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We show that with the quasi-phase-matching technique it is possible to fabricate stripes of nonlinearity that
trap and guide light like waveguides. We investigate an array of such stripes and find that when the stripes are
sufficiently narrow, the beam dynamics is governed by a quadratic nonlinear discrete equation. The proposed
structure therefore provides an experimental setting for exploring discrete effects in a controlled manner. In
particular, we show propagation of breathers that are eventually trapped by discreteness. When the stripes are
wide the beams evolve in a structure we terguasilattice which interpolates between a lattice system and a
continuous systen}S1063-651X99)51311-1

PACS numbeis): 42.65.Wi, 42.65.Ky, 42.65.Tg

Nonlinear wave-mixing in a homogeneous nonlinear me-might be more challenging. So far, there have been no at-
dium requires that the phase mismatch between the interadempts to fabricate such narrow gratings, so the feasibility is
ing waves be very small. Alternatively, the intrinsic phasean open question and only an experimental trial can give the
mismatch can be compensated for in an inhomogeneous manswer. In practice, it can be anticipated that inhomogene-
dium with a periodic grating. The latter method is known asities appear along the interfaces between grating stripes and
the quasi-phase-matchif@PM) technique, which in the last grating-free region§10].
few years has become widely employed in wave-mixing ex- Our aim is to make a construction withlatticelike na-
periments due to the remarkable progress made in domaindre, in which each grating stripe plays the role osige in
inversion techniques, notably for samples made of lithiumthe lattice. If the lattice features prevail, the beam evolution
niobate[1]. should essentially be governed by a discrete system, in close

The potential of QPM extends far beyond the efficientanalogy to the beam evolution in an array of weakly coupled
phase matching of a single wave-mixing process which takeguadratic nonlinear waveguidgkd]. In the present study we
place in a sample with a regular, periodic grating. More comj|| restrict ourselves to the simplest possible grating design
plicated grating patterns can be fabricated, which results iyith discrete features. However, it should be remarked that
media with unusual properties that can thus be engineered i 4re involved layouts can be envisaged with possible unique
a cc_)ntrollable fashion. This has b_een exp_lored In a variety o roperties. For example, different lattices that each qua-
devices that are based on creative grating designs. For e iphase match a particular wavelength may be interleaved to

ample, temporal pulse compressi#, spatial beam com- form a com . . .
. i ' . plex multi-wavelength discrete system. Inclusion
pression with soliton¢3], broadband phase matching] %f chirped, tilted, or dislocated gratind$] in the region

and even a quasiperiodic spectrum of wavelength conversio . . .
. P P g etween the lattice sites could provide novel classes of non-

[5] has been demonstrated to occur in samples where t . ) . .
Inear couplings between lattice sites. Furthermore, a lattice

grating periodicity was broken in the longitudinal direction. ™ ) , . )
Samples with grating patterns in titeansversedirection with competing nonlinearities may be constructed by exploit-

have been used for beam tailorifi§], a wavelength con- ing the Kerr-like effects, which are inherent in the QPM

verter with broad tuning range’], and beam steering with t€chnique{12]. _ _ o _
solitons[8]. In order to substantiate the investigation we consider a

In this Rapid Communication we explore the possibility fundamental field at wavelengty and its second harmonic
of producing transversely patterned gratings and consider an

array of narrow grating stripes, as indicated in Fig. 1. Each
stripe is composed of gratings with a narrow width, in the xlz I I I I I I I I I I I I I I I I
sense that the gratings are confined in the transverse direc- E, Ey,

__A__
tion to a width which is less than the beam width. Experi- b I I I I I I I I I I I I I I I I

mental setups usually require tightly focused beams with

h
widths of 10~20 um. Grating stripes with these widths can
be implemented with the current state of the art lithographic I I I I I I I I I I I I I I I I

QPM technology[6,9], but even smaller grating widths FIG. 1. Schematic top view of grating design of QPM structure.
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at wavelength\ , propagating in the structure, which is sche- As b—0 the stripes degenerate into a lattice of nonlinear
matically shown in Fig. 1. In the slowly varying envelope impurities embedded in a linear medium. A fundamental pre-
approximation the dynamics of the envelope amplitudes ofequisite for the proper functioning of the lattice is that light
the fundamentala;, and the second harmonia,, are gov- is actually trapped at each individual site, similarly to the
erned by the equations way light is trapped in modes of a linear waveguide. The
present structure does not provide a refractive index change,
da; 1%, igz_ so light should be trapped entirely by the presence of a grat-
=7 T2 2 — td(zx)ajaze” 0, ing stripe, which defines a narrow peak where nonlinear ef-
fects are present. It can be anticipated that at least with very
@) narrow gratings such trapping will occur, since it has been
i@ E&ﬂj(z x)a2elF7=0, shown that various types of the so-calledpurity modes
iz 4 gx? ! exist in quadratic nonlinear media with a single, isolated im-
purity embedded13,14]. For the present structure, the rel-
where B=Akk;»? with Ak=2k;—k,, is the phase mis- evant impurity modes are found by looking for the bound
match,k; andk, are the wave number at each wavelength,states of Eqs(4) in the limit b—0, h—o«. Since this is a
and » is a normalization parameter, which we set equal tdinear medium with a single, isolated nonlinear impurity, the
the beam width. The relationships between normalized)( modes are readily found analytically. This suggests that with
and physical Z,X) distances are given by=X/n for the  narrow gratings, light may indeed be trapped at each site.
transverse direction ang=Z/(2l4) for the longitudinal di- However, we should keep in mind that the limit of vanishing
rection, wherd 4 is the diffraction length of the fundamental b makes the whole analysis invalid. The gratings will in that
beam| 4= 7%k,/2. In lithium niobate with\;~1 um and case disappear and the transformatgn- A; will be singu-
7n~15 um one findsl4~1 mm. The grating function from lar. Still, with b—0, Eqgs.(4) will be relevant as a model of

Fig. 1 is described by(z,x), photonic crystal§14,16. In the general case with+#0 we
have to resort to numerical calculations. These demonstrate
d(z,x)=z g(X_Xn)E d, i m? @) that modes which are exponentially localized in the linear

regions exist with any site width. We therefore expect that
the beam dynamics also in that case will possess discrete
with x,=nh, whereh is the distance between adjacent grat-features.
ings. The grating wave number= /A, where A is the In order to proceed with the analysis, we follow a path
domain length, whiled,,, are the Fourier coefficients for the similar to a treatment of impurities in the nonlinear Sehro
grating, d,,=0 andd,,,.1=—2i/(2m+1). The comblike dinger equatiof17]: We solve Eqs(4) in each linear layer
transverse grating structure is composed of a sequence ahd express the solution in terms of the amplitudes at the

“hat functions,” g(x—X,), which are each centered ap, nonlinear sites. In the limib— 0, the solutions in the linear
layers can be connected by integration across the nonlinear
9(x) = u(x—b/2) = u(x+b/2), (3 sites yielding that the evolution of these site amplitudes is

i b t of led ordi diff tial tions,
whereu(x) is Heaviside’s function and is the width of the given by a set of coupled ordinary difierential equations

gratings. .dB, 1 1,

In the longitudinal direction, the coherence length Yz T R(B“ﬁB”—l_ZB”H nBaDn=0,
| .= /| Ak|, is much shorter than any other scale. Therefore, ©6)
we may average Eqgl) over a period ofl .. We assume .dD, ~ 1,
first order QPM, i.e.A~I., and introduceA;=bw/2(a,), Yz R(D”+1+D“—1_2Dn)_BD“+ HBHZO'
A,=—ibm/2(a,)exp(—iBz) for the scaled, averaged enve-
lopes. In the lowest order approximation we fijri®,15 B, andD, are the amplitudes on theth site of the funda-

mental and second harmonic, respectively. In deriving Egs.

AL 1 6%A . (6) we assumed the following ordering f&, :
IE‘FZﬁT Eg(x Xn)ATA,=0, J
(4) E’\’e Bn"\’f, Bn+1+ anl_ZBn"‘"eBn, (7)
A, 1 &ZAZ -~
| = T2 2 PRty E 9(x—Xn) A= and a similar ordering fob,. The parametee indicates the

relative magnitude of the terms. See Héf7] for an explicit

~ _ . _ . derivation. The ordering suggests that the discrete m@&lel
where 8=« is the residual Bhase2m|smaztch. Equationsyij| not be accurate with large beam amplitudes. Also, the
(4) conserve both the poweér=[”_[A|*+[A,|“dx and the  gerivation is based on the limit—0, so narrow gratings are

Hamiltonian, necessary for the accuracy of E@). However, we have
e (laAl2 11042 qbserved from numerical s?mulatiqns that when these condi-

H= %J ( e el Il B 1A,)2 tions are not fulfilled, meaning thatis nonvanishing or even
—o| | OX 4] ox large, or the beam amplitudes are large, the beam dynamics

still bears the characteristic features of discreteness. But in
-> g(x— %) (A2A% +A*2A,) | dx. (5) that case itis not captured by the simple E@s. We expect _
n that asb is increased from zero, the QPM structure will
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B=400, andh=1.

The modes shown in Fig. 2 are called odd modes, since they
have their peak amplitude centered on a site, thus yielding a
profile with an odd number of peaks. The so-called even

modes, with an even number of peaks which are centered in

FIG. 2. Second harmonic part of stationary localized moded?€tween two sites, can also be found. The PN potential is the
(solid lineg with B=1 andh=1. Superimposed are profiles of con- difference in Hamiltonian energid between the even and
tinuous solitons wittb=h (dotted line and discrete solitons with  the odd mode with a fixed powérThe idea behind using the
b=0 (dashed lines The shaded areas indicate the regions wherd®N potential as a measure of mobility relies on the assump-
g(x)=1, i.e., the nonlinear region§a) b=0.3, q=0.25, (b)) b tion that when the odd mode moves from one site to the next
=0.7,9=0.25, (c) b=0.2, g=1.5, and(d) b=0.7, q=1.5. it transforms into an even mode in the process. The differ-
ence in Hamiltonian energy is thus a potential barrier that
must be overcome in the process of translaf@@i. It seems
continuous mediumk(=h). Thus, we refer to the structure plausible that an odd mode actually does not follow a path
as a quasilattice. exactly via an even mode when moving from site to site, but

With the purpose of exposing the interpolating characteiprobably the PN potential can still give a qualitative sugges-
of the quasilattice, we have numerically found the localizedtion for the mobility. In Fig. 3a) we plot the PN barrier
stationary modes of the structure, i.e., we have insefted versusb for the modes in the quasilattice wifp=3, h=1,
=A(x)exp(qz and A,=B(x)exp(2g2 in Egs. (4) and and three values df
solved the resulting boundary value problem. We expect that Figure 3 also includes a measure of the actual mobility of
at least for some parameter values such stationary solutiolke modes in the quasilattice. We have made a careful nu-
will exist and be stable, since in the two limis=0 andb merical study solving Eqg1) with a variety of initial con-
=h they will tend to the familiar discretgl1] and continu-  ditions and parameter values. For the numerical simulations
ous solitong 18], respectively. In Fig. 2 we plot the ampli- we chose parameter values that are relevant for tightly fo-
tude B(x) of the numerically found stationary modes with cused beams in a sample made of lithium niobate, yielding
h=1, B=1 and two different values df andg. The corre- B~400. We measure the mobility by launching a mode with
sponding profiles of the solitons in the limitls=0 andb  an initial phase tilty: a;—a; exp(jvx), which will induce a
=h are superimposed on the plots as dashed and dottex¢locity in the mode, forcing it to move across the lattice.
lines, respectively. It should be clear that with smalthe  The results of a series of such numerical experiments are
stationary modes resemble the discrete soliton, while withndicated in Fig. &). The imposed initial velocity isv
largeb they resemble the continuous solitons. Also, we note=0.5 and the initial position igo=—5. We plot the output
that with large amplitudesg(large a relatively small value position in x after the mode has propagated a distahce
of b is required in order to obtain a good resemblance to the=30 in z. Comparing the PN barrier and the actual mobility
discrete solitons.

Although the appearance of the profiles of the stationary 12
modes indicates in a neat way how the quasilattice interpo-_ 1
lates between a discrete lattice and the continuum, it does ncg, g
provide a complete characterization of the quasilattice. TOg ¢
this end, it will be necessary also to investigate tiebility -‘304
of the localized modes. It is well known that discrete solitons 3
lose energy if they are forced to move across the lattice, anc
that their mobility decreases as their power content is in- %%
creased. In contrast, continuous solitons are in a system with
translational symmetry and can move freely with any veloc- FIG. 4. Output aiz=30. Stemplot(bullets on line¥ are results
ity (angle. For a review of the properties of moving breath- from discrete Eqs(6) and lines are from Eqgq1) with b=0.25
ers in the context of optics see, e.g., H40]. As a qualita-  (solid lines and b=0.5 (dashed lines f=1, B=400, andh=1.
tive measure of the mobility of modes in the quasilattice welnput position and velocity isxo=—10 andv=0.5, respectively.
calculate the Peierls-Nabar(®N) potential of the modes. (& Fundamental an¢b) second harmonic.

interpolate between a fully discrete systeim=(0) and a

o

o
for)

second harmonic
o o
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determined from numerical simulations, the qualitativemoves in agreement with the translational symmetry of a
agreement is visible. They both reveal that localized modesontinuous system, since the mode has not been slowed
in the quasilattice interpolate between the tendency to béown. Still, features reminiscent of discreteness are visible in
trapped in the discrete limit and the free translation in thethe appearance of the profiles of the freely moving mode.
continuous limit. In summary, we have investigated engineered quasi-
Finally, we give an example where the simple discretephase-matched samples with transverse comb patterns and
system(6) predicts correctly the behavior of the beam dy-found that beam evolution in these samples possesses the
namics in the original systerl). A mode with an initial  characteristic properties of a discrete system. By means of
phase tiltv=0.5 is launched with an initial positioRo= " jyyestigation of the breather profiles and breather mobility,
—10, and the output position at=30 is shown in Fig. 4.\ s have shown that the samples interpolate between fully
The results from the discrete systd), which are marked iqerete systems and continuous systems, the tuning param-

m;h dt')suc”reettse,nsezz\l\:/alzza'tsth?)sr?%?wic;](:;e%?es:g\gel?s C:S(‘)’;’: b%ter being the widtlp of each grating line. The quasilattices
' 'S POstl : u make it possible to devise discrete quadratic lattices with

numerical S|mL_JIat|ons of E_qsl_) W'Fh b=0.25 show_that the properties that can be engineered to meet specific needs.
mode moves in the quasilattice in agreement with &,

indicating that the quasilattice is effectively discrete. The We are most grateful to M. M. Fejer for important discus-
results for the simulations with=0.5 show that the mode sions and remarks.
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