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PHYSICAL REVIEW E, VOLUME 64, 066614
Collapse arresting in an inhomogeneous two-dimensional nonlinear Schdinger model

Jens Schjdt-Eriksen* Yu. B. Gaididei and P. L. Christiansén
Informatics and Mathematical Modelling, Technical University of Denmark, DK-2800 Lyngby, Denmark
(Received 14 November 2000; revised manuscript received 12 February 2001; published 26 November 2001

Collapse of (2+1)-dimensional beams in the inhomogeneous two-dimensional cubic nonlinead®Bgaro
equation is analyzed numerically and analytically. It is shown that in the vicinity of a naattractive
inhomogeneity, the collapse of beams that in a homogeneous medium would collapse may be arrested under
certain circumstances.

DOI: 10.1103/PhysReVvE.64.066614 PACS nunierd2.65.Jx, 05.45-a

I. INTRODUCTION the potential and the excitation are of comparable sizEG]n
we used the one-dimensiondlD) quintic NLSE to model
In the framework of the nonlinear Schinger equation the propagation of 1D “beams” in the presence of a narrow
(NLSE) or alternatively denoted the Gross-Pitaevskii equa-attractive potential. Similar to the cubic NLSE, the quintic
tion in Bose-Einstein condensati¢BEC), the interaction of  NLS model has a threshold for collapse. We launched a su-
excitations with potentials has attracted significant interespercritical beam into the model and varied the initial distance
during recent years. Due to the universality of the NLSE inR ) petween beam and potential. For large valueRgfthe
the context of weakly nonlinear dispersive media, these funmteraction of beam and potential was found to be neglegible
damental investigations apply to such diverse phenonema a8,y the heam collapsed as expected. Collapse was also ob-
light beams trapped in waveguidgs 2], molecular excita-  geryeq for small initial distances; here, the effect of the po-

tions in the vicinity of mhom.ogeneme$3],. and _Bos_e- tential was to shorten the propagation distance needed for a
Einstein condensatiof,5]. In this paper, the investigations -
collapse to occur compared to the homogeneous [04&8

are based on the following variant of the NLSE: -
=0]. However, it was observed that the collapse could be
i 9,0+ V2 gt | ] 2+ V() =0, (1)  arrested ifRq lay in a certain interval. In this case, the beam
acceleration induced by the potential was strong enough to
separate the beam into radiation and a noncollapsing core
oscillating in the potential.
In this paper, we extend the previous 1D investigations to
the physically more relevant cubic NLSE and obtain qualita-
i ) ) . i ) ) tively similar results for rectilinear motion of the 2D beam in
time variable in BEGandr = (x,yg is the spatial coordinate. e transverse plane. However, we also present new manifes-
The nonlinear term in Eq1), ||y, characterizes the non- ations of the collapse arresting due to the two degrees of
linear properties of the system; light intensity-dependent regreedom in the transverse plane of the cubic NLSE. In par-
fractive index in optics, the interaction between BoSe-jcylar, we demonstrate how the collapse of a supercritical
particles in BEC. Finally, the potentiaV(r), e.g., represents beam may also be arrested for circular motion of the beam
a space-dependent linear refractive index of an optical megenter around the potential.
dium, a confining applied field in BEC, or a material inho-  The paper is organized as follows. In Sec. Il, we introduce
mogeneity in the theory of trapped molecular excitations. Inthe model and describe its basic properties in the homoge-
the present paper, we restrict ourselves to consider a reakous case before discussing the numerical results obtained
attractive potential that decays monotonically as a functionwhen a potential is included in the model. In Sec. Ill, we
of the distance from the centee=0 of ther plane. In physi- address the problem analytically. Using a certain coordinate
cal systems where an excitation is located in the vicinity of airansformation enables us to calculate energy radiation from
smooth bell-shaped potential whose width is much largethe beam using methods developed to characterize the tun-
than the width of the excitation, one may approximate theneling of probability density in linear quantum-mechanical
potential by a parabola. Many important results relating tosystems. Finally, Sec. IV summarizes our results.
the dynamics of excitations in the vicinity of parabolic po-
tentials have been obtained. For a short summary and refer-
ences to these works, see our previous paperHowever, Il. MODEL AND NUMERICAL RESULTS
the parabolic approximation breaks down when the widths of

where = zp(F,z) is the complex amplitude of the quasimo-
nochromatic wave trairithe condensate wave function in
BEC), VZ =45+ d; is the two-dimensional Laplace operator
accounting for diffraction, z is the propagation varialilee

To model the propagation of a (21)-dimensional exci-
tation, ¥(x,y,z), which we in the following shall refer to as
*Email address: jse@imm.dtu.dk a beam, we use the NLSE as given by Ef) where ¢

TPermanent address: Bogolyubov Insitute for Theoretical Physics= #(r,2z), r=(X,y) is the transverse coordinat&,? = 92
252 143 Kiev, Ukraine; email address: yg@imm.dtu.dk +(?)2, is the Laplacian governing diffraction in the transverse
*Email address: plc@imm.dtu.dk plane, andz measures propagation length. In the homoge-
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neous CaSEV(F):O], Eq. (1) has stationary solutions of the whered is the Heaviside step function ardand 2a are the

form height and diameter of the potential, respectively. To monitor
how the center of the beam evolves from its initial position
P(x,y,2)=V(x,y,A)e"?, (2) R we use the centroid
. . e _ R 1 o o
){/iv:r?re the real shape functioki(x,y,A) satisfies the equa R(z)= NJ, L F(x,y,2)|2dx dy. (8)
PU(x,y,A)  PT(x,y,A) Using Egs.(1) and (8), the well-known expression for the
’2 : '2 —+W3(x,y,A) = AW(X,y,A) second derivative of the centroid appears
X ay
- 2 (= (=
-0, @ Ruo=y| [ vivelucyalaxay. @)

From Eq.(3), the well-known family of self-similar station-
ary solutiong 7]

- AA? [ (=
A A A Rzz(z:O):—ZJ J dx dy
V(x,y,A)= A—O‘Ifo A—Ox, A—Oy,AO , (4) NwW2J —oJ —o

Insertion of Eq.(6) into Eq.(9) yields

. F—Ro|?
appears, once one solutiof, with frequencyA,, has been X { (rj— RO)V(x,y)exp( - | 20| }
found. It then follows that the ma$s of the stationary solu- w
tions (10
= (= herer h into th e
N(A)=f f W (x.y,A)|2dx dy ®) wherer a_s been decomposed into t e_ two Sompone‘pts
R andr, , which are parallel and perpendicularRg, respec-

tively. Noting that the potentiaV(x,y) holds the largest val-
is independent ofA and has a value, which by means of ues in the half plane whqu} points in the opposite direction

numerical methods, may be evaluatedN\) =N.=11.69.  of R;, R,(z=0) is seen to point towards the center of the
Acpordlng to the Vakhnqv—KoIokqlov crlte.r!on[8], the potential,r =0, for the Gaussian initial conditions employed
A-independent norm implies marginal stability of the sta-p ..o Aq'in our previous papE8], we aim to illustrate how

tionary solutions; i.e.,. if a s.tatipnary solution is perFu_rbedthe beam may be separated into radiation and a noncollaps-
such thatN>N,, a singularity in|¢| appears after finite . ore due to the attraction towards the interior of the
propagation length. On the other hanfdcannot remain 10-  ,qtential. To meet this end, we divide the numerical calcula-
calized ifN<N and ultimately disperses completely. tions into the following two groups that give a broad repre-
We restrict ourselves to initial conditions of the form  gentation of the possible scenarios of beam/potential interac-
tion, without exhausting all types of initial configurations

|F—ﬁ0|2_i5 -8l © implied by Eq.(6):
(T—Ry) |,

P(x,y,z=0)=A exp( -
2w (1) Rectilinear motion: the beam is initially placed at non-
zero distance |R,|>0) from the center of the potential
=0 with zero velocity [R,(z=0)=0] in the transverse
ane.

Whereﬁo is the center of the beam at 0 andb controls the
initial “velocity” of the center. When the mashl= 7wA%w?

approximates the ground-state maks- 11.69, the Gaussian ™ 5) ghjtal motion: the beam is initially placed at nonzero
initial conditions approximate a member of the self-similar

solution family in Eq.(4) fairly well. This is indeed the case distance [Ro| >0) from the center of the potentiai=0 with

for the valuesA=2,w=0.975 (N=11.95), which are used the velocity vectoR,(z=0) being perpendicular t8,.
in all numerical calculations. In Appendix A, we use a

Crank-Nicholson finite-difference scheme with an adaptive, SIQIJI(?(IJ-ZC[())’PS:%O?esse?:ll)(l)g?rl:;g ut|?1 ti(t:h(? a[fgrs\}vhg:ggg thaeje
integration step on a nonuniform grid to determine the propa-p q ’

gation distancez, needed for a blow up to occur in the ho- second group fully exploits the two degress of freedom in the

- ) transverse plane. Figure 1 shows the result of a numerical
mogeneous cagé/(r) =0]. For the values oA andw listed  c5)cylation belonging to the first category. A beam character-
above,z; is found to be 5.45.

o _ ized byA=2, w=0.975,b=0, and|R,| =0.75 is launched
_ For the potentlay(r) we use a smoothed version of the jhig 5 potential withe anda given by 1 and 1.25, respec-
circular step potential tively. In Fig. 1(a), the evolution of the/=0 cross section of
R ) [4], |¥(x,y=0,2)|, is plotted. We observe how the beam
V(r)=ef(a—|r|), (7) initially focuses as it is accelerated towards the center of the
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lw(x,0,z)|

(b):z=0. z=24

‘

7-6 2-30 FIG. 1. The following initial conditions for
are used: #(X,y,z=0)=Aexp(— |r — Ry|%/2w?
—ib-(r—Ry)), where A=2, w=0.975, b=0
and |Ro|=0.75. The half diametem and the
heighte of the potential are given by 1.25 and 1,
respectively. In(a), the propagation of thg=0
cross section ofiy|, | ¢ (x,y=0,2)|, is plotted for
dimensionless units df4|, z, andx. In (b), eight
contour plots depict the propagation ¢f The
following contour levels are used:|y|
=0.4,-08,1.1,15,1.9,2.3,2.7,3.0. The poten-
tial is indicated by a dashed circle and .

(a) z=12 2=36

potentialr =0. However, the beam amplitude ceases to in-the beam amplitude pas§ are observed. Finally, Fig. 4 de-
crease at some point and instead undergoes moderate osgilets the result of a calculation witfiRy|=5.0. In this case,
lations. In Fig. 1b), the propagation of} is shown in con- the overlap between potential and beam is very little and
tour plots for different values ot. Eight different contour accordingly, the beam undergoes critical self-focusing as in
levels are used to render the beam, and a dashed circle indre homogeneous case.

cates the potential. Few visible contour levels thus corre- When performing numerical calculations with orbital mo-
spond to low-beam amplitudes whereas more levels are retion, we borrow concepts from celestial mechanics. For a
dered for higher amplitudes. From the contour plots, it isplanet moving in a circular orbit, the magnitude of the accel-

evident how the beam even at 42, almost eight timeg, erationa,,, is related to the radius of the orti®,,, and the
shows no signs of approaching a collapse. Moreover, wenagnitude of the velocity ,,, according to
observe how the beam profile remains almost circular

through the oscillations in amplitude and width. In order to vﬁrb

gain insight into how the beam propagation changes as func- aorb:m' (11)
tion of the initial position of the centroiéo, we fix A, w, b,

e, anda at the values listed above and vy (Figs. 2, 3, 4. In the present context of an orbiting beam, Eil) translates

For the numerical calculation shown in Fig. 2, whéRy| Into

=0.5, we observe how the beam amplitude increases from 2 |I§ (2= O)|2
to approximately 15 in roughly 1.5 propagation units. Within IR,(z=0)|= ———"—.
the validity of the employed split-step integration scheme, |Ro|

this is indicative of a blow up, and no stabilized propagation

is thus observed fdiRo|=0.5. In Fig. 3, the beam is initially For fixed values ofA, w, e and a Eq. (9) gives

>

" 5 _ _ - o |R,{z=0)| as a function oflR,|. As R,(z=0)=—2b for
=(1. | Fig. 1 I | 2 ; ) 0 Z )
positioned aR,=(1.5,0) and similar to Fig. 1 oscillations in the initial condtions in Eq(6), Eq. (12) then determines the

(12

lwix,0,2)|
lw(x,0,2)|

FIG. 2. Same as Fig.(4) with |R,|=0.5. FIG. 3. Same as Fig.(4) with |Ry|=1.25.
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the centroid acceleration is in the present case almost solely

due to a change in the direction of the centroid veé(gxrln
Fig. 6, we change the initial conditions slightly in order to

investigate how the beam propagation dependsﬁoﬂ'he
relation Eq.(12) is not used in this case, and instead, the

magnitude of theb vector is increased from 0.562 to 0.7,
while all other parameters are as listed above in the context
of Fig. 5. As is visible from the first four subplots in Fig. 6,
the beam profile is first distorted severely, followed by a
FIG. 4. Same as Fig.(4) with |R,|=5.0. separation process where the beam is divided into a core part
trapped at the center of the potential and radiation escaping
. . . ) . from the potential. This is evident a&9 andz=10.5 where
b vector required for a circular orbit as a function of the {he orpitting motion has stopped and the beam and potential
other initial parameters. In order to investigate whether susgenters approximately coincide. A distorted beam profile is

tained circular beam motion is possible, we perform a serieglISO observed if we again use Eg2) to calculateh from the

of numerical calculations for varying initial parameters and S :
. . L . : other initial parameters whose values are now givenAby
different potential characteristics. In Fig. 5, eight contour

plots depict 4| as a function o for initial parameters given t:hz,' V\'It': I0.975t, |',_‘;0| =2£0. Th%increaset irglthe g‘_?g”iwdi,‘)f
by A=2. W=0.975, |Ro| = 1.5, andb=(0,—0.562). These e initial centroid vector leads to unstable orbitting motion

initial parameters obey the relation E42) above, and we with a clear separation of the beam into a core and radiation
observe how the beam orbits one round framo ’to 7—6 (not shown. Finally, a calculation is performed with the

with a fairly constant shape—contour levels appear roughl same initial parameters as in Figh) apart from a wider

as circles. However, after=6, the beam profile starts get- Bbotential. According to E9), Eq.(lZ)»hoIds fora= 1'251613
ting somewhat distorted and the beam center moves from th¥ell as a=2.1 if A=2, w=0.975, b=(0,—0.562), |Ry|
boundary of the potential towards the interior. As in Figs. 1= 1-5, ande=1. Results are shown in Fig. 7 where we note
and 3, we observe how the beam propagates without aFp__ow_(_)rbmng motion on the inside of the wide p(_)tentlal is
proaching a collapse. However, in contrast to the scenario cfignificantly more stable compared to propagation on the
rectilinear motion, the stabilization is not caused by a rapidPUtside of the narrow potential shown in Fig. 1. The calcu-
change in the magnitude of the centroid. On the other hand@tion is continued untiz=45 (almost 4.5 times the propa-

lw(x,0,2)|

z=0
z=0

©
@ |

N
[}
pary
[&)]
N
Il
~
(6]

®
©

©

z=4.5

z=4.5 z=10.5

@)
©
€

] FIG. 6. Same as Fig.() with b=(0,—0.7), |R,|=1.5, and
FIG. 5. Same as Fig.(t) with b=(0,—0.562),|Ro|=1.5, and  contour levels given by |#/=0.2,0.4,0.6,0.9,1.1,1.3, 1.5,
contour levels given byy|=0.3,0.7,1.0, 1.7, 2.1, 2.4, 2.8. 1.7,1.9,2.2
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z=0 z=12 z=24 z=36 paper where we investigated collapse arresting in a one-
dimensional inhomogeneous quintic nonlinear Sdhrger
gy ©) TN 7T model[6]. First, we introduce the transformation to the non-
" @ \ X ' . " @ inertial frame of reference in which the centroid of the beam

is at rest. Thus,

z=3 z2=15 z=27 z=39 - . T
W(r,2)=do(p,z)expg ik(z)r+i | ko(z')dz'|, (13
0
©) ~ L7 TN -7 ®) ~
| I N t | \ e e ) ) )
s S N ) wherep=r —R(2) is the transversal coordinate in the frame

of reference, anﬁ(z) =(1/2)R is the momentum canonically
2=6 z=18 2=30 2=42 conjugated to the centroid coordingi@verdot denotes the
derivatived/dz). In the frame of reference E@l) takes the

;TN PR \\ TN form
\

l©—/, |\_ l\\-// l // o -
| §+V2b+|4°h+VIp+R(D)]¢— 5Rp$=0. (14)
z=9 z=21 z=33 z=45
. ~ . . The centroid coordinaté(z) satisfies the equation
; @ |@ K Y N\ I/ 1- 1 (=
v v © . N Eﬁzﬁf ly(r,2)|2VV(r)dr. (15)

FIG. 7. Same as Fig.(t) with b=(0,—0.562), |Ry|=1.5, a The fourth term in the left-hand side of E(L4) describes
=21, and contour levels given byy=0.7,1.4,2.1,2.7, the_ mfluen(_:e of the linear potential in the_ frame of referen(_:e,
3.4,4.1,4.8,55. while the fifth term represents the inertial force work. It is

worth noticing that due to Eqg14) and (15), the function

gation length from Fig. band not even at this point does thee¢(F,z) should satisfy the following compatibility condition:

beam show signs of significant distortion. The beam profil

visible in the contour plots does in fact appear to be circle-

like through all stages of propagation. Moreover, the orbiting f

motion is accompanied by oscillations in the amplitude and

width of the beam that decrease in strength through the . . :

propagation. Us!ng the lens transformation, used in the homogeneous
In conclusion, we have for a variety of initial conditions €2S€ in[10]

demonstrated how an initially super-critical beam may be 1 [ 2

separated into radiation and a noncollapsing core. We rely on - a2 T

physical arguments in concluding that the core mass must be ¢(p.2)= L(2) <D(§,§)exp< Ea L(z) 4 ) (17

below the critical valuéN.= 11.69 required for self focusing;

from various theoretical studidsee, e.g.[9]), attractive po-  wherep= |5|, L(2) is the beam width, and independent vari-

tentials, as the one in E§7), are known to support station- gples are defined as

ary solutions having subcritical masses. As the noncollapsing

) r|é(r,z)|2dx=0. (16)

beams propagate with moderate oscillations in the width, _ 5 ) 1
amplitude, and centroid for large values ofsee, e.g., Fig. &= 7 {=—, (18
(1)], we expect the core to approximate one of the stationary (2) L(2)

solutions reasonably well, and thus to have a subcritical ) ) )
mass. Trying to calculate the core mass exactly would bd'e obtain from Eq(14) the equation for the shape function,
ambiguous, since the boundary between core and radiation B(¢,¢), in the form
not well defined. Indeed, positioning the boundary too far .
from the center of the potential would yield a super-critical i P+ VE(IH |®|2D—-D—L2U(§)DP=0, (19
value of the core mass.

In the following Sec. lll, where the numerically observed where
phenomena are subject to analytical treatment, the beam is
decomposed into radiation and a self-similar core with vary- - 1, ) .
ing mass. In doing so we obtain a qualitative explanation of U)=- Zg B(2)/L "+ eF(£,L,R), (20)
the collapse arresting.

and
I1l. ANALYTICAL RESULTS

i i inti S .
In order _to give an analytical description qf the process, eF(ELR)=~LRE-V(LE+R) 1)
we generalize the approach that was used in our previous 2

066614-5



SCHJMT-ERIKSEN, GAIDIDEI, AND CHRISTIANSEN PHYSICAL REVIEW E64 066614

with and
LL3=-B(2). (22) . v 1 9 .
) . - - L——F—FWIV(L,R). (27)
U (&) represents the influence of inertial forogkse cen-
trifugal potential —(1/4)8(z)é%/L?> and the potential Here,
(1/2)L R & of accelerated centroid motipand of the poten- NN
tial [~ V(LE+R)], not found in the homogeneous case, on v= SM < (28)
the beam dynamics. Wheln(z) is known, Eqgs.(15), (19)
and(20) descrlpe the beam evoluthn. . is the excess core mass above the critical,
Let us consider the beam evolution in the presence of the
linear potentiaM(F). Basically, one may distinguish two dif- .1 (= |F_ |§|
ferent types of inhomogeneities: broad inhomogeneities and V(L,R)= FJ V(r)w? —|dxdy (29

narrow ones. In the case of broad inhomogeneities, i.e., when

VAV(F) is an effective potential caused by the presence of the linear
L|—— <1, (23 potential V(r) whereW (&) is the so-called ground state or
V(r) Townes soliton that is the nodeless solution of the equation
the inhomogeneity potential(r) is a smooth function and d?¥ (&) 1dw(é) .
its Taylor expansion may be used. The case of parabolic a2 +E de +W2(§)-V(§)=0,
potentialV(r) was studied in Refg2,3]. It was shown that
the attractive parabolic potential stabilizes subcritical beams dw (&)
(N<N,) but facilitates the collapse of super-criticaN ( 4 =0,
>N.) beams. In the case when the characteristic length scale 4 £=0
of inhomogeneity is comparable with the width of the beam
P (¢)—0 for E—oo, (30)
L V,VEr) =1, (24) It is worth noting that the Townes soliton is the radially
V(r) symmetric solution to Eq(3).

. T ) ) The Townes soliton has a critical mass
the polynomial approximation is no longer valid. As in our

previous papef6], we assume that the inhomogeneity poten- =

tial (7) is weak (<1) and super criticality is small: the mass ZWJO Ve(E)EdE=N=117, (31)

of the beam only slightly exceeds the critical value, i.&\, (

~Ne)/N< 1_’ R ) i _and in the homogeneous ca[éé(F)zO] its HamiltonianH
The function¢(p,z) which describes the beam dynamics —q The quantity

in the noninertial frame of reference may be represented as

- 10 . S
. [¢s i 15l=L02) v=7 | 187w? ag~3.4 @
IZ = >
PP g0 it p> L),

is the second moment of the Townes soliton. Equatiz6)

where ¢ is the inner core functiong, is its outer partés  coincides with Eq.(15) if lﬂ(F,Z) in this equation is the
>1 is a constant that characterizes the size of the beam. TH®wnes soliton.

mass of the inner core of the bedm what follows we will Equationg26) and(27) describe the beam dynami(sib-
call this part of the beam mass “the core mass’ critical beams for beams far<0 and super-critical beams
for v>0) in the adiabatic approximation when the mass of
N :J |¢(; z)|2d§=f |®(g §)|2d§. the beam is assumed to be constant=Q) [18]. This ap-
S lpl<&l(2) ’ El<é&q ' proximation is too crude, however, and is not sufficient in the

(25) case under consideration because as it is seen from the re-

. - . ) _sults of numerical simulations, the beam evolution is accom-
Using the solvability condition for the asymptotic expansionpanied by a radiation.

of the self-similar shape functiom(£,¢) ([11-16,6) we We shall obtain an equation fdts(z) by considering the
obtain the following equations for the centrd{z) and the radiation rate for the core mass. For this purpose, it is con-
width L(z) motion: venient to rewrite Eqs(19) and (20) as the Schrdinger
equation
1 - -

066614-6
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. 1 1 - ..
Z/l(f):l—ZB§2+§L3R§—L2V(L§+R)—|<I>|2. (33) _exp{ _zqz_“

M
+sinrm))

The shape of the potentibd(é) for the case when the inho-

mogeneity potentiaV/(r) is a rectangular potential well is xarcsir( JE+1 ] ’
given by Eq.(7). The potential energy of inertial forces

[(1/4)B& and (1/2).°RE&] makes the functionU(&) un- | |4 s 9?1

bounded from below, and as a result, the motion of a particle y-=6(g*—1) 4 > erfl =

in this potential becomes infinite. We are interested in the 2(9°-1) 2qv|Al

solutions of Eq.(33) under the boundary condition that the 4
exp —

(37)

waves are outgoing at— . With this boundary condition, i( q—(q2— 1)arcsim{ L D
the problem(33) is no longer self adjointsee a very lucid \/ﬂ q°—1
discussion of this subject for a closely related problem in 39)
[17]). The eigenvalues may have a finite imaginary part that
gives the rate of radiation losses. and

In the case of the immobile beam placed in the center of

the well (7), the potential/ is radially symmetric and outgo- N L3||"§| 8
ing radiation waves are also radially symmetric. However, = WTGXD{ - _] when g=0. (39

3LIR|

the accelerated center of motion poten{i@1/2)L3I§i§] sig-

nificantly modifies the potential profile{(g), making the

profile asymmetric and facilitating the escape in the directiorﬁere’ erf) is the error functiori19,2(f and the notations

of the inertial forceR. IRIL3 2439
The evolution of the core ma$é,(z) is governed by the q=—, MU= —— (40
equation 2|8 V20°+3
q
are used.
NSZ—le- (34) The set of Eqs(26), (27), and (35) together with the
L? expressions
or in terms of the excess ma&zd) o L_3 27
TP
N
u=—L—72 va). (35) g
q= —=—I|VgrM, (41
Ne V|4l

The derivation of the expression for the radiation ratés

rather cumbersome and is given in Appendix B. Here wefor the centrifugal and inertial coefficients describes the

present only the final result. The raditation ratemay be beam dynamics beyond the adiabatic approximation. The ex-

represented as the sum act analytic expression for the Townes soliton is unknown.
Therefore, we use its Gaussian approximation in the form

y=0(B)y++60(=B)y-, (36)
. . N &
where the radition rates for positive centrifugal coefficient Vy(é)= S EXp — —— 1, (42
(v+) and negative centrifugal coefficienty() have the B 2B

form whereB?=0.8. Inserting Eq(42) into Eq. (29), we obtain

that in the case of the rectangular well inhomogeneity poten-

tial V(r) given by Eq.(7) and the Townes soliton given by
Eq. (42), the effective potential has the form

g [m(g®+1) (AP 1)

=——\/——eff
AN T (“ V2q

R a | . 5N.(a [5IR 512+ R2
Xexp{ 7 (q +1)arcco{ \/qz—+1) QH V(L,R)= 2LZJOrIo E)exp{—z 2 ]dr,
JB (43)
+
2(g?+1)(u+sinhu) whereR=|R| andl ,(x) is the modified Bessel functidi.9].
5 We solve numerically the set of Eq&6), (27), and (35)
v eXpl 2 +1] which for the effective potential(L,R) given by Eq.(43)
\/E take the form
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:_ 5ac (5aR 5a2+R?| R ) B
=- exp — 57— (=
L2 1 2L2 4 L2 |R| 50
40
v 9ae 5aR 5aR 30
=— —— lo -R1 20
L 213 212 212 10
0
5a’+R? 0O 2 4 6 8
xexp{ “1 2 ] , (45) z
X
b=— %(3.4+ v). (46) s
0.6
0.4
The parameters used are 0.2
0
v(0)=0.01, €=0.1, a=1, -0.2
: O3 6 8
L(0)=2, L(0)=0. (47) z
We study both types of centroid motion: rectilinear motion v
and orbital motion. 0.01
Rectilinear motionWe investigate the beam dynamics for 0.008
the following four initial conditions: 0.006
: 0.004
X(O):O, X(O)Zl, 25, 4, 5, 0002
: 0
Y(0)=0, Y(0)=0. 0 2 4 6 8

The results of the simulations are presented in Figs. 8—11. As
is seen for a given degree of super-criticalityand strength FIG. 8. The half diametes and the height of the potential are
of the inhomogeneity, the beam evolution depends on the given py 2 gnd 01 respectively. The foIIowing initial conditions
initial distance between the beam and the center of the inhdor X, X, Y, Y, L, L, andv are usedX(0)=1, X(0)=0, Y(0)
mogeneity potential. Beam collapses when its centroid is ei=0, Y(0)=0, L(0)=2, L(0)=0, andv(0)=0.01. In the upper
ther too close to the inhomogeneifX(0)=1] or too far  figure, the inverse width squar@=1/L? is shown as function of
away from it[ X(0)=5]. Collapse arresting and stabilizing in dimensionless units. In the middle figure, theomponentX of
of the excitation takes place fo¢(0)=2.5 while for X(0) the centroid is depicted, and finally, the lower figure showszhe
=4 the excitation disperses. These results are in qualitativéependence af in dimensionless units.
agreement with numerical studies presented in the previous ) o
section. It is also worth noting their close relation to the The results of our calculations are presented in Figs. 12—14.
results obtained in Ref6] for the one-dimensional quintic Like in t_he case of the rectilinear motion, the beam collapses
nonlinear Schidinger equation. whe_n it is either _too clos_e or tpo far away from t_hg center of
Orbital motion. Being interested in the case when the the inhomogeneity. But it survives when the radiation effects.
beam is orbiting around the center of inhomogeneity, it isre strong enough to get rid of an excess mass. In our case, it
convenient to introduce the polar centroid variablés: happ_ens when the center of beam is |r!|t|allﬂ0)=3._
=R(cosy,siny). In terms of these variables, E@4) takes I 'S worth stressing that the. r_ole of '.”?rF'a' forces in the
the form tunneling effects here IS"CI’UCIal. in the vicinity of inhomoge-
neity, the inertial forcesl’{? and B) are significant, the radia-
5ae [5alR]| 5 a’+|R|? tion rate increases, and therefore the mass of the beam de-
152 exXp — 7 T2 [ creases witlz (Ng= N+ Muv). Our results show also that the
centroid motion and variations of the width of the beam and
its mass are obviously correlated.

m2

R= = E [

RZy=m, (48
where the conserved quantityis the orbital momentum. In V. SUMMARY
our simulations of Eqs(45), (46), and (48) we usedm In this paper, we have studied the interaction of excita-
=0.1 and the following initial conditions tions and potentials in the framework of the 2D cubic non-
_ linear Scralinger equation. In particular, it has been shown
R(0)=0, R(0)=2, 3, 5. how the critical self focusing of an excitatidhean) whose
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z z
v v
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-0.04
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-0.06
0 50 100 150 200 0 50 100 150 200
z z
FIG. 9. Same as Fig. 8 witK(0)=2.5. FIG. 10. Same as Fig. 8 witk(0)=4.

mass is above the threshold for collapse, may be arrestg;s initial parameters. To meet this end, one must resolve to
when propagating in the vicinity of a narrow attractive po- nmerical calculations. Two main reasons for the lack of

tential. This phenomenon is clearly evident from a series Oauantitative agreement may be underlined: first, at leading

numerical experiments, divided into two groups characterizyqer it is assumed that the solution core is almost self simi-

ing the type of beam motion in the transverse plane perpeny; ¢jose to the Townes mode, i.e., the explicit variations of
dicular to the direction of propagation; rectilinear motion ye core versusz are disregarded. Second, the Townes mode
where the beam center is limited to motion on a straight lingg approached by a Gaussian ansatz. These two approxima-

through the center of the potential and orbital motion wherg;, s’ may contribute to discrepancies between numerics and
the beam center moves in circlelike orbits. For both types o nalytical predictions.

beam motion, numerical calculations showed that oscilla-
tions in beam amplitude, width, and center follow the arrest
of critical selffocusing. The origin of the observed phenom- ACKNOWLEDGMENTS
enon is ascribed to the acceleration of the beam center in-

duced by the potential, either the magnitude of the cente
(rectilinear motion or the direction(orbital motion. We em-
ployed methods from linear quantum mechanics to unde
stand the collapse arresting. Using two transformations, firs
a moving frame of reference centered at the beam center is

introduced and second, the lens transformation is used, en- APPENDIX A: NUMERICAL METHOD

ables us to calculate the radiation of “mass” from the beam.

In qualitative agreement with the numerically obtained re- To accurately determine the collapse disstanoee must
sults, the analytical appoach establishes a relation betweeise a numerical scheme that is capable of resolving the steep
the acceleration of the beam center and the collapse dynargradients and high amplitudes that arise in the beam profile
ics. Indeed, it is shown how “mass radiation” may bring the when z approachesg,. To meet this end, we integrate the
beam mass below the threshold for collapse when the beaftpmogeneous version of E),

is subject to strong acceleration in the potential. However,
whereas the analytical approach explains the observed phe-

J. B. Keller and Jens Juul Rasmussen are thanked for
Ir1elpful discussions. Yu.B.G. thanks MIDIT and the Depart-
fnent of Mathematical Modelling, Technical University of
Penmark for hospitality.

. el N . : Y Py Py
nomenon in clear intuitive terms, it is not suited for quanti- i— + — 4+ — +|¢|?y=0, (A1)
tative studies of how the beam propagation depends on vari- 9Z - ox?  gy?

066614-9



SCHJMT-ERIKSEN, GAIDIDEI, AND CHRISTIANSEN PHYSICAL REVIEW E64 066614
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FIG. 11. Same as Fig. 8 witi(0)=5. z

FIG. 12. The half diametea and the height of the potential
using a Crank-Nicholson scheme with adaptive integratiorare given by 2 and 0.1, respectively. The following initial condi-
step on a nonuniform grid. tions for R, R, L, L, andv are used:R(0)=2, R(0)=0, L(0)

In a nonuniform grid, the distance between adjacent grid-zzl [ (0)=0, andv(0)=0.01. In the upper figure, the inverse
points varies across the grid. The grid used here is built as jgth squaredd=1/L2 is shown as a function afin dimensionless
structure composed of three zones; the inner propagatiofhits. In the middle figure, the magnitudieof the centroid is de-

zone, the outer propagation zone, and the radiation zone. Theted, and finally, the lower figure shows théependence af in
inner propagation zon®l, is characterized by e[0,R[, dimensionless units.

the outer propagation zonbj,, by r e[R;,R5], and the ra-
diation zoneM by r € |R,,R], whereR;<R,<R. The dis- d(u,z)=y(G(u),z). (A3)
tance between neighboring gridpoints N, is denotedp;

and is constant acrodd . This is also true in the radiation
zoneM with p4 replaced byp. In the outer propagation zone

Insertion of Eqs(A2) and(A3) into Eq. (A1) yields

" 2
M5, which connectdVl; and M, the intergridpoint distance iﬁ+ 1 — G"(u) @ 1 ﬂ+|¢|2¢

changes smoothly from, atr =R, to p atr=R,. This way 9z |\ G(u)G'(u) G'(u)®/ du +G’(u)2 au?
of constructing the nonuniform grid is contrary to the ap-

proach where the distance between adjacent gridpoints is al- =0. (A4)
lowed to change discontinously across one or more Iocation§0|ving the standard cubic NLSE on the nonunifargrid is

in the grid. thus equivalent to solving an NLSE witlkdependent coef-

‘When numerically solving Eq(A1) on the nonuniform  fiients on the unifornu grid. For the transformation func-
grid, we transform the non-equidistantly positionedrid- tion, G(u), we use

points into a uniform grid, denoted thegrid. If the relation

betweenr andu is given by G(u)=au,ue[0U4],
u=F(r), (U=Up® Ay(u—-Uy)?®
G(u)=R;+a(u—U;)+a 30 10
r=G(u), (A2) ) .
N AG(u—Uy)
then — 12 )

066614-10
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FIG. 13. Same as Fig. 12 witR(0)=3.

UE[Ul,Uz],

G(u)=Ry+B(u—U,),ue[U,,U],

where

0 10 20 30 40
z

FIG. 14. Same as Fig. 12 witR(0)=5.

As self-focusing sets in, the part of the beam that lies in
the outer propagation zone &t 0 gradually moves towards
the inner propagation zone with the high density of grid-
points. Radiation, which in the process of self focusing is

R, separated from the high-intensity part of the be#me core,
UF;, is allowed to freely disperse in the outer propagation zone
and the radiation zone. Once the major part of the beam mass
U,=U;+A is located inM 1, the beam width has decreased significantly
v and the Crank-Nicholson integration scheme requires a small
(R,—Ry) integration step due to the high amplitudes and steep gradi-
u=u, z 1 , ents. To meet this end, the integration stepis allowed to
B adapt to the shape of the envelope function. |lyét, . at z
=z, be defined as
30(8-a)
=,
A |w|max=max{|¢|,re[O,R],z=zl}. (A7)
U=2(R2_ Rl), To first order in the integration step,, ¢ changes frone
atpB =z, to z=z,+A,, according to
-k 1oy &y
B p iz ¥ 2
Ay=i - &r+&r2+|¢| W _ A,. (A8)
From the above relations, it is evident how the structure of =

the grid is uniquely determined froR;, Ry, R, p;, andp,

once eithera or B has been chosen as an arbitrary positiveA s is everywhere in the domain required to obey the
number. relation

066614-11
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In order to limit the possibility for zero in the denominator,

the inequality Eq(A10) is strengthened by requiring

wherey is a small parameter specifying the allowed change

in . From Eq.(A7) and Eq.(A8), an upper bound fod, is _ Y| ] max
found Az=min > re[0,R]
1 W, P .
7| ‘/’|max oo o"l’ |¢|
A,=min re[0,R] 2=2,
19 zp (92 (A11)
S Sl g
2=2,
(A10) On the uniformu grid, Eq.(A11) reads
|
ma ,ue[0,U],z=z
A,=min ymax|¢|,ucl0,U. 2=z} uelo,U] (A12)
G"(u) d¢ 1 2¢ 3
T aau 2 2 +4l
G'(u)3du  G'(u)? su .,
8

Next, we apply the algoritm to a beam with initial conditions
given by
(w22 2

P(X,y,z=0)=Ae X FTyT72w) (A13)
whereA=2 andw=0.975. The NLSE, Eq(Al), is solved
on a grid characterized bR;=0.02, R,=2.09, R=20.87,
al B=1/160, andy=0.025. The Crank-Nicholson solver is
iterated untilz=5.45 where the amplitude at=0 is 159.7,
an eighty times increase of the initial amplitude. The nonuni
form grid is not capable of resolving the steep gradients in
beyond this propagation distance, and we thus approxima
the collapse distance, with the propagation distance
=5.45.

APPENDIX B: RADIATION RATE

In this appendix, we derive an equation for the radiation

rate for the core mass. We look for the solution of E3§) in
the form

D(E,0)=x(£)e %, (B1)

where the eigenvalué and the shape functiog are deter-
mined from the equation

—VIx+UE X=X,

UE)=UL(E)+U(E), (B2
U(E)=—|D|?, (B3)
N 1 .

Ug()=— 7 BE+TE (B4)

whereA=—1-6, F=(1/2)|5 L® is the inertial force. It is
seen that the potentiaJ[(E) consists of parts with strongly
different interaction rangesuc(é) is a short-range radially
symmetric potential of radiug, (which is the radius of the
ground-state Townes solitbanduf(é) describes the action
of the centrifugal forcd (1/4)B¢£?%], inertial force f£). We
omitted the inhomogeneity potentiE\LZV(L§+ ﬁ)] in the
potentialls( g) because due to its weakness and narrow char-
‘acter[see Eq(7)] it does not change significantly the height
nd width of the potential profile/(£). We are looking for
solutions of the eigenvalue problent®2)—(B4) under out-
going wave boundary condition. In this case, this problem is
not self adjoint and the eigenvaluasmay be complex. It
was shown i 21] (see alsd22]) that in the limit of small
&4, the equation for eigenvalues has the form

lim lim
E—HO n—+0

=0,

Jx[Go(é,t|0,O)e”‘0‘—Gf(é,t|0,0)e”‘t]e_’7tdt

(B5)

where Ay is an unperturbed eigenvalue in the short-range
potential(B3). In our case)y= —1 is the eigenfrequency of

the ground-state Townes solito@o(g?,ﬂf’,t’) is the Green
function of free motion. It satisfies the equation

It HVE|GolEtlE ) =ia(t—t)8(- &), (B6)
and in the two-dimensional case has the f¢&8]
a1 (£-&)
Go(&t|¢" 1) = 27T(t_t,)expl 2 t)] (B7)
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The Green functiorG(&,t|€',t') satisfies the equation

(9 £ z z -> -
iﬁ+V§_uf(§))Gf(§,t|§',t’)=i5(t—t’)5(g_§r)
(B8)

and describes the motion in the field of inertial for¢Bg).

The potential(B4) is quadratic. Therefore, the Green func-

tion may be calculated explicithf23] and in the two-
dimensional case, may be represented as follows:

V-8

| Er 41y — iS(é,t\é’,t’)
O o e TR ’
(B9
where
o V-8
AE )= —
St 2 sin(y—B(t—t"))
X (§2+§’2+%F(§+§’)+;F2)
X cogy/— B(t—t"))
—2(“’—1? *+*’)+F—2 i t—t')
§ - glErEDT 5]~ 550
(B10)
is the classical action
N N t
S(ét g’,t’)=J L(7)dr, (B11)
o

whereL=(1/4)§2—uf is the classical Lagrangian function.
Inserting Eqs(B7), (B9), and(B10) into Eq. (B5) we get

|n(¥) =27Tj:g(t)e”“ dt, (B12)
with
9(1)=G¢(0/0,0)— G,(0,t/0,0
1 (1_ J- Bt
CAmt\T sin/=B(t-t))
xexp{—i 2f? (\/__'Bt—tar'\/__ﬁt)])
pV-g\ 2 T2 ]
(B13)

The escape rate is defined as the imaginary part of the

eigenvalues. In the weak inertial and centrifugal forces limit
the escape rate is determined by the expression

'y=—27rlmj g(t)e 't dt. (B14)
0
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The escape process for positive and negafivis differ-
ent. One may therefore represent the ratas the sum

y=0(B)y++0(=B)y-, (B15)
wherey, (y_) is the escape rate in the case of positiee

gative centrifugal forceB. When >0 Eq. (B14) takes the
form

ke

Y+="7 +1(v,a), (B16)
» expli v(u— a tanhu
|(V,a)=|mfo p{’;(in“;u) Vw17
where
2f2+ﬁ r (B19)
v= , o= ——".
BVB 2+
When
0<B~f?<1, (B19)

the parameter>1. To evaluate the integrdB17), we use

the method of steepest descents. To this end, we first deform
the original integration patlC that runs from 0 toe along

the realu axis, to the contour in the complex,p) plane that
consists of six component€;; andCs, which are the quarter

of circles of the infinitesimally small radius, surrounding

the points (0,0) and (D7), respectivelyC, andC,, which

run along the imaginary axis fromie to i vy and from
i(m—uvg) toi(m7— €), respectively; the contouCs, which is
determined by the equation

sinh 2u
cofv=a —sinkf u, (B20)
2u
with
O=susug, vogSUV=T—Uy, (B21)

wherev,=arccos/a and the parametar, is determined by
the equationugtanh uy=«; and Cg, which runs parallel to
the realu axis from the point §,i ) to (,i 7). The contour

C; is the steepest-descent path. It was chosen in the form
(B20) to have Img—atanhz)=0, z=u+iv. The integral
under consideration may be represented as the sum

6
|(1/,oz)=§:1 (v, @),
i=

B expli v(z— atanhz)}
Ij(v,a)—lmfcj sinf(22) dz

It is easy to see that

(B22)

066614-13



SCHJMT-ERIKSEN, GAIDIDEI, AND CHRISTIANSEN

(

T if j=1,

4

0 if j=2 and 4,
li(v,a)= -

Zerm if j=5,

4° "

\|(V,a)87V7T if j=6.

Thus, from Eq.(B16), we get

R L B23
y+_1_e_vw Ee + 3(V!a) . ( )

The integral on the steepest-descent pajitv,a) may be
represented as the sum

v [ ]2

du
sinh2ucos 2 — Ecosh A1sin2v

sint? 2u+sink 2v e " dv
=14(v,a)+1%(v,a), (B24)
where
P(v)=v—a8in—zv, (B25)
cos & +cosh

and the dependencgv) is given by Eq(B20). The function

(B25) is monotonic in both intervals of integration. There-

fore, one may evaluate the integral§v, @) andl5(v,«) for
v>1 by using the Laplace methadee, e.g.[24]). In the
leading approximatiorineglecting the small terms™") we
get

yi=l5(v,a)+15(v,a), (B26)

where

|é( V,CE): Z77_1/2a—1/4(1_ (1)_3/41/_1/2

X erf( 120~ l/4( 1-a) 1’4u0)

X exp{ — v(arccos/a— Va(1—a))},

(B27)
IN 1
3= B sinh 2ug) v
1 1 2ug
Xl 1l—exp —v| 1+ sinh 2,
xarcsir\/Z])expl’ - g] (B298)

where en‘6<)=(2/\/;)f’(§e‘Zz dzis the error functiorj19].
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In the limit of vanishing inertial forcd,
yv—2 ﬂ73/2’

(B29)

a—0,

and

1 -
l3=1%= Ee*“f’vﬂ). (B30)

Thus, the escaping rate is controlled by the centrifugal force
B and its form
y,=e (7P (B31)

is the same as in the case of the homogeneous nonlinear
Schralinger equatio13—16. When the centrifugal forcg
is small

v—2f2p32 (B32)

£ 4 |" ﬁ3/2 7T|F|2
—= exp — = ([, ~—=—exp — ,

T TR
(B

33

a—1,

and

!

|3:

and the escaping ratéB23) is mainly determined by the

inertial forcef
| f| 4
——expl — —1.
32 3| f|

Let us consider now the case of negative centrifugal force
B. It is worth noticing that in contrast to the previous case

when the potentiaM(E) was unbounded from below, the
hermicity of the HamiltoniariB2) could be violated by using
as a boundary condition fg€|— o only outgoing waves, in

the case of3<0, the functioru(é) represents an asymmet-
ric double-well potential. For this case, the concept of the
escape rate as an imaginary part of the energy of the particle
is obviously not correct. A particle located in the well created
by the potentialB3) tunnels to the parabolic we{B4) and
will return back to the first well in a finite-time interval. This
back-and-forth motion causes the energy shift but not the
escape rate.

In the case under consideration, when the parabolic well
is almost flat(super criticality is smajl and the potential

Y= (B34)

barrier that separates the wells is braartial forceLR is
weak one may neglect bouncing of the particle from the
opposite side of the parabolic potential well. In this approxi-
mation, one may again introduce the notion of the escape
rate y_ but the Eq.(B14) takes now the form
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" (B
= g
xex;{—i 2f? (\/__ﬁt—tan\/__ﬁt)]dt
p-pl 2 2
T 2 efiv(ufatanu)
=—Z+Imfo Wdu, (B35)

whereT=(=/\/— B) is the time of the first bounce that is of
course the half period of oscillations in the parabolic well
and the parametens and « are given by Eq(B18).

To evaluate the integral in E¢B35), we use the method
of steepest descents. Here, the original integration @ath
that runs from 0 tor/2 along the real axis, to the contour
in the complex @,v) plane that consists of six components:
C,, which is the quarter of circle of the infinitesimally small
radiuse, surrounding the points (0,03, , which runs along
the imaginaryv axis fromie to i v,=i arccosh/a; and the
steepest-descent conto@; which is determined by the
equation

sin2u
2u

sinff v=a —cog u. (B36)

Note that here the parameter>1, because only under this
condition the bottom of the parabolic well is lower than the
energy level in the potenti@B3) (A= —1) and tunneling to

the parabolic well may occur. Proceeding in the same way as”~ "~

in the case of positiv@, we obtain that the escape réaR35)
may be represented as follows:

1\/; a |94
v-=0a=DaNTla=1
Y
xerT(ZV (
(837

1/4
e v(V(a—1I)a—arcsinh/a—1)
> .
In the limit, when the cenrifugal force is weak, E@37)
takes the form

PHYSICAL REVIEW E 64 066614

4
Xp — ——=
3|f]

which coincides with Eq(B34) obtained for the case of posi-
tive B.

Combining Eqgs(B15), (B26), (B27), (B28), and (B37),
we get

| f|

7,=H(a—l) 56

] , (B38)

y=0(B)y;++0(=p)y-. (B39
1 [#(f2+B) f( (f2+ﬁ)> 2f2+ﬁ T
+==\/——57 —er Xp —2——| &
TN TR T e [T TaB |2
B r( f
f2+ﬂ arcsi m
BB pl f2+/3]
+ - expy —m
2(f2+ B)(u+sinhu) BB
f2+8|m ( M )
exp{ 2[3\/,5 2+ 1+sin}"(,u)
, f
><arcsv(—m ]) (B40)
V7 ’ ( fz—lﬁl)
f2—|8]) — \ | ——— erf
xexp{——(f—(fz_w')arcsim{ﬂ])}
|8l VAl NG
(B41)
where the notation
2./3f
“= Riap (B42

is used.
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