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Three-wave interaction in two-component quadratic nonlinear lattices

V. V. Konotop and M. D. Cunha
Department of Physics and Center of Mathematical Sciences, University of Madeira, 9000 Funchal, Portugal

P. L. Christiansen and C. Balslev Clausen
Department of Mathematical Modelling, Technical University of Denmark, DK-2800 Lyngby, Denmark
(Received 9 February 1999

We investigate a two-component lattice with a quadratic nonlinearity and find with the multiple scale
technique that integrable three-wave interaction takes place between plane wave solutions when these fulfill
resonance conditions. We demonstrate that energy conversion and pulse propagation known from three-wave
interaction is reproduced in the lattice and that exact phase matching of parametric processes can be obtained
in non-phase-matched lattices by tilting the interacting plane waves with respect to each other.
[S1063-651%99)15110-9

PACS numbsds): 45.30:+s, 42.65.Ky, 42.82.Et, 04.30.Nk

I. INTRODUCTION Various properties of the systefl) have already been
established. In Ref[5] all real, stationary solutions were

has demonstrated that multiple-wave parametric processf%und analytically fomo=2,4,6, and in Re{.6] the complete

contain a vast multitude of nonlinear phenomena. Recentl pEt of stationary solutions were found fog=2. When the

y R . .
the study of parametric interaction has been extended to inr)umber of sites is large, one can find several types of discrete

clude discrete systems as wid10]. Here we will consider solltary waves(also called |ntr|_n3|c Iocall_zed moq)eswth
. . . complicated phase and amplitude profilgs8]. Discrete
a two-component lattice formed by a line of resonantly in-

. ) ) : . olitary waves are intense and strongly localized excitations.
teracting pairs of nonlinear oscillators. Most theoretical an his is in contrast to the plane wave solutions to Hdg. In
experimental studies of parametric wave interactions are peCFef [10] the destiny of SF;nooth nonlinear plane Wavés and
:g;meg meg:eirfogﬁegtrgczggcsgf b:;tg;gyv\%grgng;:ﬁi:gt he validity of modulation equations describing slow evolu-

y app . Yion of the solution parameters in the plane waves has been
comes into play. Examples are found, e.g., in plasma phys- . . )
Investigated in detail.

ics, solid state physics, and in dynamics of electromagnetic, g . . .
. . In this paper we will focus on interaction between three
acoustic, and water wavgs,2]. We will nevertheless use the ) .
smoothly modulated(quasi-monochromatjcplane waves.

language of optics and understand the oscillators as an arr%though the intensity of the plane waves varies smoothly

of coupled waveguides, each of them allowing degeneratﬁ1 L . . X .
. . e fast phase variation will make a simple, direct continuum
interaction between a fundamental and a second harmonic

field. The evolution of the fields in thath waveguide is approximation of Eqs(1) break down. Instead we use the

governed by the following set of ordinary differential- '”.”“'“p'e scale technique on th? planel wave eqvelopes and
difference equationts, 7]: find the well known three-wave interaction equations that are

integrable and have soliton solutiofikl]. We will explore
) the three-wave interaction equations as a means of generat-
iWo+ (W, 1 +W, 1)+ W V,=0, ing interesting beam dynamics in the lattice. The paper is
(1) organized as follows. In Sec. Il, modulation equations are
. ) derived. In Sec. Il A, the degenerate case with only two
iVt (Vo1 +Vio1) —aVp+ Wi/2=0, participating waves is explored as a means by which to ob-
tain phase-matched energy conversion to the second har-
with n=1,... ny. W, is the fundamental mode at frequency monic, using both plane waves and localized beams. In Sec.
Q, that propagates inside the waveguide with wave vectotll B, we investigate the nondegenerate case with three plane
Q, andV, is the second harmonic mode at frequerfizy ~ waves of different frequency. We show that phase-matched
=24, which propagates with wave vect@,. System(1) down-conversion takes place via decay instability and ex-
is derived under the assumption that the modes are close fore the possibilities for beam steering in the lattice. Finally,
phase matching, i.eQ,~2Q,. The constani measures the Sec. IV contains a summary and conclusions.
residual phase mismatch between the modes. The positive
constanty= k,/k, is the ratio of the nearest neighbor cou-
pling strength of the second harmonig to the fundamental
k1. Itis thus assumed that; # 0, i.e., that the fundamental In the absence of coupling between the waveguides, the
fields in adjacent waveguides are overlapping. The dot ddight fields in the fundamental and the second harmonic
notes differentiation with respect to independent variable modes propagate steadily in tkedirection inside each iso-
which measures the normalized distance along waveguideigted waveguide with wave vecto@, andQ,, respectively.
and complex conjugation is indicated by an asterisk. However, the coupling to the neighboring waveguides results

Il. ENVELOPE EQUATIONS
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W, = e[ Ay(T,X)e! (@2 ki + A (T X)el (922~ k2 ]+ O(€®),
Tk C)
Q@ 9 V= eAg(T,X)€! (U7 ks 1 €2B, (T, X)e? (12 kan)
z + €?B,(T,X)e? (22 k2N + O(€3). (7
b

Here T=€ez and X=en are slow coordinates and, conse-

quently, amplitudesA; and B; are slowly varying complex
FIG. 1. Schematic view of an array of waveguides and wavefunctions. The terms characterized by the amplituéigsle-

vector of light bearts). scribe modes interacting in a resonant manner while the

terms characterized by the amplitudgs describe nonreso-

in an effective lattice structure and leads to new modulatiomant generation of second harmonisse below.

phenomena developing in the transvexsdirection associ- Taking into account Eqgs(2) and (3), one ensures that

ated with the waveguide numbens[12]. This modulation Egs.(4), (6), and(7) satisfy Egs(1) in the first order of the

has a longitudinal part] (alongz) and a transverse pakt small parametee. In the second order of parameterthe

(along x), such that the total wave vector inside the dynamical equations for the amplitudés are found to be

waveguides is a sum of three vect@s g, andk. (See Fig. the well known system describing resonant three-wave inter-

1) As long as Eqs(1) are obtained in the long-wavelength action

limit, one has thatq|,|k|<Q, hence the oblique angles of

the injected beams are small. In the present paper, we deal (7_A1 a—Al—iA*A
with resonance phenomena associated wigk). Since the aT | Vigx T fefe
carrier waves {,Q) of the modedV, andV,, already fulfill
the primary resonance, the resonance associated gji) ( dA, Ay
may be called secondary tnansversedue to the participa- ﬁ“LVZW:'AlAS’ ®)
tion of a nonzerd.
In order to explain the phenomenon we are dealing with, 9As 9As

we note that Eqg1) can be viewed as two linear lattice¥ ( =iA1A,.

andW) which are coupled in a nonlinear way. In the linear

limit where the lattices are decoupled, they are characterizeige Vq,=—2sinky ») is related to the propagation angle
by the dispersion relations of theW modes and/ ;= — 27 sinks) is related to the propa-

gation angle of th&/ mode.

T TVaTx

q=2 cogk) ) In the present work we are concerned with the evolution
for the W branch and of field exutaﬁmns agglnst a plane wave .background. The
simplest solutions having energy localized in space [é&
=2ncogk)—a 3
q=27cogk) Ai=Vazagsectty), A,=\—ajaztani({),
for the V branch. . €)
Consider now the evolution of an excitation that consists Ag=iV—aya; sechid),
of three modes, characterized by transverse wave numbers
k123 and longitudinal wave number variations , 5 related A;=\ayazsechiy), A=+ ajazsech(),
by (10
A3: | Va1 '[anl”(g),
z=01t 02, ks=kitkatx, (4)

where aj=v;—v (j=1,2,3) and we have considered the
wherex=27n (n=0,+1,+2,...) is avector of the recipro- change of variableg=X—vT, 7=T, the constanv is re-
cal lattice. Equatior(4) implies resonant interaction among lated to the propagation angle of the coupled state. The so-
the modes, which we refer to as transverse resonance. Akitions (9) and (10) both require some relations among the
suming that the models, , and ks belong to thew and V parameters. In the case of soluti(®), we need to satisfy
branches, respectively, one finds from E(.and (3) that  V,3<v<v; orv;<v<v,zand in the case of solutiofi0)
conditions(4) are satisfied provided that the following rela- we need to satisfy; ; 3<v or v, 3>v. The amplitudes;

tion between the transverse wave numbersis fuffilled: are also found from the second order approximatiore.in
One obtains
o
n cogk;+k,)—cogk;)—cogk,)— ==0. (5)
e ! 22 Blza;a3 secR({), B,=— a;as tantf(z)  (11)
1 2

Let us make two assumption§) the lattice is infinite )
[14], and (ii) field excitations are smooth enough comparedh the case of solutiog9) and
to the distance between neighbor sites, which is normalized
to unity in our case. Then we can look for the solution of the B :wsecm) (12)
system(1) in the form b '
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for solution (10). Hereb;=4q;—47 cos(X)+2a (j=1,2).
It follows from these expressions that solutidi@s and (7) (a)
are consistent unless one of the denominator§li) and
(12) vanishes:

(aV]
=05
4 cogky p) — 27 cog 2Kk, )+ a=0. (13 - 0
The fulfillment of Eq.(13) is a special case. It is nothing 10 5
more than the matching conditions @égeneratéhree-wave 00
interaction, i.e., second harmonic generation in syst&m n Y4
[see Eqgs(2), (3)]:
03=2012, k3=2kyot k. (14
In this caseA;=A, and the systen{8) degenerates; the 05 (b)
equations governing the second-harmonic generation read ’
[a)]
AL IA; >
— 4+ T — A% =z
aT TVigx T AT As 0
(15
S TRLT 10 ®
oT Vex T M n 90 5
where we have considered the conditions of the second- FiG. 2. Second harmonic generation with plane wave input.
harmonic generation in the formz;=2q;, k3=2k;+«,  Parametersa=—3, »=1. The chain is periodic in order to simu-
which is equivalent to having,=0. late an infinite array.

We check the linear stability of solution®) and (10),
using their behavior in the asymptotic zone with respect to In the case of solutio10), we find thatw has an imagi-
X. To this end, we linearize E8) about the unperturbed nary part wherk?<4/(v,—v3)? and hence even the back-
solutions (9) or (10) by making the substitutiorA;— A; ground of the solution is unstable with respect to long-
+0;(¢,7), where the functiong\; are given by Eq(9) or ~ wavelength excitations. This correlates with numerical
Eq. (10) and g;({,7)<A,. The linearized equation can be simulations that will be presented in the next section. It
written down in the form should be mentioned here that the stability analysis provided
above is in the context of the three-wave model and does not
J . - :
i ﬁ—?_:£g (16 give the stability of the full discrete system of Edq%).
. NUMERICAL RESULTS

where g=col(g,,95,93,97 .93 ,03), L=—iadld{+M, « . _
= diag(y @, @s,a1,0,3), andM is a 6x 6 matrix with the We have made a careful study based on numerical simu-

elements M=M= —M*=—Mm=A%  M;=M lations of Egs(1). The purpose of the simulations is not only
M — Nt Ok _64_ i _ 1 N2 to check the validity of the approximate solutions from the
=—M 42 M 51 AS d M 23— M 327 M 56 M 657 A1,

while the remaining elements are zero. Then, instability inrecedlng section. We also seek to visualize the beam dy-

. X . mics in a comprehensive way and to investigate the effects
the solution means the existence of complex eigenvalues (ﬂf

£ (we denote themw). Considering the asymptotics of the at arise when parameter values are detuned and deviate
. P 9 ymp from the optimal values. Recall that in Eq4) and the so-
eigenvalue problemfg=wg at {—*x, we get g;

Kx . . . lutions (9) and (10), » and « are material parameters which
e_rfd ree tﬁa\;wft:r E[;hjebse(;lnuqci aiEc):o(r;s(E; ti'slglfe;?f,gﬂg;s}'ﬂi.to are determined by the design and quality of the waveguides,
tion for all K. In other words ,the continuous spectrum of theWhIIe the wave numberk; are free parameters and can be

) . L . controlled by the proper choice of the input beam angles.
operator L consists of intervals of the real axis—¢e,
—wp]U[wg,®), Wherewo= —2a,a3/|a;— as| (remember

that for the unperturbed solution at hamad «3<<0). This A. Degenerate case

result ensures the stability of the background. First we present the results for the degenerate case in
On the other hand, in the same lini¢] —, the equation  which we focus on the possibility of efficient energy conver-
for g, (and forg3) is singled out and reads sion from the fundamental to the second harmonic. In the
degenerate case, the resonance conditionByj.is fulfilled
.09z and only two plane waves interact. Figure 2 gives an ex-
'@ = @92 17) ample of complete energy conversion from the fundamental

to the second harmonic in an array with= 16 waveguides.
Thus the decay o, at =, simultaneously, cannot be pro- Parameters arey=1 and a=-—3. At the input of the
vided unlessv=0. This value of the spectral parameter cor-waveguides there is no second harmonic seed. It is seen that
responds to the only discrete eigenvalue of the operédtor even though each waveguide has a nonzero phase mismatch
which is given byg;=dA;/d{. it is possible to obtain complete energy conversion. This
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FIG. 3. Shaded area indicates the allowed parameter region fo
degenerate transverse phase matching. Thick lines indicate value
with no walkoff, i.e.,v;=vj.

would not be possible in a single isolated waveguide without s
a second harmonic seed with a well defined phase. Howevel 4
Fig. 2 results from simulations with periodic boundary con- , 3
ditions. In this way the array is equivalent to an array of >,
infinite extension with accuracy i [14]. A real array will 1
have open boundary conditions unless a rather unrealistii
circle geometry is assumed, or unless the array consists ¢ o
only two waveguides, which makes periodic and open
boundary conditions equivalent.
The resonance condition E¢L3) cannot be satisfied for

an arbitrary set of parameter valuggnd «. Figure 3 shows n
the region in parameter space where it is possible to choose
the wave numbek=Kk; in such a way that Eq13) is satis- FIG. 4. Pulse generation under the transverse phase-matching

fied and degenerate transverse phase matching is obtaine@ndition. Parameters arg=0.55, a=—2.9. Pulse parameters:

The thick lines at the separating borders indicate the special=0.1, width=5, velocity measured to-0.8 (v;=—0.83). (a)

values ofy and « wherev,;=v3; and the beams will propa- Fundamental(b) Second harmonic.

gate through the waveguides without walking away from

each other in the transverse o_llrect|on. The valge v, 'S " is done in the following way. For each valuelothe energy

termed tha/\_/alkoft It beco'?"es important when we COUS"?'G.“ conversion has a maximum somewhere alanghis value

the interaction of beams instead of plane waves of infinite . -

extension. is recorded for_a range of values lofand is plotted in Fig.
With a plane wave as input, we had to impose the unnatu5(b) for three different values of.

ral periodic boundary conditions. However, the boundary

conditions are unimportant when the input condition is B. Three-wave interaction

changed to the more realistic case with a confined beam. e now focus on genuine three-wave interaction for

Figure 4 shows such a case. Equatids) is fulfilled and  \yhich Eq.(5) is fulfilled, while the condition for degenerate
V1=V3, S0 the fundamental beam is converted into a seconghsonance Eq(13) is not fulfilled. As a representative ex-
harmonic beam that propagates in the same direction as thgnsje of efficient three-wave interaction, Fig. 6 shows the

fundamental. process of down-conversion from one plane waveVirio

B e oy 10 Pane Waes W i decy sty  a fice i
y g y 4 waveguides. The parameters for the samplegrd.5

ered. Also, the input beam angle will have some uncertainty. da=—29 Atth i £ th id ¢
Therefore, we consider the effect of tuning the parametefm a= e € entrance of the waveguides, a strong

values away from the transverse phase-matching conditioPPidue plane wave with wave numbley=—0.25 is input in
Whether the value oy, «, or k is detuned, the qualitative theV mode and a seed of vanishingly small amplitude with
effect remains the same. The detuning will manifest itself agvave numbeik;=0.15 is input in theW mode. As seen in
an effective phase mismatch accompanied by a change in tfdd. 6@, thek; and thek, components build up in th&/
walkoff. In order to monitor this, we have made a series ofmode. The presence of two plane waves\irat z= 10 gen-
numerical simulations with the same configuration and inpugrates an interference pattern|itv| across the waveguides.
the beam shape as in Fig. 4 but with different valuek.of The spectrum oW yields that most of the energy ®¥ is in
Figure Fa) plots the resulting energy conversiom,,  thek; andk, modes and a smaller amount of energy is in the
=2|V|?/|W? along the waveguides in four cases. In Fih)5 sum and difference modes resulting from higher order mix-
we detect the bandwidth of the energy conversion process. lhg of the plane waves.
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FIG. 5. Angle sensitivity in the second harmonic generation experint@nEnergy conversiom,,, versusz. Matching at=k=0.43
=k, (solid line), detuned at- k=k,,+ 0.2 (dotted, = k=k,+ 0.4 (dashegl and +k=k,,+ 0.6 (dash-dottef (b) Peak conversion versiks
for various values ofy. Solid line, »=0.55; dashed liney=0.7; dash-dotted liney=1.5. The big dot indicates the parameters of the
experiment in Fig. 4.

We have repeated the experiment from Fig. 6, replacinggach other as they propagate alongThis walkoff will
the plane waves with beams localized to a limited number otounteract the efficiency of the down-conversion and will
waveguides. Also, the seed W is arbitrarily chosen to be eventually delocalize the beams. However, in Fig. 7 the ini-
k, instead ofk, . For the particular values of the wave num- tial stage of the down-conversion is clearly seen. Complete
bers, the velocities are;=—0.2989,v,=0.7788, andvy  depletion of thek; component inV is nearly obtained at
=0.2474. The beams will therefore tend to walk away from~25. At this point there is a mixture between an interference

(@)
K\ 35
0.2 30
=01 %
=" 20
Y 15
20 10
o
80 5 4
100
120 0

n
(b) ,
0.5 \ 30
'! 25

20 10

)

-

n

(=1
o

FIG. 7. Down-conversion with beams. Boundary conditions are
FIG. 6. Down-conversion with plane waves. Boundary condi-open ends. Parameters ate=—2.9, »=0.5. Input: f(n)exp
tions are periodic. Parameters ate= —2.9, »=0.5. Input: exp  (—iksn) in V, 0.000Z(n)exp(—iko,n) in W, ks=-0.25, k,
(—iksn) in V, 0.0002 expf-ikin) in W, ks=—0.25, k;=0.15. (a) =—0.4, andf(n)=sechfi—ny2). (8 Fundamental.(b) Second
Fundamental(b) Second harmonic. harmonic.



PRE 60 THREE-WAVE INTERACTION IN TWO-COMPONEN . . . 6109

wiggles generated on top d¥%| as the beam propagates
alongz are caused by the formation of the higher order mix-
ing termsB; andB,. However, the excitation remains con-
nected and propagates in a stable manner. Shada solu-
tion (9) has an infinite extension, we had to impose periodic
boundary conditions in the simulations. Furthermore, nu-
merical simulations confirm that the solution indicated in Eq.
(10) is unstable. It is clear from the decay instability in Fig.
6 that solution(10), which has a constant backgroundAp,

will also be modulationally unstable.

IV. CONCLUSIONS

In summary, we have shown that both efficient two-wave
and three-wave interaction takes place in a lattice with qua-
dratic nonlinearity when the interacting waves are tilted to a
proper angle with respect to each other.

In the degenerate case with only two interacting waves,
we focused on energy conversion from the fundamental to
the second harmonic and detected the bandwidth of this pro-
cess in terms of the sensitivity to the phase (tittnsverse
wavenumber of the incoming fundamental.

With three interacting waves the dynamics are potentially
richer. We showed the existence of decay instability in the
lattice that couples energy froky to k; andk, and stable
50 propagation of a localized excitation. It is worth noting that

the three-wave components have different transverse wave
numbers and therefore different propagation angles in free
space. Thus, when energy is transferred from, kaio k, as
in Fig. 7, the direction of light will have changed at the
500 0 z output of the waveguides according to the phase Kjlt
—Kk,. The direction of propagation is determined by the

FIG. 8. Stable propagation of localized excitation. Boundary@ngle¢~ k/Q, whereQ is the wave number of the relevant
conditions are periodic. Parameters aje 1.0, a=—1.8. Plane ~carrier wave(see Fig. 1 Assuming the wavelength of the
waves:k,;=—0.5, k,=0.2. The velocity of the excitation is mea- fundamental to be&.~1.5um and the waveguide separation
sured to be—0.79. (@) Fundamental(b) Second harmonic. to be~10um, one finds that the change in angle~i9.75°

for the simulation shown in Fig. 7. The change in angle will
pattern fromk, andk, in |W| and walkoff. Withz>25, the P& @ccompanied by a change in wavelength accordirg to
walkoff effects set in and thé, andk, components iV which depgnds on the.scahng afand thus on the actugl
walk away from each other with their respective velocities. "€&rest neighbor coupling strength between the waveguides.

Although the beams in Fig. 7 remain localized, they are__1N€ results show the general nature of parametric wave
not stationary, since down-conversion is taking place. Thdlteraction that may come into view in any lattice exhibiting
stable solution given in E9) is based on a beam configu- & duadratic nonlinearity.
ration where the three modes in the beams are stationary. In
that configuration a stable balance exist in the intricate inter-
play between walkoff, harmonic energy exchange, and non-
linear phase changes. In Fig. 8 we show the stable propaga- The work has been supported by the bilateral agreement
tion of such an excitation. The wave numbers &g JINICT/The Danish Research Academy under Grant No.
=-0.5 andk,=0.2, yieldingv;=0.96, v,=—0.40, and 1996-125-77. M.D.C. and V.V.K. also acknowledge patrtial
v3=0.59. The value of was chosen to be 0.8 in the initial financial support from FEDER and Program PRAXIS XXI
condition, which is reproduced by the simulation. The smallunder Grant No. PRAXIS/2/2.1/FIS/176/94.
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