
Downloaded from orbit.dtu.dk on: Jan 23, 2019

Adaptive Text Entry for Mobile Devices

Proschowsky, Morten Smidt

Publication date:
2009

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Proschowsky, M. S. (2009). Adaptive Text Entry for Mobile Devices. Kgs. Lyngby, Denmark: Technical
University of Denmark (DTU). IMM-PHD-2008-209

Adaptive Text Entry for Mobile
Devices

Morten Proschowsky

Kongens Lyngby 2008
IMM-PHD-2008-209

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

IMM-PHD: ISSN 0909-3192

Summary

The reduced size of many mobile devices makes it di�cult to enter text with
them. The text entry methods are often slow or complicated to use. This
a�ects the performance and user experience of all applications and services on
the device. This work introduces new easy-to-use text entry methods for mobile
devices and a framework for adaptive context-aware language models.

Based on analysis of current text entry methods, the requirements to the new
text entry methods are established. Transparent User guided Prediction (TUP)
is a text entry method for devices with one dimensional touch input. It can be
touch sensitive wheels, sliders or similar input devices. The interaction design
of TUP is done with a combination of high level task models and low level
models of human motor behaviour. Three prototypes of TUP are designed and
evaluated by more than 30 users. Observations from the evaluations are used to
improve the models of human motor behaviour. TUP-Key is a variant of TUP,
designed for 12 key phone keyboards. It is introduced in the thesis but has not
been implemented or evaluated.

Both text entry methods support adaptive context-aware language models.
YourText is a framework for adaptive context-aware language models that is
introduced in the thesis. YourText enables di�erent language models to be
combined to a new common language model. The framework is designed so it
can be adapted to di�erent text entry methods, thereby enabling the language
model to be transferred between devices.

YourText is evaluated with a corpus of mobile text messages. The corpus is
created by collecting all sent and received messages from 12 persons in four

ii

weeks. The corpus contains 25,000 messages. A model of text entry speed for
TUP is created from the observations in the evaluations. The model is used to
predict the performance of TUP, used together with di�erent YourText language
models.

Resumé

En af de største udfordringer ved mobiltelefoner er at skrive tekst på dem.
Ofte er det enten en kompliceret eller langsommelig opgave. Det går ud over
brugervenligheden og brugernes oplevelse. Denne afhandling introducerer nye
og nemme måder at skrive tekst på telefoner og for andre mobile elektroniske
produkter.

Transparent User guided Prediction (TUP) er en af disse nye metoder. Den
er beregnet til produkter med berøringsfølsomme hjul, striber eller lignende
endimensionelle inputenheder. TUP er blevet implementeret i tre forskellige
prototyper og evalueret af mere end 30 personer. TUP er blevet forbedret ved
at anvende statistiske metoder på data fra evalueringerne. Det er lykkedes at
forbedre skriveastigheden med næsten 30% og reducere antallet af fejl betydeligt.
TUP-Key er en variant af TUP der er lavet til at skrive tekst på mobiltelefoner.
TUP-Key er beskrevet i afhandlingen, men er ikke blevet implementeret eller
evalueret.

Både TUP og TUP-Key understøtter brug af sprogmodeller der tilpasser sig
til brugerens kontekst. En sådan sprogmodel, med navnet YourText, bliver
introduceret i afhandlingen. YourText benytter en kombination af andre
sprogmodeller til at lave en ny og bedre sprogmodel. Sprogmodellen er meget
”eksibel og kan benyttes i mange forskellige typer af produkter.

25.000 sms beskeder fra forskellige brugere er brugt til at teste kvaliteten af
YourText. YourText kan bruges til at forbedre TUP. En matematisk model er
blevet opstillet for at “nde e�ekten af at bruge TUP sammen med YourText.

iv

Preface

This thesis was prepared at DTU Informatics, the Technical University of
Denmark in partial ful“lment of the requirements for acquiring the Ph.D. degree
in engineering.

The thesis deals with adaptive text entry methods for mobile devices. Focus is
on development of novel text entry methods, adaptive context-aware language
models and optimization of text entry methods with a combined quantitative
and qualitative interaction design process.

Lyngby, December 2008

Morten Proschowsky

vi

Acknowledgements

I want to thank all the people who have contributed to this work.

My supervisor, Nette Schultz for your help during PhD. Thanks for many good
comments and discussions and for “ghting the PhD programme committee when
it has been needed. I also want to thank my other supervisor, Lars Kai Hansen,
for preparing the assessment of my work.

A special thank goes to Niels Ebbe Jacobsen and Rod Murray-Smith. I am very
grateful that you have taken the time to follow my work. Your advices and
suggestions have guided me through this work.

Thanks to my colleagues from DTU. Especially Andrius Butkus, Su-En Tan,
Michael Kai Petersen, Jakob Eg Larsen, Dan Saugstrup and Kristian Kristensen.
Thanks to John Williamson and Andrew Crossan for taking good care of me
in Glasgow. I also want to thank Mikkel Proschowsky for good discussions and
help with the prototypes, and Thomas Troelsgård for your comments on the
language model sections.

A big thank you goes out to the more than 40 persons who have been helping me
by participating in usability evaluations or by sharing their mobile text messages
with me. The work is built on the empirical data you have provided, and would
not have been possible to do with out your help.

Finally I want to thank Marie-Louise Smidt for her love and support. I could
not have done this work without you. I am looking forward to spending more
time with you and David.

viii Contents

Contents

Summary i

Resumé iii

Preface v

Acknowledgements vii

1 Introduction 1
1.1 Challenges of mobile text entry 1
1.2 Improvements to mobile text entry 2
1.3 Content of thesis . 3

2 Text entry on mobile devices 5
2.1 Introduction to mobile text entr y 5
2.2 Optimizing text entry methods with language models 15
2.3 Language modelling . 23
2.4 Trade-o�s between size, speed and complexity. 32
2.5 Conclusions . 36

3 Evaluation of text entry methods 39
3.1 Evaluations . 39
3.2 Mobile evaluations . 40
3.3 Text entry evaluation design . 42

4 Transparent User guided Prediction 45
4.1 Introduction to TUP . 45
4.2 TUP - Hardware mockup . 55
4.3 TUP - iPod implementation . 61

x CONTENTS

4.4 Using statistical learning to improve text entry 84
4.5 TUP - improved iPod implementation 104
4.6 A key based variant of TUP . 117
4.7 Conclusions . 120

5 YourText - a context-aware adaptive language model 123
5.1 Language Usage in Mobile Text Entry 123
5.2 Design requirements .. 124
5.3 Design and implementation . 125
5.4 Evaluation and parameter estimation 135
5.5 Discussion . 146
5.6 Conclusions . 150

6 Modelling performance of language models and text entry
methods 153
6.1 Text entry performance models 153
6.2 Model of TUP performance . 154
6.3 Validation of TUP performance model 157
6.4 Evaluation of YourText con“gurations 157
6.5 Conclusions . 158

7 Conclusions 159
7.1 Novel methods for text entry . 159
7.2 Optimizing motor behaviour models 160
7.3 Novel language models. 160
7.4 Assessment of TUP and TUP-Key 161
7.5 Uni“ed text entry . 161

A Extra plots and “gures 163
A.1 TUP evaluations . 163
A.2 Improvements to TUP . 163
A.3 Evaluation of YourText . 165

B Fitting sigmoid functions to the observations 173

C Statistical analysis of TUP iPod evaluations 181
C.1 Building a model . 181

D Creating a text message corpus 191
D.1 Methodology . 191
D.2 Collecting the messages . 193
D.3 Demographics and text message statistics. 193
D.4 Post processing of text messages. 194

Bibliography 197

Chapter 1

Introduction

The need for fast and easy text entry on current mobile devices has grown rapidly
the last 20 years. The number of mobile devices is increasing, and the devices are
becoming more advanced. The popularity of mobile text messages have been the
main driver. In 2007 an estimated 2.5 trillion text messages were sent between
the 2.5 billion subscribers on GSM networks [GSM Association, 2007]. Recently
the demand for text entry have been boosted by new services such as mobile
email, multi media messages (MMS), instant messaging and web browsing [GSM
Association, 2006]. Many mobile devices also come with personal information
management software such as calendars, to-do lists, notepads and o�ce suites.
The usability and user experience of all these applications and services are
greatly a�ected by the ease and speed of mobile text entry. Improved text entry
methods will likely enable more people to enter text into mobile devices, and
thereby enable them to communicate more with other people. Improved text
entry methods will enable novice and experienced users to type faster, commit
fewer errors and have better user experience.

1.1 Challenges of mobile text entry

Text entry on mobile devices is slow and di�cult. The small form factor of many
mobile devices makes it undesirable to have a separate key for each character.

2 Introduction

Instead the characters are entered by combinations of key presses. This requires
more key presses per character and increases the risk of making errors. Some text
entry methods are applying language models to improve performance. These
methods have a more complex conceptual model, and can be hard to understand
for novice users. The performance can decrease dramatically, if the text the user
wants to enter does not match the language model.

1.2 Improvements to mobile text entry

This thesis introduces a novel text entry method called Transparent User guided
Prediction (TUP). TUP is easy to use and can be “tted in small mobile devices.
The method•s conceptual model is designed to be easy to learn. A language
model is used to improve performance. To avoid increasing the complexity, the
language model is hidden from the user. The interaction design of TUP is done
with a combination of high level task models and low level models of human
motor behaviour.

TUP is evaluated and improved in an iterative interaction design process. It is
shown how methods from statistical learning can be used to improve text entry
methods.

The language model is a critical component of many text entry methods.
YourText is a new context-aware adaptive language model that is created to
better suit the needs of mobile text entry. The language model will adapt to the
users language and to the current context of the user. YourText is evaluated
with a corpus of mobile text messages.

It is shown how empirical evaluation data can be used to estimate the
performance of new language models. This method is used to estimate the
performance of YourText used together with TUP

The following list describes this thesis• four key contributions to mobile text
entry research:

TUP. Novel text entry method for touch input devices. Its key strength is
a simple conceptual model that makes it easy to learn for novice users.
TUP uses a language model to improve performance, but the model is
hidden from the user. TUP can be used together with other types of
input devices. TUP-Key is a version of TUP adapted to be used on a
normal mobile phone.

1.3 Content of thesis 3

Novel language models. New language models called YourText and PPM*D
have been created. YourText uses linear interpolation of multiple PPM*D
models to estimate character probabilities. PPM*D is an unbounded
length PPM model, with a decay factor. It will adapt to the user•s
language and YourText will adapt to the context of the user.

Statistical Learning approach to optimization of text entry. It is shown
how statistical learning can be used to optimize text entry methods.
Observations from usability evaluations of TUP have been used to create
improved models of human motor behaviour. The improved models are
implemented in TUP, and have been veri“ed in a new usability evaluation.

Method to estimate performance of language models. It is shown how
the performance of new language models can be estimated from empirical
data from usability evaluations.

Text entry is closely related to language. Di�erent languages use di�erent
scripts. Text entry methods for one type of languages can be impossible to
use with other types of languages. This thesis will only cover western European
languages based on the Roman alphabet.

1.3 Content of thesis

2 Text Entry on Mobile Devices introduces existing text entry methods
and language models. It is shown how language models can be used to
improve the usability and user experience of the text entry methods. The
trade o�s between size, speed and complexity of text entry methods are
discussed.

3 Evaluation of Text Entry methods describes the methodologies that have
been used in the text entry evaluations presented in this thesis.

4 Transparent User guided Prediction presents a novel text entry method.
The method is improved by an iterative interaction design process, where
the method is redesigned, prototyped and evaluated. A key based variant
of TUP is introduced.

5 YourText - a context-aware adaptive language model presents a novel
language model. Combinations of language models are used to create a
context aware language model. The language model is evaluated with a
corpus of mobile text messages.

4 Introduction

6 Modelling performance of language models and text entry methods
shows how empirical data from usability evaluations can be used to
estimate the performance of novel language models.

7 Conclusions summarises the concussions from the preceding chapters.

Chapter 2

Text entry on mobile devices

This chapter introduces di�erent text entry methods for mobile devices.
It explains how language models can be used to improve the text entry
performance. Di�erent types of language models are introduced and compared.
Some text entry methods have complicated conceptual models. These text
entry methods can be di�cult for the users to understand, and thereby causing
problems.

2.1 Introduction to mobile text entry

Text entry is the task of entering textual information into computer systems.
On desktop computers it is done using a keyboard with 80 - 100 keys. Each key
has 2-3 characters or symbols laid out according to the QWERTY layout. There
exist di�erent key layouts, but QWERTY is dominant and have not changed for
many years. Besides the character keys, the keyboard have modi“er keys such
as shift, alt and ctrl that are used to modify the meaning of the character keys.

For mobile devices, the text entry methods are a lot more diverse. There exist
many di�erent methods that all have their strengths and weaknesses. The main
reason for the diversity is that mobile devices are designed with di�erent form

6 Text entry on mobile devices

factor, functionality and for di�erent types of usage. A mobile phone designed
for email and web browsing requires a fast and easy text entry method while
a music player requires little or no text entry at all. Most text entry methods
are bound to speci“c input devices. The size of the input devices is constrained
by the form factor and size of the mobile device. The product design of the
mobile device might add additional constraints to the input device like choice of
materials and placements of buttons. Most text entry methods require a display
or another output device to give feedback to the users. The dependency between
the output device and the text entry method is not as large as the dependency
of the input device.

When looking at mobile text entry systems it is therefore necessary to look at
the text entry method in conjunction with the mobile device and the expected
usage. Many text entry methods can be used on di�erent devices, but it often
requires some adaption of the method. It is unlikely that we will see a uni“ed
text entry method for all mobile devices in the near future. Unlike the desktop
computer, the diversity of mobile devices and their usage is very large. The
text entry methods used for PDAs and advanced mobile phones would not “t a
music player or vice versa.

2.1.1 Key based text entry methods

Many mobile devices with support for text entry are utilizing physical keyboards.
Most laptops have keyboards similar to desktop computers, with the exception
that the numeric keypad often is removed. Other mobile devices often have
smaller and fewer keys. The size and number of keys in”uence the choice of text
entry methods. Fewer keys often leads to more complicated text input methods
where it requires multiple key presses to enter a single character. The metric
Key Strokes Per Character (KSPC) [MacKenzie, 2002a] is often used to describe
the e�ciency of key based text entry methods. KSPC is the average number of
keystrokes that are required to write a character. KSPC can both be used as
a characteristic of text entry methods or as a dependent variable in text entry
evaluations. The KSPC value is often dependent of the language being used.
All reported values in this section are for English. KSPC is only one of the
characteristics that in”uence typing speed. A low KSPC alone is no guarantee
for fast text entry. Three presses on the same key can for example be made
faster than two presses on di�erent keys.

Another metric is Words Per Minute (WMP) which is used to describe how
fast a text entry method is. WPM is normally found from evaluations, but can
also be predicted as shown by Silfverberg et al. [2000]. Early work used the

2.1 Introduction to mobile text entry 7

actual number of words to calculate WPM. All recent papers use a common
word length, where a word is de“ned as “ve characters including spaces.

2.1.1.1 Miniature QWERTY keyboards

Many smart phones and advanced mobile devices are equipped with a miniature
QWERTY keyboard. They have the same key layout as desktop computers, but
each key is much smaller. The rows with function keys (F-keys) and numeric
keys are often removed to save space. Each key press enters a character so KSPC
= 1 .0. Language-speci“c characters can either be assigned to their own keys or
be entered by a combination of key presses. Since even a miniature QWERTY
keyboard takes up a lot of space, the keyboards are often hidden on the mobile
devices. The keyboard can be revealed by transforming the device. Figure
2.1 shows di�erent examples of miniature QWERTY keyboards and how they
can be implemented in phones. Miniature QWERTY keyboards are sometimes
called thumb keyboards, because it is very common to hold the device with two
hands and type with the thumbs.

Miniature QWERTY keyboards are easy to learn to use because the users can
transfer their skills from desktop computers to miniature QWERTY keyboards.
Studies show that novice users who know the QWERTY layout can type over
30 WPM. Expert users can type up to 60 WPM [Clawson et al., 2006, Clarkson
et al., 2005, Roeber et al., 2003]. The typing speed is dependent on the size of
the keyboard and whether one or two hands are used while typing. The main
problem with miniature QWERTY keyboards is that the small keys lead to
many errors. It is mainly o�-by-one errors where a key next to the target key
is pressed [Clawson et al., 2006].

2.1.1.2 Half QWERTY keyboards

Even with the small keys found on miniature QWERTY keyboards, the
keyboards take up a lot of space on the mobile devices. If the keys are made
smaller, it is likely that the number of errors will increase. A solution to
the problem is to put two letters on each key. This is called half QWERTY
because there are half as many keys as on a full QWERTY keyboard. With
two letters per key, there need to be some way to disambiguate between the
letters. An implementation by Matias et al. [1993, 1994] uses a modi“er key to
let the user select between the letters. Other half QWERTY keyboards have
two domes placed beneath each key. This makes it possible to detect whether
the user pressed on the left or right side of the key. Another solution is to use

8 Text entry on mobile devices

(a) BlackBerry
Curve 8320

(b) Nokia E90i

(c) HTC TyTN II (d) Siemens SK65

Figure 2.1: Di�erent implementations of miniature QWERTY keyboards in
phones. In (a) the keyboard is always visible. With (b) the phone needs to be
opened to access the keyboard. In (c) the keyboard is slide out from the back of
the phone. The keyboard in (d) can be used by rotating the back of the phone.

2.1 Introduction to mobile text entry 9

a language model to disambiguate between the letters. With a language model,
the phone software will select the letter that is most likely, given the previous
letters. Disambiguation with language models are described in section 2.2.2.
Performance of half-QWERTY keyboards is reported to be around 35 WPM for
experienced users [Matias et al., 1993].

2.1.1.3 12 keys ITU-T keyboards

Most mobile phones are equipped with a 12 keys ITU-T keyboards. Figure 2.2
shows an example of such a keyboard. Besides the 12 keys most phones also
have keys for navigating in the menus, call handling and special purpose keys for
controlling music playback, volume settings, shutter-release for built-in cameras
and other features.

Figure 2.2: Keyboard from Nokia 6300. Besides the 12 keys ITU-T keyboard
there is also keys for navigating the user interface and call handling.

ITU-T E.161 [ITU, 2001] speci“es the layout of the 10 numbers and the * and
symbol. The layouts are speci“ed for 4 x 3, 6 x 2 and 2 x 6 key arrays, but
the 4 x 3 array is the only layout that is widely used. ITU-T E.161 also speci“es
how the basic 26 Latin letters are grouped and assigned to the keys. Table 2.1
shows the speci“ed layout.

1 2 abc 3 def
4 ghi 5 jkl 6 mno

7 pqrs 8 tuv 9 wxyz
* 0 #

Table 2.1: Recommended layout of letters on a 12 keys keyboard [ITU, 2001].

10 Text entry on mobile devices

Multitap text entry method The standard method for text entry with
ITU-T keyboards is multitap. With multitap, consecutive presses on the same
key are used to select characters. A single press on key 2 will inputa. Two
consecutive presses giveb, three pressesc and so on. The numbers are placed
after the letters. To write 7 in the text editor, the 7 key have to be pressed 5
times. On some implementations numbers can also be written by making a long
press on the key.

Words with subsequent characters on the same key can be problematic. There
needs to be a way of dividing the key presses between the two characters. The
word hi consists ofh and i that both are placed on key 4. The sequence of
key presses 44444 can be interpreted in many di�erent ways, resulting in words
like hi, ih, hhg, gig and ggggg. To avoid this ambiguity, multitap includes a
character separator. It is often implemented as a timeout. If the time between
two key presses on the same key is larger than 1-2 seconds, then the second key
press will be interpreted at the “rst key press of the next character. Research by
Marila and Ronkainen [2004] has shown that users can learn the length of the
timeout very fast, if su�cient feedback is given. Some implementations use a
special NEXT key to indicate new characters in a sequence of key presses. With
a NEXT (N) key hi will be entered as 44N444. KSPC for multitap is reported
to be 2.0342 by MacKenzie [2002a].

Performance of multitap for novice users is reported to be between 6 and 8 WPM
by Butts and Cockburn [2002], James and Reischel [2001]. Expert performance
is estimated to be up to 20 WPM by Silfverberg et al. [2000]. The world record
is beyond 40 WPM [Haines, 2006].

Chording methods Chording methods describe text entry methods where 2
or more keys are pressed at the same time. As the name indicates, this is like
playing music where a chord can be made by pressing multiple keys on a piano.
The use of the shift key on a desktop keyboard is a simple chording method. The
shift key and 26 character keys enable the user to write 52 di�erent characters.
Most chording keyboards use much more complicated patterns to enable text
entry with few keys. Twiddler by [Lyons et al., 2004] is a chording method
that uses 12 keys ina 4 x 3 layout. It uses a special character layout. The 8
most used characters can be entered by a single key press, and the rest can be
entered by two simultaneously key presses. Novice performance with Twiddles
is 6-8 WPM while experienced users can type at 26 WPM. KSPC for Twiddler
is reported to be 1.4764. Since the keys can be pressed simultaneous, it cannot
be directly compared to other KSPC values.

2.1 Introduction to mobile text entry 11

Language-speci“c characters ITU-T E.161 only speci“es the location of
the basic 26 Latin letters. Most European languages contain special language-
speci“c characters. The European Telecommunications Standards Institute
(ETSI) have created the ES 202 130 standard [Laverack and von Niman, 2007]
that describes these language-speci“c characters and their assignments to ITU-
T keyboards. The most recent version have character repositories and key
assignments for 101 languages, including languages of the European countries,
minority languages, immigrants• languages and other languages of relevance.
The characters are assigned to keys based on a number of principles [Böcker
et al., 2006]. The language-speci“c characters are assigned to the same key as
the character they are derived from. The Danish å is placed on the same key
as a and the German ß is placed on the same key as s. The language-speci“c
characters are divided into two groups. Type A for essential characters for the
language and Type B for characters that are used, but not essential.

The key assignments from ITU-T E.161 are used as the basis for all European
languages, even if some of the letters are not used in a language. The numbers
are placed after the basic Latin letters. Type A and B language-speci“c
characters are placed after the numbers. Table 2.2 shows the assignment of
characters for the Danish language. Space and special characters are not
included in the speci“cation, but it is recommended that they are placed on
the 1 key.

Key Characters
2 a b c 2 æ å á à ä
3 d e f 3 é ð
4 g h i 4 í
5 j k l 5
6 m n o 5 ø ö ó
7 p q r s 7
8 t u v 8 ú ü
9 w x y z 9 ý

Table 2.2: Recommended layout of characters on a 12 keys keyboard for Danish
[Laverack and von Niman, 2007]. It is recommended to place symbols on the 1
key.

The ITU-T E.161 standard are used on almost all mobile phones, but the ETSI
ES 202 130 extension is not followed by all manufacturers. Table 2.3 shows the
layout used in the Nokia N95 phone.

The number of characters on each key increases when language-speci“c char-
acters are included. This has a large impact on methods like multitap, which
requires many key presses to select the language speci“c characters.

12 Text entry on mobile devices

Key Characters
1 . , ? ! 1 @ • - _ () : ; & / % * # + < = > " $ £ § ¥¤ ¡ ¿
2 a b c 2 æ å ä à á â ã ç
3 d e f 3 é ð è ë ê
4 g h i 4 î ï ì í
5 j k l 5 �
6 m n o 5 ø ö ô ò ó õ ñ
7 p q r s 7 ß $
8 t u v 8 ü ù û ú
9 w x y z 9 ý Þ
0 space 0 new-line

Table 2.3: Layout used in Nokia N95 in multitap mode and Danish language.

2.1.1.4 Few keys text entry

Some devices do only have room for 2-5 keys, and still need to support text entry.
It could be pagers, wrist watches and similar devices. There exist numerous text
entry methods for these kinds of devices.

Date stamp The date stamp method is named after the tellers date stamp.
A date stamp is equipped with a series of rubber wheels that can be adjusted
to stamp a date. The text entry method, named after the date stamp, consists
of a list of characters, a way to highlight a character on the list, and a way
to select the highlighted character. One of the most common and simple
implementations consist of a display and three keys labelled Next, Previous
and Select. The characters are shown on the display and the Next and Previous
keys will change the highlighted character to the next or previous character
on the list. The Select key will input the currently highlighted character.
Another implementation uses a wheel with a key in the centre. The wheel is
used to change the highlighted character and the key will input the highlighted
character. Some implementations allow the highlight to loop forth and back
between the last and the “rst character on the list. Other implementations
support typamatic events, where the next or previous key can be held down for
repeated stream of virtual key presses. KSPC for Date stamp is about 9-11 for
the di�erent implementations.

The performance for date stamp with three keys is around 9 WPM [MacKenzie,
2002b]. Tarasewich [2003] evaluated a variation where the characters (including
numbers and special characters) were divided in four groups. The user should
“rst select a group of characters and then select a character from this group.

2.1 Introduction to mobile text entry 13

Figure 2.3: Selection keyboard for entering symbols on Nokia S60 devices. The
recently used symbols are placed in the top row.

This variant have a KSPC value of about 6, but was found to be signi“cantly
slower than the normal date stamp method.

Selection keyboards Selection keyboards are similar to the date stamp
method, but the characters are placed in a grid on a screen. Four keys or a
joystick are used to highlight a character on the screen. Another key is used
to enter the highlighted character. Selection keyboards are not commonly used
to enter text on mobile devices. On some mobile devices, such as Nokia S60
devices, selection keyboards are used to enter symbols. Figure 2.3 shows the
selection keyboard from a Nokia N95. The selection keyboard gives a better
overview of the symbols, than tapping through the list of symbols shown in
table 2.3.

2.1.2 Touch based text entry methods

A growing number of devices are equipped with touch sensitive input devices.
It can either be input-only devices such as touch pads, touch sensitive sliders
and wheels or combined input-output devices such as touch screens. Touch
sensitive input devices can be based on di�erent technologies such as resistance
and capacitive sensing. The di�erent technologies are optimized for stylus or
“nger use. Some implementations can also detect the force of the touch. Prior

14 Text entry on mobile devices

to 2008 most touch sensitive input devices could only sense one touch at a
time. The introduction of iPhone and iPod Touch by Apple made multi touch
technology widely available. Multi touch can sense multiple touches at the same
time, thereby enabling more advanced interaction.

2.1.2.1 On-screen keyboards

On-screen keyboard is a text entry method for touch screen devices. A virtual
keyboard is drawn on part of the screen, and text can be written by pressing
the virtual keys. Keyboards designed for stylus use can be very small, while
keyboards for “nger use require more space to be usable. On-screen keyboards
are implemented in the device software, which is why they are sometimes
referred to as soft keyboards. They have a number of advantages over physical
keyboards. The keyboard can be hidden completely when there is no need for
text entry. This leaves the entire screen available to the active application. The
key layout of the on-screen keyboard can be changed to suit di�erent contexts.
Localized keyboards with language-speci“c characters can be implemented in
software which is much cheaper than a physical keyboard. One problem with
on-screen keyboards is the lack of tactile feedback from the touch screen. Hoggan
et al. [2008] compared miniature QWERTY with on-screen keyboards. When
typing without a stylus, the on-screen keyboard is half as fast as the miniature
QWERTY and the users committed more errors on the on-screen keyboard.
Using actuators to create tactile feedback for the on-screen keyboard, improved
both performance and error rates.

2.1.2.2 Character recognition

Another text entry method for touch devices is character recognition It can
either be directly on a touch screen or on a touch pad. Software in the device will
perform the character recognition, which converts the drawing into a character.
The character recognition is often erroneous, so it is important with an easy
method to correct mistakes. Most character recognition systems can be trained
to better recognize each user•s unique handwriting.

The text entry speed is mainly limited by the human performance and the
recognition error rate. The average speed of handwriting is about 15 WPM
[Devoe, 1967], so with a perfect character recognition algorithm, it should be
possible to reach this level.

2.2 Optimizing text entry methods with language models 15

The performance can be improved by faster drawing of characters or fewer
recognition errors. A number of special alphabets have been made to improve
the performance [Goldberg and Richardson, 1993, Wobbrock et al., 2003,
Castellucci and MacKenzie, 2008]. They all use simpler strokes to represent
the letters. The simple strokes are faster to write and easier to recognize.

2.2 Optimizing text entry methods with lan-
guage models

All the text entry methods introduced in the previous section are universal in
the context of the used character sets. All words from all languages than can
be constructed from the character sets can also be written with these methods.
Some words might take more e�ort to write than other words. With multitap
tag can be written by pressing 824 while the wordoil requires you to press
666444555.

By using knowledge of how a language is constructed, text entry methods can
be optimized to that language. Frequently used words and characters can be
written with less e�ort than rarely used words and characters. Knowledge of the
language is modelled by a language model, which is used to optimize the text
entry method. This section will show how text entry methods can be optimized.

2.2.1 Optimizing character layouts

Most text entry methods are using an alphabetic or QWERTY layout of the
characters. None of these layouts are optimized for speed. The speed of the
text entry methods can be increased, by rearranging the characters so the most
frequently used characters are easier to enter. Two such layouts are the OPTI
keyboard by MacKenzie and Zhang [1999] and the Metropolis keyboard by Zhai
et al. [2000].

For ITU-T keyboards with multitap, the order of the characters has a large
a�ect on the performance. Less-Tap by Pavlovych and Stuerzlinger [2003] sorts
the characters on each key, so the most used characters are placed “rst on the
keys. The character layout is shown in “gure 2.4(a). Compared to multitap,
this reduces KSPC from 2.0342 to 1.5266.

In LetterEase by Ryu and Cruz [2005] all the characters have been rearranged.
The 12 most likely characters were placed in the “rst position of each key. The

16 Text entry on mobile devices

next 12 characters were placed in the second position and two keys got an extra
character in the third position. Space is placed on a dedicated key. The layout
can be seen in “gure 2.4(b). An evaluation of LetterEase gave KSPC = 1.32,
but it was found to be slower than multitap.

One problem with the optimized key layouts is that users have to learn them
before they can bene“t from the expected performance improvements. Until the
new layout is learned, the performance will be lower than with a well known
keyboard. Zhai and Smith [2001] shows that an improved layout algorithm with
a term that bias alphabetical ordering can produce key layout that is easier to
learn, and with a very small drop in the expected performance. Studies by Ryu
and Cruz [2005] and Gong and Tarasewich [2005] con“rm this.

(a) Less-Tap (b) LetterEase

Figure 2.4: Optimized layout for phone keyboards.

Dynamic rearranging of characters The introduced optimized key layouts
have all been static. This have the advantage that the new layouts can be learned
by training. Bellman and MacKenzie [1998] have published work on a method
called Fluctuating Optimal Character Layout (FOCL) where the characters
are rearranged after each entered character. The currently entered text and
a language model are used to predict the likelihood for each character, to be the
next entered character.

FOCL was evaluated with the Date stamp method by MacKenzie [2002b]. The
FOCL layout was compared to an alphabetic layout. Both methods used Snap-
to-home, which means that the cursor will return to the “rst character on the
list after each entered character. Calculations show that Date stamp with FOCL
requires half as many key presses as Date stamp with alphabetic layout. The
evaluation showed no signi“cant di�erence between the two methods. FOCL
uses less key strokes, but requires extra time to locate the position of the
characters.

2.2 Optimizing text entry methods with language models 17

Nokia used a combination of FOCL and alphabetic layouts in the Nokia 7280
and 7380 phones. FOCL was used to place the “ve most likely characters at the
head of the list. All characters were appended to the list in alphabetic order.
When writing a normal phrase 1/ 3 of the needed characters will be placed at the
top of the list, and can be entered by one key press. Another 1/ 3 of the needed
characters will be placed among the remaining 4 characters from the FOCL list.
The last 1/ 3 of the characters can be found in the alphabetic part of the list,
where the user will know approximately where they are placed. There have not
been published any evaluations of text entry on Nokia 7280 and 7380.

2.2.2 Disambiguation from Language Models

The text entry methods presented until now, all uses extra key presses to
select the correct character. There exist a number of text entry methods were
characters are entered with only one key press per character. This class of text
entry methods is called single-tap. They all use language models to select the
correct character. Sometimes the language models select the wrong character. In
these cases, the user will have to press extra keys to select the correct character.

2.2.2.1 Character level disambiguation

A simple type of disambiguation is pre“x-based disambiguation as implemented
in the LetterWise text entry method by Eatoni Ergonimics, Inc. With
LetterWise the text is entered character by character just as multitap. When a
key is pressed LetterWise will use a language model and the pre“x characters
to “nd the probability of all the characters on the pressed key. The most likely
character will be written. If this is the wrong character, the user can press a
next key to iterate through the characters on the key, sorted by probability. To
write sun the user will “rst press 7. This will enter s. A press on key 8 will enter
t, becausest is very common in English. A press on the next key will change it
to su. The last press will be on 6 and it will enter a n. In this case 4 key presses
were needed to write the word. Kober et al. [2001] found that KSPC = 1.15 for
LetterWise. The number of key presses needed to write a word depends on how
well the word “ts with the language model. Words that are well described by
the language model will require few or none presses on the next key. Words that
are unlikely or not known by the language model will require more presses on
the next key. Novice performance of LetterWise is 6-8 WPM, which is similar
to multitap. Expert performance after 10 hours is reported to be around 21
WPM [Kober et al., 2001].

18 Text entry on mobile devices

2.2.2.2 Word level disambiguation

All the methods that have been introduced until now, have been able to write all
possible sequences of characters. There exist 263 = 17, 576 di�erent words with
three letters. Only 570 of these words are widely used in the British National
Corpus [Oxford University Computing Services, 2001]1.

By limiting text entry systems to only enter known words, the number of key
presses can be reduced.

For 12 key keyboards, 8 keys have letters assigned to them by the ITU-T layout
shown in table 2.1. Each key represents 3-4 letters. Word level disambiguation,
as implemented T9 by Tegic [James and Longé, 2000] and iTap by Motorola,
is the most common type of disambiguation. It is sometimes called dictionary-
based disambiguation. Each key is pressed once. To writesun, the user will
press 786. This key sequence is ambiguous and can be any of the 4· 3 · 3 = 36
words that can be made by combining the characters on the keys: (7 pqrs) (8
tuv) (6 mno). A language model is used to create a list of the most likely words
among all the possible words. Table 2.4 shows the “ve possible three letters
words from the British National Corpus and their probabilities.

Word Probability
run 69.3%
sun 27.0%
sum 1.4%
quo 1.3%
rum 1.0%

Table 2.4: Most likely words if the user has pressed 786 on an ITU-T keyboard.

The user is presented for the list and can choose the correct word. Some
implementations show the entire list to the user and enable the user to navigate
on the list. Other implementations only show the most likely word. A next
key will then allow the user to iterate over the words on the list. If the desired
word is not present on the list, it has to be entered by a fallback method such as
multitap. Silfverberg et al. [2000] estimate that the most likely word matches the
user•s target word 95% of the time. Based on this Kober et al. [2001] estimates
that KSPC = 1.0072 for word-based disambiguation like T9. This estimate is
very low, and requires that the user only writes words that are known by the
language model. The penalty for writing unknown words is high. First the user

1There are a total of 17 , 132, 597 three letter words in the British National Corpus. 6596
of these are unique. Only words that occurs more than 171 times (0 .001% of all three letter
words) are counted as words that are widely used.

2.2 Optimizing text entry methods with language models 19

has to try entering the word using the normal text entry method. As the word
cannot be recognized, the user needs to re-enter the word using the fallback text
entry method. James and Reischel [2001] reports novice performance of T9 to
be around 10 WPM and expert performance up to 25 WPM.

Word level disambiguation has also been used on devices with fewer keys.
Dunlop [2004] presents a text entry method for wrist watches with only 4
character keys and one next key. Results show that novice performance with
the method is only 40% slower than a standard mobile phone. In another study
by Tanaka-Ishii et al. [2002] participants averaged on 14 WPM for a four key
text entry method after 300 minutes of training.

2.2.2.3 Character or word level disambiguation

Word level disambiguation will always be more accurate than character level
because more information is available for the language model. More information
means that less key presses are needed to select the correct word. The wordsun
required 4 key presses for both word and character level disambiguation. If we
instead write run it requires 3 key presses for word level and 5 key presses for
character level disambiguation. Table 2.2.2.3 shows the process of writingrun
with the di�erent methods.

Gutowitz [2003] and Eatoni Ergonomics Inc. [2001] describe a number of
problems with word level disambiguation methods such as T9. The major
problem with word level disambiguation is that the word shown in the display
is very unstable during writing. Each time a new key is pressed the word will
change. Even though the words are based on the same key presses, they can be
very di�erent. The example from table 2.4(a) shows how the suggested word
changes fromst to run with one key press. It can be very confusing that the
characters in the display do not look like the target word. This holds especially
for novice users. With character level disambiguation only the last character
might be di�erent from the target character. The word stability problem also
makes it very di�cult to detect and “x typing mistakes. One wrong key press is
enough to write slondp instead of summer. It is very di�cult to “nd the wrong
key press, so often the user has to delete the entire word and write it again.

Another problem with word level disambiguation is that only words known by
the language model can be written. As mentioned above, new words need to be
added to the language model by a fallback text entry method. Character level
disambiguation does not have this problem. All words can be entered, but rare
words will require extra key presses.

20 Text entry on mobile devices

(a) Word level

Key press Shown in display
7 s
8 st
6 run

(b) Character level

Key press Shown in display
7 s

next p
next r

8 ru
6 run

Table 2.5: Key presses for enteringrun with word and character level
disambiguation

The problem with unknown words in the language model is bigger for some
languages than others. One of the important factors is the use of compound
words in the language. Compound words can be in closed form (“re”y,
keyboard), hyphenated form (daughter-in-law) or in open form (post o�ce, real
estate). Compound words in open or hyphenated form do not have to be in the
language model, if the individual words are present. If the compound words are
in closed form, then both the compound words and the individual words need
to be present in the language model. Often there is not space enough for all the
words, so only the most frequently used compound words are included.

2.2.2.4 Optimization of character layout for disambiguation

Like the character layout can be optimized for multitap, it can also be optimized
for disambiguation. The optimal character layout will group the characters, so
the sum of character probabilities on each key is the same for all keys. The
optimal solution for a 4 key keyboard is a probability of 1/ 4 for each key. It
will give H (1/ 4, 1/ 4, 1/ 4, 1/ 4) = 2 bits on information for each key press. If the
characters is distributed di�erently we might get H (1/ 2, 1/ 4, 1/ 8, 1/ 8) = 1 .75
bits or H (3/ 4, 1/ 8, 1/ 16, 1/ 16) = 1.19 bits for each key press. Gong and
Tarasewich [2005] presents optimal character layout for ambiguity for keyboards
with 1 to 12 keys. They investigated both alphabetically constrained and
unconstrained layouts. They found that the di�erence between constrained and
unconstrained layouts was very small, why alphabetically constrained layouts is
preferred because of the familiarity.

2.2 Optimizing text entry methods with language models 21

2.2.3 Additional Text Entry Features

Language models can be used to improve many current text entry methods.
Most of the features presented in this section can be applied to all text entry
methods.

2.2.3.1 Automatic correction of spelling mistakes and typos

A language model can be used to identify and correct mistakes in text. It can
either be spelling mistakes or typos. Typos are very likely on mobile devices,
due to the small keys on physical and on-screen keyboards. Kukich [1992] gives
an overview over di�erent techniques for automatically correcting words in text.
When the correcting is done while the user is entering text, extra information can
be extracted from the text entry process. Goodman et al. [2002] implemented
an error correction method for on-screen keyboards. On-screen keyboards can
detect exactly where a key is touched. If the touch is near the boundary of the
key, the user might intend to hit the neighbour key. The positions of the touch
and a language model are used to correct errors.

Whiteout++ by Clawson et al. [2008] uses the timing of key presses to “nd
errors. If the same key or two adjacent keys are pressed within 50-100 ms, then
one of the key presses might be a typo. A language model and a decision tree
are used to determine if one of the key presses should be ignored.

Like all other types of automation, automatic correction can be very frustrating
for the user if it does not work. Too many false positives, where correct words
are changed, will a�ect the user experience and performance of the text entry
method.

2.2.3.2 Word completion

Word completion will suggest entire words based on few characters. A language
model is used to create a list of candidate words that are presented to the user.
It is implemented in many commercial and academic text entry methods. One of
the “rst implementations was The Reactive Keyboard by Darragh et al. [1990].
It was intended for desktop computers. A list of text snippets was shown in
a separate window, and the user could choose how much of the snippets that
should be inserted into the text editor. The method required a computer mouse
for the interaction, so it was mainly useful for novice users. MacKenzie et al.
[2006] used word completion in the Unipad text entry method. Their analysis

22 Text entry on mobile devices

shows that the average KSPC drops from 1.0 to 0.5 if word completion was used
with “ve or more words in the candidate list. The average KSPC will drop if
more words are included in the candidate list. The overall performance is very
likely to decrease, because of the time required to scan all the candidate words.

Some implementations also suggest the next word or phrase based on the current
text. AdaptTex by Dunlop et al. [2006] is one example of such implementations.

2.2.4 Problems with text entry and language models

There are a few problems that are general for all methods that use language
models. The language model is bound to a language. This means that their
need to be a language model for all supported languages. Language models can
be very expensive to create and will also take up storage in the devices where
they are used. For Europe alone there exist more than 250 languages [Laverack
and von Niman, 2007].

To save time and money many commercial text entry systems only supports the
major languages. The rest of the users will have to use the language that is
closest to their language variant or dialect.

The quality of the language model is very important. If the language model
does not re”ect the user•s language, it wills a�ects the performance and user
experience of the text entry method. Kober et al. [2001] shows how the
performance of T9 degrades fast when the target words are not represented
by the language model. If 15% of the words are unknown, the performance in
WPM will drop with more than 30%.

Several studies of mobile text messaging [Grinter and Eldridge, 2001, Rathje
and Ravnholt, 2002] have found that the language used in text messages have
evolved. In mobile text messages it is common to use non-dictionary words like
cu l8er (see you later), *smiling*, ASAP (as soon as possible), LOL (laughing
out loud) and smileys like ;-) and <:-(.

Field interviews by Gutowitz [2003] revealed that unknown words were the most
frequent problem with the T9 method.

2.3 Language modelling 23

2.3 Language modelling

Many of the introduced text entry methods require a language model. Most
language models are statistical models that can be used to estimate the
probability that a given character sequence will occur in the language. This
section will give an overview of di�erent kinds of language models.

2.3.1 Information theory and language modelling

The “eld of information theory was initiated by Shannon [1948], with his
mathematical theory of communication. Information theory has mainly been
used in the “elds of data transmission and compression, but has also been applied
in language modelling. The entropy is the basic measure for information. IfX is
a discrete random variable with alphabetQ and distribution p, then the entropy
in bits is de“ned as:

H (X) = Š
�

x � Q

p(x) log2 p(x) (2.1)

A language modelM can be de“ned as an information source that will output
symbols m = m0m1m2... from an alphabet Q.

Often the language model is used to estimate the probability of a given text.
The probability of a text is the same as the probability that the language model
will generate the same series of symbols. The following notation is used to give
the probability of the text x being generated by the language modelM :

M (x) � P(m = x) (2.2)

Language models are often used to “nd the probability of a word or a character
� , given the pre“xed text h.

P(� |h) �
M (h�)
M (h)

(2.3)

2.3.1.1 Assessment of language models

A common way to assess language models is to see how well a language model
can describe text in a test corpus. The cross entropy between the language
model and test corpus is used as a metric. IfX and Y are a discrete random

24 Text entry on mobile devices

variables with alphabet Q and distributions p and q, then the cross entropy in
bits is de“ned as:

H (X, Y) = Š
�

x � Q

p(x) log2 q(x) (2.4)

The cross entropy measures how many bits that are needed to describeX by
Y . X is the true distribution of text from the test corpus. Y is the distribution
of text from the language model. If Y = X , then H (X, Y) = H (X) = H (Y).

The quality of language models are often described by theperplexity metric.
It is de“ned as 2 to the power of the cross entropy of the test corpusT and
language modelM :

2H (T,M) (2.5)

If T = � 1..� n , n = |T|, it can be described as:

2Š
� | T |

i =1
1

| T | log 2 P (� i |h) , h = � 1...� i Š 1 (2.6)

When measuring the entropy of text, the entropy is often reported in bits
per character (bpc). A typical user might use up to 100 di�erent characters
when writing text. It includes lower and upper case letters, numbers, spaces,
punctuation marks and language-speci“c characters. A complete random text
where all 100 characters in the alphabet have the same probability will have
100· Š 1

100 log2
1

100 = log 2 100 = 6.64 bpc.

2.3.1.2 Information in Language

When writing normal text in a language, some characters will be likely and
some will be very unlikely. For English characters likee, t, h and spacewill be
very likely and characters like z, { and * will be unlikely. Because of the skew
distribution of the characters, the entropy of English is a lot lower than 6.64
bpc.

Shannon [1951] estimated an upper bound of the entropy of English on 1.3 bpc.
Participants were presented for a snippet of text and were told to guess the
next characters. By counting the number of guessed characters, he was able to
calculate the entropy. Cover and King [1978] used a more re“ned method, where
the participants could gamble on the next character in the text. By doing this
they archived an upper bound on 1.25 bpc. Both these estimates were found by
using humans to guess the next characters. The test corpora they had to guess
were small and they only had to guess between 26-27 characters.

2.3 Language modelling 25

Brown et al. [1992b] presented an estimate of 1.75 bpc obtained by using a
trigram language model (see section 2.3.3). The language model was trained on
a corpus with about 587 million words. The entropy estimate was found by using
the language model on a test corpus of one million words. All 95 printable ascii
characters were used. Teahan and Cleary [1996] replicated the early work by
Shannon and Cover, but used a PPM language model (section 2.3.6.2) instead
of humans. They estimated the entropy to 1.46 for Shannons text and 1.726 for
the text used in Covers work.

2.3.1.3 Information theory and text entry

The entropy of language is very relevant for text entry. A keyboard can be seen
as a source of information. If the keyboard hasn keys, that are all equally likely,
the entropy of a key press is log2 n bits. If chording (concurrent key presses) is
supported, then the entropy will be log2(2n Š 1). The Š1 is because at least
one key needs to be pressed. If the keyboard hasnm modi“er keys (like Shift,
Alt and Ctrl) then the entropy will be 2 n m · log2 n bits per key press.

The relation between the bits per key press, KSPC and bpc is described in
equation 2.7.

bpc � KSPC · bits per key press (2.7)

If an alphabet has 32 characters, then you will needlog232 = 5.0 bits of
information to write a character. Using a normal keyboard, this will require
25 = 32 keys to be able to write one character per key press. A text entry
method that requires two key presses to write a character (KSPC = 2) will need
2.5 bits per key press. This can be done with a keyboard with 22.5 = 5 .7 � 6
keys. If KSPC = 3 then the 25/ 3 = 3 .2 � 4 keys are needed. If the keyboard
supports chording, then it is possible to enter a character with a single press on
a keyboard with log2(25 + 1) = 5 .04 � 6 keys.

All these examples give the minimum number of keys that are required to enter
a character. The coding of key presses to characters needs to be optimal to
achieve this minimum. Often it can be desirable to use a suboptimal coding, if
it is easier to learn for the user [Zhai and Smith, 2001, Gong and Tarasewich,
2005, Ryu and Cruz, 2005].

If a language model is used, fewer bits are required to write a character. This
can be lead to text entry systems with fewer keys or a lower KSPC value.

26 Text entry on mobile devices

There are two pitfalls when using language models:

€ The “rst is that the bpc is an average for the entire text. The entropy of a
single character can be larger than the average bpc. This is often the case
for the “rst letters in a word. This is due to the simple fact that it is a lot
more di�cult to guess the “rst letters of an unknown word, than it is to
guess the “fth letter if the “rst four letters are known. The experiment by
Shannon [1951] also shows this e�ect. This is also the reason that word
level disambiguation in general requires less key presses than character
level disambiguation as described in section 2.2.2.3.

€ The other problem that can occur is when the user writes text that does
not match the language model. The bpc of this text will be a lot higher
than expected, and can lead to a severe degrade in performance of the
text entry method. A good example is T9, where the user is forced to use
multitap to write words the language model does not know.

2.3.2 Creating a language model

Most language models are created by compiling a large text corpus. The text
in the corpora is often taken from the Internet where it is easy to collect
a large amount of text. It could be from sites such as Project Gutenberg
(http://www.gutenberg.org/) that has more than 25,000 free electronic books
or from the online encyclopaedia Wikipedia (http://wikipedia.org/). Prior
to the wide adoption of the Internet, many corpora were based on books and
articles from newspapers.

There are other corpora, where there is more information about the texts. The
British National Corpus consists of more than 100 million words, which have
been tagged with their word class and other information. Examples of Danish
language are found in Korpus 90, Korpus 2000 and KorpusDK from the Society
for Danish Language and Literature (Det Danske Sprog- og Litteraturselskab).

It is important that the corpus re”ect the users language. Early Danish mobile
phones with T9 could not write •knus• (hug). Instead the word •lovs• (law•s)
was suggested.Hug is probably not frequently used in newspapers compared to
law•s.

2.3 Language modelling 27

2.3.3 Simple n-gram and n-graph models

n-gram and n-graph are simple statistical language models based on word or
character frequencies in the corpus. n-grams describe words and n-graphs
describe characters. This section will mainly describe n-grams, but everything
can be transferred directly to n-graphs. The n describes the sequence length
that is used in the model. For n = 1, 2 or 3 the words unigram, digram or
trigram are typically used. A unigram model is a list of single words and their
frequencies. A digram model is a list of word pairs and so on. When n increases
the size of the model increases exponentially. A simple unigraph model can be
implemented in 27 bytes, if one byte is used for for storing the probability of
each of the 27 English characters including space. A digraph model will require
272 = 729 bytes and a trigraph model 273 = 19, 683 bytes. n-gram models take
up a lot more space because of the many words, and because they cannot be
enumerated the same way characters can.

The probability of a word w can be found by dividing the frequency with the
total number of words. Here C(w) is the count of word w in the corpus and N
is the total number of words in the corpus.

P(w) =
C(w)

N
(2.8)

For digrams, the probability of a word w, given the previous word wp can be
calculated as shown here.W is the set of all words from the corpus.

P(w|wp) =
C(wpw)

�
wi � W C(wpwi)

(2.9)

2.3.4 Smoothed n-gram and n-graph models

A common problem with n-gram and n-graph models is that it is very likely
that some n-grams or n-graphs do not occur in the corpus. Of the more than
100 million words in the British National Corpus, there exist only 20 trigraphs
that start with xk and end with a letter. They are all shown in table 2.6. Based
on this table the probability P(xka) = 0 .0. In the real world P(xka) might
be very small, but it should never be 0. In this section the trigraph xka have
already occurred three times. Another problem is thatP(xkx) is a lot lower than
P(xky), even though xky only occurred once more thanxkx in the around 500

28 Text entry on mobile devices

million trigraphs in the British National Corpus. Both these problems can be
avoided by using smoothing or discounting techniques to give better estimates
of the probabilities.

Trigraph Count Probability
xki 2 0.10
xkl 5 0.25
xku 6 0.30
xkv 2 0.10
xkx 2 0.10
xky 3 0.15

Table 2.6: Trigraphs from British National Corpus that start with xk and end
with a letter.

2.3.4.1 Add one smoothing

Add one smoothing is a simple smoothing function that adds 1 to all the counts
and multiply with N/ (N + V) [Jurafsky and Martin, 2000]. It is based on
Laplace•s law of succession.N is the count of all n-grams andV is the number
of possible n-grams. The probability function with add one smoothing is:

P(w) =
C(w) + 1
N + V

(2.10)

Add one smoothing solves the problem of some n-grams having 0 probability.
But the value 1 is arbitrary chosen, and could also be set to any other value.
Large values will favour unknown n-grams, while small values will favour known
n-grams. Another problem with Add one smoothing is that you need to know
the number of n-grams. With n-graphs this will be limited by the used character
set, but for n-grams it can be impossible to know the upper limit of n-grams.

2.3.4.2 Witten-Bell discounting

A better solution introduced by Witten and Bell [1991] is now known as Witten-
Bell smoothing. The sum of probabilities for all unknown n-grams is set to:

�

w,C (w)=0

P(w) =
T

N + T
(2.11)

2.3 Language modelling 29

T is the number of unique n-grams seen so far. The probability for known
n-grams is:

P(w) =
C(w)
N + T

(2.12)

If there are Z unknown n-grams, the probability for each unknown n-gram is:

P(w) =
1
Z

T
N + T

(2.13)

Z will often be unknown, but the sum of all unknown n-grams can always be
calculated. This is called the escape probability.

2.3.4.3 Good-Turing discounting

Good-Turing was introduced by Good [1953]. It is based on the assumption
that the counts of n-grams that occurs few times (less than 5-10 times) in the
corpus are not reliable. They are replaced by a smoothed countC� :

C� (w) = (C(w) + 1)
NC (w)+1

NC (w)
(2.14)

Nx is the count of n-grams that occur x times. It can be seen as the frequency
of frequencies.

2.3.5 Combinations of language models

It is very common to combine language models to get a better model. It could be
di�erent types of models or models of di�erent orders. A common example is to
combine a general language model with a speci“c language model. The speci“c
language model can either cover a special domain or it can be an adaptive
personal language model that re”ects the user•s vocabulary.

2.3.5.1 Linear Interpolation

Linear interpolation estimates the probability by a weighted sum of the
probabilities from all the language models. IfM is the set of all the language
models, it can be expressed as:

30 Text entry on mobile devices

P(�) =
�

m � M

� m Pm (�) (2.15)

If we combine di�erent orders of the same language model, the weights could be
calculated by the blended context model (“rst described by Cleary in 1980, here
taken from Bell, Witten, and Cleary [1989]). Here i is the order of the model
from 0 to l :

� i = (1 Š ei)
l�

j = i +1

ej (2.16)

� l = (1 Š el) (2.17)

ei is the escape probability for a model of leveli . This is the probability for an
unknown word or character. It can be calculated by the discounting functions
from the previous section. Sometimes the combined model is extended with a
model of levelŠ1, where all words or characters have the same probability.

2.3.5.2 Backo�

Backo� by Katz [1987] and blended context models with exclusions are other
methods to combine di�erent orders of the same language model. They only uses
the model of highest order with nonzero probability to estimate the probability.

If the combined model consist of a unigram, digram and trigram language model,
the two previous words wppwp will be used to calculate the probability of a
new word w, P(w|wppwp) = � 3P(w|wppwp). If the trigram wppwpw does not
occur in the corpus, the model wills backo� to a lower level model. In this
caseP(w|wppwp) = � 2P(w|wp). If wpw does not occur the probability will be
estimated by a unigram model� 1P(w).

Backo� will typical be used together with a discounting function. The values of
� depends on the choice of discounting function.

2.3 Language modelling 31

2.3.6 Adaptive Language models

Adaptive language models are useful because they can adapt to the user•s
language. This is good because new words are added to the language and
the frequencies of known words will change over time. Studies by Grinter and
Eldridge [2001] also show that many non-dictionary words are used in mobile
text messages. Words likemillennium and y2k were used a lot around year
2000 but have not been used much before and after. Other words likesnow or
Christmas are bound to di�erent seasons. The symbol @ was not used much
before the early nineties. Today it is used by all people who are writing emails.

Most research has focused on creating adaptive language models by combining
a general corpus with a domain speci“c corpus. Examples of such models are
given by Bellegarda [2004] and Wandmacher et al. [2008].

2.3.6.1 Move to front

Move to front is a simple adaptive language model, where the words or characters
are sorted after their last occurrence in the text. Each time a word or character
occurs, it is moved to the front of the list. The actual implementation depends on
the text entry method. If move to front is used with a word-level disambiguation
method like T9, then each key sequence will have its own candidate list. The
candidate list for the key sequence 786 is shown in table 2.4. It isrun, sun,
sum, quo, rum. Each time the user enters a word from the list, the given word is
moved to the front of the list. Move to front is better than a static candidate list
if the static list does not re”ects the users• language. Otherwise the performance
of move to front is likely to be worse than a static list. Each time a rare word is
used, it will be moved to the front on the list, thereby making it more di�cult
to write likely words. Another problem is that many experienced users have
learned the order of the candidate lists for the most used words. Move to front
changes the order very often, which will disturb experienced users. The frequent
changes in the candidate lists require extra visual attention from the user, to
verify that the entered word is correct.

2.3.6.2 Prediction by Partial Match

Prediction by partial match (PPM) is a data compression technique made by
Cleary and Witten [1984]. It can be described as an adaptive n-graph model with
backo�. Di�erent smoothing techniques can be used to estimate the probability
of unknown n-graphs. The optimal value of n is around 5 when it is used for

32 Text entry on mobile devices

data compression. A version of PPM with unbounded variable length n-graphs
are presented in Cleary et al. [1995]. In data compressions PPM is always used
with n-graphs. In language modelling it can both be used with n-graphs and n-
grams. Deligne and Bimbot [1995], Niesler and Woodland [1996], Kneser [1996]
all describes how variable length n-grams can be implemented.

2.3.7 Other language models for text entry

This section has mainly described statistical language models. There exist
many other types of language models that make use of semantic and syntactic
information.

Brown et al. [1992a] used information theory to group words from a corpus into
di�erent classes. One class could be weekdays, nationalities or similar. A class-
based n-gram model was created, such that the model contained information
about the classes and not the actual words. This requires less storage space,
and is able to model the semantic of the corpus.

Stocky et al. [2004] used common sense from OMCSNet, a large-scale semantic
network, (http://openmind.media.mit.edu/), as a language model. OMC-
SNet can “nd words related to a query word. The word chilli might return
words such asfood, hot, red, etcetera. It was used to disambiguate between
words on a single-tap mobile phone text entry method.

Trigger models are an extension to n-gram models. They are similar to n-gram
models, but there is a distance between the n-1 “rst words and the last word.
The “rst words are said to trigger the last word. It is based on the assumption
that if some words have occurred recently, then other words are more likely. For
example the word airport might trigger words as ticket, ”ight, security control,
etcetera.

2.4 Trade-o�s between size, speed and complex-
ity

The di�erent text entry methods that have been presented in this section all
have their strengths and weaknesses. Figure 2.5 shows the relations between the
text entry methods, according to their relative speed, complexity and physical
size of the input device. The complexity is estimated as a combination of the
learnability and memorability of the text entry methods.

2.4 Trade-o�s between size, speed and complexity 33

Physical size of input device

Te
xt

 e
nt

ry
 s

pe
ed

QWERRTY

HALF QWERTY

Multitap

Twiddler

T9, iTap

Date Stamp

Selection keyboards

On-screen keyboards

LetterWise

Complexity:

Complex

Moderate

Easy

Very easy

Figure 2.5: Text entry speed, complexity and physical size of input device for
di�erent text entry methods.

The “gure shows two clear trends: There is a correlation between text entry
performance and size of input device and between text entry performance and
the complexity of the text entry methods.

2.4.1 Physical size of input device

For the very easytext entry methods there is a correlation between the size of
the input device and the text entry speed. Only key based methods are included
in the “gure. This means that the size of the input device can be replaced with
the number of keys used to enter text. If fewer keys are used, the bits per key
press will be lower. As shown in equation 2.7, this will require the text entry
method to have a higher KSPC value. Higher KSPC values mean that more
key will have to be pressed to enter the text. This will result in lower text entry
speed.

Common for all the text entry methods in the very easygroup, is that they are
deterministic. Each key press performs a well de“ned action that can be learned
very fast. No language model is used in any of the methods.

34 Text entry on mobile devices

2.4.2 Complexity

The multitap, LetterWise, T9, iTap and Twiddler methods are all made for ITU-
T keyboards. The reported text entry performance of the methods range from
6 to 26 WPM. Novice performance for all methods is 6-8 WPM. The methods
with higher complexity can reach higher expert performance.

Multitap and Twiddler are both deterministic. The reason for the high
complexity of Twiddler is that the user has to learn chording and remember
all the chording combinations. The study by Lyons et al. [2004] shows that it
takes 2 hours of practice with Twiddler before it is as fast as multitap. Even
after 6 hours of training, Twiddler is only 1/3 faster than multitap.

The two other methods are uncertain. It is not possible for a user to know
exactly what will happen, when a key is pressed. This is due to the use of
language models. The words or characters shown in the display are dependent
on input from the user and the language model. If the language model is static,
it will be possible to remember the predicted words for frequently used key
combinations. As described in section 2.2.2.3 word level disambiguation is more
di�cult to learn and use than character level disambiguation. This makes the
complexity of T9 and iTap higher than LetterWise.

2.4.3 Skill acquisition

The complexity of text entry methods was de“ned as a combination learnability
and memorability. These factors are very important for how easy a new text
entry method is to learn and to master.

Interaction with computers can be seen as a control process (“gure 2.4.3). The
user has an intention to do something with the computer. It could be to enter
the word sun with the multitap method. As the user presses the “rst key (7)
the state of the computer changes. The display will show anr. The feedback
from the computer is perceived by the user. Sincer is not the “rst character
in sun the user will continue to press the 7 key. After four presses the feedback
from the computer will match the intention and the user can continue with the
rest of the word.

The complexity of multitap is very low, so it is easy for novice users to learn the
method. Based on the feedback from the computer the user will start to create a
model of how multitap works. Norman [1998] calls this model the User•s model.
The combination of the computer system and the documentation called the

2.4 Trade-o�s between size, speed and complexity 35

Intention State

E�ecto rs

Perc eption

Sensors

Fee dback

Interface

Imaginary Direct Line

Human Computer

Figure 2.6: Human-computer interaction as a closed-loop control process. From
Williamson [2006]

System image. Sharp, Rogers, and Preece [2007] use the terms conceptual and
mental model. The conceptual model is created while the system is designed,
and it explains how the system works. The mental model is created in the brain
of the user when interacting with the system. If a user•s mental model does
not re”ects the conceptual model, then the user will experience di�culties when
using the system.

Studies of T9 and similar methods by Eatoni Ergonomics Inc. [2001], Gutowitz
[2003] showed that many people did not have a correct mental model of how
T9 works. They were confused by the predicted characters. The feedback were
perceived, but could not be interpreted correctly. When the feedback cannot be
interpreted, it becomes di�cult to compare the state with the intention and to
select which actions to perform.

The problems can be solved by giving users an introduction to the text entry
methods. This works well when doing usability evaluations. For commercial
products it is unlikely that users will invest a lot of time to learn new text
entry methods. It is therefore important that text entry methods have a simple
conceptual model. This will enable the users to create a correct mental model
when they are using the text entry methods.

Creating a correct conceptual model is the “rst step to become e�cient with
a new text entry method. A correct conceptual model of multitap enables the
user to “nd the required number of key presses.s is the fourth character on key
7 (pqrs), so four presses are needed to writes. With this knowledge the user can
enter s by making four consecutive key presses on 7. This is faster than before
where the user had to perceive the feedback after each key press.

The next step to become more e�cient is to use the system. When the

36 Text entry on mobile devices

same actions are performed repeatedly, automatic processing will be developed
[Schneider and Shi�rin, 1977]. Automatic processing will decrease the attention
demands and improve the performance. The user will learn thats requires four
consecutive key presses on 7. Some of the actions needed to enter text will
change from closed-loop processes to open-loop processes. Open-loop means
that the need for feedback is gone. Other actions will have reduced their need
for feedback. A user that has learned the ITU-T layout can enter text without
visual feedback. Tactile feedback is still used to position the “nger on the keys
and to detect when the keys have been pressed.

With all deterministic text entry methods the entered text is only dependent
of the pressed keys. This makes it possible for the user to enter text without
feedback from the text entry method. If the text entry method contains a
language model it will be nondeterministic. The user needs feedback to compare
the state with the intention. It is possible for experienced users to learn parts
of a language model. For example thatsun is the second word in the candidate
list for 786. Just like the novice user can learn thats is the fourth character on
7. Adaptive language models can be very confusing for experienced users, if the
learned order of candidate words changes.

The QWERTY keyboard is good example of a successful text entry method.
The conceptual model is very simple and can be learned fast. The layout of the
characters will be learned after some time. Frequent use will develop automatic
processing, where text can be entered with very little attention. This leaves
more attention to the most important task: What to write.

The design of TUP in section 4 is an attempt to create a text entry method for
mobile device that is easy to learn and use.

2.5 Conclusions

There exist many di�erent mobile text entry methods. The diversity of the
methods are very large. So are the diversities in their speed, complexity and
size requirement. The physical size of the input device is important for how fast
and easy a text entry method is to use. It is therefore advisable to use as much
space as possible to the input device. This makes it di�cult to create uni“ed
text entry methods that can be used on a range of di�erent mobile devices.

Language models can be used to increase the performance of text entry methods.
It will often be at the cost of increased complexity. It is likely that the
users will write new words that are unknown by the language models. It is

2.5 Conclusions 37

therefore important that new words can be written easily, without a large drop
in performance. This is not the case with many text entry methods to day.

Language models should be able to adapt to the user•s language. This will make
the predictions from the language model more precise, and thereby increasing
performance and user experience of the text entry methods.

38 Text entry on mobile devices

Chapter 3

Evaluation of text entry
methods

This chapter describes the methodologies used to evaluate the text entry
methods in this thesis.

3.1 Evaluations

Evaluations of new and improved text entry methods are an important step
to assess the quality of the methods. It is a central part of most interaction
design processes. The quality of a text entry method is a combination of the
usability and user experience. Usability is the e�ectiveness, e�ciency, safety,
utility, learnability and memorability of a method [Sharp et al., 2007]. The
performance of a text entry method is part of the usability. Performance
is measures of text entry speed, error rates and similar. User experience is
everything users experience from a product. It could be from advertisements,
buying the product, using the product, etcetera. For text entry methods it will
mainly be the users• experience while using the text entry method. Examples
of user experiences could be satisfying, enjoyable, helpful, challenging, boring,
frustrating or annoying. Usability and user experience is closely related. If a

40 Evaluation of text entry methods

text entry method have poor performance, it is very likely that the user will feel
frustrated of annoyed.

Evaluations can be divided in three di�erent categories:

Usability testing. Made in a controlled environment where users will perform
tasks with a product.

Field studies. Done in natural settings together with users.

Analytical evaluations. Expert evaluations and modelling. Conducted with
out involving users.

Usability testing traditionally focuses on “nding problems with a product or to
get performance data. Field studies focus on how products are adopted and used
by people in their natural settings. Both usability testing and “eld studies are
done with users. Analytical evaluations are done by experts without involving
users. It can either be a walk through of a product, or a model of the interaction
between the users and the product. Elements from all three types of evaluations
are used in the thesis.

3.2 Mobile evaluations

For text entry methods designed for mobile devices there might be a big
di�erence in performance between a lab evaluation and a “eld study. In the
lab the user will typical be sitting down, using two hands, having a controlled
climate, good light conditions, no noise and be able to focus only on the text
entry task. In the real world, the user will often have to input text outside,
while driving or walking around, in the shop or maybe in the bed at night.
Oulasvirta et al. [2005] found that the average continuous span of attention to
mobile devices were between 4 to 8 seconds when they were used in the “eld. In
a lab the span of attention was about 14 seconds. The environmental conditions
are also very di�erent in the “eld. It might be cold and windy outside or di�cult
to see the display because of the sun. People are pushing to each other in the
shop, and there is no light when writing text in the bed at night. Text entry
methods that require a lot of visual attention might work well in a lab or o�ce
environment but can be di�cult to use in the “eld.

If the text entry method is intended for mobile use, it is important that it is also
evaluated in the users• natural settings. A comparative study by Hoggan et al.

3.2 Mobile evaluations 41

[2008] showed that users can enter text 40% faster in a lab than on a subway
train. Despite this most text entry evaluations are done in labs.

To get realistic performance data most of the evaluations in this thesis are done
in the “eld. Elements from usability testing and “eld studies are combined to
create “eld usability tests. Focus is on gathering performance data in realistic
natural settings of the users.

3.2.1 Prototypes for mobile evaluations

Three di�erent interactive prototypes of TUP have been made to evaluate
usability and user experience. The “rst prototype was a mock-up where a touch
pad was attached to a cardboard phone and connected to a computer. The
prototype was unhandy, and therefore only usable for usability testing in a lap.

The two next prototypes were constructed to be used in “eld usability tests.
Prototypes made for “eld evaluations need to have a small form factor, be
battery driven and be solid enough to be carried around. The TUP prototypes
were both based on the Apple iPod with custom software.

3.2.2 User conducted evaluation

Normally an evaluator will conduct the usability testing with the users. The
evaluator will be responsible for controlling the prototype and guide the users
through the evaluation tasks. For “eld usability testing it might not be feasible,
or even possible, to have an evaluator next to the user all the time. This hold
especially for longitudinal studies.

In the two “eld usability tests in this thesis, the users have to conduct the most of
the evaluation by them self. There are brie“ng and debrie“ng sessions together
with the evaluator. In between them, the users will be on their own. Besides
the prototype, they are given a small notebook and a pen, so the users can write
comments and feedback to the evaluator. The requirements to quality of the
prototype are high, because the prototype has to be usable by the participants
without any help.

The data gathering from the evaluations is done by the users and the evaluation
software in the prototype. The users will write contextual information and
comments in the notebooks. The evaluation software will create logs of all the
interaction with the prototype.

42 Evaluation of text entry methods

3.3 Text entry evaluation design

The goals of the text entry evaluations in the thesis are to “nd performance
data, to “nd the participants initial reactions and to understand how TUP is
used by the participants.

The participants have to write phrases with TUP on the di�erent prototypes.
The writing task can be made as a text copy or text creation task [MacKenzie
and Soukore�, 2002]. With text copy the participants are shown a phrase and
have to write it. With text creation the participants have to create their own
phrases. Text creation mimics every day use, but is di�cult to use in text entry
evaluations. The intended phrases are only known by the participants, so it
is not possible to detect errors. The participants might also be slowed down
because the have to create the phrase and enter it at the same time. Therefore
text copy is used in all the evaluations in this thesis. The participants are told
to memorize the phrases before they start writing. Only short phrases are used,
to make it easy to memorize them.

The phrases presented to the user will be called thepresented text. The phrases
entered by the user will be called thetranscribed text.

The unconstrained text entry evaluation paradigm Soukore� and MacKenzie
[2001], Wobbrock and Myers [2006] is used at most evaluations in the thesis.
This method allows the participants to enter and edit the text as the like. This
gives a more natural interaction style, where errors in the transcribed text are
allowed.

3.3.1 Evaluation phrases

The presented phrases have a large e�ect on the evaluation results, because
some phrases are easier to write than others. This holds especially if the text
entry method contains a language model. If for example T9 is evaluated it
is crucial that the used words are known by the language model. Otherwise
the performance will be very poor. This relation between the phrases and the
performance can problematic. You might end up testing the language model
and not the text entry method. This can be abused to favour certain text entry
methods by picking the right phrases. It also makes it di�cult to compare
di�erent text entry evaluations.

To avoid these problems MacKenzie and Soukore� [2003] have published a set of
500 short phrases for use in text entry evaluations. The phrases are all written

3.3 Text entry evaluation design 43

in English. They are lower cased and without punctuation. This phrase set has
been used in many recent text entry evaluations.

The phrases are used in the two last evaluations in the this thesis. The
“rst evaluation uses 5 other short English phrases. The participants in the
evaluations are mainly university students and faculty. The participants have
di�erent nationalities, but all can speak and write English. A study by Isokoski
and Linden [2004] shows the e�ect of foreign language in text entry performance.
In a evaluation with a QWERTY keyboard, Finns were 16% slower when writing
in English compared to writing in Finish. They also made signi“cantly more
errors when writing in English. In some text entry evaluations the phrase set
have been translated to avoid this e�ect.

All used evaluation phrases in this thesis are English. This is because of the
mixed nationalities of the participants and to make it possible to compare the
results with other evaluations.

3.3.2 Text entry performance

The performance data from the evaluations will focus on text entry speed and
error rates. Methods from Soukore� and MacKenzie [2003, 2004], Wobbrock and
Myers [2006] are used. The di�erence between the presented and transcribed
text will not tell anything about how many errors that have been made and
corrected by the users. Therefore it is also necessary to know the input stream.
The input stream consists of all inputs made by the participant. It includes
characters (correct and incorrect) and editing commands (backspace, delete,
cursor movements, etcetera).

Wobbrock and Myers [2006] provide the StreamAnalyzer application that can
analyse an input stream and compute text entry speed and error metrics. The
di�erent characters in the input stream are tagged with a class:

C Correct character

IF Incorrect character that is “xed

INF Incorrect character that is not “xed

F Editing commands (F stands for Fixes)

The tagged characters can be used to calculate the following metrics:

44 Evaluation of text entry methods

WPM: Text entry speed in words per minute (3.1)

Uncorrected Error Rate: Errors that are not corrected (3.2)

Corrected Error Rate: Errors that are corrected (3.3)

Total Error Rate: The sum of corrected and uncorrected error rates (3.4)

The metrics are described here.

WPM =
|C| + |INF | Š 1

S
· 60·

1
5

(3.1)

The time in secondsS used to enter a phrase is calculated as the di�erence
between the time stamps for the “rst and last character. The notation |C| is
used for the count of characters in classC for a given input stream.

Uncorrected Error Rate =
|INF |

|C| + |INF | + |IF |
(3.2)

Corrected Error Rate =
|IF |

|C| + |INF | + |IF |
(3.3)

Total Error Rate =
|INF | + |IF |

|C| + |INF | + |IF |
(3.4)

3.3.3 Learning rates

The learning rate of a text entry method describes the relation between text
entry rate and how long time a user has used the method. It is based on the
power law of learning from Card et al. [1983]. The model has the form

WPM n = WPM 1 · nx (3.5)

WPM n is the text entry speed aftern repetitions. WPM 1 is the initial text entry
speed andx is the learning rate. n is the number of repetitions. As described by
Isokoski and MacKenzie [2003] the learning rate is good to describe observations,
but cannot be used to predict the e�ect of more training. The main reason is
that the predicted text entry rate will grow toward in“nity if enough training is
done.

Chapter 4

Transparent User guided
Prediction

This chapter describes Transparent User guided Prediction (TUP). TUP is a
novel text entry method for devices without keyboards. TUP is introduced
and implemented in two di�erent prototypes. The prototypes are evaluated in
two usability evaluations. Interaction logs from the last evaluation are used to
improve TUP. The improved version of TUP is implemented in a third prototype
and evaluated. A TUP version for keyboards is proposed.

4.1 Introduction to TUP

TUP was developed to enable easy text entry on small devices with touch
sensitive wheels. With TUP all characters are assigned to “xed positions on
the wheel. Characters can be highlighted by touching the wheel. A language
model and model of human behaviour are used to make it easy to highlight the
most likely characters.

TUP was designed for touch input devices, but can be used in with all input
devices that can detect a continuous absolute input. It can either be used with a
combined input/output device such as a touch sensitive screen or isolated devices

46 Transparent User guided Prediction

such as touch sensitive wheels or sliders and a display. The early development
of TUP is described in my master thesis [Proschowsky, 2005b].

TUP is not a single complete text entry system. TUP is mainly a method
for selecting characters from a character set. It contains di�erent interaction
styles that control how the selected character is entered. Several graphical
user interfaces have been created for TUP. The choice of interaction style and
graphical user interface is dependent on the capabilities of the device. Some
interaction styles require extra keys to be added to the device. The choice of
graphical user interface is highly dependent of the screen size in the device.

TUP does not describe any text editing features, such as delete functions, cursor
movements, text highlighting and copy/paste. It is easy to add these features
to TUP, but the actual implementation is dependent on the device.

4.1.1 Design of TUP

TUP can be seen as an improved version of Date stamp. The characters are
shown in a display, and can be highlighted and entered with the touch sensitive
wheel. There is a direct mapping between the wheel and the highlighted
character. This enables the user to highlight all characters directly, by touching
the wheel at the corresponding point. With the normal date stamp method the
user has to scroll to highlight a character.

The design of TUP is based on these main requirements:

Simple conceptual model. It should be very easy for novice users to start
using TUP. The complexity of the TUP from the user•s point of view
should be very simple. The transition from novice to expert user should
be straightforward.

Character based. Text should be entered one character at a time because this
is easier for novice users. Another advantage of this is that the text entry
is not limited to known dictionary words.

Hidden use of language model. Language models can speed up text entry
performance, but can be complicated for the users to understand. TUP
will use a hidden language model, where the user will not have to know
about, or interact with, the language model.

4.1 Introduction to TUP 47

4.1.1.1 Use of language models

The high density of characters on the wheel makes it di�cult to highlight a
target character. To make it easier a language model is used to predict what
characters the user will write next. The predictions are used in the character
highlighting algorithm in TUP , so the most likely characters are easiest to
highlight. The disadvantage of this is that less likely characters will be more
di�cult to highlight. This is a problem if the language model does not represent
the user•s language. To reduce the problem, the movement of the users´ “nger
is used to control the in”uence of the language model. When the user places
his or her “nger on the wheel or makes a fast movement the method will make
heavy use of the predictions. A slow movement will make very little use of
the predictions, enabling less likely characters to be highlighted. This is based
on the assumption that the user will perform a fast movement to get to the
approximate target area. If the desired character is not highlighted, the user
will make a “ne “nger movement to highlight the correct character.

The use of prediction is transparent to the user. Because of the transparency,
the user will not need to have any knowledge about how the prediction works,
and will not use any mental resources on the prediction. This is an improvement
compared to most other predictive text entry systems, where knowledge of
the prediction system is required, and where the user has to interact with the
prediction system while writing. One exception is the HEX text entry method
by Williamson and Murray-Smith [2005]. HEX uses motions sensors and a
hidden language model to let the user enter text.

4.1.1.2 Example of use

To write top, the user will “rst place the “nger on the wheel where t is expected
to be placed. If the placement is precise,t is highlighted in the display and
can be written by pressing the select button. Otherwise the user will need to
scroll a little bit clockwise or counter clockwise, until t is highlighted and can
be selected. The next character to be written iso. The language model predicts
that o is very likely to occur after t, compared to the other characters near
o. In this case the prediction algorithm will highlight o if the “nger is placed
betweenq and m. Otherwise a “ne movement is needed to highlighto. The last
character p is more di�cult to write, because o is more likely to follow to than
p. Even if the “nger is placed directly on p, o will be highlighted. A short slow
movement clockwise on the wheel will highlightp, so it can be selected.

48 Transparent User guided Prediction

4.1.2 Variations of TUP

TUP can be implemented on a wide range of di�erent devices. Dependent on
the capability of the device, di�erent variants of TUP can be used. The variants
cover di�erent interaction styles and graphical user interfaces.

4.1.2.1 Interaction styles

The TUP text entry method is mainly focusing on how the characters are
highlighted. The actual entering of a character is done when the user selects the
highlighted character. This can be done in di�erent ways; by a dedicated select
key, by clicking on the wheel or when the “nger is removed from the wheel. Not
all methods can be implemented on all devices.

For a touch sensitive wheel the list of possible interaction styles looks like this:

Click-to-Select The highlighted character is entered when the user clicks on a
dedicated select key. It could be placed in the centre of the wheel or any
other place on the device. If it placed in the centre of the wheel, then it
will typically be used by the same “nger the users have used on the wheel.
This means that the user will have to move the “nger from the wheel to
the key. If the key is placed somewhere else on the device, then the user
will be able to press the key with another “nger. This will enable the user
to keep the “rst “nger on the wheel while entering the character.

Click-on-Wheel The highlighted character is entered when the user clicks on
the wheel. The user can keep the “nger on the wheel and enter the
character by pressing on the wheel. Some touch sensing devices can
register the force of the touch. These devices can apply an algorithm
to detect when the touch was strong enough to enter the character. Touch
sensing devices without this capability needs to place the touch sensing
device on top of a key to get the same results.

Release-to-Select The highlighted character is entered when the user removes
the “nger from the wheel. This does not require any extra key presses,
but the user might enter unintended characters if the “nger slips from
the wheel. The user might also want to remove the “nger from the wheel
without entering a character. This can be implemented by an escape
gesture. If the speed of the “nger is beyond a threshold when it is removed,
then no character will be entered.

4.1 Introduction to TUP 49

4.1.2.2 Graphical user Interfaces for text entry

The user interface to TUP can be implemented in many ways. There need
to be a text entry area and a way to see the currently highlighted character.
Beside that most users will need a list of all the characters or a part of them.
Expert users might know the order of the characters, but the rest of the users
will need these lists to be able to write text in an acceptable speed. Users
with no knowledge of the order of the characters will bene“t from having the
complete list of characters. For users with some knowledge of the characters
it will probably be su�cient with a partial list of characters. The list should
contain the current highlighted character and the surrounding characters. The
character lists can be designed in all possible ways. To give the best usability,
the design of the character list should correspond to the design of the input
device. Figure 4.1 shows six examples of user interfaces for TUP.

TEXT ENTRY
AREA

A B C D E F G

TEXT ENTRY
AREA

ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABCD
E
F
G
H I J KLMNOPQ

R
S
T
U
V
W

XYZ

TEXT ENTRY
AREA

 E

 F G
 H I J K L M N O P Q

TEXT ENTRY
AREA

TEXT ENTRY AREA

TEXT ENTRY AREA

Figure 4.1: Di�erent user interfaces for the TUP text entry method. From the
top left: list of characters, partial list of characters, single character, character
circle, partial character circle and list of characters with “sh eye view.

For use with a touch sensitive the wheel the character circles are the best choice.
Their disadvantages are that they take up a lot of space from the text entry
area. It might be possible to solve this problem by having a semi transparent
character circle.

50 Transparent User guided Prediction

4.1.2.3 Implementation of text editing and other features

The focus on TUP in this thesis concentrates on the methods to highlight and
select characters. A full featured text entry system also needs to implement
text editing functions and other features. It could be back space, cursor
movements, con“rmation of written text, copy/paste and similar features. The
implementation of the user interfaces for these features is very dependent of the
used hardware. If the device has a lot of keys they can be used to access the
features. If the device only have few extra keys they can be used to activate
an •editor• menu, where the touch sensitive wheel is used to navigate in a menu
with di�erent text editing options. If the device does not have any extra keys,
it is possible to appendvirtual keys to the list of characters. Virtual keys can
be selected like any other character. Instead of inputting characters, the virtual
keys will initiate an action when they are selected.

4.1.3 Character highlighting algorithm

A central part of TUP is the character highlighting algorithm. It is used
to calculate which character to highlight based on the user•s gestures. The
algorithm has a high impact on the input speed and user experience of TUP.
The algorithm is used while the user is performing the gesture, to continuously
update the highlighted character.

4.1.3.1 Algorithm design

The algorithm is based on Bayes rule.� 1..n is the string of characters entered by
the user. � 1 is the “rst character and � n is the last. Each entered character is
the result of a gesture from the user. It can be a single tap on the wheel or longer
gesture. The variable � i represents the position of the user•s “nger at timeti .
� 1..i is the positions of all the touches in the current gesture.� i � [0, 2� [. 0 is
de“ned as the top of the wheel and the circumference of the wheel is de“ned as
2� . The values are increasing clockwise.� i is the character that is highlighted
at time ti . � � is the position of character � on the wheel.

The goal of the character highlighting algorithm is to always highlight the most
likely character � i , given the gesture� 1..i .

argmax
� i

P(� i |� 1..i) (4.1)

4.1 Introduction to TUP 51

By using Bayes rules we get:

P(� i |� 1..i) = P(� i |� i , � 1..i Š 1) =
P(� i , � 1..i Š 1|� i)P(� i)

P(� i , � 1..i Š 1)
(4.2)

Bayes rule gives that:

P(� i , � 1..i Š 1|� i)P(� i) = P(� i |� 1..i Š 1, � i)P(� 1..i Š 1, � i) (4.3)

If equation 4.2 and 4.3 are combined we get:

P(� i |� 1..i) =
P(� i |� 1..i Š 1, � i)P(� 1..i Š 1, � i)

P(� i , � 1..i Š 1)
=

P(� i |� 1..i Š 1, � i)P(� i)
P(� i)

(4.4)

P(� i) is the probability that character � i is the next character to be written. It
can be calculated in many ways as described in section 2.3. In the prototypes of
TUP it is estimated from a trigraphs language model, with out any smoothing
functions. It can be seen in equation 4.5.� n Š 1� n are the two last characters
the user has entered. The language model is created from The British National
Corpus [Oxford University Computing Services, 2001].

�(� i) =
C(� n Š 1� n � i)
C(� n Š 1� n)

(4.5)

To make it possible to select all characters, a constant of 0.1 is added to all
probabilities. The formula for P(� i) is shown in equation 4.6. � predict can be
used to control the in”uence of the language model. Values less than 1 will favour
characters with low probability and values larger than 1 will favour characters
with high probability.

P(� i) =
(�(� i) + 0 .1)� predict

�
� �(�) + 0 .1)� predict

(4.6)

P(� i) is estimated as constant, since the design of the input device is uniform.
No positions of the wheel are more likely to be touched than others. It can
therefore be eliminated from equation 4.4.

52 Transparent User guided Prediction

P(� i |� 1..i Š 1, � i) is estimated as a Gaussian distribution centred around� � i .

P(� i |� 1..i Š 1, � i) =
1

�
2 �� 2

eŠ (� i Š � � i) 2 / 2� 2
(4.7)

By combining equation 4.1, 4.4, 4.6, 4.7 and removing constant terms we get:

argmax
� i

(�(� i) + 0 .1)� predict eŠ (� i Š � � i) 2 / 2� 2
(4.8)

The algorithm consists of two parts. A language model and a low level model
of human motor behaviour. The language model can be seen as a task model,
that models what the user wants to do. The combination of the models by
Bayes theorem gives a uni“ed model of which character to highlight, based on
the user•s gestures.

4.1.3.2 Parameter estimation

� 2 and � predict are dependent on the users• movements. They are set to� i ,
which is de“ned as:

� i = 0 .01 +
2

1 + eŠ| � i Š � i Š 1 |· 0.3
Š 1 (4.9)

When the user makes slow movements� will be close to 0, and when the
movements are fast it will be close to 1. Fast movements will make heavy
use of the language model and the variance of the Gaussian distribution will
be large. Slow movements will make little use of the language model and the
variance of the Gaussian distribution will be small.

4.1.3.3 Robustness

It is important for the user experience that the character highlighting algorithm
is robust. The highlight should not ”icker between characters if the user makes
small movements. It is important the highlight only changes when the user
makes an intentional movement. The algorithm includes three methods to make
it more robust:

4.1 Introduction to TUP 53

Threshold The values from the input device might change very often, even
if the user tries not to move the “nger. It can be due to electrical inference
or to tiny movements of the “nger. These movements should not result in a
new highlighted character. Therefore the algorithm includes a threshold that
de“nes how much the value from the input device should change before a new
calculation of which character to highlight is made.

The threshold for the TUP implementation is set to �/ 48 which corresponds to
1/ 96 of the circumstance of the wheel. This is the same as the resolution of the
touch sensitive wheel used en the iPod prototypes.

Direction of scroll Due to the design of the algorithm it might be possible
that a small clockwise movement on the touch sensitive wheel will make the
highlighting move counter clockwise. This is very unintuitive. It can happen if
the user have made a fast movement so� � 1. This can result in the highlighting
of a character � i far away from the current touch � i . If this is followed by a
slow movement, a character close to� i will be highlighted.

To ensure that the change of highlight will be in the same direction as the
movement, equation 4.10 needs to be true before a new character will be
highlighted. � i is the new highlighted character and � i Š 1 is the previous
highlighted character.

(� i Š � i Š 1)(� � i Š � � i Š 1) � 0 (4.10)

Robustness of parameters The problems mentioned in the previous section
is due to the fact � i from the character highlighting algorithm is directly
dependent on|� i Š � i Š 1|. To make the algorithm more robust � i from equation
4.9 is replaced in the algorithm. It is replaced by a running weighted average
of � as shown in equation 4.11. Informal evaluations showed that	 = 0 .3 was
a reasonable value to use.

� i = 	 · � i + (1 Š) · � i Š 1 (4.11)

� 0 is de“ned as the inverse entropy of the next character [Cover and Thomas,
1991]. Each time the user enters a new character, the user needs to make a
choice between all the characters. The amount of information in this choice
can be calculated. Based on the previous characters, the probability for each
character can be found. This can be used to calculate the entropy. The entropy

54 Transparent User guided Prediction

indicates how much e�ort the user needs to select the next character. The
inverse entropy is used as the initial value of� as shown in equation 4.12. If
there are only few likely characters, then the entropy will be low and� 0 will be
high. This will make it very easy to highlight the few most likely characters.
If there are many likely characters the entropy will be high and � 0 will be low.
This means that the user needs to be more precise to touch the wheel at the
correct position.

� 0 =
1

�
� Š �(�) · log(�(�))

(4.12)

4.1.4 Slip error correction algorithm

TUP will input the highlighted character when the user removes the “nger from
the wheel. Sometimes the user will make a small movement before the “nger is
removed, which can change the highlighted character to a adjacent character.
The slip happens shortly before the “nger is released. This will input the wrong
character and will confuse the user. To avoid this, a simple slip error correction
algorithm is built into TUP. It will enter the previous highlighted character if
the following criteria are met:

€ The current highlighted character has been highlighted for less than 100
milliseconds.

€ The current highlighted character is adjacent to the the previously
highlighted character.

The parameters and the values in the algorithm were found by trial.

4.2 TUP - Hardware mockup 55

4.2 TUP - Hardware mockup

The goal for the evaluation is to compare TUP with date stamp and a variant
of TUP.

4.2.1 Construction of Prototype

The prototype for the “rst evaluation carried out in this PhD project consists
of a touch wheel input device and a PC with a monitor. The touch wheel input
device is made from a touchpad from an IBM Travel Keyboard. A mask with
a circular slid and a hole in the middle is placed on the touchpad, to resemble
a touch wheel with a centre select key. The touchpad is removed from the
keyboard, and placed on the front of a small cardboard box. A post-it note is
placed on the box to make the touch wheel input device look and feel more like
a mobile phone or mp3 player.

The dimension of the input device is 98 x 48 x 12 mm. Figure 4.2 shows the
touch wheel input device. Unfortunately the USB chip set from the keyboard
can not “t in the box. Instead the input device is connected to the USB chip set
in the keyboard with a 15 cm long wire. The wire put some restrictions on the
ergonomic of the input device, by limiting the user•s freedom of movement. The
user had to hold the device close to the desk where the keyboard was placed.

The keyboard is connected to a PC through a USB cable. The TUP method
is implemented on the PC, and the graphical user interface is displayed on the
PC monitor. An example of the user interface can be found in “gure 4.3. The
prototype uses two di�erent click sounds as auditory feedback. One sound were
used to signal each time a new character was highlighted and another sound were
used when a character were selected. The prototype used the Click-to-Select
variant of TUP. Only lower case text entry was implemented in the prototype.
The PC software was designed to log all interaction from the input device.

4.2.2 Evaluation methodology

To measure and compare text entry speed, error rates, usability, and user
experience for TUP, it was evaluated together with two other methods. The
text entry methods in the evaluation were:

€ TUP. Implemented with Click-To-Select.

56 Transparent User guided Prediction

Figure 4.2: Prototype used in “rst evaluation. A touchpad is hidden under the
wheel and connected to a PC

€ FIXED. Language independent version of TUP. The characters still have
“xed positions like TUP but no prediction is used.

€ WHEEL. The date stamp text entry method used with a wheel. Space is
placed before •a• and persistent cursor mode is used.

These methods were chosen to compare TUP against the date stamp method,
and to “nd the e�ect of the “xed character positions and use of prediction.
All three methods were implemented in the same prototype. The evaluation
consisted of two parts. An usability test to measure text entry speed and error
rates and interviews to “nd the user•s experiences with the di�erent text entry
methods.

Six persons were used in the evaluation. Two female and four male, all right
handed. They were between 19 and 36 years old. Each participant had to
perform three sessions. In each session the participants were asked to write the
same “ve sentences with all three methods. The sentences were between 22 and
35 characters long, with 30 characters as the average length. The sentences
were:

4.2 TUP - Hardware mockup 57

Figure 4.3: User interface shown on the PC monitor

1. what time should we meet tonight

2. let me know if we should wait

3. can i borrow your book

4. should i pick you up at the station

5. when will you be back in town

The participants used the text entry methods in balanced order as shown in
table 4.1. They were instructed to have a short break after each method. If they
made mistakes while typing, they were instructed not to correct the mistakes,
but to continue writing. They were asked to hold the device in their right hand,
and use their thumb for writing. Software on the PC logged all input for later
analysis of input speed and error rates. After completing all three sessions they
were asked to rate “ve statements about each method. The statements are listed
in table 4.2. The statements should be rated on a 7 point Likert scale, where
1 equals disagree completely, 4 equals neither disagree nor agree and 7 equals
agree completely.

Participant P1 P2 P3 P4 P5 P6
Order WFT WTF TFW TWF FTW FWT

Table 4.1: The order in which the participants tried the methods. T(up), F(ixed)
and W(heel)

The text entry speed was calculated as the number of correct characters in the
transcript minus one, divided by the time between the “rst and last character.
The error rates were calculated as the Minimum String Distance as described
by Soukore� and MacKenzie [2003].

58 Transparent User guided Prediction

Area Statements
Speed Writing with this method is fast
Errors Writing with this method generates few errors
Learn This method is easy to learn
Use This method is easy to use
Overall This method is the best method for doing text entry

Table 4.2: The users were asked to rate “ve statements about each text entry
method.

Session TUP FIXED WHEEL
1 4.8 (1.4) 4.4 (1.0) 4.1 (0.8)
2 5.8 (1.5) 5.1 (1.0) 4.6 (0.8)
3 6.2 (1.5) 5.5 (1.2) 4.7 (0.9)

Table 4.3: Text entry speed in WPM from the evaluation. Standard deviation
given in parentheses.

4.2.3 Results and discussion

The evaluation was held in August 2005. All data can be found in the evaluation
report [Proschowsky, 2005a]. The participants used 5-10 minutes for each
method in each of the three sessions. Table 4.3 and 4.4 shows the text entry
speed, error rates and standard deviations from the evaluation.

A two-tailed paired t-test was performed on the data from the last session. The
results shows that there is a signi“cant di�erence in text entry speed between
TUP and FIXED (T(5) = 8 .28, p < . 001), TUP and WHEEL (T(5) =
7.02, p < . 001) and betweenFIXED and WHEEL (T(5) = 3 .31, p < . 001).
TUP is the fastest method, and WHEEL the slowest method for all three
sessions. The di�erences between the error rates are not signi“cant between
any of the methods: TUP and FIXED (T(5) = Š1.67, p = .100ns), TUP

Session TUP FIXED WHEEL
1 1.9 (2.9) 2.1 (3.0) 3.3 (4.4)
2 1.9 (2.8) 2.7 (3.3) 2.1 (3.8)
3 1.2 (1.9) 2.5 (3.9) 2.4 (4.9)

Table 4.4: The total error rates in percent from the evaluation. Standard
deviation given in parentheses.

4.2 TUP - Hardware mockup 59

0

1

2

3

4

5

6

7

Session 1 Session 2 Session 3

W
or

ds
 P

er
 M

in
ut

e

TUP FIXED WHEEL

Figure 4.4: E�ects of learning on the text entry speed.

Statements about methods TUP FIXED WHEEL
It is fast 4.8 4.5 3.0
I make few errors with it 4.2 4.2 4.5
It is easy to learn 5.3 5.3 6.2
It is easy to use 5.2 5.2 4.3
It is best for text entry 5.7 5.0 2.3

Table 4.5: Rating of statements on a 7 point Likert scale. 1 equals disagree
completely, 4 equals neither disagree nor agree and 7 equals agree completely

and WHEEL (T(5) = Š1.01, p = .971) and betweenFIXED and WHEEL
(T(5) = 0 .03, .987ns). Figure 4.4 shows the e�ect of training on the text entry
speed. The text entry speed increased for all three methods, as the users were
getting more experienced.

Table 4.5 shows the ratings of statements for all three methods. TUP and
FIXED are experienced to be fastest, which corresponds to the evaluation data.
The error rates are experienced to be almost equal, which corresponds with
the evaluation data, where no signi“cant di�erence was found. WHEEL is
experienced to be easiest to learn, whileTUP and FIXED are experienced to
be easiest to use. OverallTUP is rated at the best method, followed byFIXED .
WHEEL is rated to be worse than the two other methods.

60 Transparent User guided Prediction

4.2.4 Limitations of the Prototype

The main problem with the prototype was the distance from the input device
to the PC monitor. Some participants spent lot of time shifting focus back and
forth, while other participants mainly looked at the monitor. It is expected
that an improved prototype device with combined touch wheel and display, will
speed up the text entry rates for all three methods.

4.3 TUP - iPod implementation 61

4.3 TUP - iPod implementation

One of the problems with the earlier prototypes was that they all needed a
computer to run the software. It is necessary to develop a true mobile prototype
of TUP, to be able to evaluate TUP in natural settings. The evaluation should
focus more on the learning of TUP. Both the participants• initial use of TUP
and how their use changes as they are getting more experienced. To be able
to study the e�ect of learning the participants needs to use TUP for a longer
period than in the “rst evaluation. To get more sound results, the number of
participants is also increased.

4.3.1 Construction of Prototypes

An important goal for the prototype was that the participants should be able to
use the prototype by them self. That would make it easier to test the prototype
in the users• natural settings. A number of hardware and software requirements
were de“ned based on this goal.

€ Mobile form factor. The prototype should be able to “t in a pocket or a
small bag.

€ Battery driven. The prototype should be driven by batteries so it can be
used wherever the participants want to use it.

€ Robust. The risk of breaking the prototype should be very small.

€ Usable TUP implementation. The prototype should be powerful enough
to use the TUP input method, without any delays in the user interface.

€ Easy-to-use evaluation software. The software should enable the partici-
pants to carry out the evaluation sessions without help from an evaluator.

4.3.1.1 Hardware design

Di�erent choices of hardware were evaluated for the prototype. The three
hardware solutions were:

Hardware mockup Build hardware with a touch sensor, screen, cpu board,
etcetera. Very ”exible solution, but also expensive and time consuming.
The “nal prototype might be clumsy or fragile.

62 Transparent User guided Prediction

iPod Use an Apple iPod with special software. High quality screen and touch
wheel and nice compact form factor. Limited software development tools.

PDA, Mobile phones Use a mobile phone or pda with a touchscreen and a
mask to make it work like a touch wheel. High quality screen and well
known user interface. The mask might be fragile. Possible to use wireless
connection to communicate with the users and to collect evaluation data.
Many software development tools available.

The “nal choice was the Apple iPod because of the form factor and robustness.
The dimension of the device is 103.5 x 61.8 x 10.6 mm and the weight is 138
gram. It has a 2.5 inch backlight screen with a resolution of 320 by 240 pixels. It
includes a 30 GB hard drive and has battery for 4-5 hours of operation [Apple,
2006]. A problem with the Apple iPod is that it only has “ve keys, where four of
them are placed on the wheel. This makes it harder to design good interaction
with the device.

The touch wheel on the Apple iPod can detect 96 di�erent positions. Position
0 is placed in the top op the wheel. The position number increases clock wise
until it reaches 95, which is next to position 0. The touch wheel can only handle
one touch at the time. If the wheel is touched multiple places, the outcome will
be unstable.

4.3.1.2 Software design

The Apple iPod comes with proprietary software and no software devel-
opment kit. The software can be replaced with iPodLinux, which is a
customized Linux kernel and software stack optimized for embedded devices
(http://ipodlinux.org/). Besides the kernel there exist a user interface
toolkit TTK [Oreman, 2007b] and a user interface [Oreman, 2007a] called
Podzilla that resembles the user interface in the Apple software. TTK supports
pluggable text entry modules, so the built-in text entry methods can be replaced
with other text entry methods. Podzilla can be extended with extra applications
by writing plug-ins.

The cpu in the Apple iPod does only support integer arithmetic, because
it does not have a ”oating point unit. The compiler can convert ”oating
point arithmetic to integer arithmetic at compile time. This will slow down
the execution time, because each calculation requires more cpu cycles. An
implementation of TUP in ”oating point arithmetic and with no optimization
was able to work at a rate of 15-20 updates per second. Each update includes
sampling of user input, calculations of probabilities, updating of the graphical

4.3 TUP - iPod implementation 63

user interface and logging the interaction to a “le. This speed is good enough
to secure ”uent interaction, so no optimizations were made to the code.

TUP was implemented with the Character-Circle user interface. This takes up
a lot of screen real estate, but leaves enough space to the Text Entry Evaluation
Tool. A photo of the user interface can be seen in “gure 4.5. All three interaction
styles are implemented, though the participants only will use Select-on-Release.
The prototype uses a limited English lower case character set with the 32 most
common letters and punctuation marks.

The Text Entry Evaluation Tool was designed to allow the participants to
complete the evaluation sessions by them self. Each time the tool is started
the display shows the session number, the number of phrases completed in the
session, the total writing time for the session and a short user guide (“gure 4.6).
By clicking the centre key, the user is presented for a new phrase. Beneath
the phrase is an input “eld, where the user can type in the phrase (“gure 4.5).
When the phrase is completed, the user has to click the Menu key. This will
take the user back to the main screen.

Figure 4.5: The TUP iPod prototype and the Text Entry Evaluation Tool.

4.3.1.3 Problems with the prototype

There was a problem with the power consumption on the prototypes. The Apple
software uses undocumented power saving features in the hardware. The Linux

64 Transparent User guided Prediction

Figure 4.6: The TUP iPod prototype. The left image shows the back of the
iPod. The right image shows the main screen in the Text Entry Evaluation
Tool.

kernel does not use this features, so it drains the battery a lot faster than the
Apple software. The Apple software includes a sleep function, which will put
the device into a low power mode when it has been idle for 2-3 minutes. This
function was not available in the Linux kernel. When running Linux, the battery
time dropped to about 3 hours of operation.

4.3.2 Evaluation methodology

The main goals of the evaluation were to gather performance data for natural
mobile use of TUP and to investigate how novice users responded to TUP. The
participants would each have the Apple iPod for one week, and was told to
complete two 10 minutes sessions each day. It was 10 minutes of active writing,
which took 15 minutes to perform for most of the participants. The participants
were told not to complete two sessions directly after each other, but to have at
least a 30 minutes break in between. They were allowed to perform the sessions
where ever they liked.

The participants were instructed to read and memorize the presented phrases

4.3 TUP - iPod implementation 65

before they started writing. They were told to only correct mistakes if they were
discovered shortly after they had been committed. The only editing feature in
the TUP iPod prototype is the delete key, which will delete the last character.
This makes it expensive to correct mistakes, if too many characters have been
written after the mistakes.

To gather information about the context of use, each participant were given a
small diary and a pen. The diary contained forms which had to be “lled for
each session. The form included the session number, date/time of the session,
the place or context, light condition, motivation level of the participants and
a comment “eld for further comments and notes. The diary also contained a
short guide to the Apple iPod and to the evaluation software. Figure 4.7 shows
the front and back of the diary. Figure 4.8 shows the inside of the diary and
the form the participants have to “ll out for each session.

The gathering of contextual information could have been implemented in the
iPod evaluation software. The diary was chosen to give the participants a well
known tool for writing notes. The iPod does not have any way to enter text,
except from the TUP method that is evaluated. The participants do not know
this method, so it would be a bad idea to force the participants to use the
method. To make it easy for the participants, the diary had the same size as
the Apple iPod and included a small pen.

4.3.2.1 Brie“ng session

Each participant was invited to a individual brie“ng session. The session
consisted of six parts:

Initial reaction to TUP. The participants were told to write a short sentence
or their name with TUP. They were not given any explanation, except that
they were told to use the touch wheel. Verbal reports [Boren and Ramey,
2000] from the participants were used to gather information about how
they thought TUP worked while they used it. This part of the evaluation
was recorded on video for documentation purposes.

Explanation of TUP. The participants got an introduction to TUP, but were
not told about the character highlighting algorithm.

Delivery of iPod, charger and diary to the participants. The participants
got all the equipment for the evaluation.

Explanation of the input evaluation. The participants were instructed how
they should use the iPod and the software. They were told only to correct

66 Transparent User guided Prediction

Figure 4.7: Front and back of the evaluation diary

mistakes if they were found shortly after they had been committed. They
were explained how to use the notebook and the charger.

Test session. The participants completed a short test session to verify that
they could use the iPod, text entry evaluation tool and TUP.

Interview. A short structured interview was made to gather demographic
information about the participants. They were asked about there name,
sex, age, left/right handed, mobile text entry experience, iPod experience,
IT experience and their English skills. The experience and skill levels were
later converted to low (L), medium (M) or high (H). The user did not take
part in this conversion.

4.3.2.2 Debrie“ng session

After one week of evaluation sessions, the participants were invited to an
individual debrie“ng session. At the debrie“ng the participants wrote one
phrase on the prototype. The writing was recorded on video for documentation
purposes.

4.3 TUP - iPod implementation 67

Figure 4.8: Inside of the evaluation diary with the forms

Semi structured interviews were made to gather data about the participants•
experience with TUP. The following questions were used as a starting point:

€ How was it to write text in the beginning? Which problems did you
experience?

€ In which way did training a�ect your writing?

€ Describe how you experience TUP at the end of the evaluation. Which
text entry situations were di�cult?

€ The participants were introduced to the character highlighting algorithm.
Did you notice the algorithm?

€ Do you have any suggestions or improvement ideas?

€ The participants were introduced to the other interaction styles (Click-on-
Wheel and Click-in-Center). What do you think about the variations?

68 Transparent User guided Prediction

4.3.2.3 Phrases used for the Evaluation

The phrases used in the evaluation were taken from the set of 500 phrases
by MacKenzie and Soukore� [2003]. The length of the phrases varies between
16 and 43 characters, with an average of 28.61. The phrases do not contain
punctuations or other special characters. All phrases were converted to lower-
case, because the used implementation of TUP only supported lower-case
text entry. The order of the phrases was shu�ed for each participant. The
participants will not get the same phrase twice, unless they completed all 500
phrases. In this case they will start from the top of the list again.

4.3.2.4 Logging of data

To be able to analyze TUP in depth, an intensive amount of data were logged.
For each input session, two di�erent interaction logs were created.

Input log (namedsession##_inputlog.xml) A high level log of the text entry
evaluation.

Touch log (named session##_touchlog.txt) A low level motor behaviour
log of the position of the user•s “nger on the touch wheel.

4.3.2.5 Slip error evaluation

Two participants (UID: 81, 82) used a special variant of the TUP method. This
variant did not include the slip error correction algorithm. This part of the
evaluation was needed to create an improved slip error correction algorithm in
section 4.4.2.

4.3.3 Results and discussion

The evaluation was carried out from November 2006 to March 2007. A total
of 15 persons participated. Their demographics are listed in table 4.6. Most
participants completed 12-14 sessions. Two participants only completed 6 and
7 sessions, because they experienced technical problems.

4.3 TUP - iPod implementation 69

UID Sex Age Hand Sessions Text Entry iPod Tech English
1 (pilot) F 22 Right 7 M L M M

2 M 20 Right 6 M M H M
3 M 32 Right 13 L H M H
4 M 39 Right 13 L L H M
5 F 30 Right 13 H L M H
6 F 44 Right 14 L M M M
7 M 33 Right 12 H M H H
8 F 36 Right 14 M L L M
9 M 46 Right 13 M L M H
10 M 51 Left 12 M L M H
11 M 26 Left 12 H H H H
12 F 24 Left 13 M L M H
13 F 23 Right 10 H M M M

81 (slip) M 49 Right 14 M H H M
82 (slip) M 23 Right 12 H M H M

Table 4.6: Participants in the evaluation of TUP iPod implementation. The last
four columns show the participants previous experience with mobile text entry,
iPods, technology and their English skills. They were all expressed in words and
later converted to low (L), medium (M) or high (H).

4.3.3.1 Initial performance and user experience

The following section is based on the observations of participants writing with
TUP, on the interviews and on the diaries.

When the participants were introduced to the evaluation they were only told
that they could use the touch wheel to select the characters. The TUP iPod
prototype uses two special interactions methods, which di�er from the common
norm. The “rst is the direct mapping between the touch wheel and the character
circle. The norm is to use a relative mapping, which is also the case for the Apple
software. The second thing is the use of Select-on-Release. In almost all devices
you have to push, ”ip or touch to perform an action. With the Select-on-Release
the action will be performed when the “nger is removed from the touch wheel.

Most of the participants found the method very di�cult for the “rst 20-30
seconds. The highlight seemed to jump forth and back, and many participants
entered a lot of character with out noticing. This is due to the special
interactions methods. After another 20-30 seconds approximately 2/3 of the
participants learned the absolute mapping between the touch wheel and the
character circle.

70 Transparent User guided Prediction

Half of the participants learned how to use Select-on-Release by them self. A
1/4 of the participants thought they had to push the centre key to input the
highlighted character. Pressing the centre key requires you to remove the “nger
from the wheel. This means that the highlighted character will be entered and
the participants are likely to think that it is the result of pressing the centre key.
On the iPod prototype the centre key was not mapped to any action. The last
1/4 of the participants did not learn the method during the “rst 2-3 minutes.
Most of the participants were able to use the delete key without any instruction.

Most of the participants said they needed 2-4 sessions before they felt
comfortable with TUP. Many had problems in the beginning with the touch
wheel being too sensitive, so the highlight changed very quickly. The
participants used two di�erent input strategies; scrolling and tapping. Scrolling
means that the “nger is placed near to where it was removed from the wheel
and then scrolled towards the target character. In tapping the “nger is placed
directly at the target character. All participants started out with scrolling, but
most of them changed to tapping.

Some of the fastest participants were using tapping, with out visual con“rmation
that the target character was highlighted. This resulted in more errors, but
they found that they could write a lot faster with this approach. 1/3 of the
participants noticed the prediction in the character highlighting algorithm.
They understood that the algorithm was relaxing the requirement to their
precision. Other participants had noticed something, but could not explain
it or use it. Some felt that the highlight stuck to some characters, and that
it could be di�cult to write sequences like • a • (space-a-space). In general
many participants reported problems with hitting space. Some suggested that
space should be located multiple places on the character circle. Other wanted a
separate physical key to input space. There were also reports on problems with
double letters, because the probability changed when the “rst character were
entered. This can result in two sequential taps at the same place on the touch
wheel, will produce two di�erent characters.

Many participants mentioned that they learned the position of the characters
in the circle, and that it helped them a lot. Some participants mentioned the
small font size as a problem. The height of the characters is 2-3 mm, so they can
be di�cult to read. A number of participants mentioned the lack of feedback
when characters were entered. They would like some sound or visual feedback
to indicate that a character was entered. It is very likely that better feedback
would have made it easier for the participants to learn the method during the
initial session.

Many of the participants accidentally aborted the evaluation while writing.
They were hitting the Menu key when they were about to highlight space. This

4.3 TUP - iPod implementation 71

will end the entry of the current phrase, and return to the main screen of the
text entry evaluation tool. This was mainly a problem during the “rst sessions.

The participants had been using the prototype in many contexts. The most
common places were their o�ces, in the couch or using public transportation
like trains or buses. Multiple participants mentioned that writing was di�cult
in the buses because of the bumping and accelerations. They did not notice any
di�erences between the other contexts.

Most of the participants preferred the Select-on-Release interaction style,
because they could omit key presses. The preference for Select-on-Release is
strongly in”uenced by the fact the all participants have used the method during
the evaluation. The tactile feedback from the key press with Click-to-Select
and Click-on-Wheel were appreciated by many participants. They would like to
have similar feedback with Select-on-Release, to make it easy to know when a
character had been entered.

4.3.3.2 Text entry speed and error rates

The input log were analysed to “nd the entry speed and error rates. In total
the 15 participants had entered 59,070 characters, in 2099 phrases.

Filtering of data Some participants accidentally aborted the evaluation or
were disturbed in the middle of entering a phrase. These phrases have a very
high error rate, because they are missing a lot of characters. It was decided to
“lter out these phrases, to get a more realistic overview of the error rates. It
can be di�cult to judge whether a phrase was aborted, without inspecting each
phrase manually. To avoid it, the relative phrase length was used as a “lter.
The relative phrase length is de“ned as the length of transcribed text divided by
the length of the presented text as shown in 4.13. Figure 4.9 shows how many
phrases that were completed, dependent on the relative length. There is a very
steep step around 1, which indicates that the most transcribed phrases had
the same length at the presented phrases. Most of the phrases have a relative
length where 0.9 < l rel < 1.1. This is caused by small mistakes where a few
extra characters are written or omitted from the transcribed text.

lrel =
|T |
|P |

(4.13)

72 Transparent User guided Prediction

0

500

1000

1500

2000

2500

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6

N
um

be
r�o

f�p
hr

as
es

Transcribed�chracters�in�relation�to�presented�characters�in�phrase

Figure 4.9: Accumulated number of written phrases in relation to the
completeness of the phrases. 0.9 means that the length of the transcribed text
was at least 90% of the length of the presented text.

It was decided to “lter all data where lrel < 0.8. This “ltering removed 53
phrases from the data set. Figure 4.10 shows the average text entry speed for
all participants and all sessions. Most participants performed 3-6 WPM in the
“rst session. In the participants last session the majority performed between 6
and 10 WPM. The fastest personal average for a session was 10.9 WPM and
the fastest phrase was written at 13.9 WPM. For the rest of the analysis, the
data from the pilot and slip test (UID: 1, 81, 82) have been excluded from the
data set.

Figure 4.11 shows the average text entry speed and error rates for each session.
The average text entry speed starts with 4.8 WPM and ends with 8.2 WPM.
The error rate is highest for the “rst session. In the following sessions the
corrected error rate slowly decreases from 0.08 to 0.06. The uncorrected error
rate decreases from 0.03 to 0.01 - 0.02. There is a clear e�ect of learning as the
participants gets more experienced. To test whether the text entry speed also
increases in each session, the increase in WPM between all subsequent phrases
for each session is calculated. Figure 4.12 shows the average increase in text
entry speed for each phrase over the “rst phrase in each session. The “gure also
shows the total number of completed phrases in each session. It can be seen
that it takes 2-3 phrases to recall the text entry method. The performance for
the rest of the session is more stable. The large variance from phrase 20 and
beyond is due to the fact the very few sessions consisted of 20 or more phrases.

4.3 TUP - iPod implementation 73

0,00

2,00

4,00

6,00

8,00

10,00

12,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14

W
or

ds
�p

er
�m

in
ut

e

Session�number

Figure 4.10: Text entry speed for each participants. The dotted lines represents
the participants from the slip error evaluation without the slip error correction
algorithm.

4.3.3.3 Learning and gestures

From the previous “gures it can be seen that the participants learned to use
TUP. This resulted in faster text entry and fewer errors. The learning rate is
found to be:

WPM n = 4 .13n0.2415 (4.14)

The details behind the estimate of the learning rate are shown in appendix C.

To investigate how learning improves performance the participants• gestures are
analysed. First the time to write each character is divided into three groups:

Finger o� wheel is the time where the participants did not touched the wheel.

Finger on wheel is the time the participants touched the wheel until the
target character is highlighted.

74 Transparent User guided Prediction

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14

E
rr

or
�ra

te

W
or

ds
�p

er
�m

in
ut

e

Session�number

Corrected error rate

Uncorrected error rate

Text entry speed

Figure 4.11: Average input speed and error rates. Most participants performed
12-14 sessions, so the validity of the data is largest for the “rst 12 sessions.

Finger on character is the time the participants touched the wheel at the
target character. If the target character was highlighted multiple times
during a gesture, only the “nal touch will be included in this group.

Figure 4.13 shows the average distribution of the time used to input characters
for each session. TheFinger o� wheel time drops from 1500 to 750
milliseconds. This could be due to the users feeling more comfortable with the
TUP method. Another explanation could be that people learned the placement
of the characters on the circle. A visual scan for the target character will take
up a lot of time. If the participants had learned the placement of the characters,
then the visual scan could be avoided.Finger on wheel drops from 350 to
200 milliseconds. This is mainly due to the participants getting better to hit
the target character faster. Either by placing the “nger near the character or by
being able to scroll to the target character fast. Finger on character drops
from 600 to about 500 milliseconds.

Strategies for highlighting characters The participants used di�erent
strategies to highlight the target characters. Based on the observations at the

4.3 TUP - iPod implementation 75

2003 00

180

200

2,50

3,00

Increase in text input speed

140

160

2,00

2,50

edM

Phrases completed

100

120

1,50

,

co
m

pl
et

e

se
�in

�W
PM

60

80
1,00 P

hr
as

es
�

In
cr

ea
s

20

40

60

0,50

0

20

0,00

1 6 11 16 211 6 11 16 21

Phrase�number�in�session

Figure 4.12: Average increase in text entry speed during each session. The plot
shows the average increase from the “rst phrase in each session. The number of
completed phrases is also shown.

brie“ng and debrie“ng and on the interviews, the following three strategies were
identi“ed:

Tap direct: The “nger is placed on the position of the target character. Small
adjustments are made if the target character is not highlighted.

Scroll “xed: The “nger is placed on the same position each time. The “nger
scrolls toward the target character.

Scroll latest: The “nger is placed on the position of the last written character.
The “nger scrolls toward the target character.

Some participants mentioned that the changed strategy during the evaluation.
The participants• strategy and precision can be revealed by the log “les. Figure
4.14 shows a •strategy plot• for session 9 by participant 11. Each strategy has its
own indicator function. The indicator function with the highest peak tells which
strategy the participant mainly used in the session. The indicator functions are
described here:

76 Transparent User guided Prediction

3000

2500
Finger off wheel

Finger on wheel

2000

ds

Finger on character

1500

m
ill

is
ec

on

1000T
im

e�
in

�m

1000

500

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Session�number

Figure 4.13: Average distribution of time used to input each character.Finger
o� wheel is the time where the participants did not touch the wheel. Finger on
wheel is the time the participants touched the wheel until the target character
was highlighted. Finger on character is the time the target character was
highlighted before the participants lifted their “ngers o� the wheel.

4.3 TUP - iPod implementation 77

Tap direct: For each written character, the di�erence between the position
of the initial touch and the target character is calculated. The indicator
function is the distribution of these di�erences. A peak around 0 means
that the user placed the “nger close to the character that was produced
by the gesture.

Scroll “xed: The indicator function is the distribution of the initial touches
for each character. A large peak value of this function will mean that the
user have placed the “nger the same place on the wheel many times. If
the participant used the tapping strategy, the distribution of touches will
be equal to the distribution of characters. This explains the small peaks
of this indicator function.

Scroll latest: For each written character, the di�erence between the position
of the initial touch and the previous target character is calculated. The
indicator function is the distribution of these di�erences. A peak around 0
means that the user placed the “nger close to the position of the previously
entered character.

Figure 4.15 shows strategy plots for all sessions by participant 11. It can be
seen that the participant changes strategy fromscroll latest to tap direct as
he get more experienced. Table 4.7 shows the text entry speed and strategy. It
can be seen that the tapping strategy is faster than scrolling.

Session 1 2 3 4 5 6 7 8 9 10 11 12
Strategy S S S T S T S T T T T T
WPM 5.0 5.4 6.3 6.5 5.8 6.9 5.1 7.3 7.9 7.6 6.8 7.8

Table 4.7: Character highlighting strategy and text entry speed for participant
11. T means tapping and S is scroll latest. The text entry speed is reported in
WPM.

The relation between the peak values for the di�erent strategies can be used
to show how the user changes strategy between sessions. Figure A.1 in the
appendix shows the strategies for each user in each session.

Precision Most of the participants mentioned that they learned the positions
of the characters, and could highlight them more easily.

The average distance between the “rst touch and the target character reveals
the participants ability to hit the correct position on the wheel. Figure 4.16
shows the average distance for each session.

It can be seen that the data supports the users• experience.

78 Transparent User guided Prediction

��� � ��
�

��

��

��

��

��

	�

���
�����

���
�
�����������

���
���

���
���

���
���

�

����
����

�������
!�

������������

Figure 4.14: Strategy plot that shows the character highlighting strategy for
participant 11 in session 9. The strategy with the highest peak is the strategy
used by the participant.

4.3 TUP - iPod implementation 79

-50 0 50
0

20

40

60
Session: 1

-50 0 50
0

20

40

60
Session: 2

-50 0 50
0

20

40

60
Session: 3

-50 0 50
0

20

40

60
Session: 4

-50 0 50
0

20

40

60
Session: 5

-50 0 50
0

20

40

60
Session: 6

-50 0 50
0

20

40

60
Session: 7

-50 0 50
0

20

40

60
Session: 8

-50 0 50
0

20

40

60
Session: 9

-50 0 50
0

20

40

60
Session: 10

-50 0 50
0

20

40

60
Session: 11

-50 0 50
0

20

40

60
Session: 12

Figure 4.15: Strategy plot that shows the character highlighting strategy for
participant 11. The strategy with the highest peak is the strategy used by the
participant.

80 Transparent User guided Prediction

6

4

5

3

4

st
an

ce

2

D
is

1

0

1 3 5 7 9 11 13

Session�number

Figure 4.16: The average distance between the “rst touch and the target
character.

Preparation time Most of the participants used the Tap strategy. When
using this strategy, the participants need to “nd the target character before the
“nger can be placed on the wheel. The time elapsed between a character is
entered and the “nger is back on the wheel will be calledpreparation time.
An analysis of the preparation time shows that it is mainly dependent on
the target character. Figure 4.17 shows the average preparation time for each
character. The sessions are grouped together 3 by 3 to make it easier to read
the “gure. It can be seen that the participants improved between the sessions.
The observations in each session seem to follow two trends:

€ Frequently used characters are found faster. Both the participants• native
languages and the evaluation language are expected to have in”uence on
the preparation time. Most of the participants were Danish. W is not
very common in Danish, and has a high preparation time during the “rst
sessions. As the participants are getting more experienced with TUP, they
learn the position of frequently used characters.

€ Characters from the beginning of the alphabet are found faster than
characters from the back. This could be because the participants are

4.3 TUP - iPod implementation 81

doing a visual scan when they are looking for characters. Or it could
be because people can remember the characters in the beginning of the
alphabet better than the ones at the end.

2200

Session 1-3

1800

2000
Session 1-3

Session 4-6

Session 7-9

1600

lli
se

co
nd

s) Session 10-12

Session 13-15

1200

1400

io
n�

tim
e�

(m
i

800

1000

P
re

pa
ra

ti

600

800

400

_ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Characters

Figure 4.17: Preparation time from a character is entered to the “nger is back
on the wheel.

4.3.3.4 E�ect of language model

The language model is an important factor in the character highlighting
algorithm. It speeds up the use of TUP, by making it easier to highlight the most
likely characters. To investigate the value of the language model, the relation
between probabilities of characters and the input speed is found. All written
characters are sorted by probability (�(� i) from equation 4.5), and divided into
100 bins. For each bin the count of written characters and the average duration
of the gesture is found. The gesture time is divided into touch on wheel and
touch on target character. A plot of the data can be found in “gure 4.18. The
duration of gestures are weighted by the count of characters in the bin and
neighbour bins. E.g. the time for characters with P(�) = 50% is calculated
as the average for characters withP(�) = [49%, 50%, 51%] weighted by the

82 Transparent User guided Prediction

count of characters in each bin. This is done because some bins with very few
characters had high variance.

The top plot shows the distribution of all written characters, based on their
probabilities. There are a few peaks in the plot at 65% and 68%. They are both
due to the word the. P(space|he) = 65 .2% and P(e|th) = 68 .2%.

The time used to write the characters are divided into two parts like in “gure
4.13. The time interval where the “nger is o� the wheel is not included in
this plot. It is because the time interval can not be associated with a single
character probability. The time interval could be associated with the previous
or the next written character, but I have chosen not to do this. It can be seen
that the time for Finger on character is between 500 and 600 milliseconds
for most characters, like in “gure 4.13. The time for Finger on wheel is
largest for characters with low probability. This corresponds very well to the
design philosophy of TUP, where the most likely characters should be easiest to
highlight. The time for Finger on wheel drops to less than 50 milliseconds for
the most likely characters. If the target character have high probability, then it
is very likely that it will be highlighted as soon as the user touches the wheel.

4.3.3.5 Further statistical analysis

The analysis of how the text entry speed is dependent on the user previously
experience and the place of the evaluation is done in section 4.5.3.5. The
observations from this evaluation are combined with observations from the
improved TUP iPod implementation. This is done to get more signi“cant results.

4.3 TUP - iPod implementation 83

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06
Distribution of characters

C
ha

ra
ct

er
s

(%
)

Probability of characters in %

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500
Duration of touch

M
ill

is
ec

on
ds

Probability of characters in %

Finger on wheel
Finger on character

Figure 4.18: Written characters ordered by their probability. All written
characters have been sorted by probability and put into 100 bins. The top
plot shows the distribution of characters between the bins. The plot in the
bottom shows the average duration of gestures.

84 Transparent User guided Prediction

4.4 Using statistical learning to improve text
entry

This section will give to examples of how statistical learning can be used to
optimize text entry methods. Both the character highlighting algorithm and
the slip error correction algorithm in TUP are based on low level models of
human motor behaviour. The algorithms can be improved by updating the low
level models. During the evaluation of the TUP iPod prototype (section 4.3)
a large number of interaction logs were generated. They contain information
about presented phrases, transcribed phrases, errors and the participants•
gestures on the touch wheel. The interaction logs will be used to optimize
the low level models of human motor behaviour, and thereby improve the
character highlighting algorithm and the slip error correction algorithm in TUP.
The improved algorithms have been implemented in the TUP improved iPod
prototype and evaluated in section 4.5.

In the de“nition of TUP and its algorithms, the positions on the wheel were
de“ned as� i � [0, 2� [. In this section the positions will be de“ned as� i � [0, 95[.
0 is still de“ned as the top of the wheel and the values are increasing clockwise.
The rede“nition of � is done because the data in this section relies on the
interaction logs from the iPod prototype. The new values of � are similar to
the output from the iPod wheel.

4.4.1 Optimization of character highlighting algorithm

In the TUP text entry method, the character highlighting algorithm is
responsible for selecting which character to highlight. A central part of the
algorithm is the function P(� i |� 1..i Š 1, � i). This is the probability of the user•s
“nger being on � i , if the user will highlight � i and have made the gesture
� 1..i Š 1. In the original algorithm P(� i |� 1..i Š 1, � i) was estimated as a Gaussian
distribution with µ = � � i . The variance� 2 is a function of the speed of the user•s
“nger on the touch device as described in equation (4.9) and (4.11). Since the
distribution is the same for all characters, it can be expressed as the probability
of a distance between the current touch and the highlighted character:

P(� i |� 1..i Š 1, � i) = P(� � i Š � i |� 1..i Š 1) (4.15)

The best character to highlight is the character the user wants to write.
Observations from the TUP iPod evaluation are used to “nd the quality of

4.4 Using statistical learning to improve text entry 85

the current character highlighting algorithm.

Figure 4.19 shows plots ofP(� � Š � |� �) for three di�erent values of � � . � is the
current position of the user•s touch. � is the target character that is written by
the gesture. � � is the di�erence between the current and previous touch of the
“nger. It is de“ned as:

� � = � i Š � i Š 1 (4.16)

The plots show the distribution of the distances between the target characters
and the position of the users• “ngers. The di�erent plots show the distributions
for di�erent velocities of the users• “ngers. If the “nger is moving clockwise
(� � > 0) then the target character will most likely be clockwise to the position
of the user•s “nger.

-50 0 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

�' �� �� �'

�' �0�:�� �2

P
ro

ba
bi

lit
y

di
st

rib
ut

io
n

-50 0 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

�' �� �� �'

�' �0� : � 0

-50 0 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

�' �� �� �'

�' �0� : � 2

Figure 4.19: Distribution of the distances between the target characters and the
position of the users• “ngers for di�erent velocities of the “ngers. The blue line
is the observation data. The red line is the Gaussian distribution used in the
original character highlighting algorithm.

It can be seen that the measured distribution is asymmetric. The original
Gaussian distribution changed variance dependent on the velocity, but it was
always symmetric. All three plots show that the shape of the distribution is very
di�erent from the Gaussian distribution. Lilliefors test for normality rejects the
hypothesis that any of the three measured distributions is normal distributions.

Figure 4.20 shows the measured distribution ofP(� � Š � |� �) for all values of
� � . The data have been scaled, so the maximum value in each row is 1.0. It is
very clear to see that the distributions not are symmetric around � � Š � = 0.

86 Transparent User guided Prediction

-50 0 50
-50

-40

-30

-20

-10

0

10

20

30

40

50
�P�(�' �• �€�' �j�' �`�)

�' ���• �€�'

�'
�`

���• „

„

Figure 4.20: Plot of P(� � Š � |� �). The data have been scaled so the maximum
value in each row is 1.0. Dark blue equals 0 and dark red equals 1.

4.4 Using statistical learning to improve text entry 87

4.4.1.1 De“ning algorithm inputs

The plots in “gure 4.19 and 4.20 are both using� � as one of the input dimensions.
� � is the di�erence between the previous and current position of the “nger. There
might be other features that could be useful for de“ning the new algorithm. The
following three features will be evaluated to “nd out which one that best describe
the data.

Movement of “nger: � � . The di�erence between the previous and current
position of the “nger as de“ned in equation 4.16.

Speed: � �

t � Can be found by dividing � � with the time di�erences t� between
the measurements.

Variation: � 2 Calculated as in equation 4.9 with an direction factor. The
original variance were a factor between 0.01 and 1. Because of the
asymmetry of P(� |�, � �), the variance needs to be multiplied with a
direction factor � �

| � � |

Thanks to the log “les from the evaluation, it easy to calculate the features for
all the data points. Column 22 to 24 in the evaluation dataset contains the
extra features, in the same order as above.

All the features will change very fast when the speed of the “nger changes. As
described in section 4.1.3.3, this makes them unsuitable to be used directly in the
character highlighting algorithm. Instead the algorithm should use a weighted
running average of the features as described in equation 4.11. The features have
been calculated with “ve di�erent values of 	 = 0 .1, 0.3, 0.5, 0.7, 1.0. 	 = 0 .1
will give least weight to the current measurement, while 	 = 1 .0 only will take
the current measurement into account when calculating the input variable.

4.4.1.2 Pre-processing of input

The distribution of values for each feature can be seen in “gure 4.21. For all
three features the majority of the observations are close to 0. To avoid uncertain
predictions for outliers, the 0.5 % outer most observations on each side will
be ignored. When the probability of new observations needs to be estimated,
observations beyond the limits will be replaced by the limit. The limits for all
three features for 	 = 0 .5 is shown i table 4.8.

88 Transparent User guided Prediction

-10 0 10
0

2000

4000

6000

8000

10000
�' �0

�€
-5 0 5
0

0.5

1

1.5

2
x 10

4
�' �0

�t�0

�€
-0.5 0 0.5
0

5000

10000

15000
�•

�• �€�'
���•

�' �'
���•

�' �'
���•

�'

�2��

Figure 4.21: Distribution of observation values for three di�erent features for
	 = 0 .5.

� � � �

t � � 2

min -5.25 -4.67 -0.43
max 5.42 4.91 0.45

Table 4.8: Limits for all three features for 	 = 0 .5.

For the remaining 99% percent of the observations, plots ofP(� � Š �, feature)
are calculated. The plots are similar to the one shown in “gure 4.20. The plots
can be seen in in appendix A.2.1 in “gure A.3. All the plots have the same
characteristic s-shape. From the “gure it can be seen that plots with 	 � 0.5
are smoother than plots with a high 	 value. This corresponds “ne with the
theory. A low 	 value will mean that the data points are averaged over more
observations.

4.4.1.3 Fitting a function to the observations

The observations are “tted to a circular sigmoid product function. More details
on the function and “tting algorithm can be found in appendix B.

4.4.1.4 Finding the best feature and 	 value

With the “tting algorithm and error estimate from appendix B it is possible to
compare the di�erent features and 	 values. Besides the “ve original	 values,
“ve extra values are tested. The results can be seen in table 4.9.

4.4 Using statistical learning to improve text entry 89

errors ·103 � � � �

t � � 2

	 = 0 .01 3.281 3.616 3.731
	 = 0 .05 2.887 3.146 3.098
	 = 0 .10 2.973 2.943 2.883
	 = 0 .15 3.059 2.870 2.874
	 = 0 .20 3.366 3.015 3.013
	 = 0 .25 3.492 2.968 3.043
	 = 0 .30 3.623 3.025 2.995
	 = 0 .50 4.321 3.235 3.200
	 = 0 .70 4.942 3.609 3.585
	 = 1 .00 3.634 4.017 3.577

Table 4.9: Errors for di�erent features and values of 	 . All the errors are
multiplied by 10 3 to make them easier to read.

Based on the results it is decided to use� �

t � and 	 = 0 .15. The input will
be limited if it is below Š2.826 or above 3.126. The term �(x|y) is used
to describe the distribution. It is calculated as the circular sigmoid product
function (equation B.3) with the parameters from equation 4.17. x is the
distance � � Š � and y is the velocity � �

t � . The observed data and the “tted

�(� � Š � | � �

t �) function can be seen in “gure 4.22.

[a1, c1, a2, c2] = [1 ,
� �

t � , (
� �

t �)2, (
� �

t �)3]·

�

�
�
�

Š0.00620 Š3.0258 0.0872 2.7969
0.13595 1.8559 Š0.2433 2.2619

Š0.10389 Š0.7251 Š0.1132 1.1676
0.00568 0.1143 0.0201 0.0072

�

	
	

(4.17)

�(x|y) is replacing the Gaussian distribution in the character highlighting
algorithm, as an estimate ofP(� i |� 1..i Š 1, � i):

P(� i |� 1..i Š 1, � i) = P(� � Š � |
� �

t �) = �(� � Š � |
� �

t �) ·
 � �

t �
(4.18)

 � �

t �
is a term that is constant for each value of � �

t � :

 � �

t �
=

1
�

� � Š � �(� � Š � | � �

t �)
(4.19)

90 Transparent User guided Prediction

-40 -30 -20 -10 0 10 20 30 40

-2

-1

0

1

2

3

�O�b�s�e�r�v�e�d �d�a�t�a

�' �� �� �'

�' �`
�t�`

-40 -30 -20 -10 0 10 20 30 40

-2

-1

0

1

2

3

�E�s�t�i�m�a�t�e�d �f�u�n�c�t�i�o�n

�' �� �� �'

�' �`
�t�`

Figure 4.22: The plot to the left shows the observed data for feature� �

t � and
	 = 0 .15. The plot to the right shows the “tted sigmoid product function.

It is used because the optimized distribution is based on the circular sigmoid
product function. It is not a probability function, so the sum of probabilities
will not equal 1 with out this constant.

The optimized character highlighting algorithm can be found by combining
equation 4.1, 4.4, 4.6, 4.18 and removing constant terms:

argmax
� i

(�(� i) + 0 .1)� predict �(� � Š � |
� �

t �) (4.20)

4.4.1.5 Implementation of function

The optimized character highlighting algorithm requires signi“cantly more
”oating points computations than the old Gaussian based algorithm. To avoid
a drop in performance the algorithm is implemented as a lookup table. The
values are calculated for 101 values of�

�

t � and all 96 values of� � Š � .

There is one problem with the new improved character highlighting algorithm.
The initial value of � �

t � is 0, which makes the distribution very narrow. The initial
distribution should be wide, to enable easy highlighting of likely characters.
Figure 4.23 shows the di�erence between the Gaussian distribution and the
optimized distribution from the new character highlighting algorithm. For the
Gaussian distribution � 2 = � 0 = 1 / 4.15, as explained in section 4.1.3.3. The
entropy 4.15 is found from the character probabilities for the the “rst character

4.4 Using statistical learning to improve text entry 91

to be written in a phrase, according to the language model used in the TUP
iPod implementation.

The narrow distribution makes it very di�cult to hit the correct character in
the initial touch. Due to the skewness of the optimized distribution, it is not
possible to select a larger initial value of � �

t � . The solution is to increase the
� 0 value in the optimized Character Highlighting algorithm. In the optimized
character highlighting algorithm, � is still used to control the in”uence of the
language model because� predict is set to � . By increasing � 0, the language
model will have more impact on the overall algorithm during the initial touch.
When the user scrolls on the wheel�

�

t � will increase and � will decrease to the
value described by equation 4.9 and 4.11. By informal evaluations it was found
that an increase of� 0 with a factor 3 gave good initial performance.

-50 0 50
0

0.05

0.1

0.15

0.2

0.25

P
ro

ba
bi

lit
y

di
st

rib
ut

io
n

Optimized
Gaussian

Figure 4.23: The initial distribution of p(� � Š � |�) when � � = 0 and � = 1 / 4.15.
Both the Gaussian distribution from the “rst iPod prototype and the optimized
distribution are shown.

4.4.2 Optimized slip error correction algorithm

The slip error correction algorithm used in TUP (section 4.1.4) is used to
correct some mistakes automatically. It corrects errors where the highlighted
character changes while the “nger is released from the wheel. The algorithm

92 Transparent User guided Prediction

uses two parameters: the time the currently highlighted character have
been highlighted and the distance between that character and the previously
highlighted character. If the highlight time is less than 100 milliseconds and the
characters are adjacent to each other, then the previously highlighted character
will be written instead of the currently highlighted character. The algorithm
and values are based on informal studies and evaluations.

It is expected that the algorithm can be improved, by replacing it with a
new classi“er. The classi“er will be trained on data from the TUP iPod
evaluation. It is likely that the original algorithm have a�ected the participants•
interaction. To avoid any possible in”uence by the original algorithm, only data
from participant UID: 81 and 82 are used. These participants used a special
prototype, where the slip error correction algorithm was disabled.

Figure 4.24 shows the highlight time and distance for all written characters
from the usability evaluation of user 81 and 82. All correct entries are blue
and incorrect entries are red. The dashed box marks the parameters used in
the “xed error correction algorithm. Table 4.10 lists the number of entries
and misclassi“cations if the original algorithm was used. From a usability
point of view, correct characters that are classi“ed as incorrect are a lot worse
than incorrect characters that are classi“ed as correct. It is very frustrating
for the user, if the systems change correct characters. Therefore the error
function (4.21) is designed so misclassi“cations of correct entries are weighted
higher than misclassi“cations of incorrect characters. The weight is set to 5,
meaning misclassi“cation of correct entries will weight “ve times as much as
misclassi“cation of incorrect errors. The value 5 is arbitrarily chosen.

Error =
Misclassi“cationCorrect · 5 + Misclassi“cation Incorrect

Entries
(4.21)

It should be noted that not all incorrect errors are due to slips while releasing
the “nger. It can also be typos or other errors.

User Entries Correct Incorrect Misclassi“cation Error
of correct of incorrect rate

81 1897 1574 323 17 131 0.114
82 1407 1110 297 18 90 0.128

Total 3304 2684 620 35 221 0.112

Table 4.10: Number of entries for user 81 and 82.

4.4 Using statistical learning to improve text entry 93

C Name Description
13 Highlight time Time current character has been highlighted
15 Prev. highlight time Time previous character has been highlighted
16 Highlight di�erence Distance in characters between the current

and previous highlighted character
17 Highlighted characters Count of highlighted characters in this gesture
18 Duration of gesture Duration of the gesture

Table 4.11: List of features that will be used to make an improved slip error
correction algorithm. C is the column number. All time measurements will be
in milliseconds.

4.4.2.1 Pre-processing of data

Statistical learning can be used to create a better error correction algorithm. It is
a classi“cation problem, where the function estimate should classify the gesture
as either correct or incorrect. Each gesture consists of a number of touches on
the wheel. It is possible to use functional data analysis on the entire gesture
or to use feature extraction to convert each gesture to a multidimensional data
point. It is chosen to use feature extraction because it requires less processing
resources, and therefore is more suitable for mobile devices. The features that
are used are listed in table 4.11.

Only rows where the “nger is just released from the wheel are used. This means
that column 10 should equal 2. This reduces the data set from 35, 950 to 9117
rows. The algorithm cannot be used if only one character have been highlighted
during the gesture. Therefore all rows where column 17 equals 1 is removed
from the data set. This reduces the number of rows from 9117 to 3304.

4.4.2.2 K-nearest neighbours classi“er

To make a better slip error correction algorithm than the one outlined previously,
the K-nearest neighbours method is used as a classi“er. The algorithm should
estimate the values of column 11 based on column 13, 15, 16, 17 and 18. Column
11 equals 1 for correct characters and 0 for incorrect characters. The character
probabilities are not used, because they are used in other parts of the character
highlighting algorithm. To “nd out which columns to include in the classi“er,
the best subset method is used to test all combinations. The classi“ers are
validated by using cross validation with 20 groups. The error for all possible
subsets are found for k=1..50. Figure 4.25 shows the best subset for each value

94 Transparent User guided Prediction

of k. Table 4.13 in the appendix shows the error for all possible subsets for k=5,
15 and 40.

The lowest error rate is 0.0742 which is found when usingk = 3 and columns 13
and 15. This is the highlight time and the previous highlight time. The mean
error rates for all input dimensions are listed in table 4.12 fork = 5. It can be
seen that the highlight time is the input dimension that give the lowest error.

13 15 16 17 18
k = 5 0.0867 0.1671 0.1635 0.1735 0.1494
k = 15 0.0896 0.1523 0.1492 0.1536 0.1313
k = 40 0.0916 0.1402 0.1411 0.1421 0.1263

Table 4.12: Mean error rates for subsets with di�erent input dimensions and
values ofk.

4.4.2.3 K-nearest neighbours with loss matrix

The problem with the solution from the previous section is that even though the
error is lower than the original algorithm, then the number of misclassi“cations
of correct entries is very high. The problem is that the weighting between
misclassi“cations of correct and incorrect characters, only are used in the error
function. By extending the K-nearest neighbours method with a loss matrix,
the weighting will also be used in the classi“cation of new data points. By
using this method, it is possible to specify a loss matrix, which de“nes the cost
of misclassi“cations. In this case the cost of misclassi“cation is set to 1 for
incorrect entries and 5 for correct entries. The 1:5 ratio is chosen to match the
error calculation algorithm in (4.21). For K=10, this means that 2 neighbours
classi“ed as correct will have more in”uence than 8 neighbours classi“ed as
incorrect.

Figure 4.26 shows the results of the K-nearest method with loss matrix. Again
the best subset is chosen for each value of K. By comparing the “gure to “gure
4.25 it can be seen that the error is approximately the same, but the number of
misclassi“cations of correct entries are much lower with the K-nearest with loss
matrix. The lowest error rate is 0.0681 which is found when usingk = 2 and
columns 13 and 15. This is the highlight time and the previous highlight time.
It is the same columns that in the normal K-nearest method.

The optimal K-nearest neighbours solution to the problem, is to use K-nearest
neighbours with loss matrix, k = 2 and only use the highlight time and previous
highlight time. With this method, the estimated error rate will be 0 .0681.

4.4 Using statistical learning to improve text entry 95

There will be 24 misclassi“cations of correct entries and 105 misclassi“cations
of incorrect entries. This is a signi“cantly lower than the original algorithm.
k = 2 is a very low value. A larger value of k will make the algorithm more
stable. Figure 4.27 shows the plot of the best subset fork = 2, k = 10 and
k = 40.

The classi“er for the improved slip error correction algorithm consists of 3304
data points. Each time the participants remove their “ngers from the touch
wheel, all 3304 points will need to be compared with the new data point. Even
if there are only two dimensions, it will take a long time to compute. It is very
crucial that the slip error correction algorithm is fast, so the current solution
is not feasible to implement. Even though the K-nearest classi“er can not be
implemented it provides a good base line for further classi“ers.

4.4.2.4 Linear Classi“cation

Another classi“cation method is to use linear regression to classify the data. The
observations from the evaluation are organized in an by p matrix X , wheren is
the number of observations andp is the number of features. The same features
as above (table 4.11) are used. A constant, 1, is added to each observation. The
classi“cation of each observation is organized in an by g matrix G, where g is
the number of classes. The classes are binary encoded.X i, 1 = 1 if observation i
is classi“ed asCorrect. Otherwise it is 0. The same wayX i, 2 = 1 if observation
i is classi“ed asIncorrect.

The classi“er is found by the normal linear regression formula:

�	 = (X T X)Š 1X T G (4.22)

A new observation,x, is classi“ed by selecting the class with the highest expected
value:

argmax
i

gi , g = x �	 (4.23)

As with the K-nearest classi“er it is possible to introduce a loss matrix to favour
the Correct class. The loss matrix is shown in equation 4.24.p is the loss if an
Correct observation is classi“ed asIncorrect. (1 Š p) is the loss if an Incorrect
observation is classi“ed asCorrect.

L =
�

0 p
1 Š p 0

�
(4.24)

96 Transparent User guided Prediction

When using the loss matrix new observationsx are classi“ed by selecting the
class that will minimize the expected loss:

argmin
i

l i , l = x �	L (4.25)

A cross validation with 20 groups is used to test the linear regression classi“er.
Figure A.4 in appendix A.2.2 shows the number of misclassi“cations and the
error rate from equation 4.21. The minimum error is at p = 0 .62, but the
performance of the linear regression classi“er is worse than the K-nearest
neighbours classi“er.

4.4.2.5 Discriminant Analysis

Another solution is to use discriminant analysis to classify the observations
[Hastie et al., 2001].

Linear, logarithmic and quadratic discriminant analyses are used on the
observations. All are cross validated with the same 20 groups as before. Figure
A.5, A.6 and A.7 in appendix A.2.2 show the number of misclassi“cations and
the error rates. The best classi“cation is made by the logarithmic discriminant
analysis with p = 0 .65. It is still not as good as the K-nearest neighbour
classi“er, but since it is not feasible to implement K-nearest neighbour the
logarithmic discriminant analysis will be used in the slip error correction
algorithm.

To simplify the slip error correction algorithm the logarithmic discriminant
analysis is evaluated with all possible subsets of the input features. The number
of misclassifactions and error rates can be found in table 4.14. The lowest error
rate, 0.0956, is found when using the highlight time and the previous highlight
time. This is the same feature subset that was best for the K-nearest neighbours
classi“ers.

The found solution does not classify observations better than the K-nearest
neighbours classi“er, but it requires very few calculations to classify new
observations. That makes it more feasible for implementation in mobile devices.

4.4 Using statistical learning to improve text entry 97

The “nal classi“er is:

� = {
correct if � � 0
incorrect if � < 0

� = Š4.5608 + highlight time · 0.0129 + previous highlight time· 0.0016
(4.26)

The time should be in milliseconds.

98 Transparent User guided Prediction

0 500 1000 1500 2000 2500 3000

1

2

3

4

Correct
Incorrect

Highlight time

D
is

ta
nc

e
be

tw
ee

n
ch

ar
ac

te
rs

Figure 4.24: Plot of correct and incorrect characters. Highlight time is the time
the character was highlighted before it was entered. The distance is the distance
between the character and the previously highlighted character. The distance is
measured in characters. E. g. the distance betweenh and i is 1. The distances
are all integer values. To be able to distinguish between the characters a random
value between 0 and 0.2 have been added to all correct characters, and a random
value between 0 and -0.2 have been added to all incorrect characters. The dotted
square indicates the characters that will be corrected by the original slip error
correction algorithm. Gestures where only one character was highlighted are
excluded form the plot.

4.4 Using statistical learning to improve text entry 99

0

0.02

0.04

0.06

0.08

0.1

0.12

E
rr

or

0 10 20 30 40 50
0

50

100

150

200

250
Errors for best subset, normal K�nearest

M
is

cl
as

si
fic

at
io

ns

K�nearest neighbors

Error
Correct
Incorrect

Figure 4.25: Best subset for each value of k. The subset with the lowest error
are used. Misclassi“cations of correct and incorrect entries are plotted. The
dotted lines indicates the performance for the old algorithm.

100 Transparent User guided Prediction

0

0.02

0.04

0.06

0.08

0.1

0.12

E
rr

or

0 10 20 30 40 50
0

50

100

150

200

250
Errors for best subset, weighted K�nearest

M
is

cl
as

si
fic

at
io

ns

K�nearest neighbors

Error
Correct
Incorrect

Figure 4.26: Best subset for each value of k. The subset with the lowest error is
used. Misclassi“cations of correct and incorrect entries are plotted. The dotted
lines indicates the performance for the old algorithm.

4.4 Using statistical learning to improve text entry 101

Figure 4.27: Map of the optimal solution for di�erent values of k. The current
and previous highlight time were both included in the best subset for all three
values ofk.

102 Transparent User guided Prediction

Columns used K-nearest method
13 15 16 17 18 K = 5 K = 15 K = 40
1 0.088 0.088 0.088

1 0.294 0.281 0.261
1 1 0.082 0.092 0.087

1 0.188 0.188 0.188
1 1 0.090 0.087 0.087

1 1 0.304 0.282 0.262
1 1 1 0.085 0.091 0.087

1 0.191 0.188 0.188
1 1 0.102 0.092 0.095

1 1 0.361 0.306 0.255
1 1 1 0.080 0.091 0.095

1 1 0.191 0.188 0.188
1 1 1 0.100 0.092 0.101

1 1 1 0.375 0.314 0.226
1 1 1 1 0.082 0.092 0.095

1 0.204 0.204 0.183
1 1 0.090 0.089 0.087

1 1 0.175 0.124 0.127
1 1 1 0.077 0.083 0.087

1 1 0.203 0.202 0.203
1 1 1 0.090 0.088 0.087

1 1 1 0.180 0.132 0.128
1 1 1 1 0.077 0.083 0.087

1 1 0.304 0.224 0.197
1 1 1 0.091 0.091 0.095

1 1 1 0.169 0.140 0.123
1 1 1 1 0.079 0.091 0.095

1 1 1 0.307 0.224 0.197
1 1 1 1 0.093 0.091 0.095

1 1 1 1 0.170 0.143 0.130
1 1 1 1 1 0.081 0.092 0.095

Table 4.13: Error for K-nearest neighbours estimation for di�erent subsets of
input data

4.4 Using statistical learning to improve text entry 103

Columns used Misclassi“cations
13 15 16 17 18 of correct of incorrect Error
1 46 99 0.0996

1 0 620 0.1877
1 1 46 86 0.0956

1 0 620 0.1877
1 1 46 99 0.0996

1 1 0 620 0.1877
1 1 1 46 86 0.0956

1 0 620 0.1877
1 1 46 97 0.0990

1 1 0 620 0.1877
1 1 1 46 87 0.0959

1 1 0 620 0.1877
1 1 1 46 98 0.0993

1 1 1 0 620 0.1877
1 1 1 1 46 90 0.0969

1 3 600 0.1861
1 1 46 94 0.0981

1 1 2 671 0.1758
1 1 1 46 88 0.0962

1 1 2 587 0.1807
1 1 1 46 95 0.0984

1 1 1 4 539 0.1692
1 1 1 1 46 89 0.0965

1 1 43 476 0.2091
1 1 1 46 93 0.0978

1 1 1 56 303 0.1765
1 1 1 1 46 88 0.0962

1 1 1 41 474 0.2055
1 1 1 1 46 94 0.0981

1 1 1 1 54 304 0.1737
1 1 1 1 1 46 89 0.0965

Table 4.14: Misclassi“cations and errors for logarithmic discriminant analysis
for all combinations of subsets of input features.p is set to 0.65.

104 Transparent User guided Prediction

4.5 TUP - improved iPod implementation

The evaluation of the improved iPod implementation was made to test if the
improvements since the last evaluation would speed up text entry or improve
user experience.

4.5.1 Construction of prototype

The Apple iPod is used as the hardware platform for the prototype as in the
previous evaluation. The implementation of the TUP text entry methods is
updated to implement the improvements. The text entry evaluation tool is
unchanged.

The improvements in the prototype are:

Visual feedback When the user has released the wheel and entered a charac-
ter, the character will be displayed in the centre of the character circle for
300 milliseconds. This change is included to make it easier for novice users
to notice when they enter characters. It it expected that it mainly will
help the users during the “rst few sessions. The change is also expected
to make it easier to detect slips and typos for all users.

Character highlighting algorithm The term P(� i |� 1..i Š 1, � i) from the char-
acter highlighting algorithm have been implemented by the circular
sigmoid product function from section 4.4.1.

Slip error correction algorithm The old error classi“cation algorithm (sec-
tion 4.1.4) has been replaced by a classi“er based on logarithmic discrim-
inant analysis (section 4.4.2).

The improved prototype was tested informally on di�erent users before it was
used in the evaluation.

4.5.2 Evaluation methodology

The methodology is similar to the “rst TUP iPod implementation with a few
exceptions:

4.5 TUP - improved iPod implementation 105

€ No pilot study. Since the methodology is similar to the “rst evaluation
there is no need for a pilot study.

€ No focus on alternative interaction styles. The participants are not asked
about the alternatives to Release-to-Select from section 4.1.2.1.

€ No slip error evaluation. The slip error evaluation was done to collect data
for the improved slip error correction algorithm. This is not needed in the
next evaluation.

4.5.3 Results and discussion

The evaluation was carried out from March 2008 to June 2008. A total of 12
persons participated in the experiment. Their demographics is listed in table
4.15. Most participants completed 14 sessions.

UID Sex Age Hand Sessions Text Entry iPod Tech English
1 M 25 Right 11 H H M H
2 M 31 Right 12 H L H M
3 F 27 Right 14 H L M M
4 F 27 Right 15 H L M H
5 M 26 Right 14 M L H M
6 M 26 Right 14 L H M H
7 M 21 Right 14 H L H M
8 F 20 Left 14 H L M L
9 M 21 Right 14 H H H M
10 F 22 Right 15 H H M M
11 M 29 Right 14 H L H H
12 F 20 Right 13 H L M M

Table 4.15: Participants in the evaluation of TUP iPod implementation. The
last four columns show the participants previous experience with mobile text
entry, iPods, technology and their English skills. They were all expressed in
words and later converted to low (L), medium (M) or high (H).

4.5.3.1 Observations and interviews

Most of the participants managed to use TUP without any instruction. 10 out of
12 learned to use Select-on-Release by them self. Some participants accidentally
entered many characters the “rst few seconds, but the visual feedback made
them aware of the characters. Almost all participants found and could use the

106 Transparent User guided Prediction

Delete key. The absolute mapping was found by 2/3 of the participants. In
general the participants picked up the method faster than the participants in
the “rst evaluation. The visual feedback is expected to be the main reason for
the improved initial use of TUP.

Many participants found the “rst sessions di�cult. They made many errors and
were slow. The participants complained especially about space anda. After
some time they learned the position of the characters, and could speed up the
writing. Several participants mentioned that they did not look at the wheel at
the end of the evaluation.

Most participants used the tapping strategy. One participant told that she
often forgot the Select-on-Release method. When she had placed her “nger on
a wrong character, she would make another tap closer to the target character.
This created a lot of errors.

Several participants experienced di�culties in highlighting characters. Often
the highlight jumped forth and back between two characters on each side of
the target character. Other participants reported problems when highlighting a
and space. Especially the word• a • caused problems for the participants like
in the “rst evaluation. One participant said that he had created a new strategy
to highlight these di�cult characters. Instead of making a small correction, he
would scroll 4-5 characters away and then back at the target character.

About 1/3 of the participants found the prediction and could explain how it
works. Another 1/3 had noticed something, but could not express it. One
participant said that it felt like the highlight was faster than him. Another
participant was surprised that the highlight was precise, even when she were
imprecise.

Some participants had noticed special words that were easy to write. It were
words like thought , the , you , your , my and common part of words likeest.
One participant mentioned that she had learned a special rhythm for entering
these words.

4.5.3.2 Text entry speed and error rates

The input log were analyzed to “nd the entry speed and error rates. The 12
participants had entered a total of 70,748 characters in 2499 phrases.

Similar to the “rst TUP iPod evaluation, phrases where the relative length is
less than lrel < 0.8 were removed from the data set (see equation 4.13). The

4.5 TUP - improved iPod implementation 107

“ltering removed 36 phrases.

Figure 4.28 shows the average text entry speed for all participants and all
sessions. Most participants performed 4-6 WPM in the “rst session, which is a
little better than the “rst TUP iPod evaluation. In the participants• last session
the majority performed between 9 and 12 WPM. This is a lot faster than the
“rst evaluation where the text entry speed was 6-10 WPM. The fastest personal
average for a session was 13.1 WPM and the fastest phrase was written at 17.3
WPM.

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

W
or

ds
�p

er
�m

in
ut

e

Session�number

Figure 4.28: Text entry speed for all participants and sessions.

Figure 4.29 shows the average text entry speed and error rates for each session.
The average text entry speed starts with 5.1 WPM and ends with 10.7 WPM
after 14 sessions. After the “rst two sessions, the corrected error rate drops
to just below 0.04. The uncorrected error rate is also largest for the “rst two
sessions. After session two, it stays between 0.005 and 0.01.

Figure 4.30 shows the di�erence between the two TUP iPod evaluations. The
initial text entry speed is almost the same in both evaluations. After a few
sessions the text entry speed for the second evaluation is about 25% faster than
the “rst evaluation. The di�erence is the same throughout the sessions.

The error rate in the second evaluation is approximately half of the error rate

108 Transparent User guided Prediction

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0,18

0,20

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

E
rr

or
�ra

te

W
or

ds
�p

er
�m

in
ut

e

Session�number

Corrected error rate

Uncorrected error rate

Text entry speed

Figure 4.29: Average input speed and error rates. Most participants performed
14 sessions, so the validity of the data is largest for the “rst 14 sessions.

in the “rst evaluation. For both evaluations, most of the errors are corrected.
The number of corrected errors in the “rst evaluation is 50% to 100% larger
than in the second evaluation. The decrease in corrected errors in the second
evaluation is likely to be one of the reasons to the improved text entry speed.

In both evaluations the participants were told to only correct mistakes if they
were discovered shortly after they had been committed. The uncorrected error
rates in the “rst evaluation are 3-4 times higher that the uncorrected error rates
from the second evaluation. This means that the participants either did not “nd
the mistakes, or that they found them to late to be able to correct them. The
improved visual feedback in the prototype is the only change that can account
for the big di�erence in the uncorrected error rates. The visual feedback makes
it easy to see whenever a new character is entered. In the “rst TUP iPod
prototype the feedback was limited to the small characters in the input “eld.

4.5.3.3 Learning and gestures

The learning rate for the participants is:

4.5 TUP - improved iPod implementation 109

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0,18

0,20

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

E
rr

or
 r

at
e

W
or

ds
 p

er
 m

in
ut

e

Session number

 error rate

 error rate

Text

Corrected

Uncorrected

entry speed

First evalua�on Second evalua�on

Figure 4.30: Average text entry speed and error rates for both TUP iPod
evaluations. Most participants completed 12-14 sessions, so the validity of the
data is largest for the “rst 12 sessions.

WPM n = 5 .32n0.2415 (4.27)

The details behind the estimate of the learning rate are shown in appendix C.

Figure 4.31 shows the average distribution of the time used to input characters
for each session. TheFinger o� wheel time drops from 1300 to 500
milliseconds. Compared to the “rst TUP iPod evaluation, this is 200-250
milliseconds faster. Finger on wheel drops from 500 to 200 milliseconds and
Finger on character drops from 500 to about 450 milliseconds.

Most participants used the tapping strategy to enter characters. Figure A.2 in
the appendix shows the strategies used by each user in each session.

Preparation time Figure 4.17 shows the average preparation time for each
character. The trends in the observations are similar to the “rst TUP iPod
evaluation.

110 Transparent User guided Prediction

2500

2000

Finger off wheel

Finger on wheel

ds

Finger on character

1500

m
ill

is
ec

on

1000

T
im

e�
in

�m

500

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Session�number

Figure 4.31: Distribution of time used to input characters. Finger o� wheel
is the time where the participants did not touch the wheel. Finger on
wheel is the time the participants touch the wheel until the target character
is highlighted. Finger on character is the time the target character was
highlighted before the participants lifted their “ngers of the wheel.

4.5 TUP - improved iPod implementation 111

1800

Session 1-3

1400

1600

Session 1-3

Session 4-6

Session 7-9

1200

1400

lli
se

co
nd

s) Session 10-12

Session 13-15

1000

io
n�

tim
e�

(m
i

600

800

P
re

pa
ra

ti

400

200

_ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Characters

Figure 4.32: Preparation time from a character is entered to the “nger is back
on the wheel.

4.5.3.4 E�ect of language model

Similar to the “rst TUP iPod evaluation in section 4.3.3.4, the e�ect of the
language model is found. Figure 4.33 shows the average duration of the gestures
for the written characters, grouped by probability of the characters.

The time the “nger is on the character is close to 500 milliseconds, and unrelated
to the probability of the target character. The average time for touching the
wheel before the target character is highlighted is 500 milliseconds for characters
with low probability. For characters with higher probability the average time is
lower. This is expected and is the result of how TUP is designed. Compared to
the similar plot for the “rst TUP iPod evaluation (“gure 4.18), the observations
from the second evaluation is much more stable. This holds especially for the
“nger on character time. In the “rst evaluation it varied between 500 and
800 milliseconds.

112 Transparent User guided Prediction

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06
Distribution of characters

C
ha

ra
ct

er
s

(%
)

Probability of characters in %

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500
Duration of touch

M
ill

is
ec

on
ds

Probability of characters in %

Finger on wheel
Finger on character

Figure 4.33: Written characters ordered by their probability. All written
characters have been sorted by probability and put into 100 bins. The top
plot shows the distribution of characters between the bins. The plot in the
bottom shows the average duration of gestures.

4.5.3.5 E�ects of doing evaluations in di�erent contexts

Observations for both TUP iPod evaluations are used to “nd the e�ects of
doing evaluations in di�erent contexts. For each session the participants wrote
a page in the diary with the place of the session, the light condition and their
motivation. These e�ects of these factors for the text entry speed have been
analysed with mixed linear models. The statical model is shown in equation
C.10. Appendix C describes the complete analysis.

The light condition has no signi“cant e�ect on the text entry speed. The
motivation level is signi“cant. Sessions where the participants were more
motivated have a higher text entry speed.

Table 4.16 shows the e�ect of doing the evaluation sessions in di�erent places. It
has a negative e�ect on the text entry speed if TUP is used while moving. Both
StandWalk and Transport are signi“cantly lower than Bed, Couch and O�ce.
The table can also be used to estimate the performance of TUP in di�erent

4.5 TUP - improved iPod implementation 113

situations.

Place Change in WPM
Unknown 0.0%
Beda,b 3.3%
Couchc,d 2.7%
Garden -6.6%
Home (Kitchen) 1.4%
Lecture 7.1%
Livingroom 0.6%
O�ce e,f (Desk) 2.9%
StandWalka,c,e (Standing, Walking) -8.4%
Transport b,d,f (Car, Train) -2.0%

Table 4.16: Change in text entry speed if the evaluation sessions are done in
di�erent places. The places in parenthesis indicate that observations from these
places have been combined in the analysis. The subscripts indicate that these
places are signi“cantly di�erent usin g a 5 % level and Tukey-Kramer corrections
of p-values. All other places are not signi“cantly di�erent.

4.5.3.6 E�ect of participants previous experience

The analysis of the observations shows that the participants• previous experi-
ences and English skills have no signi“cant e�ect on the text entry speed.

4.5.3.7 E�ect of slip error correction algorithm

The slip error correction algorithm (section 4.1.4) is included in the TUP
prototypes to correct slip errors. The algorithm was improved for the second
TUP iPod evaluation. Table 4.17 shows the e�ect of the slip error correction
algorithms for both TUP iPod implementations.

1198 and 5631 times the slip error correction algorithm changed a incorrect
character to a correct character. With out the algorithm all these characters
would have been incorrect. The algorithm is mainly used when the target
character has low probability. Entering characters with low probability requires
extra precision from the user. A small slip is more likely to remove the highlight
from characters with low probability than for characters with high probability.

236 and 597 times the corrected characters were incorrect. These can be due
to one of two causes: Either the algorithm has changed correct characters to

114 Transparent User guided Prediction

TUP iPod Correct Incorrect Total
All characters 48,952 3,934 52,886
Slip error 1,198 236 1,434

Improved TUP iPod Correct Incorrect Total
All characters 69,970 2,685 72,655
Slip error 5,631 597 6,228

Table 4.17: Count of correct and incorrect characters entered by the
participants. The slip error lines shows how many times the slip error
correction algorithm was used, and whether the entered characters were correct
or incorrect.

incorrect characters, or the users have entered incorrect characters. This could
be typos, wrong words or similar errors. It is not possible to assign the individual
error to the causes, with out doing a manual analysis of the error logs. This has
not been done because it is very time demanding.

A test with the hypergeometric distribution shows that the fraction of incorrect
characters is signi“cantly higher when the slip error correction algorithm has
been used. This can be because the algorithm changes correct characters.
Another hypothesis is that di�erence, is due to the users making more errors
when the target characters have low probability.

The algorithm was used for 2.7% of the written characters in the “rst evaluation
and for 8.6% in the second evaluation. The big di�erence is likely due to the fact
that the participants adapt to the system. In the “rst evaluation the participants
made many mistakes. This will results in a speed-accuracy trade-o�, where the
participants try to be more accurate when the enter characters. One way of
doing this is to be more concentrated when removing the “nger from the wheel.
The participants in the second evaluation wrote faster and made fewer errors.
Their accuracy will be relaxed, thereby making more slips. Most of the slips are
correct automatically, so the participants will not have to slow down.

4.5.3.8 E�ect of improved character highlighting algorithm

The improved TUP iPod prototype uses a new algorithm to select which
character to highlight. The new algorithm was designed to make it easier
to highlight characters. It is expected that this will lead to fewer errors and
increased text entry speed.

4.5 TUP - improved iPod implementation 115

To analyse the e�ect of error rates on text entry speed, the mixed linear models
from earlier are extended with the corrected and uncorrected error rates. The
“nal model is shown in equation C.18. Appendix C describes the complete
analysis.

It is found that there is no signi“cant e�ect of the uncorrected error rate and
the text entry speed. This is as expected because the uncorrected errors are
included in the calculation of text entry speed (see section 3.3.2 for details).
The participants were told not to correct an error if more than two correct
characters would be deleted in the editing process. It is likely that many of the
uncorrected errors were newer found by the participants.

There is a signi“cant e�ect of the corrected error rate and the text entry speed.
The corrected errors are not included in the calculation of text entry speed, and
it is therefore expected that many corrected errors will decrease the text entry
speed. Table C.13 in the appendix shows the relation between corrected error
rate and text entry speed.

The new statistical model is used remove the e�ect of corrected errors from the
estimated learning rates. This is done for both evaluations. The estimate for
evaluation 1 is shown in equation 4.28 and in equation 4.29 for evaluation 2.
These estimates assume that the corrected error rate is 0. A plot of the learning
rate can be found in “gure 4.34. The estimated learning rates with inclusion of
corrected errors are also shown.

WPM n = 5 .00n0.2184 (4.28)

WPM n = 5 .84n0.2184 (4.29)

The relation between the estimated learning rates in equation 4.28 and 4.29
expresses the improvement in the task of entering characters. The relation is
1.168 which means that the improved TUP iPod method is 16.8% faster than
the original TUP iPod method.

The similar relation between the estimated learning rates in equation 4.14 and
4.27 is 1.288. These learning rates include the e�ects of faster entering of
characters and less errors to correct. By dividing 1.288 with 1.168 the e�ect
of the fewer errors is found to be an increase in text entry speed on 10.3%.

The improvements of text entry speed in the improved TUP iPod is expected
to be due to the new character highlighting algorithm and the slip error

116 Transparent User guided Prediction

5 10 15

4
5

6
7

8
9

10
11

Session number

T
ex

t e
nt

ry
 s

pe
ed

 (
W

P
M

)

Evaluation 1 � Normal
Evaluation 1 � Error free
Evaluation 2 � Normal
Evaluation 2 � Error free

Figure 4.34: Estimated learning rate and error free learning rate for both TUP
iPod evaluations.

correction algorithm. It is not possible to estimate the precise e�ect of each
improvement. The improved character highlighting algorithm makes it possible
to be less precise when highlighting characters. The slip error correction
algorithm allows the participants to commit slip errors. Both improvements
relaxed the requirements to the participants• precision, thereby enabling them
to write faster. The overall improvement in text entry speed is very signi“cant.

4.6 A key based variant of TUP 117

4.6 A key based variant of TUP

This section will introduce a variant of TUP for use with ITU-T keyboards. The
conceptual model will be very simple, to make it easy to learn for novice users.
Language models are used to improve the performance of the method. Extra
features like context-aware adaptive language models and automatic correction
of spelling mistakes and typos, can be added without increasing the complexity
of the text entry method. The text entry method is not implemented or
evaluated.

4.6.1 Summary of problems with current text entry meth-
ods

The standard multitap text entry method requires many key presses to write
text. It can be optimized by using chording or optimized character layouts.
Chording requires either two handed use or physical modi“cation of the device.
Optimized character layouts have a steep learning curve, and will require special
hardware for each language variant.

Single-tap methods can be divided into character or word level disambiguation
methods. Character level methods require the user to verify and correct each
character after it has been written. Word level methods su�er from problems
with word stability and the fact that all words unknown by the language model,
need to be entered with a fallback method.

4.6.2 Requirements to TUP-Key

TUP-Key is designed to be a key based variant of TUP. The same three main
requirements are used as a starting point: Simple conceptual model; Character
based; Hidden use of language model. Besides that the method should be easy
to learn and to use, and it should enable an easy transition from novice to expert
use.

To make it easy for the user, a normal ITU-T keyboard with the character layout
assigned from Laverack and von Niman [2007] will be used. The keyboard and
character layout are known by most people, and will help ensure good novice
performance and user experience.

118 Transparent User guided Prediction

It is di�cult to hide the language model completely. A press on a key is a
discrete event, and it has to provide some feedback to the user. The user knows
exactly which key was pressed, and expects the feedback to correspond to that
key. With TUP, the touch of the wheel generates a continuous output value. The
high density of characters means the user will not know exactly which character
was touched. It is therefore possible to use the language model without the
user will notice it. The use of language models in TUP-Key cannot be hidden
completely. Is is made to be very simple, while enabling users to interact more
with the language model if they want to.

4.6.3 Design of TUP-Key

TUP-Key is designed as a single-tap text entry method where each key press
will enter a character. It is using a hybrid between character and word level
disambiguation. Besides the ITU-T keyboard, a next, previous and accept key
is needed. Many mobile devices have a joystick or 5-way key for navigating the
user interface. They down, up and right key can be used as next, previous and
accept.

When character keys are pressed, a language model will create a list of all
possible character strings that corresponds to the pressed keys. The list is
sorted by probability. The most likely string is displayed. At any time the user
can choose to accept the predicted string or select less likely strings with the
next and previous keys.

The predicted string of characters can be accepted in three ways;

€ By pressing the accept key.

€ By selecting another predicted string of characters and press accept or any
key on the ITU-T keyboard.

€ By pressing the space key.

The main di�erence between TUP-Key and text entry methods like LetterWise
and T9 is that the user can choose when the predicted characters should be
corrected or accepted. With Letterwise each single character has to be accepted.
T9 works on word level, and all characters in the word have to be entered before
it can be accepted.

Novice users can choose to accept each character after it has been written. This
strategy will remove the problem with word stability. More experienced users

4.6 A key based variant of TUP 119

can choose to write the entire word before accepting it, or to divide the word
and accept each part by itself. When writing long words, it will often be easier
to accept parts of the word instead of the entire word. This will make it easier
to “nd typos and spelling mistakes. This holds especially for languages where
most compound words are in closed form without a space in the middle.

4.6.3.1 Writing words with low probability

If the correct keys are pressed, the target word is guaranteed to be on the list
of predicted strings. It can be entered by iterating through the list, until the
word is found. If the target word has low probability, it will be far from the
head of the list. This will make it very time consuming to enter it. It can be
entered faster by dividing the word up in smaller parts, and correct and accept
each part alone. To be e�ective, this requires that the user has a suspicion that
a word has low probability. Otherwise the user might want to start with writing
the entire word at once, before realizing that it has to be divided in smaller
parts.

4.6.3.2 Language models for TUP-Key

TUP-Key can be used with most character level language models. An algorithm
is used to create a list of all possible strings of characters for a given series of
key presses. The list ordered by probability with the language model. Most
language models that work on character level are able to do this. An example
could be the YourText language model introduced in section 5. Section 5.3.3
describes how it can be used to predict probabilities of strings of characters.

The language model can make better predictions, if it uses the history up to
the current characters. Table 2.4 shows thatrun is more likely than sun. If
the history is the yellow, then sun is more likely than run. The disadvantage
of using the history is that it can confuse experienced users. Some users have
learned the order of some of the predicted words. If the history is used, then
the order of the predicted words will be di�erent for di�erent histories.

4.6.3.3 Automatic corrections of spelling and typing errors

TUP-Key can be extended with automatic correction of spelling and typing
errors. This can be done with only a minor increase of the complexity. If the
user makes errors while pressing the keys, the target word will not be on the list

120 Transparent User guided Prediction

of predicted words. This is because the list only contains the words that can be
made from the keys pressed by the user. The algorithm that creates the list of
predicted words can be relaxed to allow the user to make errors.

4.6.4 Discussion of TUP-Key

One of the main advantages of TUP-Key is that it is very similar to LetterWise
and T9. By correcting and accepting the predicted characters at di�erent times,
TUP-Key can be used in the way preferred by the individual user. Novice users
can choose to correct each individual character, so they always can see what
they have written. More experienced users can speed up the text entry, by
correcting and accepting larger chunks of characters. If the user only corrects
entire words, the method is very similar to T9. It is therefore expected that
the performance will be similar to T9 performance for experienced users. The
performance of TUP-Key is expected to be better than T9 when writing words
that are not present in the T9 dictionary.

All words can be written with the same method. There are no unknown words,
but only words with low probability. If the user knows that some word has
low probability, then it can be entered easily by dividing it up in smaller parts.
Otherwise it will be time consuming to enter words with low probability.

TUP-Key can be used together with adaptive language models. When words
with low probability are entered, they language model will adapt to these words.
This will make it easier to enter the word next time.

TUP-Key can be extended with extra features such as automatic corrections of
spelling and typing errors. It is also possible to make variants of TUP-Key for
use with keyboards with less or fewer character keys.

4.7 Conclusions

This chapter has introduced the TUP text entry method. TUP is designed for
use with touch sensitive wheels, sliders and similar input devices. The method
have been designed to be easy to use for novice users and to provide an easy
transition from novice to expert. The method works on character level, so all
possible words and character combinations can be written. TUP can be used
with adaptive language models.TUP has been evaluated in three evaluations.
33 users have participated in the evaluations and more than 4.600 phrases have

4.7 Conclusions 121

been transcribed. TUP-Key has been introduced. It is a variant of TUP for use
with ITU-T keyboards. TUP-Key is not implemented or evaluated.

Both methods can be used with di�erent sizes of input devices. If TUP has
more space, then the density of characters will be smaller. This will make it
easier to highlight the correct characters. For TUP-Key the size and number of
keys can be changed to “ll the available space.

TUP was designed by combining low level models of human behaviour with the
language model as a high level task model. The low level models were optimized
by using methods from statistical learning and data from an evaluation of TUP.
The optimized low level models were used to improve the algorithms. TUP was
also improved with extra visual feedback, as a result of the qualitative data from
the evaluation. An evaluation of the improved version of TUP showed that the
text entry speed had increased 29% and the error rate has dropped from 8% to
below 5%.

122 Transparent User guided Prediction

Chapter 5

YourText - a context-aware
adaptive language model

This chapter introduces a new language model framework called YourText. It
is a context-aware adaptive language model based on a set of PPM models. It
is described how di�erent language models can be combined to make a more
powerful model. A corpus of sent and received text messages from users are
created and used to verify the new language model.

5.1 Language Usage in Mobile Text Entry

Our language varies a lot depending on what we are doing. It is unlikely that a
single language model can be applied with success in many di�erent applications
or domains. There are numerous examples of how speci“c language models
perform better than general purpose models. Teahan and Cleary [1996] got a
10% reduction of the entropy of classic English literature, when their language
model where trained on texts from the same author as the test. Most domain
speci“c language models have been trained with text from a given domain to
learn new words. For the mobile text entry language domain, it will probably
not be enough to add some extra words to the language model. The structure
of the language model has to be changed to match the speci“c language usage.

124 YourText - a context-aware adaptive language model

Mobile text entry is often used to enter single words or short phrases. It could
be mobile text messages, calendar appointments, phone book entries or internet
urls. Mobile text messaging is the service that requires the most text entry,
even though each single message has a limit of 160 characters. A study by
Laursen [2006] shows that people are having long conversations over mobile
text messages. Sometimes a conversation can be paused for hours before it
is resumed. The study also shows that some of the observed people had 2-4
simultaneous conversations with di�erent people at the same time.

In many ways mobile text entry resembles spoken language more than written
language. Each message has a sender and one or more receivers. Often the
message is part of a larger information ”ow between two or more people. The
mobility of the devices enables the user to enter text when and where he wants
to.

Studies by Grinter and Eldridge [2001] shows that users tend to use a lot of
abbreviations to save time when entering text. Many of these abbreviations are
not established parts of the language. For example these di�erent abbreviations
for tomorrow: 2moro, 2morra, tomor and 2morrow. Because of the use of
abbreviations mobile text messages include a high number of non-dictionary
words.

5.2 Design requirements

To be able to better support text message language usage, the language model
should be aware of the context of the text entry. Examples of contexts are when
the messages are sent, who receives them, where they are sent from, whether
they are replies to another message, etcetera.

The many non-dictionary words and the general evolving of language, make it
desirable to have an adaptive language model. Evaluations done by Kuhn and
Mori [1990] showed that words used recently are much more likely to be used
again soon after. The language model should also support this kind of adaption.

Language models typically adapt to the text they have seen in the past. With
language models for mobile text entry, it is possible to let the language model
adapt to other sources of information. It could be calendar appointments,
names of contacts, GPS locations, received messages, text from visited websites,
etcetera. This implementation of YourText will only adapt to sent and received
messages, but can easily be extended to include other sources of information.

5.3 Design and implementation 125

Even with an adaptive language model that can learn from many sources, it
is very likely that the user will write words unknown to the language model.
A word-level language model will assign the same probability to all unknown
words. A character-level language model will assign a probability based on how
close the unknown word resembles the language structure encoded in the model.
YourText will be based on a character-level language model, to better support
unknown words. Another advantage of character-level language models is that
they can be used with both character-level and word-level text entry methods.
The opposite, to use word-level models with character-level text entry methods,
is much more complicated.

Based on this and the previous sections, a number of requirements to the
language model are made.

Adaptive The language model should be adaptive. The probabilities should
be continuously updated to better match the users• language. Many
sources can be used to adapt the language model; the users own text,
text of received messages, device phone book entries, calendar events, and
etcetera.

Context-aware The language model should be able to use contextual informa-
tion to provide better probability estimates. Contextual information could
be the receiver of the text message, the time of day, location, etcetera.

Recency The language model should favour words that have been used
recently.

Character-based The language model should work on character-level.

5.3 Design and implementation

Focus has been on how to incorporate new design ideas into a simple language
model. It is very likely that the language model can be improved, by adding
techniques from established and state of the art language models. The language
model has been designed so that it can be used in real time on a desktop
computer. The implementation has not been optimized in any way regarding
performance and memory usage.

YourText is a framework that uses a pool of language models. Each time
YourText is needed, a subset of the language models are selected from the pool.
Linear interpolation between the chosen language models is used to create the

126 YourText - a context-aware adaptive language model

“nal probability estimate. Linear interpolation has been chosen because it is
fast and easily can be used with all types of language models. The weights are
dynamically updated while YourText is used.

The pool of language models is dependent on the con“guration of YourText. A
typical con“guration will have one or more basic language models and sets of
language models associated with di�erent contextual information. These sets
will be called contextual dimensions. Examples of contextual dimensions could
be location, time of day, recipient, and etcetera. Each contextual dimension
has a set a language models that corresponds to the state of the contextual
dimension. For the recipient dimension, this will be a language model for each
recipient that the user will communicate with. When YourText is used, the
relevant subset of language models are selected from the pool based on the
current context of the user.

YourText can be used with all types of language models. In this implementation
it uses a novel adaptive language model called PPM*D.

5.3.1 PPM*D language model

YourText will be based on a set of unbounded length n-graph PPM models
(as described in section 2.3.6.2). A character based model is used so YourText
can predict the next character given the current history. The model is called
PPM*D. The PPM* refers to the compression method by Cleary, Teahan, and
Witten [1995], where variable length n-graphs are used. The D refers to a decay
function that is build into the language model. The decay function will reduce
the counts of the characters, so that characters that have not been used recently
will be less likely.

Most adaptive language models are only able to remember. They work by
increasing counts of words and characters each time they are seen in the text. A
word mentioned 10 times in the beginning of a text will have a higher probability
than a word mentioned “ve times in the same section. By introducing a decay
function the language model is also able to forget. There are other examples
of language models that are able to forget. Kuhn and Mori [1990] made a
cache based language model, where a trigram model is extended with a cache
component. The last 200 words from di�erent Parts-Of-Speech classes were
saved in a cache. Words from the cache were assigned higher probabilities than
words outside the cache. Clarkson and Robinson [1997] made a language model
with an exponentially decaying cache component. The probability of the words
in the cache is dependent of the distance to the current word. Both these
language models were improved by adding cache components.

5.3 Design and implementation 127

In PPM*D the decay function is built into the language model, and not in a
separate cache component.

PPM*D is de“ned using an alphabet Q, a decay factor� and a pruning level � .

It is implemented in a tree-structure, where the history controls the shape of the
tree. The root is the empty history. The child nodes beneath the root have a
history of one character. Underneath are nodes with histories of two characters
and so on. Each node holds the count of how many times each character have
been observed after the current history. The depth of the tree is similar to the
length of the n-grams. Nodes at leveln contain the count of n-grams.

Figure 5.1 shows a small example tree for a PPM*D language model. To make
it easy to “nd the longest matching history in the tree, the history is encoded
backwards. To “nd the most likely characters to follow He lost the keys to his
ca, you will have to perform the following steps: Start in the root; go to nodea;
go to nodec. This node is the longest possible history in the language model.
The node holds the counts of all characters that have been observed to follow
ca.

History: empty
Count(�� Q)

History: a
Count(�� Q)

History: b
Count(�� Q)

History: c
Count(�� Q)

History: d
Count(�� Q)

History: a
Count(�� Q)

History: b
Count(�� Q)

History: c
Count(�� Q)

History: d
Count(�� Q)

History: a
Count(�� Q)

History: b
Count(�� Q)

Figure 5.1: Example tree for a PPM*D language model

5.3.1.1 Probability estimates

PPM*D uses backo� [Katz, 1987] to estimate the probability based on the
longest possible history. � 0 is de“ned as the next character the user will enter
and hn is the history of all the characters the user have entered until now:
� Š n � Š n +1 � Š n +2 ...� Š 2� Š 1.

The length of h is |h| = n.

128 YourText - a context-aware adaptive language model

Cc(� |h) is de“ned as the count of how many times� follows the history hc.
Only the last c characters in the history are used.

Cc(� |h) = C(hc�) = C(� Š c� Š (cŠ 1) � Š (cŠ 2) ...� Š 2� Š 1�) (5.1)

For example C0(� |h) is the count of � . Sincec = 0, the history is not used at
all.

The probability of a character � 0 to follow the history h is

P(� 0|h) = Pc(� 0|h), c = |h| (5.2)

Pc(� 0|h) =

� c

Cc (� 0 |h)�
� � Q

Cc (� |h)
if Cc(� |h) > 0;

(1 Š � c)PcŠ 1(� 0|h) if Cc(� |h) = 0
(5.3)

PŠ 1(� |h) =
1

|Q|
(5.4)

The backo� weights � c are found from Witten-Bell discounting [Witten and
Bell, 1991]. Backo� and Witten-Bell discounting are described in section 2.3.4
and 2.3.5.

5.3.1.2 Pruning

PPM*D uses an unbounded length n-graph PPM model. Since there is no limit
on the length of n-graphs, there need to be another way to limit the size of
the language model. PPM*D uses a pruning criterion to decide when to stop
adding child nodes to the tree. The criterion is used on each individual node in
the tree, allowing the tree to vary in depth. PPM*D uses the Kullback-Leibler
divergence by Kullback and Leibler [1951] as a pruning criteria. It has also been
used by Stolcke [1998], Gao and Zhang [2001].

It can measure the information gain of adding a extra child node to the tree. It
is de“ned as

DKL (X ||Y) =
�

i

X (i) log2
X (i)
Y (i)

(5.5)

5.3 Design and implementation 129

The Kullback-Leibler divergence is closely related to the entropy and cross
entropy:

DKL (X ||Y) = H (X, Y) Š H (X) (5.6)

DKL (X ||Y) is a measure of how much extra information that is required to
code a sequence fromX with Y instead of X . For PPM*D X and Y are the
distribution of the characters with di�erent history lengths. For any two given
histories hc, hcŠ 1, the information gain of the extra character can be described
as:

�(hc, hcŠ 1) = D KL (Pc||PcŠ 1) =
�

� � Q

P(� |hc)
P(� |hc)

P(� |hcŠ 1)
(5.7)

If the information gain of a speci“c history �(hc, hcŠ 1) is less than the pruning
level � , the node with history hc will be excluded from the model.

5.3.1.3 Initial training of PPM*D

To be able to produce good estimates, the language model needs to be trained
on some text. The training of PPM*D is done in the following steps:

1. Create an empty tree with a root element.

2. Set n to 1

3. Iterate through the corpus and count all n-graphs. Add them to the
appropriate nodes at leveln.

4. Prune tree. Remove nodes at leveln if the information gain is below � .

5. Create child nodes for all nodes at leveln

6. Increasen with 1.

7. Repeat from step 3

8. Continue until the tree stops growing

