massMn,i. This is illus-
trated in Fig.6 where each one of the oscillators represen
the one sketched in Fig.5�a� is depicted as a point mass a
the associated triangular stiffness distribution. The p
masses can vibrate independently whereas the spring
ments overlap spatially at the connection boundary.

These in�nitely manyidentical oscillators constitute th
nth contribution to the total boundary impedance of the
mogeneous fuzzy substructure. The total mass and total
ness of all the oscillators of thenth set are given asMn and
s� n, respectively, so thatMn,i =Mn/Lfuzzy and s� n,i =s� n/Lfuzzy.
Figure 6�a� illustrates the case of spatial oscillators wit
large width—or a high spatial memory—beacuse the sp
elements from the individual oscillators overlap signi�can
On the other hand, in Fig.6�b� the spring elements overl
less because
 is somewhat smaller. Finally, in Fig.6�c� the
spatial memory approaches zero as
 � 0, and the spatia
stiffness density approaches the stiffness of simple dis
springs.

C. Derivation of the boundary impedance of the nth
set of oscillators

The vibration of the master results in a force at the
terface between master and attached fuzzy; this action o
fuzzy we denote the contact force. Now, from the vibra
velocity v� �x� along the fuzzy connection boundary one
express the total contact forceF� 
 ,n� �x0� per unit length atx0
due to thenth set of oscillators as6

F� 
 ,n� �x0� = �
Lfuzzy

z� 
 ,n�x0 � x�v� �x�dx, �8�

wherez� 
 ,n�x0� x� is the boundary impedance associated
the nth set of oscillators. This impedance depends only
the difference�x0� x� , so thatz� 
 ,n�x0� x� =z� 
 ,n�x� x0� in anal-
ogy to the stiffness distribution function in Eq.�7�. Although
an expression forz� 
 ,n�x0� x� is shown in Ref.3, it has no
been derived in the open literature. The authors believe
such a derivation is essential in order to appreciate and
derstand the characteristics of a fuzzy with spatial memo

FIG. 6. Structural fuzzy attached to the master; fuzzy with:�a� high spatia
memory,�b� small spatial memory, and�c� no spatial memory.
is also anticipated that such a derivation will ease the usabil
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ity of Soize’s theory considerably. In view of this, a step
step derivation ofF� 
 ,n� �x0� will be presented in what follow

Once again, only one spatial oscillator is conside
say, theith of the nth set of oscillators. This oscillator
sketched in Fig.7�a�. For this particular oscillator we �rs
seek an expression for the boundary impedancez� 
 ,n,i�x0
� x1� with a spatial contribution over the differential len
dx is de�ned as

F� n,i� �x0� = 
z� 
 ,n,i�x0 � x1�v� �x1�dx
v� �x� �x1,x1+dx�� =0, �9�

where F� n,i� �x0� is the force per unit length that excites
connection boundary atx0 and v� �x1� =i� u� �x1� is the bas
velocity of the spring element atx1. Now, the spring eleme
at x1 is given a displacementu� �x1� at its base, whereas
other springs elements are locked such thatu� �x� x1� =0, see
Fig. 7�a�. As the massMn,i undergoes a displacementu� �x� �
the induced spring forceF� S,n,i�x1� in a differential neighbor
hooddx aroundx1 becomes

F� S,n,i�x1� = s� 
 ,n,i�x� � x1�� u� �x1� � u� �x� �� dx. �10�

Due to the motion of the mass, a reaction forceF� M,n,i�x� �
in�uences the spring element and this force is given as

F� M,n,i�x� � = � � 2Mn,iu� �x� � . �11�

Additionally, the motion of the mass also introduces force
the remaining spring elements, and their total spring f
F� S,n,i�x� x1� can be found as

F� S,n,i�x � x1� = � s� 
 ,n,i�x� � x1�u� �x� �dx+ �
Lfuzzy

s� 
 ,n,i�x�

� x�u� �x� �dx= � s� 
 ,n,i�x� � x1�u� �x� �dx+ s� n,i ,

�12�

wheres� n,i is the total stiffness of the spring elements of

FIG. 7. Derivation of thenth contribution to the fuzzy boundary impedan
�a� Boundary impedancez� 
 ,n,i�x0� x1� of the ith oscillator of thenth set of
spatial oscillators.�b� Boundary impedancez� 
 ,n�x0� x1� of the nth set of
spatial oscillators.
-oscillator. Because of force equilibrium the sum of the spring

L. Friis and M. Ohlrich: Structural fuzzy with continuous boundary
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force F� S,n,i�x� x1� and the reaction force of the ma
F� M,n,i�x� � is equal to the spring forceF� S,n,i�x1� at x1. Thus, by
combination of Eqs.�10�–�12� we get

F� S,n,i�x1� = F� M,n,i�x� � + F� S,n,i�x � x1� ,

s� 
 ,n,i�x� � x1�� u� �x1� � u� �x� �� dx

= � � s� 
 ,n,i�x� � x1�dx+ s� n,i � � 2Mn,i�u� �x� � , �13�

Rearranging Eq.�13� we �nd an expression foru� �x� � as a
function of u� �x1� , which yields

u� �x� � =
s� 
 ,n,i�x� � x1�u� �x1�dx

� � 2Mn,i + s� n,i
. �14�

Further, the force per unit lengthF� n,i� �x0� at x0 at the connec
tion boundary is given as

F� n,i� �x0� = s� 
 ,n,i�x� � x0�� u� �x0� � x0,x1
� u� �x� �� , �15�

where � x0,x1
is the Kronecker delta, that is,� x0,x1

=1 when
x0=x1, and otherwise zero. Finally, if Eq.�14� is substituted
in Eq. �15� we get the force per unit lengthF� n,i� �x0� exerted
onto the fuzzy connection boundary due to its displacem
u� �x1� :

F� n,i� �x0� = s� 
 ,n,i�x� � x0��� x0,x1
u� �x0� �

s� 
 ,n,i�x� � x1�u� �x1�dx

� � 2Mn,i + s� n,i
�

= s� 
 ,n,i�x� � x0��� x0,x1
�

s� 
 ,n,i�x� � x1�dx

� � 2Mn,i + s� n,i
�u� �x1� . �16�

According to Eq.�16� z� 
 ,n,i�x0� x1�dx reads

z� 
 ,n,i�x0 � x1�dx=
s� 
 ,n,i�x� � x0�

i2� f
�� x0,x1

�
s� 
 ,n,i�x� � x1�dx

� � 2Mn,i + s� n,i
�. �17�

Now, this is only the impedance of theith oscillator of the
nth set. Assume again that there is an in�nite numbe
identical oscillators overlapping one another on the fu
connection boundary�see Fig.7�b��, such that a mass el
mentMn,i is located at each of all positions along thex� axis.
Further, each of these oscillators has a total stiffnesss� n,i. We
now seek an expression for the impedancez� 
 ,n�x0� x1� of the
nth set of oscillators. First the oscillators are given the
placementu� �x1� at positionx1, whereas all other positions
their spring bases are locked. Then the total force per
lengthF� n� �x0� at x0 is found by integrating the expression
Eq. �16� with respect tox� , and this gives

F� n� �x0� = �
Lfuzzy

s� 
 ,n,i�x� � x0��� x0,x1

�
s� 
 ,n,i�x� � x1�dx

� � 2Mn,i + s� n,i
�u� �x1�dx�

= ��
Lfuzzy

s� 
 ,n,i�x� � x0� � x0,x1
dx�

� � s� 
 ,n,i�x� � x0�s� 
 ,n,i�x� � x1�dx
u� �x �
Lfuzzy
� � 2Mn,i + s� n,i

� 1
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= �s� n,i� x0,x1

� �
Lfuzzy

s� n,i
2 g�x� � x�g�x� � x0�dx

� � 2Mn,i + s� n,i
dx��u� �x1�

= �s� n,i� x0,x1
�

s� n,i
2 dx

� � 2Mn,i + s� n,i
�

Lfuzzy

g�x� � x1�g�x�

� x0�dx��u� �x1� . �18�

The integration in the last line of Eq.�18� can be recognize
as the convolution product�g� g�� x0� x1� and the expressio
can therefore be simpli�ed to

F� n� �x0� = s� n,i�� x0,x1
�

s� n,i

� � 2Mn,i + s� n,i
�g � g�� x0

� x1�dx�u� �x1� . �19�

Finally, by substituting s� n,i =� n
2Mn,i�1+i� � and v� �x�

=i2� fu� �x� in Eq. �19� we have that

F� n� �x0� = � i2� f� fr,n
2

f2 ��1 + i� �Mn,i�� x0,x1

�
f r,n
2 �1 + i� �

f r,n
2 �1 + i� � � f2�g � g�� x0 � x1�dx�v� �x1� .

�20�

Hence, the total impedancez� 
 ,n�x0� x1� of the nth set of os
cillators reads

z� 
 ,n�x0 � x1�dx= � i2� f� fr,n
2

f2 ��1 + i� �Mn,i�� x0,x1

�
f r,n
2 �1 + i� �

f r,n
2 �1 + i� � � f2�g � g�� x0 � x1�dx�.

�21�

A structural fuzzy composed ofN sets of in�nitely many
identical oscillators as described earlier is homogenou
the boundary impedance only depends on the dis

x0� x1
. Further, if
 � 0, then Eq.�21� reduces to the boun
ary impedance of in�nitely many identical simple oscillat
as illustrated in Fig.6�c�. Examining the expression in E
�21�, it is seen that the transfer impedances are proport
to the convolution product�g� g�� x0� x1� , as the term� x0,x1

is
zero whenx0� x. Figure8 shows this convolution and it
seen that the transfer impedances extends a distance o
 to
each side ofx. This means that the actual spatial memor
4
 , and that the transfer impedances are zero for
x0� x

� 2
 . Note that the areas belowg�x0� x� and �g� g�� x0� x1�
are both equal to 1.

D. Soize’s local equivalent oscillator

A numerical implementation of the boundary impeda
z� 
 ,n in Eq. �21� is unfortunately rather complicated due to

nonlocalnature. This requires for instance the use of a �nite

iis and M. Ohlrich: Structural fuzzy with continuous boundary 723
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element model with special fuzzy elements. As mentio
earlier, the main purpose of the fuzzy structure theory
serve as a simple modeling tool. Therefore, Soize introd
the equivalent localoscillator. The idea is that thenth set of
in�nitely many identical equivalent oscillators, can repla
the nth set of spatial oscillators. This also implies that
contact force per unit lengthF� equ,n� �x0� introduced by the lo
cal equivalent oscillator atx0 must be equal to the conta
forceF� 
 ,n� �x0� given in Eq.�8�. This is achieved by introdu
ing the so-calledequivalent coupling factor
 , which trans
forms all the nonlocal force contributions of the spatial
cillators into equivalent local contributions. As one c
imagine,
 generally varies with frequency and is both
pendent on the length of the spatial memory 2
 and the mo
tion of the masteru�x� .

Now, let us assume that thenth set of equivalent osci
lators consist of an in�nite number ofidentical oscillators
distributed on the fuzzy connection boundary. Further,
equivalent oscillator has a massMn,i, and masses are locat
at all positions along thex� axis. For thenth set of equivalen
oscillators the boundary impedancez� equ,n�x0� =F� n� �x0� /v� �x0�
is given as6

z� equ,n�x0� =
s� n,i

i �
�1 �

s� n,i

s� n,i � � 2Mn,i

 � = i2� fMn,i

� � fr
2�1 + i� �� 1 � � f r/f �

2�1 + i� �� 1 � 
 ��

f2 � f r
2�1 + i� �

�,

�22�

where
 � �0 ,1� . If 
 is chosen properly then the bound
impedancez� equ,n�x0� in Eq. �22� can replace successfully t
boundary impedancez� 
 ,n�x0� x1� of the nth set of spatia
oscillators6 as was given in Eq.�21�. The frequency variatio
of this equivalent impedancez� equ,n�x0� is shown in Fig.9 for
different values of
 . As indicated in Fig.9, we now sugges
that the equivalent oscillator can be interpreted as a si
oscillator with spring stiffnesss� 1 where the mass has be
grounded by a second spring with stiffnesss� 2. It applies tha
s� n,i =s� 1+s� 2 and the mass of the grounded oscillator isMn,i.
The relationship between the impedance in Eq.�22� and the
impedance of the grounded oscillatorzground,n in Fig. 9 is

FIG. 8. Examination of the magnitude distribution of the transfer im
ance. Functions: ---,g�x0� x� / �1/ 
 � ; —, �g*g�� x0� x� / �1/ 
 � .
z� equ,n=z� ground,n/ 
 where
 =s� 1/ �s� 1+s� 2� . Note that
 � 1 when

724 J. Acoust. Soc. Am., Vol. 123, No. 2, February 2008
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s� 2� 0 and z� equ,n will then approach the impedance o
simple oscillator, Eq.�1�. Also, when
 � 1 the oscillator is
stiffness controlled at low frequencies. It should be m
tioned that the impedance of a set of spatial oscillator
sults in a stiffness-controlled behaviour of the master at
frequencies. The reason is that the mass-less bar supp
the point mass in Fig.5�a� is restricted to translational m
tion and therefore unable to rotate. Any rotation of the ma
at low frequencies is therefore restricted by the springs

E. The equivalent coupling factor

Soize states that it is not self-evident that the l
equivalent oscillatorcan model correctly a structural fuz
with spatial memory.6 And as one can imagine,
 has to be
chosen carefully. Finding a relationship between
 and 

requires matching of boundary forces using the impeda
found in Eqs.�21� and �22�, frequency by frequency. Su
results have been published by Soize6 and they show
 as a
function of the spatial memory 2
 for different frequenc
bands for a simply supported beam. The authors of
present article, however, suggest that
 should be determine
in a more general way as a function of the ratio
 / � where�
is the free wavelength in the master, which here is restr
to undergo one-dimensional wave motion only. By tra
forming Soize’s data, it is revealed that a unique relation
between
 and
 / � is found. The transformed data of
 as a
function of 
 / � are shown in Fig.10; these results have be
�tted with a fourth-order polynomial. It should be noted t
the free wavelength is de�ned only for sinusoidal variatio
and for structures with more complicated eigenfunctions
therefore suggest substituting� with twice the distance b
tween adjacent nodes.

Finally, it should be mentioned that a general and sim

FIG. 9. Frequency variation of normalized impedance,Z� equ,n/ �2� fMn� for
different values of the equivalent coupling factor
 : —, 1; ---, 0.75;¯ , 0.5;
-·-, 0.25.
method of predicting
 has been the subject of the authors’

L. Friis and M. Ohlrich: Structural fuzzy with continuous boundary
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latest work and will shortly be submitted for publication
gether with a practical validation of the associated equiva
modelling method.

IV. SMOOTHED EXPRESSION FOR THE BOUNDARY
IMPEDANCE OF STRUCTURAL FUZZY WITH
SPATIAL MEMORY

The fuzzy structure theory developed by Soize
originally intended for �nite element modeling. To determ
the damping induced in the master, Soize developed his
methods based on probabilistic concepts in order to acc
for model uncertainties. A new proposition for a simpli�
deterministic method for predicting the mean damping
duced by structural fuzzy with spatial memory is prese
in the following. The purpose of this model is to illustrate
main effects of including spatial memory in the modeling
structural fuzzy.

As a starting point we consider a structural fuzzy c
sisting of N sets of spatial oscillators with different natu
frequencies. The total boundary impedance of the struc
fuzzy can be determined as the sum of the impedance
tributions from theseN sets for which the impedance of t
nth set, n� �1 ,N� , was presented in Eq.�21�. The tota
boundary impedancez� fuzzy,
 �x0� x1� thus becomes

z� fuzzy,
 �x0 � x1� = �
n=1

N

z� 
 ,n�x0 � x1� . �23�

So far, only Soize has presented a method of predictin
boundary impedance of fuzzy with spatial memory.6 Now,
applying the same approach as in Sec. II adeterministicex-
pression for the boundary impedance of the structural f
with spatial memory can be found. Let us approximate
expression in Eq.�23� by in�nitely many sets of spatial os
cillators resonating betweenfr,lower and fr,upper. Hereby the
general expression for the total fuzzy boundary imped
attached at areaA of the master becomes

z� fuzzy,
 �x0 � x1� = �
fr,lower

fr,upper

z
 �x0 � x1, fr�dfr , �24a�

FIG. 10. Variation of the equivalent coupling factor
 with 
 / � : � � � , data
computed from read-off results in Ref.6; —, polynomial �t.
or, by inserting the expression from Eq.�21� we get
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z� fuzzy,
 �x0 � x1�dx= �
i2� f

A
�

fr,lower

fr,upper� fr
2

f2��1 + i� �mfuzzy� f r�

� �� x0,x1
�

f r
2�1 + i� �

f r
2�1 + i� � � f2

� �g � g�� x0 � x1�dx�dfr , �24b�

where mfuzzy� f r�dfr again represents the total mass of
fuzzy resonating between the frequenciesfr and fr +dfr.
Moreover, the same simple approach can be applied to
the equivalent boundary impedancez� fuzzy,equ�x0� if Mn is re-
placed bymfuzzy� f r�dfr. A smoothed version of the equivale
boundary impedance then yields

z� fuzzy,equ�x0 � x1� = �
fr,lower

fr,upper

zequ�x0, fr�dfr

= �
i2� f

A
�

fr,lower

fr,upper� fr
2

f2��1 + i� �mfuzzy� f r�

� �1 �
fr
2�1 + i� �

f r
2�1 + i� � � f2
 �dfr . �25�

It should be noted that the equivalent coupling factor
 gen-
erally is a function of frequency. Nevertheless, accordin
Fig. 10 it is seen that
 is constant for a speci�c value

 / � . With the new expression for the boundary impedanc
structural fuzzy with spatial memory in Eq.�25� it is there-
fore possible to model and examine the effects of struc
fuzzy with spatial memory in a simple way. For simple ca
of mass distributionsmfuzzy� f r� the integration can be do
analytically, whereas the use of more realistic mass dist
tions will require a numerical integration.

V. BEAM MASTER STRUCTURE WITH STRUCTURAL
FUZZY

The in�uence of structural fuzzy with and without sp
tial memory will now be illustrated by a numerical examp
The �nite element method13 is being used for solving th
harmonically forced vibration response of a simply s
ported Bernoulli–Euler beam, which is considered as
master structure. A fuzzy substructure is attached on
whole lengthL of the beam, so thatLfuzzy=L. The damping
loss factor of the beam is 0.005 and the loss factor o
fuzzy oscillator springs is 0.03. The resonating mass per
frequency,mfuzzy� f r� , is taken to follow a normal distributio
giving

mfuzzy� f r� =
Mfuzzy

std� 2�
e� � fr0 � fr�

2/�2·std2� , �26�

where fr0 is the center frequency and std is the stan
deviation. This chosen mass distribution is shown in Fig11
as a function of the beam’s nondimensional frequenc�

being de�ned as

iis and M. Ohlrich: Structural fuzzy with continuous boundary 725
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� = 2� f� 12�
E

L2

h
, �27�

whereh is the beam thickness, and� andE is the density an
Young’s modulus of the beam material, respectively. For
distribution the bounding frequenciesfr,lower and fr,upper cor-
respond to� =0 and � =	 , respectively. The center fr
quencyfr0 corresponds to� =1200 and the standard dev
tion std is � =750. Moreover, the total mass of the fuz
Mfuzzy is taken to be one-twentieth of the beam mass,� SL,
whereS is its cross-sectional area.

The boundary impedance of the fuzzy, Eq.�25�, is com-
puted by numerical integration; it is assumed that the eq
lent coupling factor
 is constant with frequency, whic
means that the ratio
 / � is constant, whereas
 and � de-
crease with frequency at the same rate. Figure12 shows
computed results of the fuzzy boundary impeda
z� fuzzy,equ�x0� as a function of the nondimensional freque
for different values of
 .

FIG. 11. Normalized resonating mass per unit frequency described
normal distribution with a centre frequencyfr0 corresponding to� =1200
and a standard deviationstd of � =750.

FIG. 12. Amplitude and phase of the fuzzy boundary impedancez� fuzzy,equ.
The total mass of the fuzzy is 1/20 of the master and has a norm
distributed resonating mass per unit frequency. Results are shown for
ent values of the equivalent coupling factor
 : —, 1; ---, 0.75;¯ , 0.5; -·-,

0.25.
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From these results a number of observations ca
made. First, it is clearly seen that the structural fuzzywithout
memory is mass-controlled at frequencies below� =500, as
the amplitude slope of the boundary impedance is pos
and the phase equals� /2. This is not the case for structu
fuzzy with memory, which is clearly spring-like with a neg
tive amplitude slope and a phase of �� /2; this will always
be the case when
 � 1. Second, between� =500 and�
=2000 the phase of the fuzzywithout memory change
smoothly from � /2 to approximately �� /2. During this
change the real part of the impedance exhibits high va
and the fuzzy therefore has a high damping effect. The
pedance for
 =0.75 has a sudden phase change of� after
� =500 and hereafter it closely follows the phase of
fuzzy for 
 =1. Examining the other two cases of smalle

values, it is found that the phase change is less pronou
and occurs at a higher frequency; therefore the fuzzy n
reaches true mass-like behavior. It is also seen that the
plitude of the impedance becomes signi�cantly lower w

 is decreased, and this results in a weakening of the e
of the fuzzy. This is clearly observed for frequencies ab
� =1000.

Inspired by Pierceet al.8 the behavior and actual dam
ing effect of the fuzzy is conveniently demonstrated by
amining the corresponding apparent mass,Mapp� f�
= Im�z� fuzzy,equ� / �2� f� , and apparent dampingRapp� f�
=Re�z� fuzzy,equ� . Both quantities are shown in normalized fo
in Fig. 13 for different values of
 . Figure13�a� shows tha
the apparent mass of the fuzzywithout memory is equal t
the total mass of the fuzzy at� =0, and up to around�
=1170 the apparent mass is higher than the total mass
ther, around� =1340 the quantity becomes negative, wh
indicates a spring-controlled behavior. The three case
fuzzy with memory clearly differ from this behaviour by b
ing mostly spring-like in the whole frequency range. Abo
say � =1350, the apparent mass is very close in all ca
The apparent damping is plotted in Fig.13�b�, and it is see
-

FIG. 13. �a� Normalized apparent mass,Mapp=Im�z� fuzzy,equ� / � , and�b� nor-
malized apparent damping,Rapp=Re�z� fuzzy,equ� , of the fuzzy boundary im
pedance for different values of the
 : —, 1; ---, 0.75;¯ , 0.5; -·-, 0.25.
that the damping effect of the fuzzy decreases signi�cantly

L. Friis and M. Ohlrich: Structural fuzzy with continuous boundary
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when
 is reduced. The reason for this is that a reductio

 corresponds to an increase of
 . Due to the rotational mo
tion in the master, the spring elements in the spatial os
tors counteract one another when
 � 0. This also implie
that the impedance of the structural fuzzy is reduced sig
cantly, and this results in a lower dissipation induced in
master. For the chosen mass distribution, the maxim
damping effect occurs around� =1360, which is higher tha
the center frequency of� =1200. At low frequencies belo
� =100 it is seen that the apparent damping becomes
high. This nonphysical behavior is caused by the app
mate modeling of the fuzzy boundary impedance, w
goes toward in�nity at� =0.

Finally, Fig. 14 shows results for the vibration veloc
response of the simply supported master beam, withou
with the fuzzy substructure, which was discussed earlier.

FIG. 14. Vibration velocity response per unit harmonic force,Y� �x,x0�
=v� �x� /F� �x0� , at �a� x=0.445L and�b� x=0.785L of a simply supported bea
excited atx0=0.445L. Condition: —, without structural fuzzy and wi
structural fuzzy for
 : —, 1; ---, 0.75;¯ , 0.5; -·-, 0.25.
vibration responses atx=0.445L andx=0.785L are given in
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terms of the beam’s mobilityY� �x,x0� =v� �x� /F� �x0� for har-
monic force excitation atx0=0.445L. Considering both Fig
14�a� and 13�b� it is seen that the fuzzywithout spatia
memory, 
 =1, introduces a high damping in the mas
beam. The effect of this stretches over a relatively wide
quency band, which covers at least six �exural modes o
beam. From around� =950 to � =1740 the damping effe
is very pronounced and the vibration velocity of the mast
dampened by up to 25 dB. Further, this structural fu
causes the resonances of the beam structure to shift d
wards into the region where the fuzzy is mass-like. Th
the case in the range from� =0 to � =1340. Above�
=1340 the fuzzy becomes spring controlled and the r
nances are shifted upwards.

Next, considering the case of structural fuzzywith a spa
tial memory of
 =0.25, it is evident that the spatial mem
signi�cantly decreases the damping effect of the fuzzy. In
main damping region of the fuzzy, the damping effec
reduced by almost 10 dB. This is in good agreement with
apparent damping being reduced by a factor of 3.5
decreasing
 from 1 to 0.25, see Fig.13�b�. Further, it is see
that the strong spring-like behavior of the fuzzy at low
quencies dominates the response of the structure up to
� =140. As the fuzzy is spring-like in the whole frequen
range, it only causes the resonance frequencies of the
ture to shift upwards. Fig.14�b� shows the response a
position at some distance from the drive point. The dam
effect of the fuzzy both without and with spatial memor
seen to be very similar to what was discussed earlier fo
response at the drive point location. This illustrates and
�rms that the in�uence of the structural fuzzy is global, a
not speci�cally associated with the drive point.

VI. SUMMARY AND DISCUSSION

Soize’s method of including spatial memory in struct
fuzzy has been thoroughly examined and exempli�ed in
present paper. Additional illustrations and a derivation o
fuzzy boundary impedance have been given in order to
plain the ideas governing the method. To simplify the fu
modeling, Soize replaces the non-local spatial oscillator
a local equivalent oscillator. In the present article this o
lator has been given a physical interpretation. Further, i
been suggested that the so-called equivalent coupling f
which transforms the nonlocal boundary impedance in
local impedance, can be determined as a function of the
between spatial memory and the free wavelength in
master.

The fuzzy boundary impedance, which includes sp
memory, has been derived deterministically by usin
simple smoothing approach. This method assumes tha
fuzzy is described in terms of a prede�ned distribution
resonating mass per unit frequency. The developed meth
straightforward and it has been demonstrated that a pr
tion of the overall vibrations of the master can be made
simple way.

From numerical simulations of the response of a sim
supported beam with structural fuzzy and different amo

of spatial memory, it has been found that the spatial memory
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i-
signi�cantly reduces the damping introduced in the ma
Further, for the case studied it can be included that
memory in some cases completely eliminates the dam
effect of the fuzzy.

Various assumptions have been made in this pap
order to illustrate more clearly the effects of spatial mem
in the structural fuzzy. This includes the hypothesis of m
eling spatial memory by use of an equivalent spatial osc
tor. A validation of this hypothesis and a discussion o
limitations clearly remain to be made. Also, a simple wa
determining the equivalent coupling factor is as yet abse
the open literature. However, both of these two topics wi
dealt with in a companion paper, which soon will be sub
ted for publication. Finally, further investigations are s
required concerning practical questions of how one can
termine the distribution of resonating mass per unit
quency as well as the amount of spatial memory in rea
engineering structures.
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Simple vibration modeling of structural fuzzy with continuous
boundary by including two-dimensional spatial memory
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Many complicated systems of practical interest consist basically of a well-deÞned outer shell-like
masterstructure and a complicated internal structure with uncertain dynamic properties. Using the
Òfuzzy structure theoryÓ for predicting audible frequency vibration, the internal structure is
considered as one or morefuzzy substructuresthat are known in some statistical sense only.
Experiments have shown that such fuzzy substructures often introduce a damping in the master
which is much higher than the structural losses account for. A special method for modeling fuzzy
substructures with a one-dimensional continuous boundary was examined in a companion paper�L.
Friis and M. Ohlrich, ÒVibration modeling of structural fuzzy with continuous boundary,Ó J. Acoust.
Soc. Am. 123, 718Ð728�2008�� . In the present paper, this method is extended, such that it allows
modeling of fuzzy substructures with a two-dimensional continuous boundary. Additionally, a
simple method for determining the so-called equivalent coupling factor is presented. The validity of
this method is demonstrated by numerical simulations of the vibration response of a master plate
structure with fuzzy attachments. It is revealed that the method performs very well above a
nondimensional frequency of 500 of the master, and it is shown that errors below this frequency are
caused mainly by simplifying assumptions concerning the shape of the master vibration
displacement. ©2008 Acoustical Society of America.�DOI: 10.1121/1.2932077�

PACS number�s�: 43.40.At, 43.40.Tm�DF� Pages: 192Ð202
sÓ
r pr
de-
this

-
h is
tra-
own
. Ex
e to
s, a

ent
ture
s o
mp
ctua
zzy
or
is,
l use

lim-
ul-
se of
rent
con-

ecial
ous
ize
l
re-
oize
zzy
ce is

rical
ted
erts
od of
, in
need

hly
ther-
rmu-
ilis-

nsion
I. INTRODUCTION

For about 20 years, the Òtheory of fuzzy structure1Ð3

has been known as a suggested alternative method fo
dicting the vibration of complex systems having many
grees of freedom and uncertain properties. By using
theory, a system is divided into a well-deÞnedmasterstruc-
ture and one or more complex parts termed asfuzzy substruc
tures. It is assumed that the deterministic master, whic
typically a shell-like structure, can be modeled by using
ditional methods, whereas the fuzzy has imprecisely kn
properties that are known only in some statistical sense
amples of real-life fuzzy systems varying from small siz
large size are electro-mechanical hearing aids, machine
craft, and ship hulls.

Experiments have shown that such fuzzy attachm
seemingly introduce high damping in the master struc
due to the dissipation of energy into the many degree
freedom. The theory of fuzzy structures explains this da
ing effect, caused by multiple reßections rather than a
damping, by regarding the dynamic behavior of the fu
similar to that of a multitude of dynamic neutralizers
absorbers.4Ð6 Despite of this relatively simple hypothes
publications on experimental investigations and practica

a�Electronic mail: lf@oersted.dtu.dk
b�
Electronic mail: mo@oersted.dtu.dk
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of the theory of fuzzy structures have so far been very
ited in open literature. This is not only partly due to difÞc
ties in determining the fuzzy parameters but also becau
complicating issues such as the incorporation of diffe
motion coordinates and modeling of fuzzy structures
nected to the master through a continuous boundary.

The present paper examines and extends a sp
method of modeling structural fuzzy with a continu
boundary. This method was originally formulated by So
and brießy presented in a paper from 1993.3 A successfu
modeling of structural fuzzy with continuous boundary
quires that its stiffness must be taken into account. S
achieved this by introducing spatial memory in the fu
boundary impedance. However, such boundary impedan
nonlocal and, therefore, laborious to implement in nume
methods. A full implementation is, therefore, circumven
by introducing an equivalent coupling factor that conv
the distributed impedance to a local form. SoizeÕs meth
including spatial memory is clearly innovative; however
the authorÕs opinion, the main ideas of the method
clariÞcation and physical interpretation.

In a companion paper,7 SoizeÕs method was thoroug
examined and physical interpretations were offered. Fur
more, the smoothed fuzzy boundary impedance was fo
lated from simple mathematics without the use of probab
tic concepts. The present paper contributes with an exte

of the method to two dimensions and with a simple and

© 2008 Acoustical Society of America24�1�/192/11/$23.00
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general method for determining the equivalent coupling
tor. This method is examined through numerical simulat
and its limitations are discussed. The companion pape
the present paper represent a continuation of the pape
Pierceet al.8 and Strasberg and Feit9 but for structural fuzz
with continuous boundary.

The theory of fuzzy structures was originally develo
by Soize and presented in a series of papers1Ð3 from 1986 to
1993. During the last 20 years, the literature has partly
cused on interpretation and simpliÞcation of SoizeÕs t
that involves probabilistic concepts in order to account
model uncertainties. One milestone was the publication
simple and deterministic methods by Pierceet al.8 and Stras
berg and Feit.9 These papers clariÞed the main concept
the theory of fuzzy structures and have provided simple
cedures for predicting the smoothed average respon
complex systems. Furthermore, it was revealed that
damping induced in the master was governed mainly by
frequency-dependentresonating mass per unit frequencyof
the fuzzy. Several authors have examined the fuzzy dam
effect in great detail. This includes Maidanik and Becker10Ð12

who unambiguously demonstrated the nature of the dam
and set up design rules for complex attachments. The d
ing caused by different local oscillators was likewise inv
tigated by Maidanik and Becker.13,14 Moreover, Weaver15

and Carcaterra and Akay16 revealed that the fuzzy dampi
is a transient phenomenon in the case of a Þnite numb
complex attachments. It was shown that the energy retur
the master at later times when excited by a transient. O
the most difÞcult challenges in applying the theory of fu
structures is the determination of the resonating mass
unit frequency. During the last ten years, both Soize17,18 and
Pierce19 addressed this problem. Another important highl
was the development of a method3 for including spatia
memory in the modeling of structural fuzzy with continuo
boundaries. With the exception of a few publications,7,17,18

succeeding literature has mainly focused on develo
methods that regard the structural fuzzy as local fuzzy
structures. Many real-life structures, however, involve fu
structures with continuous boundaries, and the authors o
present paper believe that further study in this are
strongly needed in order to clarify some of the main ide

In favor of the reader, the method of including spa
memory in structural fuzzy will be brießy outlined in Sec
below. Hereafter, a general method of determining
equivalent coupling factor is presented for a master stru
with one-dimensional wave motion. Next, in Sec. IV,
fuzzy boundary impedance will be derived for structu
fuzzy attached to the master through an area. After this
method of Þnding the equivalent coupling factor is exten
to two-dimensional wave motion in the master structure
nally, in Sec. V, the method will be validated through
merical simulations and its usability and limitations will
discussed in Section VI.
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II. STRUCTURAL FUZZY WITH CONTINUOUS
BOUNDARY

A. Introduction

Fuzzy structure theory is intended for predicting the
bration and damping induced in a master structure due t
or more fuzzy substructures. The method is applic
mainly in the midfrequency range, where the master s
ture has well separated modes and where the fuzzy is h
resonant. Since the fuzzy is more or less compliantly
tached to the master, the fuzzy behaves predominantly
lar to a large number of Òsprung massesÓ or Òdynam
tralizersÓ resonating at different frequencies. If t
resonance frequencies of the fuzzy are closely spaced
the fuzzy substructure will minimize and absorb vibra
energy from the master over a considerable frequency
Consequently, by considering the vibration response o
master, it appears as if the master is highly damped.

In the theory of fuzzy structures, each fuzzy substruc
is modeled as inÞnitely many dynamic neutralizers atta
to the connection surface. These neutralizers have diff
masses and their resonance frequencies are closely s
and altogether they, therefore, introduce a freque
dependent damping in the master. Further, it is assume
the total mass of all the oscillators is equal to the mass o
fuzzy substructure that is to be modeled. A fuzzy subs
ture is typically separated from the master and conveni
modeled in terms of its boundary impeda
z� fuzzy,� �x0,y0;x1,y1� . This boundary impedance expresses
relationship between the force per unit areaF� � �x0,y0� in-
duced at�x0,y0� due to the velocityv� �x1,y1� of an inÞnitesi
mal area elementdA at �x1,y1� , while all other positions ar
locked, that is,

F� � �x0,y0�

= �z� fuzzy,� �x0,y0;x1,y1�v� �x1,y1�dA�v� �� x,y� � �x1,y1�� =0. �1�

B. The spatial oscillator

In many cases, the fuzzy substructure is attached t
master through a continuous boundary. This also implies
the stiffness distribution of the fuzzy has to be taken
account and that the associated transfer terms of the im
ance in Eq.�1� can only be neglected in special cases.7 Con-
sider a fuzzy substructure connected to the master stru
through a continuous boundary. Generally, this contin
boundary will be a surface, but for the sake of simplicity,
shall here consider a fuzzy attached to the master thro
one-dimensional boundary of lengthLfuzzy. Soize3 incorpo-
rates the stiffness of such a fuzzy substructure by includ
spatial memory in the fuzzy boundary impedance. Th
accomplished by introducinga spatial oscillator as sketch
in Fig. 1�a�. The oscillator is deÞned by its stiffness width
spatial memory 2� , the point massM, the lossfactor� , and
the resonance frequencyfr. Furthermore, it has a stiffne
density distributions� � �x� • x1� that only depends on�x� • x1�

and which is deÞned as

iis and M. Ohlrich: Structural fuzzy with continuous boundary 193
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s� � �x� • x1� = s�g� �x� • x1� = �M� r
2�� 1 + i� �g� �x� • x1� ,

�2�

where� r =2� fr is the angular resonance frequency ands� is
the complex total stiffness of the oscillator. The distribu
function g� �x� • x1� is an even function with an area of 1.
a one-dimensional spatial memory, Soize suggests3 that
g� �x� • x1� is a triangular distribution, as shown in Fig.1�b�.
This distribution is given as

g� �x� • x1� = g� �x1 • x� � =
� • �x� • x1�

� 2 1�x1� �x� • � ,x�+� �� ,

�3�

where 1�x1� �x� • � ,x�+� �� is a function, which is equal to 1 whe
x1� �x� • � ,x� +� � and 0 elsewhere. The spatial oscillato
discussed in more detail in Ref.7.

C. Sets of inÞnitely many identical oscillators

Let us consider a fuzzy substructure with spa
memory connected to the master over a lengthLfuzzy. Such a
substructure comprises adouble in�nity of spatial oscillators
as sketched in Fig.2, where each oscillator is depicted a
point mass and the triangular stiffness distribution show
Fig. 1�b�. First, the oscillators are grouped into sets of i
nitely many identical oscillators overlapping one anoth
such that each position onLfuzzy is associated with a poi
mass. Second, the structural fuzzy consists of inÞnitely m
different sets, each with itsindividual resonance frequenc
mass, and spatial memory.

Now, the nth set �n� �1 ,� �� of spatial oscillators i
shown in Fig.3�a�. This set has a resonance frequencyfr,n, a
total mass ofMn, and a spatial memory of 2� n. Further, the
ith spatial oscillator� i � �1 ,� �� of this nth set has the natur

u(x)

u(x•)

1/�

g� (x•,x1)

x•

Mn,i

x1-� x1+�

x1-� x1+�

(a)

(b)

x1

x1

x

x•

x

x•

FIG. 1. Fuzzy oscillator with spatial memory.�a� Oscillator attached to
boundary of motionu�x� and�b� stiffness distribution function of the osc
lator springsg� �x� • x1� .
frequencyfr,n,i = fr,n, a massMn,i =Mn/Lfuzzy, and a total stiff-

194 J. Acoust. Soc. Am., Vol. 124, No. 1, July 2008
y

nesss� n,i. The relationship between the force per unit len
F� � ,n�x0� at x0 and the velocityv�x1� at x1, that is, the bound
ary impedance of thenth setz� � ,n�x0• x1, fr,n� , was derived in
Ref. 1. When multiplied bydx1, this is given as

z� � ,n�x0 • x1, fr,n�dx1 =
s� n,i

i �
�� x0,x1

•
s� n,i

s� n,i • � 2Mn,i
�g� n

� g� n
�

� �x0 • x1�dx1�
= • i� � fr,n

2

f2 	�1 + i� �Mn,i

� �� x0,x1

•
fr,n
2 �1 + i� �

f r,n
2 �1 + i� � • f2�g� n * g� n

�

� �x0 • x1�dx1�, �4�

where� x0,x1
is the Kronecker delta and� means convolutio

with the argument�x0• x1� . It is seen that the transfer ter
of the boundary impedance in Eq.�4� are proportional t
�g� n

� g� n
�� x0• x1� . This function has been plotted in Fig.4,

and it can be observed that these transfer terms are l
close tox1 and that the spatial memory in effect reaches� n
on either side of the response pointx1.

The total boundary impedance of the fuzzy substruc
can be determined as the sum of all the impedances of a
sets, which yields

structural fuzzy consisting of infinitely many
different sets of spatial oscilators.

deterministic master structure

x

�

�

n•th set

Lfuzzy

FIG. 2. Master structure undergoing one-dimensional wave motion w
fuzzy substructure attached through a one-dimensional continuous bo
in the x direction. The fuzzy substructure has inÞnitely many sets of s
oscillators and thenth set consists of inÞnitely many identical oscillat
with resonance frequencyfr,n,i, massMn,i, and spatial memory� n.

Mn,i
sn,i x

Lfuzzy

(a)

(b)

x•

x

x•
Mn,i

FIG. 3. A set of inÞnitely many identical oscillators attached to the ma

�a� spatial oscillators and�b� equivalent local oscillators.
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z� fuzzy,� �x0 • x1�dx1 = 

n=1

�

z� ,n�x0 • x1, fr,n�dx1. �5�

This discrete sum can be replaced by an integral if the
sufÞcient modal overlap.20 This is done by replacingz� ,n�x0
• x1, fr,n�dx1 from Eq. �4� with a continuous distribution d
noted byz� �x0• x1, fr�dx1dfr, where fr is a continuous fre
quency variable� fr,n� f r� , and further by assuming that t
sets resonate between bounding frequenciesfr,lower and
fr,upper. This gives

z� fuzzy,� �x0 • x1�dx1 = �
fr,lower

fr,upper

z� �x0 • x1, fr�dx1dfr . �6�

By substituting herein the detailed expression of a con
ous version of Eq.�4�, the fuzzy boundary impedance b
comes

z� fuzzy,� �x0 • x1�dx1

= •
i2� f

Lfuzzy
�

fr,lower

fr,upper� fr
2

f2	�1 + i� �mfuzzy� f r�

� �� x0,x1
•

fr
2�1 + i� �

f r
2�1 + i� � • f2�g� * g� �� x0

• x1�dx1�dfr , �7�

where Mn,i has been replaced bymfuzzy� f r�dfr that corre
sponds to the total mass of the fuzzy substructure reson
in the inÞnitesimal frequency band betweenfr and fr +dfr.

D. Equivalent local modeling method

A numerical implementation of the boundary impeda
given in Eq. �7� is rather complicated due to itsnonlocal
nature and requires, for instance, the use of a Þnite ele
model with special fuzzy elements. Unfortunately, this i
contradiction with the idea of the theory of fuzzy structu
being a simple modeling tool. However, as indicated in
3�b�, Soize3 solved this problem by introducing a set
equivalent local oscillatorsthat can imitate the bounda
forces induced by a set of spatial oscillators. This means
the boundary impedancez� fuzzy,� in Eq. �7� can be replace
with an equivalent boundary impedancez� fuzzy,equthat has di
rect terms only. Figure3�b� shows that the equivalent loc
oscillator corresponds to a modiÞed simple oscillator w
spring stiffnesss� 1,n,i, but where the point mass is ground
via a second spring with stiffnesss� 2,n,i, such thats� n,i =s� 1,n,i

(g� *g� )(x0-x1)

x1-� x1+�

x•

g� (x•,x1)

x1 x1+2�x1-2�

x

1/�
x•

FIG. 4. Fuzzy oscillator with spatial coupling: ---, stiffness distribu
functiong� �x� • x1� of the oscillator springs and Ñ, convolution of the sti
ness distribution with itself�g� � g� �� x0• x1� .
+s� 2,n,i. This means that the equivalent oscillator is springlike

J. Acoust. Soc. Am., Vol. 124, No. 1, July 2008 L. Fr
g

nt

t

at low frequencies because the massless bar that suppo
point mass in Fig.1�a� is unable to rotate; the spatial os
lators, therefore, impose springlike properties on the m
at low frequencies.

The relationship between the stiffnesses of the sp
for the nth set of equivalent oscillators shown in Fig.3�b� is
given in terms of theequivalent coupling factor� n,i and can
be expressed as7

� n,i = s� 1,n,i/�s� 1,n,i + s� 2,n,i� = s� 1,n,i/s� n,i , �8�

where � n,i � �0 ,1� . This parameter� n,i must be determine
as a function of the characteristic dimension� n of the spatia
oscillators, and such a derivation is presented in Sec. II
introducing� n,i, the boundary impedancez� equ,n�x0, fr,n� of the
nth set of equivalent local oscillators becomes3

z� equ,n�x0, fr,n� =
s� n,i

i �
�1 •

s� n,i

s� n,i • � 2Mn,i
� n,i	

= • i� � fr,n
2

f2 	�1 + i� �Mn,i

� �1 •
fr,n
2 �1 + i� �

f r,n
2 �1 + i� � • f2� n,i�. �9�

Note that � n,i � 1 when s� 2,n,i � 0 and z� equ,n will then ap-
proach the impedance of a simple oscillator. Further, w
� n,i � 0, then s� 1,n,i � 0, which indicates that the structu
fuzzy has no effect on the master. Inserting a contin
version of Eq.�9� into Eq. �6� yields the boundary impe
ancez� fuzzy,equ�x0� of the equivalent fuzzy,

z� fuzzy,equ�x0� = •
i2� f

Lfuzzy
�

fr,lower

fr,upper� fr
2

f2	�1 + i� �mfuzzy� f r�

� �1 •
fr
2�1 + i� �

f r
2�1 + i� � • f2� �dfr . �10�

This expression also applies for two-dimensional struc
fuzzy when the connectionlength Lfuzzy is replaced by th
connection areaAfuzzy. It should be noted that the equival
coupling factor� generally is a function of frequency. In
companion paper,7 it was suggested that� can be determine
as a function of the ratio� / 	 , where	 is the wavelength o
vibration in the master structure, which has one-dimens
wave motion only.

III. METHOD OF DETERMINING THE EQUIVALENT
COUPLING FACTOR

A. Matching of boundary forces

Before the suggested equivalent modeling method
be utilized, it is necessary to establish a relationship bet
the parameters� and � . This requires that the bounda
forces induced by the set of spatial oscillators are mat
with the forces induced by the equivalent local oscillat
Results for the equivalent coupling factor� determined in
this way were published by Soize3 but only for a very spe
ciÞc case of a simply supported beam with an attached
substructure with continuous boundary. His results show

mean value of� as a function of the spatial width� for only

iis and M. Ohlrich: Structural fuzzy with continuous boundary 195
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ith
three coarse frequency bands with a width of 100 Hz g
from 350 to 650 Hz. The authors of the present paper, h
ever, seek a simple and general method for Þnding� . Ac-
cordingly, a method for determining� will be presented i
the following, again as a function of the ratioc=� / 	 . For
simple master structures with sinusoidal vibration, the w
length 	 is equal to the free wavelength. For master st
tures with more complicated eigenfunctions, it is sugge
that the term wavelength is replaced by twice the dist
between adjacent nodes.

Next, the matching of the boundary forces induced
the nth set of spatial and equivalent oscillators can be
pressed as

F� equ,n� �x0� = F� � ,n� �x0� . �11�

In terms of velocities and impedances, this becomes

z� equ,n�x0�v� �x0� = �
Lfuzzy

z� � ,n�x0 • x1�v� �x1�dx1. �12�

Inserting herein the expressions for the impedancesz� � ,n�x0
• x1� andz� equ,n�x0� from Eqs.�4� and�9�, respectively, yield

s� n,i�1 •
s� n,i

s� n,i • � 2Mn,i
� 	u� �x0�

= s� n,i�u� �x0� • �
Lfuzzy

s� n,i

s� n,i • � 2Mn,i
�g� * g� �

� �x0 • x1�u� �x1�dx1�. �13�

Next, by rearranging, we obtain an equation that has sim
terms on each side of the equality sign,

s� n,i�u� �x0� •
s� n,i

s� n,i • � 2Mn,i
� u� �x0��

= s� n,i�u� �x0� •
s� n,i

s� n,i • � 2Mn,i

� �
Lfuzzy

�g� * g� �� x0 • x1�u� �x1�dx1�. �14�

By eliminating these terms, Eq.�14� is reduced to

� u� �x0� = �
Lfuzzy

�g� * g� �� x0 • x1�u� �x1�dx1, �15�

from which an expression for� is obtained,

� �x0� =

�
Lfuzzy

�g� * g� �� x0 • x1�u� �x1�dx1

u�x0�
. �16�

B. Approximate expressions for the masterÕs
equivalent coupling factor

Determining� from Eq. �16� requires a detailed know
edge about the form of the motion displacementu� �x1� of the
master. At this point in the analysis, this form has not b

identiÞed and it is, therefore, preliminarily approximated by
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a suitably simple function ofx. Moreover, since we a
mostly concerned with prediction in the midfrequency ra
it is assumed that the wavelength of the master vibratio
shorter than the lengthL of the structure. This also impli
that the wave motion in the master is relatively indepen
of its boundary conditions. Therefore, a sinusoidal func
is a good approximation for the one-dimensional vibratio
the master, with the exception of the regions very close t
edges. Thus, it is assumed that the displacementu�x1� of the
master can be described as

u� �x1� = sin�2�
	

x1	, �17�

where	 is the free wavelength.21 Inserting this in Eq.�16�
yields � as a function ofx0 andc,

� �x0,c� =

�
Lfuzzy

�g� * g� �� x0 • x1�sin�2�
	

x1	dx1

sin�2�
	

x0	
. �18�

Now, the convolution product inherent in Eq.�18� has only
nonzero values whenx1� �� x0•2 � � , �x0+2� �� and it is,
therefore, sufÞcient to solve the integral in this interval
vided thatx1 is at least 2� from the edge of the fuzzy. If th
is fulÞlled, no truncation errors occur and an analytical s
tion of Eq. �18� is found by using the symbolic mathema
softwareMAPLE¨ �version 10�,

� �x0,c� = � �c� = �sin� � c�

� c
�4

. �19�

This is a surprisingly simple result, which isindependentof
the positionx0 on the master structure because of the ho
geneity of the fuzzy. The function sin� � c� / � � c� in Eq. �19� is
recognized as the sink function. Figure5 shows� as a func
tion of c=� / 	 for two different regions. In Fig.5�a�, it is
seen that� =1 when � =0, which is the case of no spat
memory. Up to aboutc=0.8, � appears to be a uniform
descending function. For values higher thanc=0.8, � be-
comes very small and the ordinate is, therefore, extend
Fig. 5�b�. Here, the behavior of the sink function is ea
recognized, showing soft minima and maxima, and it is
vealed that� becomes zero whenc=1,2,3, . . ..

For the remaining part of the fuzzy wherex1 is closer
than 2� from the edge of the fuzzy, it is not possible
integrate with respect tox1 in the whole interval �� x0
•2 � � , �x0+2� �� and the solution for� becomes quite com
plicated. The simplest way to overcome this problem i
assumethat � takes on a constant value that can be ca
lated from Eq.�19�. The truncation error introduced beca
of this assumption naturally depends on the length� .
Hence, the larger the values of� are, the larger the intro
duced truncation error is.

At this point, two assumptions have been made: F
the vibration of the master is approximated by a sinuso
function. Errors due to this assumption will only be sign
cant at low frequencies where the free wavelength21 in the
master is large. Second,� is considered to be constant w

position. As mentioned, this assumption depends on the
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variation of � with frequency. The signiÞcance of these
rors in the prediction of� will be examined in Sec. V, whe
numerical simulations will be presented for a plate ma
structure with an attached fuzzy substructure with sp
memory.

IV. STRUCTURAL FUZZY WITH TWO-DIMENSIONAL
SPATIAL MEMORY

A. Determination of the two-dimensional fuzzy
boundary impedance

So far, the method of including spatial memory has b
restricted to fuzzy substructures attached to the master
ture through a one-dimensional boundary. Most real
fuzzy structures, however, are attached to their m
through a surface that also undergoes two-dimensional v
tion. Therefore, the method of including spatial memor
this modeling of fuzzy structures is required and it is, th
fore, extended to two dimensions in the following.

To accomplish this, the stiffness distribution funct
g� �x� • x1� in Eq. �3� for the spatial oscillator is initially re
placed by a two-dimensional versiong� ��r� , 
 � ; r1,
 1��,
which is a function of the distance�r� ,
 � ; r1,
 1� between two
surface points� r� , 
 � � and�r1,
 1� described in polar coord
nates; it should be noted that the point mass of the sp
oscillator is located at� r� , 
 � � . This two-dimensional stiff
ness distribution that is shown in Fig.6�a� in a Cartesia
coordinate system represents a cone with aradius of � at its
base and avolumeof 1. Based on these requirements,
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0.6

0.8

1

�

1 1.5 2 2.5 3 3.5 4 4.5 5
0
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3
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�

c=� /�

c=� /�

(b)

(a)

FIG. 5. Variation of the equivalent coupling factor� as a function of th
ratio c=� / 	 . �a� Values ofc from 0 to 1 and�b� from 0.8 to 5.
distribution can be expressed mathematically as

J. Acoust. Soc. Am., Vol. 124, No. 1, July 2008 L. Fr
l
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g� ��r� ,
 � ;r1,
 1�� =
� • �r� ,
 � ;r1,
 1�

1

3
� � 3

1��r� ,
 � ;r1,
 1��� �

=
� • � r� 2 + r1

2 • 2 r� r1 cos� 
 � • 
 1�

1

3
� � 3

� 1��r� ,
 � ;r1,
 1��� � , �20�

where 1��r� ,
 � ;r1,
 1��� � is a function that is unity whe
�r� ,
 � ; r1,
 1� � � , and 0 elsewhere. The corresponding s
ness distribution of a two-dimensional spatial oscill
s� � ,n,i��r� , 
 � ; r1,
 1��, thus, becomes

s� � ,n,i��r� ,
 � ;r1,
 1�� = s� n,ig� ��r� ,
 � ;r1,
 1��

= �Mn,i� r,n
2 �� 1 + i� �g� ��r� ,
 � ;r1,
 1�� ,

�21�

where it applies thatMn,i =Mn/Afuzzy andAfuzzy is the area o
the fuzzy connection surface. In the case of a
dimensional connection boundary, Ref.7 gives an expressio
for the force per unit lengthF� n,i� �x0� at x0 due to the dis
placementu� �x1� at x1 caused byonly onespatial oscillator
By replacing this one-dimensional version ofg� by the new
two-dimensional version, we obtain an expression for
relationship between the force per unit areaF� n,i� � r0,
 0� and
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FIG. 6. �a� Normalized stiffness density distributiong� of the oscillato
springs.�b� Variation of the functionh� with x andy.
the displacementu�r1,
 1� that reads
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F� n,i� � r0,
 0� = s� � ,n,i��r� ,
 � ;r1,
 1���� �r� ,
 � � ,� r1,
 1�

•
s� � ,n,i��r� ,
 � ;r1,
 1��r1dr1d
 1

• � 2Mn,i + s� n,i
�u� � r1,
 1� ,

�22�

where the inÞnitesimal areadA1 is given asdA1=r1dr1d
 1.
Next, to Þnd the force per unit areaF� n� � r0,
 0� due to a set o
inÞnitely manyidenticalspatial oscillators with the base d
placementu� � r1,
 1� , Eq. �22� is integrated with respect
� r� , 
 � � over the fuzzy connection surface as

F� n� � r0,
 0� = �
Afuzzy

s� � ,n,i��r� ,
 � ;r1,
 1���� �r� ,
 � � ,� r1,
 1�

•
s� � ,n,i��r� ,
 � ;r1,
 1��dA1

• � 2Mn,i + s� n,i
�u� � r1,
 1�dA� . �23�

Finally, this expression can be reduced to

F� n� � r0,
 0� = �s� n,i� � r� ,
 � � ,� r1,
 1� •
s� n,i

2

• � 2Mn,i + s� n,i

� h� ��r1,
 1;r0,
 0��dA1�u� � r1,
 1� , �24�

where the functionh� ��r1,
 1; r0,
 0�� is given by

h� ��r1,
 1;r0,
 0��

= �
Afuzzy

g� ��r� ,
 � ;r1,
 1��g� ��r� ,
 � ;r0,
 0��dA�

= �
0

2� �
0

2�

g� ��r� ,
 � ;r1,
 1��g� ��r� ,
 � ;r0,
 0��r�dr�d
 � .

�25�

It follows that the boundary impedance of thenth set multi-
plied by dA1 is given as

z� � ,n��r0,
 0;r1,
 1��dA1

=
s� n,i

i �
�� �r� ,
 � � ,� r1,
 1� •

s� n,i

• � 2Mn,i + s� n,i

� h� ��r1,
 1;r0,
 0��dA1�, �26�

and by analogy to Eq.�7�, the fuzzy boundary impedan
becomes

z� fuzzy,� ��r0,
 0;r1,
 1��dA1

= •
i2� f

Afuzzy
�

fr,lower

fr,upper� fr
2

f2	�1 + i� �mfuzzy� f r�

� �� �r� ,
 � � ,� r1,
 1� •
f r
2�1 + i� �

f r
2�1 + i� � • f2

� h� ��r1,
 1;r0,
 0��dA1�dfr . �27�

From Eq.�27�, it is seen that transfer impedance terms of

fuzzy substructure are proportional to the function
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h� ��r1,
 1; r0,
 0��. This function can be calculated nume
cally and the result is shown in Fig.6�b� for the cas
�r1,
 1� =�0 ,0� . It is clearly observed thath� looks similar to
a two-dimensional version of the convolution shown in
4. Also, it can be seen thath� extends to a radius of 2�
relative to�r1,
 1� and that the volume under the surfac
unity.

B. Determination of the equivalent coupling factor

By analogy to the method in Sec. III, the equiva
coupling factor will now be determined as a function oc
=� / 	 b, where 	 b is the vibration wavelength for bendi
waves. Again,	 b is suggested to be the free wavelength
simple master structures and twice the distance betwee
jacent nodes for more complicated master structures. A
pression for the equivalent coupling factor is found by
tending the expression in Eq.�16� to two dimension
yielding

� � r0,
 0;c� =

�
Afuzzy

h� ��r1,
 1;r0,
 0��u� � r1,
 1�dA1

u�r0,
 0�

=

�
0

2� �
0

2�

h� ��r1,
 1;r0,
 0��u� � r1,
 1� r1dr1d
 1

u� � r0,
 0�
.

�28�

As for the one-dimensional case, the determination of� re-
quires prior knowledge of the vibration displacements of
master structure. Again this problem is overcome by app
mating the displacements by a product of two sinusoida

u� �x1,y1� = sin�2�
	 x

x1	sin�2�
	 y

y1	, �29�

where	 x and 	 y are the vibration wavelengths for bend
motion in thex andy directions, respectively. By substituti
x1=r1 cos� 
 1� and y1=r1 sin� 
 1� in Eq. �29�, the displace
ment is transformed to polar coordinates, giving

u� � r1,
 1� = sin�2�
	 x

r1 cos� 
 1��sin�2�
	 y

r1 sin� 
 1��. �30�

Further, the bending wavelength	 b can be found from th
relation between the wave numbers,21

kb
2 = kx

2 + ky
2 � �2�

	 b
	2

= �2�
	 x
	2

+ �2�
	 y
	2

, �31�

which by rearranging becomes

	 b = � 	 x
2	 y

2

	 x
2 + 	 y

2 . �32�

As for the one-dimensional case, it is suggested that	 b is
replaced by the free wavelength for simple master struc
and by twice the distance between adjacent nodes for m
structures with more complicated eigenfunctions. Again
only considering positions on the fuzzy connection sur

that are at least a distance of 2� from the edges of the fuzzy,
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an expression for� is found by substituting Eqs.�25� and
�30� into Eq. �28�. This expression becomes quite com
cated and the integrals cannot be solved analytically. N
theless, by using numerical integration,� has been dete
mined as a function ofc=� / 	 b and the results are shown
Fig. 7.

First, it should be noted that� does not depend on t
forcing position �r0,
 0� as long as the response posit
� r1,
 1� is at least a distance of 2� from the edges of the fuzz
connection surface. Second, it is found that� is insensitive
to the speciÞc values of	 x and 	 y and only depends on	 b.
Figure7�a� shows that the variation of� resembles the un
formly descending function seen in Fig.5�a� for values up to
c=0.8. Again, for values abovec=0.8, the equivalent cou
pling factor takes on very small values. Closer inspectio
this low value region�see Fig.7�b�� reveals a different pa
tern of smooth minima and maxima from that observe
Fig. 5�b�. Nevertheless, the equivalent coupling factor
becomes 0 for certain values ofc.

V. NUMERCIAL VALIDATION OF EQUIVALENT
MODELING METHOD

In a companion paper,7 it was shown that the spat
memory in the structural fuzzy signiÞcantly reduces
damping effect. This Þnding was achieved by using
equivalent modeling method just described in Sec. II. In
following, the equivalent modeling method will be valida
for certain two-dimensional problems by numerical sim
tions. The Þnite element method22 has been used to solve t
ßexural vibration response of a rectangular plate that is
sidered as the master; the plate undergoes two-dimen
bending vibration and is assumed to be simply suppo
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b

FIG. 7. Variation of the equivalent coupling factor� as a function ofc
=� / 	 b. �a� Values ofc from 0 to 1 and�b� from 0.8 to 4.
along all four edges that have side lengthsLx andLy, with an
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-
al

aspect ratio given byLy=1.3Lx. A fuzzy substructure is a
tached to the plate on the whole surface areaA=LxLy, so tha
Afuzzy=A. The loss factor of the plate is set to 0.005, whe
the loss factor of the fuzzy oscillator springs has been ch
to be 0.03. The resonating mass per unit frequencymfuzzy� f r�
is a normal distribution given as

mfuzzy� f r� =
Mfuzzy

std á� 2�
e• � fr0 • fr�

2/�2ástd2� , �33�

where fr0 is the center frequency and std is the stan
deviation. For this distribution, the bounding frequen
fr,lower and fr,upper corresponds to� =0 and� , respectively
The chosen mass distribution is shown in Fig.8 as a function
of the plateÕs nondimensional frequency� deÞned as

� = � � 12
 �1 • � 2�

E

� Lx
2 + Ly

2

h
, �34�

whereh is the plate thickness, and
 , E, and� are the density
YoungÕs modulus, and PoissonÕs ratio of the plate, r
tively. The center frequencyfr0 corresponds to� =1200 and
the standard deviation std=0.7fr0. The total mass of the a
tached fuzzyMfuzzy is one-twentieth of the plate mass,
 Ah.
Also, the free bending wavelength	 b in the master plate
found21

	 b = 2� � Lx
2 + Ly

2

�
. �35�

For the following response prediction, the boundary
pedance of the fuzzy is computed by numerical integratio
the integrals in Eqs.�27� and�10�, whereLfuzzy is replaced b
Afuzzy in the latter. Further,� =c	 b is assumed to be consta
with frequency implying thatc and� , respectively, increas
and decreases with frequency.

First examined is the effect of a simple fuzzy with
spatial memory that is modeled by using Eq.�27� with �
=0. Figure 9 shows results for the vibration velocity
sponse per unit harmonic force of the simply supported
ter plate, with and without such a fuzzy substructure. H
the response location�x,y� and excitation position�x0,y0�
coincide, so the results represent the direct mobility of
system. Since the fuzzy has no spatial memory, it is cle
seen that it has a strong damping effect on the vibra
response of the master. This effect mainly occurs from�
=500 and upwards, where the resonating mass per un

0 500 1000 1500 2000
2
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� 5

m
fu

zz
y/M

fu
zz

y

Non�dimensional frequency, �

FIG. 8. Normalized resonating mass per unit frequency described by
mal distribution with a centre frequencyfr0 corresponding to� =1200 and
standard deviation std=0.7fr0.
quency has an appreciable value; that is, it is approximately

iis and M. Ohlrich: Structural fuzzy with continuous boundary 199



s in
n

te o
ted
od
um
the
ter

is
nite

sig
s.
uce
ding

dic-
of

using
e

e
tural

g
fre-
o
n
that

iction
ia-

umed
are
ap-

at is,
d
ror
e-
uen-
u-
tors.
atial
ory
the
ct
t a

ring
other

late
ig.

ply

th

ply

-
l

half or more of its maximum value according to the result
Fig. 8. At frequencies above� =1000, it is furthermore see
that the direct mobility closely approaches the asympto
•80 dB for a master plate of inÞnite size. It should be no
that such high damping effect only occurs at early and m
erate times for fuzzy substructures consisting of a Þnite n
ber of oscillators, which are excited by an impulse, since
ÒabsorbedÓ energy returns from the fuzzy to the mas
later times.15,16 Drexel and Ginsberg23 also investigated th
damping effect for a master cantilever beam with a Þ
number of spatially distributed discrete oscillators.

An example of thetransfer mobility of the plate with
and without structural fuzzy is shown in Fig.10. As in Fig.9,
the vibration velocity response of the master is reduced
niÞcantly due to the fuzzy from about� =500 and upward
Also, at high frequencies, the response is strongly red
and is even less than the transfer mobility of a correspon
inÞnitely large plate which has a low value of •94 dB at�
=2000.
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FIG. 9. Vibration velocity response per unit harmonic force of a sim
supported plate, Y� �x,y;x0,y0� =v� �x,y� /F� �x0,y0� , at �x,y� =�x0,y0�
=�0.175Lx,0.5525Lx� . Curves: Ñ, without structural fuzzy and ---, wi
structural fuzzy without spatial memory using Eq.�27� with � =0.
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FIG. 10. As in Fig.9, but for response at�x,y� =�0.575Lx,1.1375Lx� and

excitation at�x0,y0� =�0.175Lx,0.5525Lx� .
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Next presented is the validation of the equivalent pre
tion method. This validation consists in a comparison
simulated responses based on the prediction method
the equivalent local oscillators�Eq. �10�� and the referenc
method based on spatial oscillators�Eq. �27��. Consider th
simply supported master plate with an attached struc
fuzzy that has a constant andhigh spatial memory� =0.2Lx.
By using this value of� in Eq. �28�, the correspondin
equivalent coupling factor is found as a function of
quency and substituted in Eq.�10�. A comparison of the tw
predictions is shown in Fig.11 that displays the vibratio
responses in terms of the direct mobility. This reveals
there is a very good agreement between the two pred
methods from about� =500 and upwards. SigniÞcant dev
tions occur only at low frequencies because of the ass
sinusoidal vibration�Eq. �29��. Since the plateÕs edges
simply supported, the sinusoidals are only a really good
proximation around the plateÕs natural frequencies; th
the frequencies where the conditions 2L/ 	 x=1,2,3, . . ., an
2L/ 	 y=1,2,3, . . ., areboth fulÞlled. Nevertheless, this er
in the estimation of� rapidly reduces with increasing fr
quency. Evidently, truncation errors that occur at all freq
cies due to the constant value of� do not have a large inß
ence on the prediction based on equivalent oscilla
Moreover, compared to the previous case of no sp
memory�Fig. 9�, it is also observed that the spatial mem
drastically reduces the damping effect of the fuzzy. In
companion paper,7 it was shown how the damping effe
decreases when� is reduced. The reason for this is tha
reduction in� corresponds to an increase in� . Thus, due to
the local angular motion in the master structure, the sp
elements in the spatial oscillators counteract one an
when� � 0.

The corresponding transfer mobility of the master p
with structural fuzzy of high spatial memory is shown in F
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12. Again, the two predictions are seen to be in good agree-
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ment at frequencies from� =500 and upwards. Furthermo
the spatial memory in the fuzzy here is also seen to radi
reduce the damping effect.

The equivalent method of prediction performs poorl
low frequencies, say, below� =500, because the sin
function approximations of the master vibration pattern h
to hold for two dimensions. For a one-dimensional ma
structure, however, this approximation only involves one
rection, and the equivalent method is, therefore, expect
perform well also at lower frequencies. To demonstrate
a beam with one-dimensional wave motion is considere
the master. A fuzzy substructure is attached on the w
lengthL of the beam, so thatLfuzzy=L. The loss factor of th
beam is set to 0.005, whereas the loss factor of the f
oscillator springs has been chosen to be 0.03. The reson
mass per unit frequency is again a normal distribution w
the center frequencyfr0 corresponds to� =1200 and st
=0.27fr0. The nondimensional frequency� for the beam i
deÞned as

� = � � 12

E

L2

h
. �36�

In this example, the spatial memory� =0.1L and the tota
mass of the fuzzyMfuzzy is one-twentieth of the beam ma

 SL, whereS is its cross-sectional area. The vibration ve
ity of the beam in terms of the input mobility is shown
Fig. 13. It is seen that the results of the two types of pre
tions given by Eqs.�7� and�10� are almost coinciding from
� =250 and upwards. Thus, as was anticipated, the eq
lent method is found to apply at lower frequencies in
one-dimensional case. The results show that the predict
reliable at least one octave lower in frequency for the t
dimensional case.

VI. SUMMARY AND DISCUSSION

In 1993, Soize3 introduced a method for modeling stru
tural fuzzy with a continuous boundary. This method
later extended17 and validated.18 Moreover, a part of thi
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FIG. 12. As in Fig.11, but for response at�x,y� =�0.575Lx,1.1375Lx� and
excitation at�x0,y0� =�0.175Lx,0.5525Lx� .
method was systematically examined andreformulatedin a
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o
,
s

y
g

-
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more simple form in a companion paper.7 The main objectiv
of the present paper is to extend the method to two dim
sions and to improve its usability.

Structural fuzzy with a continuous boundary can
modeled by including the stiffness of the fuzzy in terms
spatial memory. Soize implemented such spatial memo
introducing the so-called spatial oscillators. However
make the implementation of the fuzzy boundary imped
viable, he replaced these nonlocal spatial oscillators witlo-
cal equivalent oscillatorsthat can imitate boundary forc
imposed on the master. This approximation required th
troduction of theequivalent coupling factorthat describe
the relationship between the width of the spatial oscilla
and the stiffness of the local equivalent oscillators. The
rent paper has presented a simple and general metho
determining this factor as a function of a practical param
given by the ratio between the width of the spatial oscilla
and the free structural wavelength in the master structur
assuming that the vibration pattern of the master stru
can be approximated by one or more sinusoidals and
truncation effects at the end of the fuzzy connection bo
ary can be ignored, an expression for the equivalent cou
factor has been derived. This expression was evaluated
lytically for one-dimensional wave motion in the mas
structure, and it is revealed that the solution is a very sim
expression in the form of a sink function to the power o

For instructive reasons, the method of including mem
in the structural fuzzy was originally formulated for a str
tural fuzzy attached to the master through a one-dimens
boundary. In the present paper, this formulation has
extended to two dimensions, so that it applies for struc
fuzzy attached to the master through an area. Th
achieved by introducing a two-dimensional stiffness distr
tion for the spatial oscillator. Additionally, an expression
the equivalent coupling factor is derived and computed
merically as a function of a practical parameter, that is
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ratio between spatial memory and the free wavelength of the
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vibration in the master. This solution proved to be clos
related to the solution for one-dimensional wave motio
the master.

A validation of the equivalent method by using lo
equivalent oscillators as a replacement for the spatial o
lators has not previously been published in open literatur
the present paper, the validity of the method has, there
been tested by comparing numerical simulations of the
sponse of a master plate with attached structural fuzzy
sults, based on the use of spatial oscillators and equiv
oscillators show a very good agreement for frequen
above� =500, where� is the nondimensional frequency
the master structure. Below this frequency, errors are m
caused by the assumption of sinusoidal vibration disp
ment. For a master beam with one-dimensional wave m
and a fuzzy substructure attached on the whole length,
revealed that good agreement between predictions is al
achieved from about� =250. The reason is that the assum
tion of sinusoidal vibration displacement only has to be
Þlled for one dimension.

The present paper has made various assumptions
der to develop a viable method for modelling structural fu
with a continuous boundary. First of all, it has been assu
that the size of the spatial memory in the fuzzy is kno
beforehand. In real-life engineering structures, the sp
memory is often unknown and relatively difÞcult to meas
Further, the method of determining the equivalent coup
factor only applies for fairly simple master structures, wh
its vibration pattern can be approximated as one or m
sinusoidals in the midfrequency range. Also important is
estimation of the distribution of resonating mass per
frequency. It is clear that practical methods for determin
these fuzzy parameters are still needed.
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5.4 Discussion of the results obtained in paper II and III 
 

In paper III it is shown that modeling of structural fuzzy with two-dimensional spatial 

memory is possible using equivalent local oscillators above a non-dimensional frequency of 

500=W  of the master. Sometimes, however, it is desired to model structural fuzzy with spatial 

memory at lower frequencies. A technique for achieving such modeling is discussed in the 

following. 

Figure 13 in paper II shows the apparent mass and damping for four different values of the 

equivalent coupling factor a . In fig. 13b it seems as if the apparent damping is directly 

proportional to a . This proportionality can be utilized for approximating the damping effect at non-

dimensional frequencies below 500. An investigation verifying general proportionality between the 

apparent damping and the equivalent coupling factor is offered in appendix A.  

In the case of a fuzzy substructure without spatial memory where 1=a , the apparent 

damping and the resonating mass distribution fuzzym  are related through the simple expression given 

in Pierce et. al. (1995) reading 

 

)(
2

)(
2

w
pw

w fuzzyapp mR = .       (5.1) 

 

Strictly speaking this expression is valid only for lossless fuzzy oscillators. Nevertheless, Pierce 

demonstrated that it is an excellent approximation for any realistic damping in the structural fuzzy, 

that is for 1.0<z . To transform eq. (5.1) into a function of frequency instead of angular frequency, 

it is divided with p2  and the frequency dependent apparent damping hereby becomes  

 

)()( 22 fmffR fuzzyapp p= .      (5.2) 

 
From this expression it is revealed that the apparent damping also is proportional to the resonating 

mass distribution fuzzym . Due to the proportionality between a  and the apparent damping it is easily 

shown that a general approximate expression for the apparent damping is given as 

 

)()()( 22 ffmffR fuzzyapp ap= .        (5.3) 

 

This expression reveals that the apparent damping is governed by the product of the resonating 

mass distribution and the equivalent coupling factor.  
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Consider a fuzzy substructure with the total mass 1,fuzzyM , resonating mass distribution 

1,fuzzym  and the equivalent coupling factor 1a  resulting in the apparent damping appR . According to 

the expression in eq. (5.3), the same apparent damping results from a different fuzzy substructure 

having the fuzzy parameters 2,fuzzym  and 2a  if it applies that   

 

)()()()( 11,22, ffmffm fuzzyfuzzy aa = .             (5.4) 

 

A structural fuzzy having the reduced resonating mass distribution )()()( 11,2, ffmfm fuzzyfuzzy a=  

and the constant equivalent coupling factor 12 =a  therefore fulfills this criterion. This is very 

fortunate as the case of a unity equivalent coupling factor corresponds to a fuzzy substructure 

without spatial coupling. Such a fuzzy substructure is conveniently modeled by the simple boundary 

impedance given in eq. (3) in paper II that is applicable at all frequencies.  

However, using the reduced resonating mass distribution 2,fuzzym  to model a fuzzy 

substructure with spatial coupling, also results in a reduced total mass 2,fuzzyM . This is accounted for 

by modeling the residual mass resfuzzyM ,  as distributed pure mass. The residual mass is determined 

as 
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In addition, for a constant value of a  the residual mass yields fuzzyresfuzzy MM a=, . By expanding the 

expression in eq. (3) in paper II with a contribution of distributed pure mass, the boundary 

impedance of the “reduced-mass” fuzzy substructure ),( 0, fxz redfuzzy  finally becomes 
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Using this reduced-mass impedance, the total mass of the fuzzy is correct whereas the apparent 

mass becomes somewhat different. This is acceptable though, as the apparent mass load is much 

less important than the apparent damping when modeling complex structures.  

As an example, a structural fuzzy similar to that examined in paper II is considered. For 

comparison the apparent mass and damping has been computed by using the fuzzy boundary 

impedances in eq. (3) in paper II and eq. (5.6), respectively. Results are shown in fig. 5.1 for a -
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values of 0.75 and 0.25. It is seen that the apparent damping curves calculated by eq. (3) in paper II 

and eq. (5.6) are practically coinciding. Considering the apparent mass, however, it is clear that the 

impedances based on eq. (3) in paper II are stiffness-like at low frequencies, whereas the 

impedances based on eq. (5.6) are mass-like. For the high value of 75.0=a  it is seen that the two 

curves showing apparent mass become close for non-dimensional frequencies above say 1000=W . 

However, this is not the case for the low a -value of 25.0  where the apparent mass based on eq. 

(5.6) is notably higher. As mentioned, though, the apparent mass is much less significant than the 

apparent damping when modeling structural fuzzy. 

 

 

a)

b)

 
Figure 5.1. (a) Normalized apparent mass and (b) normalized apparent damping of the fuzzy 

boundary impedance for a structural fuzzy similar to that considered in fig. 11 in paper II. Results 

based on eq. (3) in paper II  for 75.0=a  (solid line) and 25.0=a  (dotted line); results based on 

eq. (5.6) for 75.0=a  (dashdot line) and 25.0=a  (dashed line). 
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6 Experimental method for estimating 
fuzzy parameters 
 

 

6.1 Introduction 
 

In the previous section the theory of fuzzy structures was studied theoretically and 

extended in two journal papers. The next step is to use the method for modeling the vibrations of a 

real-life hearing aid. Such practical use, however, requires a functional method for determining the 

fuzzy parameters, that is, the resonating mass per unit resonance frequency and the equivalent 

coupling factor.  

As mentioned in the section concerning method development the subject of estimating 

fuzzy parameters has been addressed by Soize (1998 ) and Soize and Bjaoui (2000). In these papers 

it is assumed that the modal density and internal damping of the structural fuzzy are measured or 

estimated from the design. Specifically how to achieve this in practice is not mentioned. In reality 

estimation of the modal density and internal damping is very difficult when it comes to the internal 

components of the hearing aid. The method for estimating fuzzy parameters described by Pierce 

(1997) involves measurement of the fuzzy impedance matrix. However, the fuzzy behaviour of 

hearing aid internals is partly governed by the indefinable contacts between individual components. 

If the components are removed from the shell of the hearing aid, they are not interconnected 

anymore, and it is therefore very difficult to obtain experimental access to the complete complex 

structure. Hence, an indirect method for estimating the fuzzy parameters is strongly needed. 

In the following an indirect but practical method for determining the fuzzy parameters for a 

real-life complex structure will be presented. The author has developed this novel method with 

inspiration from Soize (1998). The method, which requires a prototype, is based on in-situ 

measurements and should be considered as a first attempt to determine the fuzzy parameters of a 

complex substructure that is considered as homogeneous structural fuzzy. The method requires that 

the complex substructure is attached to a “dummy master” in the same way it is attached to its 

actual master. This dummy master may for example be the master itself or the part of the master 

where the fuzzy is attached. Using this method, an equation for the power equilibrium of the 

considered system consisting of the dummy master and one or more similar fuzzy substructures is 

set up. The introduced apparent damping in the master is then estimated from the power equilibrium 

and the frequency distribution of the resonating mass and the equivalent coupling factor are 

hereafter extracted by backwards calculation. All quantities in the equation of the power 
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equilibrium are obtained by measuring the transmitted power during excitation and by measuring 

the spatially averaged mean-square vibration velocities of the master and the fuzzy connection 

surfaces, respectively.  

After presenting the method for determining fuzzy parameters, it is applied to an example 

of a realistic but theoretically constructed complex system. Fuzzy response simulations using the 

estimated fuzzy parameters are hereafter validated with the known responses of the complex 

system. Finally in section 7 the method is employed to estimate the fuzzy parameters of the hearing 

aid internals in question.  

 

6.2 Estimation of the apparent damping 

 

In Pierce et. al. (1995) it was shown that the vibrations of a system consisting of a master 

with attached structural fuzzy can be modeled by adding an extra frequency dependent mass term 

and damping term to the master’s equation of motion. The power balance for this system implies 

that the power excP  supplied by excitation forces is equal to the total losses in the whole system. 

These losses consist of two contributions that are the power fuzzyP  “dissipated” in the structural 

fuzzy and the structural loss hP  in the material of the master. The power balance is therefore  

 

hPPP fuzzyexc += .     (6.1) 

 

Typically fuzzyP  is significantly larger than hP  at frequencies where the fuzzy oscillators are 

resonating. Outside this frequency range it applies that 0=fuzzyP . If the master is excited by a 

harmonic point force ti
exc FeF w=  then the transmitted power becomes (see Cremer et. al., 1988) 

 

)Re(
2
1

00

2
YFP excexc = ,          (6.2) 

 

where 00Y  is the complex direct mobility of the total system. Further, the power dissipated into the 

structural fuzzy is given in Strasberg and Feit (1996) and is calculated as 

 

�W W=
fuzzy

fuzzyrms
fuzzy

app
fuzzy dv

A

R
P 2 ,            (6.3) 
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where rmsv  is the rms-value of the master’s vibration velocity, appR  is the total apparent damping of 

the fuzzy  and fuzzyA  is the area of the surface fuzzyW  where the fuzzy is connected. It should be 

noted that the ratio )/( fuzzyapp AR  expresses the damping force per unit area and per unit velocity at 

the fuzzy connection surface; this frequency-dependent quantity is considered to be the same at all 

positions due to the homogeneity of the fuzzy. By performing the integration in eq. (6.3) the power 

fuzzyP  becomes a function of the spatially averaged mean-square velocity of the master 
fuzzyrmsv2  

where the fuzzy is attached. The dissipated power thus becomes 

 

fuzzyrmsappfuzzy vRP 2= .       (6.4) 

 

It is a clear advantage to express fuzzyP  as a function of 
fuzzyrmsv2  since this quantity is possible to 

determine experimentally.  

The expression for the time-averaged structural losses in the master structure hP  is found 

in several text books (see for example Mead, 1999) and is given as 

 

max,potEP whh = ,       (6.5) 

 

where h  is the loss factor of the master structure and max,potE  is its maximum potential. The loss 

factor can be determined using traditional methods (see Cremer et al., 1988) whereas the maximum 

potential energy is found by integrating the product of the master’s stress s  and straine  over the 

surface masterW  as 

 

�W W=
master

masterpot dE  max, se .       (6.6) 

 

Unfortunately the stresses and strains are not easy to measure and max,potE  is therefore not directly 

accessible from experiments. However, in the frequency range where the master has some modes 

the maximum kinetic energy max,kinE  in the master is of the same order of magnitude as the 

maximum potential energy max,potE . As demonstrated in the next section it is therefore reasonable to 

approximate max,potE  with max,kinE .  The maximum kinetic energy is given as (see Cremer et. al., 

1988) 
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�W W=
master

dhvE rmskin
2

max, r  ,          (6.7) 

 

where r  and h  is the density and thickness of the master structure, respectively. In cases of r  and 

h  being nearly constant the maximum kinetic energy becomes 

 

masterrmsmasterkin vhAE 2
max, r=

 
,           (6.8) 

 

where 
masterrmsv2  is the spatially averaged mean-square velocity of the master. Fortunately, this 

velocity is possible to determine experimentally. By assuming that max,max, potkin EE »  the structural 

losses in the master hP  becomes 

 

masterrmsmaster

kin

vAh

EP
2

max,

hwr
whh

»

»

.
       (6.9) 

 

Next, by substituting eq. (6.4) into eq. (6.1) and by rearranging, the sought expression for 

appR  yields 

 

fuzzyrms

exc
app

v

PP
R

2

h-
=

  

.            (6.10) 

 

Finally, by inserting eqs (6.2) and (6.9) in eq. (6.10) we obtain an approximate expression for appR  

in terms of measurable quantities only:  
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.      (6.11) 

 

As mentioned earlier, fuzzyP  and therefore also excP  is much larger than hP  in the frequency range 

where the structural fuzzy is resonating and it is therefore not necessary to use the exact value of hP  

to obtain a good estimate for appR . In some cases where h  is very small, hP  may even be neglected 

completely. According to eq. (6.10) neglecting h , results in a minor over-estimation of appR .  
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6.3 Determination of the resonating mass distributi on and the 

equivalent coupling factor 
 

Let us assume that the apparent damping appR  of a fuzzy substructure has been estimated 

experimentally using eq. (6.11) in a frequency range from 0 Hz up to maxf . It is further assumed 

that the fuzzy substructure has the unknown resonating mass distribution 1,fuzzym  and the unknown 

equivalent coupling factor 1a . Moreover, the total mass of the fuzzy substructure 1,fuzzyM   is known 

and it applies that 

 

�
¥

=
 

0 1,1, )( dffmM fuzzyfuzzy .       (6.12) 

 

It is now desired to determine the fuzzy parameters of an equivalent structural fuzzy 

resulting in the same damping appR . According to eq. (5.4) we therefore seek a resonating mass 

distribution 2,fuzzym  and an equivalent coupling factor 2a  for which it applies that 

11,22, aa fuzzyfuzzy mm = . This equivalent structural fuzzy is to be modeled using the reduced-mass 

technique discussed in section 5.4. The equivalent coupling factor is therefore chosen to be 12 =a  

and the resonating mass distribution 2,fuzzym  can then be determined by rearranging the expression 

from eq. (5.3) to  

 

22
2

222,

)()(
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f

fR

f

fR
fm appapp

fuzzy pap
== .          (6.13) 

 

Hereafter, the total resonating mass 2,fuzzyM  between 0 Hz and maxf  is determined as 

 

�=
max 

0 2,2, )(
f

fuzzyfuzzy dffmM .      (6.14) 

 

This total resonating mass can take on values in the interval from 0 to 1,fuzzyM . In the case of 

1)(1 =fa  we have that 1,2, fuzzyfuzzy MM =  and that 1,2, fuzzyfuzzy mm = . On the other hand, if either 

)(1 fa  is less than unity at any frequency or the structural fuzzy is resonating up to a higher 
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frequency than maxf  it applies that 1,2, fuzzyfuzzy MM < . In such a case, it is necessary to account for 

the residual mass resfuzzyM ,  given in eq. (5.5) as 2,1,, fuzzyfuzzyresfuzzy MMM -= . Hence, the actual 

fuzzy parameters 1,fuzzym  and 1a are not determined, but instead the influence of the structural 

fuzzy is modeled with the equivalent fuzzy substructure defined by 2,fuzzym  and 12 =a .  

If one wish to model the structural fuzzy using equivalent local oscillators the equivalent 

coupling factor may be set to a constant value of  

 

1,

2,
2

fuzzy

fuzzy

M

M
=a .      (6.15) 

 

Moreover, the corresponding resonating mass distribution 2,' fuzzym  is chosen to  

 

 22,2, /' afuzzyfuzzy mm = ,        (6.16) 

 

such that it applies that  

 

dffmM
f

fuzzyfuzzy )('
max

0 2,1, �= .        (6.17) 

 

According to eq. (5.4) a fuzzy substructure with such parameters results in the same apparent 

damping appR  as a fuzzy substructure with the parameters 2,fuzzym  and 12 =a . 

It should be kept in mind that the main goal of the theory of fuzzy structures is to model 

the influence of an attached complex structure. We are therefore not interested in the actual 

behavior of the fuzzy, which is regarded as a “black box”. Hence, it is not important if a fuzzy 

substructure is modeled in terms of its actual fuzzy parameters 1,fuzzym  and 1a  or a set of alternative 

fuzzy parameters 2,fuzzym  and 2a .  
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6.4 Numerical example of the estimation of fuzzy pa rameters 
 

6.4.1 Two-dimensional master structure with a compl ex substructure 
 

The presented estimation method will now be examined and validated for a specific 

example representing a realistic master structure with an attached complex substructure. Considered 

is a two-dimensional master in form of a freely suspended rectangular plate. A complex structure 

consisting of fuzzy oscillators is attached to the master through a rectangular area as shown in fig. 

6.1a. This complex substructure consists of 609 different simple oscillators. The oscillators are 

randomly attached to the master structure and there is high modal overlap between the oscillator 

resonances. Spatial coupling between the oscillators is achieved by imbedding all the oscillator 

masses in a thin plate as illustrated in fig. 6.1b. The thin plate has a total weight of 10% of the 

master’s weight whereas the oscillators has a total weight of 20% of the master’s weight. 

The master plate has a constant thickness of 1 mm and side lengths of 60 mm and 27 mm 

in the x- and y-direction, respectively corresponding to an area of 1620=masterA  mm. Moreover, the 

master plate has a density of 1050=r  kg/m3, a Young’s modulus of 9103×=E  Pa, a loss factor of 

005.0=h  and a Poisson’s ratio of 33.0=n . The rectangular fuzzy connection surface has side 

lengths of 28 mm and 20 mm in the x- and y-direction, respectively. This gives an area of 

560=fuzzyA  mm2. The thin plate imbedding the oscillator masses has a thickness of 0.3 mm and it 

is of the same material as the master. 
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Figure 6.1. Master plate with an attached complex substructure of interconnected oscillators. (a) 

Master structure and fuzzy connection surface; (b) Construction of the complex substructure. 
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6.4.2 Vibration response of the master 
 

Using finite element analysis, responses of the master to a unit harmonic point force excitation at 

=),( 00 yx (13 mm, 8 mm) has been computed. Figure 6.2 shows results for the master’s direct 

mobility at =),( 00 yx (13 mm, 8 mm) and transfer mobility at =),( 11 yx (50 mm, 14 mm) for three 

cases:  

·  the master without the complex substructure. 

·  the master with the attached complex substructure but without spatial coupling.  

·  the master with the attached complex substructure and with spatial coupling.  
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Figure 6.2. Frequency response of the master without the complex substructure (thin solid lines) 

and with the complex substructure (thick solid lines) to a unit harmonic excitation at ),( 00 yx . The 

cases shown are: Direct response at ),( 00 yx  (a) without spatial coupling and (b) with spatial 

coupling; Transfer response at ),( 11 yx  (c) without spatial coupling and (d) with spatial coupling. 

 

From figs. 6.2a and 2b it is clearly seen that the complex substructure introduces a high 

apparent damping in the response of the master structure from about 1000 Hz and upwards. 

Especially from 3000 Hz and up to approximately 6000 Hz the damping is strong and the velocity 
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response is reduced with almost 30 dB. Around 7000 Hz the damping effect has decreased 

somewhat. Moreover, figs. 6.2c and 2d show that the occurrence of spatial coupling significantly 

reduces the damping effect of the attached complex structure. Here, strong damping is only 

achieved from about 2500 Hz and upwards. This limited damping effect is in conjunction with the 

fuzzy coupling plate being relatively stiff at low frequencies. However, at higher frequencies the 

plate is considerably more flexible and it is therefore not contributing with a significant coupling 

effect. 

 

6.4.3 Energies and estimation of fuzzy parameters 
 

In order to apply the described method for estimating the fuzzy parameters, the structural losses in 

the master have to be estimated. According to eq. (6.9) this requires a study of the potential and 

kinetic energies of the master. These energies have been computed using the expressions in eqs. 

(6.6) and (6.7) for cases (ii) and (iii) that include the attached complex substructure. The energies 

are shown in fig. 6.3 where they have been normalized with their mutual total mechanical energy. It 

is well-known that the potential and kinetic energies of a vibrating system are equal at system 

resonances (see Cremer et al., 1988). However, in the present case we only consider a part of the 

system, being the master. Figure 6.3a shows these energies for the case of no spatial coupling and it 

is seen that potential and kinetic energies are close to one another above 500 Hz where the first anti-

resonance of the master occurs. From fig. 6.3b, it is revealed that this is not entirely the case when 

spatial coupling is introduced. From 400 Hz to 4000 Hz, the two energies are highly fluctuating and 

only close to one another in, say, half of this frequency range. By summing the energies in wider 

frequency bands, however, the differences between the energies are reduced significantly. 

Furthermore, it should be kept in mind that the structural losses in the master usually are much 

lower than the transmitted power in the frequency range with fuzzy damping. According to eq. 

(6.11), exact determination of the structural losses in the master is therefore not necessary for 

obtaining a good estimation for the apparent damping caused by the structural fuzzy.  
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Figure 6.3. Normalized potential (solid line) and kinetic (dashed line) energy of the master with the 

attached complex substructure (a) without spatial coupling and (b) with spatial coupling. 

 

By using the expression in eq. (6.11) the total apparent damping introduced by the complex 

structure has been estimated in 1/3-octave bands. It should be noted that the input power, structural 

losses and mean square velocity of the fuzzy connection boundary first have been synthesized in 

1/3-octave bands and then substituted in eq. (6.11). Figure 6.4 shows the results for the apparent 

damping and the corresponding resonating mass distribution, which is calculated from eq. (6.13). 

Again, by considering fig. 6.4a it is clearly observed that the spatial coupling reduces the 

damping effect of the complex structure in almost all frequency bands. In conjunction with previous 

statements, significant damping only occurs from about 2500 Hz and upwards where the fuzzy plate 

is relatively flexible. The two resonating mass distributions shown in fig. 6.4b are accordingly 

relatively different compared to one another. In the case without spatial coupling, integration of the 

distribution from 100 Hz to 10000 Hz yields the actual total mass of the fuzzy oscillators. As 

opposed to this, such an integration for the case with spatial coupling results in a value that is only 

0.46 of that of the actual mass. Hence, the resonating mass distribution shown for this case of 

spatial coupling is reduced. According to the results presented in sections 5.4 and 6.3, both the 

reduced-mass method and the method involving local equivalent oscillators are capable of modeling 

the damping of the fuzzy substructure.  
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Let us assume that the reduced resonating mass distribution in fig. 6.4b is denoted 2,fuzzym . 

Using the reduced-mass method, the fuzzy substructure is modeled with the boundary impedance 

given in eq. (5.6) and the equivalent coupling factor is set to 12 =a . Moreover, the residual, which 

is given as fuzzyfuzzyresfuzzy MMM 54.0)46.01(, =-= , is modeled as pure mass. Using the method 

involving local equivalent oscillators, the fuzzy substructure is modeled with the boundary 

impedance from eq. (3) in paper II. According to eq. (6.15), the equivalent coupling factor is set to 

the constant value 46.02 =a . Furthermore, the resonating mass distribution fuzzym , which is given 

in eq. (6.16), becomes 46.0// 2,22, fuzzyfuzzyfuzzy mmm == a . 
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Figure 6.4. Estimations of (a) the total apparent damping and (b) the resonating mass distribution 

of the complex structure without spatial coupling (thick solid line) and with spatial coupling (thin 

solid line). 

 

6.4.4 Validation of the estimated fuzzy parameters 
 

To validate the estimated fuzzy parameters the actual response of the master and complex 

structure is compared to the response of the master with attached structural fuzzy in fig. 6.5. The 

reduced-mass method has been employed to model the fuzzy substructure. In the case without 




























































































































































































