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We propose and experimentally demonstrate an optimal nonunity gain Gaussian scheme for partial measure-
ment of an unknown coherent state that causes minimal disturbance of the state. The information gain and the
state disturbance are quantified by the noise added to the measurement outcomes and to the output state,
respectively. We derive the optimal trade-off relation between the two noises and we show that the tradeoff is
saturated by nonunity gain teleportation. Optimal partial measurement is demonstrated experimentally using a
linear optics scheme with feedforward.
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I. INTRODUCTION

One of the most counterintuitive concepts of quantum me-
chanics is the fact that any attempt to gain information on an
unknown quantum state of a physical system will inevitably
result in a noisy feedback to the measured system. No matter
how cleverly the measurement is performed, the state will
always be disturbed to some extent: The more information
obtained about a quantum state from a measurement, the
more it will be altered, and vice versa. Although this
measurement-disturbance concept is very old and originally
only of fundamental interest, it has recently received re-
newed interest due to its direct application in the flourishing
field of quantum information science, and in particular, quan-
tum key distribution.

The study of the interplay between the quality of the es-
timation of a quantum state and the disturbance of the post-
measurement state has been extensively carried out in finite-
dimensional systems, where optimal trade-off relations have
been established for various cases �1–8� and realized recently
in an experiment �9�. In contrast, much less effort has been
devoted to the study of this tradeoff in infinitely dimensional
systems �10–13� where quantum information is carried by
observables with a continuous spectrum, important examples
being the canonically conjugate quadrature amplitudes.
Gaussian states which belong to continuous variable states
have played a key role in various experimental realizations
of quantum information protocols, thanks to the ease in gen-
erating and handling them in a quantum optics laboratory
�14,15�. In the Gaussian scenario, full control of the tradeoff
between the quality of measurement and state disturbance
was recently demonstrated for coherent states using a simple
scheme relying solely on linear optics and homodyne detec-
tion and near optimal performance was reported �10�.

Let us define the problem that will be addressed in this
paper. The task is to perform a minimal-disturbance mea-
surement on a coherent state, which is taken from an un-
known distribution �see Fig. 1�. That is, a completely random
coherent state will be received by our measurement device.
The question that will be raised and answered in this paper

is: What is the optimal information disturbance tradeoff for
this scenario? The answer to that question depends on the
figure of merit used to quantify the information gain and the
measurement disturbance. For Gaussian states, a useful and
practical measure of the quality of the measurement is the
phase insensitive added noise �16�, since it directly deter-
mines the Shannon information optimally extracted by the
measurement. Thus the optimal tradeoff between the added
noises determines the maximal information that can be
gained from the Gaussian measurement represented by a
channel with a given additive noise. A second parameter of
high relevance for describing the measurement is the gain
�attenuation or amplification� of the channel, since the mini-
mization of the added noise is done with respect to that gain.
For example, in the previous experiment on minimal-
disturbance measurement �10�, the added noise was mini-
mized under the constraint that the channel gain was unity
�corresponding to a conservation of the mean values�. For
Gaussian measurements and Gaussian channels this optimi-
zation procedure corresponds to a maximization of the fidel-
ity over all possible input states drawn from the unknown
coherent state alphabet. It should, however, be noted that by
using the fidelity as a measure the optimal solution is non-
Gaussian �11� due to specific properties of fidelity.

In this paper we investigate theoretically and experimen-
tally the optimal trade-off relations in terms of added noises
using two different strategies. In the first approach the chan-
nel gain is a free parameter that is optimized to minimize the
tradeoff between the added noises associated with the mea-
surement and disturbance. This trade-off relation was derived
by Ralph �17� who also found that the relation could be
experimentally demonstrated employing an ideal teleporta-
tion scheme with tunable entanglement. Here we propose
and experimentally realize a different approach, which is not
relying on entanglement but solely on linear optics, Gaussian
measurements, and feedforward similar to the one employed
in Ref. �10�.

In the second approach, which will be carefully addressed
in this paper, the channel gain of the minimal-disturbance
measurement is fixed to a certain value associated with a
particular realization �the unity gain operation demonstrated
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in Ref. �10�, being a special case�. For this case we derive a
trade-off relation for arbitrary gains and prove its optimality
using two different complementary proofs. As in the previ-
ous case, we also find here that a scheme similar to the one in
Ref. �10� can be used to implement the optimal tradeoff for
fixed but nonunity gain operation. This is demonstrated and
near optimal performance is achieved. The experimental
scheme is not only of fundamental interest but it can be also
applied to perform optimal individual Gaussian attacks in a
continuous-variable quantum key distribution scheme based
on heterodyne detection �18,19�.

The paper is organized as follows. Section II deals in
general with tradeoff between added noises and in Sec. III
the tradeoff is exemplified by the nonunity gain teleportation
scheme. In Sec. IV we give two different proofs of optimal-
ity of the tradeoff. Section V is dedicated to the linear optical
scheme saturating the tradeoff. The experimental demonstra-
tion of the scheme is given in Sec. VI. In Sec. VII we discuss
the possibility of using the minimal-disturbance measure-
ment as an eavesdropping attack, and finally, we conclude
the paper.

II. GAUSSIAN MINIMAL-DISTURBANCE
MEASUREMENTS

We consider Gaussian quantum operation that acts on a
single mode of an optical field “in” described by the canoni-
cally conjugate amplitude and phase quadratures xin and pin
��xin , pin�=2i�. We assume that the output mode of the opera-
tion is characterized by a pair of quadratures xout , pout
��xout , pout�=2i� related to the input quadratures by the for-
mulas

xout = g�xin + nout,x�, pout = g�pin + nout,p� , �1�

where the quantity g�0 is the gain of the operation. The
operators nout,x and nout,p are standard operators of noises
added to the input state. The operation also outputs a pair of
mutually commuting variables xcl and pcl that depend lin-

early on the input quadratures xin and pin and that therefore
can be used for simultaneous measurement of these quadra-
tures. These variables can be expressed, after a suitable scal-
ing transformation, as

xcl = xin + ncl,x, pcl = pin + ncl,p, �2�

and satisfy the commutation rules

�xcl,pcl� = �xout,xcl� = �xout,pcl� = �pout,xcl� = �pout,pcl� = 0.

�3�

The operators ncl,x and ncl,p describe noises added to the out-
comes of simultaneous measurement of input quadratures xin
and pin by homodyne detection of the variables xcl and pcl.
Naturally, the operators nout,x and ncl,x �nout,p and ncl,p� are
independent of the input quadrature xin �pin� and hence

�nout,x,pin� = �ncl,x,pin� = �nout,p,xin� = �ncl,p,xin� = 0. �4�

In addition, the gains of the operation are assumed to be
fixed for all input states, i.e., �xout� / �xin�= �pout� / �pin�=g,
�xcl� / �xin�= �pcl� / �pin�=1, which implies that

�nout,x,xin� = �nout,p,pin� = �ncl,x,xin� = �ncl,p,pin� = 0. �5�

Substituting Eqs. �1� and �2� into the commutation rules
�xout , pout�=2i and Eq. �3� one finds using the latter commu-
tation rules �4� and �5� that the noise operators nout,x, nout,p,
ncl,x, and ncl,p must satisfy

�nout,x,nout,p� = 2i
�1 − g2�

g2 , �ncl,x,ncl,p� = − 2i ,

�nout,p,ncl,x� = �ncl,p,nout,x� = 2i ,

�ncl,x,nout,x� = �ncl,p,nout,p� = 0. �6�

The noise operators represent the noise by which the out-
comes of the homodyne detections of the variables xcl and pcl
as well as the output state are contaminated. The commuta-
tion rules �6� and the Heisenberg uncertainty relations then
impose fundamental bounds on the noises that have to be
satisfied by any Gaussian operation. Since we are interested
in partial measurements on coherent states, it is convenient
to quantify the two noises by the following sums:

�out �
�nout,x

2 � + �nout,p
2 �

2
, �cl �

�ncl,x
2 � + �ncl,p

2 �
2

, �7�

for which the respective bounds read as

�cl � 1, �out �
�1 − g2�

g2 , �cl�out � 1. �8�

The use of noises �7� is advantageous since they are a simple
function of the added noises �nout,x

2 �, �nout,p
2 �, �ncl,x

2 �, and �ncl,p
2 �

that can be directly measured experimentally. We shall see
that the operations that for a given �cl and g minimize �out
add noise symmetrically to the x and p quadratures, which
means that �nout,x

2 �= �nout,p
2 � and �ncl,x

2 �= �ncl,p
2 � holds. In this

case the quantities �out and �cl are exactly the noises added to
the input state quadratures and to the measurement out-

�� �=x+ip in
�MDM

Classical Information (x ,p )cl cl

Disturbed stateUnknown Coherent State

FIG. 1. �Color online� The principles of a minimal-disturbance
measurement of coherent states. The input state is drawn from an
unknown distribution of coherent states, say ���in= �x+ ip�in, and the
task is to acquire information about the state �through a measure-
ment� in such a way that the state is minimally disturbed according
to quantum mechanics. This is the essence of a minimal-disturbance
measurement. There are two outputs of the protocol: a classical one
yielding information about the input state �in the form of two num-
bers, say x̄cl and p̄cl� and a quantum one, namely, the postmeasure-
ment state �. In this paper we consider only cases where the clas-
sical data as well as the disturbed quantum state are inflicted by
additive phase-insensitive Gaussian noise. The gain g of the proto-
col is defined by the ratio between the input and output mean val-
ues: g=Tr�x�� / ��in�x��in�=Tr�p�� / ��in�p��in�.

SABUNCU et al. PHYSICAL REVIEW A 76, 032309 �2007�

032309-2



comes, respectively. This symmetry and isotropy is a natural
feature of optimal partial measurement on coherent states
that exhibit the same variances for all quadrature compo-
nents. The interpretation of noises �7� is particularly simple
for symmetric operations with unity gain �g=1�. In this case
the quantity �out /2 coincides with the mean number of ther-
mal photons added by the operation to the input state. The
interpretation of the quantity �cl is a little bit more involved.
The classical measurement outcomes x̄cl and p̄cl obtained
when measuring the variables xcl and pcl can be used to pre-
pare a classical guess ��cl�= ��x̄cl+ ip̄cl� /2� of the input coher-
ent state ���= ��x+ ip� /2�in. By repeating this procedure many
times with the same input state we thus prepare on average a
mixed quantum state called the estimated state of the input
state. Similarly, as in the previous case for the symmetric
unity gain operation the quantity ��cl+1� /2 is equal to the
mean number of thermal photons in the estimated state.

III. QUANTUM TELEPORTATION AS A
MINIMAL-DISTURBANCE MEASUREMENT

In the following we show that one of the most celebrated
quantum information protocols—quantum teleportation—
enables a minimal-disturbance measurement in the sense of
saturating the inequalities in Eq. �8�. Using teleportation as
an example we arrive at a very useful equality defining the
optimum tradeoff. The optimality will then be rigorously
proven in the following two sections.

The protocol in question is the standard continuous vari-
able teleportation scheme �20–22� operating in the nonunity
gain regime �23�. An unknown state of an optical mode “in”
described by the quadratures xin and pin is teleported by a
sender Alice �A� to a receiver Bob �B�. At the beginning,
Alice and Bob share an entangled state of two other modes A
and B produced by the two-mode squeezing transformation
of two vacuum states

xA = cosh�r�xA
�0� − sinh�r�xB

�0�,

pA = cosh�r�pA
�0� + sinh�r�pB

�0�,

xB = cosh�r�xB
�0� − sinh�r�xA

�0�,

pB = cosh�r�pB
�0� + sinh�r�pA

�0�, �9�

where xA
�0�, pA

�0�, xB
�0�, and pB

�0� denote the vacuum quadratures
of modes A and B and r is the squeezing parameter. Alice
then mixes the input mode with mode A on a balanced beam
splitter and performs homodyne detection of the variables
x1= �xin+xA� /	2 and p2= �pin− pA� /	2 at the outputs of the
beam splitter. She then communicates the measurement out-
comes x̄1 and p̄2 via a classical channel to Bob who displaces
his part of the shared state as xB→xout=xB+g	2x̄1 and pB

→pout= pB+g	2p̄2, where g�0 stands for the gain of the
transformation from photocurrents to the output optical field.
At Bob’s site we thus have the output quadratures �1�, where

nout,x = xA +
xB

g
, nout,p = − pA +

pB

g
. �10�

At Alice’s location we have two commuting variables �2�
obtained by rescaling of the variables x1 and p2 by the factor
of 	2 and the operators of added noises ncl,x and ncl,p read as

ncl,x = xA, ncl,p = − pA. �11�

Substituting now from Eqs. �10� and �11� the noise operators
nout,x, nout,p, ncl,x, and ncl,p in the commutation rules �6� one
finds the operators in the nonunity gain teleportation indeed
satisfy the commutation algebra �6�. Making use of Eqs.
�9�–�11� one obtains the noises �7� for the nonunity gain
teleportation in the form

�cl = cosh�2r�, �out =
�1 + g2�

g2 cosh�2r� −
2

g
sinh�2r� .

�12�

It holds that �nout,x
2 �= �nout,p

2 �=�out and �ncl,x
2 �= �ncl,p

2 �=�cl,
hence the added noise is isotropic. Eliminating now the pa-
rameter r from the second Eq. �12� using the first one, one
finds the tradeoff between the noises �7� in the nonunity gain
teleportation to be

g2�out = �1 + g2��cl − 2g	�cl
2 − 1. �13�

In the plane of the noises �cl and �out the trade-off relation
determines a certain quadratic curve that turns out to be a
fraction of a hyperbola whose exact shape depends on the
gain g. By changing the squeezing r one can continuously
move along the whole trade-off curve from one extreme
point to the other one. In the first extreme point one has �cl
=1, i.e., the first of inequalities �8� is saturated, while �out
= �1+g2� /g2 and the point is reached for r=0. In the second
extreme point the noise �out attains the minimal possible
value �out= �1−g2� /g2, i.e., the second of inequalities �8� is
saturated, whereas �cl= � 1+g2

1−g2 � and the point is reached for g
�1 �g�1� by choosing r such that coth r=g �tanh r=g�.

Based on the previous results we arrive at an important
property of Gaussian quantum operations described by the
transformation rules �1� and �2�. Namely, in the plane
��cl ,�out� the optimal operations lie in the rectangle defined
by the inequalities

1 � �cl � 
1 + g2

1 − g2
 , �14�

�1 − g2�
g2 � �out �

1 + g2

g2 . �15�

The left-hand sides of the inequalities follow from the com-
mutation rules �6� and cannot be overcome by any operation.
On the other hand, the operations that violate either of the
right-hand sides of the inequalities add too much noise and
therefore they are suboptimal. This can be shown as follows.
Consider a quantum operation for which �out� � �1+g2� /g2

��cl� � � 1+g2

1−g2 ��. The inequalities �8� then reveal that at most
�cl� =1 ��out� = �1−g2� /g2�. Then, however, we have a better
quantum operation given by the teleportation operating in the
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first �second� extreme point for which �cl=1 ��out= �1
−g2� /g2� but simultaneously �out= �1+g2� /g2��out�
��cl= � 1+g2

1−g2 ���cl� �.
The formulas �13�–�15� are one of the main theoretical

results of the present paper. This is because, as we will show
in the following section, the tradeoff �13� is optimal on the
set of all Gaussian operations described by Eqs. �1�, �2�, and
�6�. The tradeoff is depicted for several values of the gain g
in Fig. 2.

Before going to the proof of optimality we can answer
another important question based on the tradeoff �13�. Up to
now we considered Gaussian quantum operations with a
fixed gain g. Provided that the tradeoff �13� is optimal its
right-hand side then gives us �after division by g2� the least
possible noise �out that can be attained for a given value of
noise �cl by any such operation. The fundamental question
that can be risen in this context is that if the gain g of op-
eration can be adjusted freely, what is its optimal value gopt
that gives for a given value of the noise �cl the least possible
value of the noise �out? The task was already solved by Ralph
�17� who showed that in the nonunity gain teleportation one
can adjust for a given value of the noise �cl the gain such that
the third of inequalities �8� is saturated and therefore such
teleportation protocol realizes the sought optimal operation.
The trade-off relation �13� contains Ralph’s result as a par-
ticular instance and can be used to rederive it: Expressing
�out as a function of g and �cl using Eq. �13� and minimizing
it with respect to g one finds the optimal gain for �cl�1 to be
gopt=�cl /	�cl

2 −1 that gives �out=1/�cl and thus the funda-
mental quantum mechanical limit given by the third of in-
equalities �8� is indeed saturated. For �cl=1 the optimal gain
is infinitely large �gopt=	� for which one has �out=1. In this
case, all the inequalities �8� are saturated simultaneously but
the operation achieving this regime is unphysical.

IV. PROOFS OF OPTIMALITY

In this section we prove the optimality of the inequalitites
derived above using two different methods. The optimization

task we want to solve can be generally formulated as fol-
lows: Find a Gaussian operation described by Eqs. �1�, �2�,
and �6� that for a given gain g and a given amount of added
noise in the measurement outcomes adds the least possible
amount of noise into the input state. The optimal operation
will in general depend on the quantities used to quantify the
two noises. Here we are interested in optimal operations that
add noise symmetrically into the amplitude and phase
quadrature, i.e., for which �nout,x

2 �= �nout,p
2 � and �ncl,x

2 �= �ncl,p
2 �.

As we will show below, this requirement is satisfied if we
take the sums �7� of the variances of the noise operators ncl,x,
ncl,p, nout,x, and nout,p to quantify the noise in the measure-
ment outcomes and the noise added into the input state,
respectively.

This is a consequence of the fact that for any Gaussian
operation that is asymmetric in x and p variables, i.e., for
which �nout,x

2 �� �nout,p
2 � and �ncl,x

2 �� �ncl,p
2 �, there is always a

symmetric Gaussian operation giving the same values of �cl
and �out. This statement can be proved in the following way.
Suppose we have the asymmetric operation described by the
formulas

xout = g�xin + nout,x�, xcl = xin + ncl,x,

pout = g�pin + nout,p�, pcl = pin + ncl,p. �16�

Assume that, in addition, we have at our disposal another
asymmetric operation that is obtained from the previous one
by placing it in between one phase shifter at the input and
two phase shifters at the outputs. The first phase shifter in-
terchanges the input quadratures as follows: xin→−pin and
pin→xin, and the two phase shifters on the output modes
perform the inverse transformation xi→pi and pi→−xi, i
=out,cl. Taking all the above transformation rules together
the entire operation is described by the following rules:

xout = g�xin + nout,p� �, xcl = xin + ncl,p� ,

pout = g�pin − nout,x� �, pcl = pin − ncl,x� . �17�

The prime was used merely to express that the noise opera-
tors in Eq. �17� are completely independent on and therefore
completely uncorrelated with the unprimed noise operators
in Eq. �16�. The variances of the primed and unprimed noise
operators are, however, identical, �nout,i

2 �= ��nout,i� �2� and
�ncl,i

2 �= ��ncl,i� �2�, i=x , p. The desired symmetric operation can
then be constructed from the operations �16� and �17� by
placing them into two arms of a balanced Mach-Zehnder
interferometer. At the first balanced beam splitter of the in-
terferometer the input quadratures are mixed with the
quadratures x0 and p0 of an auxiliary mode 0 as
xin� = �xin−x0� /	2, pin� = �pin− p0� /	2 and x0�= �xin+x0� /	2,
p0�= �pin+ p0� /	2. The quadratures xin� ,pin� and x0�,p0� are then
used as inputs into the operations �16� and �17�, respectively.
The quadratures at outputs of the operations xin� , pin� , x0�, and
p0� are finally superimposed on the second balanced beam
splitter of the interferometer at one outcome of which one
has

1 2 3 4 5
0

0.5

1

1.5

2

2.5

ν
cl

ν ou
t

FIG. 2. Optimal tradeoff between the output noise �out and the
noise in measurement outcomes �cl for a single-mode Gaussian op-
eration with optimal gain g=�cl /	�cl

2 −1 �solid curve�, amplifying
operation with g=2 �dashed curve�, unity gain operation with g
=1 �dotted curve�, and attenuating operation with g=0.8
�dash-dotted curve�. See the text for details.
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xout =
xin� + x0�

	2
= g�xin + ñout,x� ,

pout =
pin� + p0�

	2
= g�pin + ñout,p� , �18�

where ñout,x= �nout,x+nout,p� � /	2 and ñout,p= �nout,p−nout,x� � /	2.
Further, two pairs of the commuting variables xcl,in,pcl,in and
xcl,0,pcl,0 representing the output of the operation �16� on
mode “in” of the interferometer and the operation �17� on
mode 0, respectively, give after averaging a new pair of com-
muting variables,

xcl =
xcl,in + xcl,0

	2
= xin + ñcl,x,

pcl =
pcl,in + pcl,0

	2
= pin + ñcl,p, �19�

where ñcl,x= �ncl,x+ncl,p� � /	2 and ñcl,p= �ncl,p−ncl,x� � /	2. As
the primed and the unprimed noise operators are uncorre-
lated one immediately finds that �ñout,x

2 �= �ñout,p
2 � as well as

�ñcl,x
2 �= �ñcl,p

2 � and therefore the new operation described by
Eqs. �18� and �19� is symmetric with respect to x and p.
Moreover, calculating the noises �7� for the new operation
yields �̃out= �ñout,x

2 �=�out and �̃cl= �ñcl,x
2 �=�cl, which com-

pletes the proof.

A. Proof I

For the sake of simplicity of mathematical formulas oc-
curring in the proofs of optimality of the tradeoff �13� we
will work with rescaled operators of added noises

mout,x � gnout,x, mout,p � gnout,p. �20�

Using these new operators one can write �out=
out /g2, where


out �
�mout,x

2 � + �mout,p
2 �

2
, �21�

and the tradeoff �13� whose optimality is to be proved then
reads


out = �1 + g2��cl − 2g	�cl
2 − 1. �22�

It is convenient to introduce the column vector �
= �ncl,x ,mout,x ,ncl,p ,mout,p�T. In this notation all the commuta-
tors �6� can be rewritten in the compact form ��i ,� j�=2i�ij,
where

� = � 0 − G

G 0
�, G = �1 g

g − �1 − g2�
� . �23�

Since the gains of considered Gaussian operations are fixed
the first moments of the noise operators vanish, i.e., ���=0,
where the symbol � � denotes averaging over the input state
�aux of the auxiliary modes. Consequently, the studied opera-
tions are completely characterized by the 44 real symmet-
ric noise matrix N with elements Nij = ��i ,� j��, where

A ,B���AB+BA� /2. The commutation rules �6� then im-
pose a specific uncertainty principle on the noise matrix N
that reads

N + i� � 0. �24�

Now we want to find such of the considered quantum opera-
tions that gives for a given noise �cl minimum possible noise

out. This task can be equivalently reformulated as follows:

min
N

f�N� = a�cl + b
out, �25�

under the constraint �24�. The coefficients a ,b�0 �except
for the case a=b=0� control the ratio between the noise in
the measurement outcomes and in the output state. The op-
timization task �25� is a typical example of the so-called
semidefinite program �SDP� �24�. Recently, also other impor-
tant problems in quantum information theory were formu-
lated and solved as semidefinite programs ranging from
separability criteria �25,26� and optimization of completely
positive maps �27� to optimization of teleportation with a
mixed entangled state �28� or finding optimal positive opera-
tor value measure �POVMs� for quantum state discrimination
�29,30�.

The SDPs are generally difficult to solve analytically and
we are often forced to use numerical methods. However, in
the case of the problem �25� we are able to find the solution
analytically. This can be done in two steps following the
standard strategy employed, for instance, in �27,31�. In the
first step we guess the analytical form of the solution of the
problem �25� while in the second step we prove its optimal-
ity. The first step has been already done in the previous sec-
tion where we surmised the solution of the problem �25� to
be given by the nonunity gain teleportation described by Eqs.
�9�–�11�. Calculating the operators �20� using Eqs. �10� and
substituting them together with the operators �11� into the
definition of the noise matrix N we arrive at the noise matrix
for the teleportation in the form

Ntel = A � A , �26�

where A is the symmetric 22 matrix with elements

A11 = �cl, A12 = A21 = g�cl − 	�cl
2 − 1,

A22 = �1 + g2��cl − 2g	�cl
2 − 1, �27�

where �cl=cosh�2r�. Since the matrix �26� is manifestly in-
variant under the exchange of subscripts x and p the noise is
added symmetrically into the amplitude and phase quadra-
ture as required and the nonunity gain teleportation is indeed
a good candidate for the optimal operation.

In order to prove optimality of the matrix �26� we can
proceed along the lines of the proof of optimality of multi-
copy asymmetric cloning of coherent states �31�. The proof
relies on finding a certain Hermitian positive semidefinite 4
4 matrix Z that satisfies for any admissible matrix N the
condition Tr�ZN�= f�N�. From the condition Z�0 and the
constraint N+ i��0 then immediately follows a lower bound
on the functional f�N� that is to be minimized, f�N�
=Tr�ZN��−i Tr�Z��. If, in addition, Z satisfies the condition

NONUNITY GAIN MINIMAL-DISTURBANCE MEASUREMENT PHYSICAL REVIEW A 76, 032309 �2007�

032309-5



Z�Ntel + i�� = 0, �28�

the lower bound is saturated by the matrix �26� and therefore
the corresponding quantum operation is optimal.

The matrix Z we are looking for can be taken in the block
form �31�

Z =
1

2
� P iQ

− iQ P
� , �29�

where P and Q are real symmetric 22 matrices. The con-
dition �28� gives rise to the following set of equations for the
matrices P and Q:

Q� = PA, QA = P� . �30�

The matrix P is determined solely by the condition Tr�ZN�
= f�N� that gives P=diag�a ,b�. This is because Eqs. �30� do
not impose any further restriction on P as they provide the
equation P�A�−1A−��=0 for the matrix P that is satisfied by
any P due to the equality A�−1A=�. Having the matrix P in
hand, one can now substitute it into the equation Q= PA�−1

derived from the first of Eqs. �30� that leads to the matrix Q
in the form

Q = � a��cl − g	�cl
2 − 1� a	�cl

2 − 1

b�2g�cl − �1 + g2�	�cl
2 − 1� b�g	�cl

2 − 1 − �cl�
� .

�31�

For our guess �26� the coefficients a and b are not indepen-
dent but instead they are tied together by a specific relation
that can be calculated by minimizing the functional f�N� un-
der the constraint �13�. Using the standard method of
Lagrange multipliers one then finds the relation to be

a	�cl
2 − 1 = b�2g�cl − �1 + g2�	�cl

2 − 1� , �32�

which reveals that the matrix Q is indeed symmetric. It re-
mains to check the positive semidefiniteness of the matrix
�29�. Since we require a ,b�0 �except for the case a=b=0�
the expression in the square brackets on the right-hand side
of Eq. �32� must be non-negative. This condition is not sat-
isfied exactly by those operations which violate the inequal-
ity �cl� � 1+g2

1−g2 �. Since, however, these operations have been
already ruled out from our considerations as being subopti-
mal it is sufficient to restrict ourselves to operations satisfy-
ing this inequality. For these operations three different cases
must be distinguished in dependence on the value of the
noise �cl.

�1� If �cl=1 then Eq. �32� implies b=0 whence P=Q
=diag�a ,0�. The eigenvalues of the matrix Z then read as
�1,2,3=0 and �4=a�0 and therefore Z�0.

�2� For �cl= � 1+g2

1−g2 � one finds a=0 using Eq. �32� that gives
P=diag�0,b� and Q=diag�0, ±b� where the upper �lower�
sign holds for g�1 �g�1�. One can again directly calculate
the eigenvalues of the matrix Z in the form �1,2,3=0 and
�4=b�0 and therefore Z�0.

�3� In the intermediate case when 1��cl� � 1+g2

1−g2 � one has
a�0 and simultaneously b�0. This allows one to introduce
the matrix V=	2 diag�P−1/2 , P−1/2� and to transform the ma-
trix Z as

Z1 = V†ZV = � I iP−1/2QP−1/2

− iP−1/2QP−1/2 I
� , �33�

where I is the 22 identity matrix. The specific feature of
the transformation �33� is that if Z1 is positive semidefinite
then also Z is positive semidefinite and it is thus sufficient to
prove the positive semidefiniteness of the matrix Z1. Per-
forming the similarity transformation Z2=UZ1U† where

U =
1
	2

� I iI

iI I
� , �34�

the matrix Z1 is brought into the block diagonal matrix Z2
=diag�I+ P−1/2QP−1/2 , I− P−1/2QP−1/2� whose eigenvalues are
easy to find in the form �1,2=0 and �3,4=2. Consequently,
Z2�0 and therefore also Z�0, which completes the proof.

B. Proof II

There is an alternative way of proving the optimality of
the noise matrix �26�. The proof relies on the mapping of the
noise operators mout,x, mout,p, ncl,x, and ncl,p onto the quadra-
tures in the nonunity gain teleportation. The search for the
optimal noise matrix then boils down to searching a suitable
two-mode state shared in the nonunity gain teleportation.

Suppose we have a noise matrix N, i.e., a real symmetric
44 matrix satisfying the uncertainty principle N+ i��0.
Assume in addition, there is a real regular 44 matrix M
satisfying the condition

� = M�MT, �35�

which means that M realizes mapping between the commu-
tation rules for noise operators ��i ,� j�=2i�ij and the standard
canonical commutation rules ��i ,� j�=2i�ij, where �
= �xA , pA ,xB , pB�T is the vector of quadratures and

� = J � J, J = � 0 1

− 1 0
� �36�

is the standard symplectic matrix. Provided that such a ma-
trix M exists we can associate with any admissible noise
matrix N a certain real symmetric 44 matrix

VAB = M−1N�MT�−1, �37�

that can be shown to satisfy the standard Heisenberg uncer-
tainty principle VAB+ i��0 and therefore can be shown to
be a covariance matrix of a two-mode state. This can be
shown as follows. Expressing the left-hand side of the
Heisenberg uncertainty principle using the formulas �35� and
�37� one finds VAB+ i�=M−1�N+ i���MT�−1. Taking now the
spectral decomposition N+ i�=�i�i��i���i�, where �i�0 are
eigenvalues and ��i� are corresponding eigenvectors of the
matrix N+ i�, one finds that ���VAB+ i����
=�i�i����M−1��i��2�0 for any vector ��� and therefore VAB

+ i� is indeed positive semidefinite, whence VAB is a two-
mode covariance matrix. Since VAB is a covariance matrix its
elements can be written as �VAB�ij =Tr��AB�i ,� j��, i , j
=1, . . . ,4, where �i, i=1, . . . ,4 are components of the vector
� of standard quadratures and �AB is a state of two modes A
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and B. A natural realization of the vector of quadratures � is
by the linear relation

� = M−1� . �38�

In this case the state �AB coincides with the state �aux over
which the averaging in the definition of the noise matrix N is
performed.

It remains to show that a regular matrix M satisfying the
condition �35� exists. Nonunity gain teleportation provides
such a matrix that, in addition, proves to be suitable for
minimization of the functional �25�. By writing Eqs. �10� and
�11� in the matrix form �38� one finds the matrix M in the
nonunity gain teleportation to be a regular matrix of the form

M =�
1 0 0 0

g 0 1 0

0 − 1 0 0

0 − g 0 1
� . �39�

The problem of minimization of the functional �25� over the
noise matrices N is then transformed into the problem of
finding a two-mode state �AB �with covariance matrix VAB�
shared in the nonunity gain teleportation that minimizes the
functional �25�. Substituting from Eqs. �10� and �11� into Eq.
�25� using the definitions �7� one can express the functional
�25� as the trace f�N�=Tr��ABO�, where

O =
1

2
�a�g2xA

2 + 2gxA,xB� + xB
2 + g2pA

2 − 2gpA,pB� + pB
2�

+ b�xA
2 + pA

2�� . �40�

The operator O is lower bounded by O�min�eig�O��1,
which implies that the functional f�N� is lower bounded by
f�N��min�eig�O��. This lower bound is saturated if the state
�AB is an eigenstate of the operator �40� corresponding to its
lowest eigenvalue. The operator �40� can be diagonalized by
the two-mode squeezing transformation S described in the
Heisenberg picture by Eq. �9�. Choosing the squeezing pa-
rameter as

tanh�2r� =
2ga

a�g2 + 1� + b
, �41�

the operator �40� is diagonalized to the form

O� = SOS† = 2�xnA + ynB� + x + y , �42�

where ni= �xi
2+ pi

2� /4−1/2, i=A ,B are standard photon num-
ber operators and x ,y�0. Inserting the formula �42� into the
expression for f�N�=Tr��ABO� one obtains that f�N�
=Tr�S�ABS†O��, which is obviously minimized if S�AB,optS

†

= �00��00�, where �00� is the vacuum state. Hence, the opti-
mal state �AB,opt is the two-mode squeezed vacuum state with
the squeezing parameter given by the formula �41�. Thus, we
arrived in a different way at the conclusion that the nonunity
gain teleportation with shared two-mode squeezed vacuum
state with a properly chosen squeezing represents optimal
Gaussian quantum operation that for a given gain g and noise
�cl introduces the least possible noise �out.

V. LINEAR OPTICS SCHEME

Nonunity gain teleportation is not the only scheme that
saturates the optimal tradeoff �13�. As shown in Ref. �10�,
there are at least two other schemes that can accomplish a
minimal-disturbance measurement. One other strategy is to
use optimal 1→2 Gaussian cloning followed by a joint mea-
surement between one of the clones and the anticlone. How-
ever, a much simpler strategy, which will be investigated in
the following, achieves the optimal bound using only linear
optics, homodyne detection, and feedforward. The setup is
depicted in Fig. 3. In this scheme the input mode “in” is
mixed with an auxiliary vacuum mode A on an unbalanced
beam splitter with amplitude reflectivity 	R and transmissiv-
ity 	T �R+T=1�. The reflected mode “in” and the transmit-
ted mode A are described by the following quadratures:

xin� = 	Rxin + 	TxA
�0�, pin� = 	Rpin + 	TpA

�0�,

xA� = 	Txin − 	RxA
�0�, pA� = 	Tpin − 	RpA

�0�. �43�

The mode “in” is then superimposed with another vacuum
mode B on a balanced beam splitter and the quadratures x1

�xin� = �xin� +xB
�0�� /	2 and p2� pA� = �pin� − pB

�0�� /	2 are mea-
sured at its outputs. After rescaling the measured quadratures
x1 and p2 by the factor 	2/R we arrive at the variables xcl
and pcl in the form �2�, where

ncl,x =
	TxA

�0� + xB
�0�

	R
, ncl,p =

	TpA
�0� − pB

�0�

	R
. �44�

The outcomes of the measurements x̄1 and p̄2 are then used
to displace the mode A as xA� →xout=xA� +	2Gx̄1 and pA�
→pout= pA� +	2Gp̄2, where G is the normalized electronic
gain. The output quadratures xout and pout are then of the
form �1�, where the gain reads as

BS

xcl pcl

50:50 BS

D(x,p)

(R,T)

��� �in

Minimum Disturbance Measurement

-

LO

BS

G

G

P
M

HWP

PBS

ESA

B

A

IN

99/1 BS

A
M

P
M

A
M

+
-

FIG. 3. �Color online� The experimental scheme. AM: Ampli-
tude modulator; PM: Phase modulator; ���: The incoming coherent
state to be measured; HWP: Half wave plate; PBS: Polarizing beam
splitter cube; BS: Beam splitter; D�x , p�: Displacement operation;
B: Auxiliary beam; BS�R,T�: Variable beam splitter with reflectivity
R and transmissivity T for intensity; A: Vacuum mode; G: electronic
gains; xcl , pcl: Classical measurement outcomes; �: Output state;
LO: Local oscillator beam; ESA: Electronic spectrum analyzer.
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g = 	T + G	R , �45�

and

nout,x =
�G	T − 	R�xA

�0� + GxB
�0�

g
,

nout,p =
�G	T − 	R�pA

�0� − GpB
�0�

g
. �46�

Inserting now Eqs. �44� and �46� into the definitions �7� one
finds

�cl =
1 + T

1 − T
, �out =

�G	T − 	R�2 + G2

g2 . �47�

Expressing g2�out using the second of Eqs. �47�, substituting
in the obtained formula for G employing Eq. �45� and mak-
ing use of the formula R+T=1 and the first of Eqs. �47�, we
finally confirm that the noises �47� indeed satisfy the optimal
tradeoff �13�.

Equations �47� immediately allow us to derive the output
noise �out for the case with optimized gain. Making use of
the first of Eqs. �47� in the formula gopt=�cl /	�cl

2 −1 one gets
the optimal gain

gopt =
1 + T

2	T
. �48�

Substituting further the latter expression for gopt into Eq. �45�
one finds the electronic gain Ggopt

to be Ggopt
=	1−T /2	T.

Inserting now Eq. �48� and the obtained expression for Ggopt
into the second of Eqs. �47� we finally arrive at the output
noise in the linear optics scheme with the feedforward in the
form

�out =
1 − T

1 + T
. �49�

Comparison of the formula for �out just obtained with the
formula for the noise �cl given in Eq. �47� reveals that
�cl�out=1 holds and therefore the third of inequalities �8� is
saturated.

VI. EXPERIMENT

After the theoretical part where we proved the optimality
of the scheme depicted in Fig. 3 we now proceed by describ-
ing the actual experiments demonstrating minimal-
disturbance measurements �MDMs� on coherent states. As
mentioned above, a MDM was recently performed on coher-
ent states �10� in which the output signal had the same mean
value as the input. The present work extends this previous
work to a more complete experimental study of MDMs of
coherent states, namely, to the cases where the mean value of
the input state is not preserved. We systematically investi-
gated two cases. First, we considered the nonunity gain
phase-insensitive MDM where the gain was optimized ac-
cording to the formula �48�. In the second case we studied
the nonunity gain MDM where the optical gain was fixed.

The experimental setup is depicted in Fig. 3. In both ex-
periments we used a stable continuous wave Nd:YAG laser
from Innolight oscillating at 1064 nm wavelength, which
could deliver up to 500 mW of power in one transversal
mode. The signal beam, local oscillator �LO� beam, and the
auxiliary beam �B� were all obtained from this source en-
abling high quality mode matching between the beams and
hence allowing very efficient quantum measurements. We
generated the coherent states by placing concatenated
electro-optical phase and amplitude modulators in the beam
path. We applied a signal to the modulators at 14.3 MHz,
which created sidebands with respect to the laser carrier,
meaning that some of the photons from the carrier were
transferred to these sidebands. Hence we defined our coher-
ent state to reside at the sideband frequency of 14.3 MHz and
having a 100 kHz bandwidth. In this operating window the
dark noise of the detectors was negligible and the locking
loops for the amplitude and phase quadrature measurement
at the homodyne detector were optimized to operate stably.
In addition, the feed-forward loop was chosen to function
most efficiently inside this window. After the preparation, the
coherent state impinges on a beam splitter BS�R,T� with
variable beam splitting ratio. The variable beam splitter is
realized by placing a polarizing beam splitter behind a half
wave plate in the beam path. The reflected part of the input
state is mixed with an auxiliary beam of equal intensity on a
50:50 beam splitter. By directly measuring the output of the
beam splitter and subsequently constructing the sum and dif-
ference photocurrents, the amplitude and phase quadratures
of the reflected light are simultaneously measured �32�, thus
information about the input is acquired. The classical mea-
surement outcome is amplified electronically and fed to an-
other pair of amplitude and phase modulators, which are tra-
versed by another auxiliary beam. This beam is then coupled
into the remaining part of the signal beam thus accomplish-
ing a lossless displacement operation. The output state � is
finally analyzed by making use of a homodyne detector. A
bright local oscillator beam interferes with the signal beam
on a beam splitter, and the conjugate quadratures, amplitude
and phase, are stably measured by locking the relative phase
between the two beams employing standard electronic feed-
back techniques. The first and second moments of the ampli-
tude and phase quadratures of the output state as well as the
input state are thus measured using an electronic spectrum
analyzer. The input state was characterized by switching off
the displacement operation, measuring the resulting output
state, and inferring the input state by carefully characterizing
all the losses including the detector and beam splitter losses.
In all the measurements the central frequency was 14.3 MHz,
the resolution bandwidth was 100 kHz, and the video band-
width was 30 Hz.

In the first experiment the optical gain of our measure-
ment device depended on the transmission of the beam split-
ter BS�R,T� according to Eq. �48� thereby reducing the noise
�out to a minimum possible value. This was achieved by tun-
ing the variable beam splitter to various transmission-to-
reflection ratios and correspondingly adjusting the feed-
forward electronic gain to obtain the desired optimal optical
gain.

In order to quantify our measurement device and to verify
that it indeed measures the coherent state optimally with
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minimal disturbance we needed to determine the added
noises �nout,x

2 �, �nout,p
2 �, �ncl,x

2 �, and �ncl,p
2 �. For this purpose we

measured the signal-to-noise ratio of the input RS/N,in and the
signal-to-noise ratio of the output RS/N,out for the conjugate
amplitude and phase quadratures, respectively �see, e.g.,
�33��. The variances of added noises in the output quadra-
tures �nout,x

2 � and �nout,p
2 � then read as

�nout,x
2 � =

RS/N,in,x

RS/N,out,x
− 1, �nout,p

2 � =
RS/N,in,p

RS/N,out,p
− 1. �50�

The variances �ncl,x
2 � and �ncl,p

2 � of the noises added into the
classical measurement outcomes were calculated from the
measured transmittance T of the variable beam splitter. By
construction, the device should exhibit identical transmit-
tance for the amplitude and phase quadratures, and this was
explicitly confirmed by measurement. We thus have

�cl = �ncl,x
2 � = �ncl,p

2 � =
1 + T

1 − T
. �51�

Simultaneously changing the transmittance T and the elec-
tronic gain G enabled us to adjust at will the degree of dis-
turbance of the measured quantum state. The experimental
results are summarized in Fig. 4. We get excellent agreement
between theory and experiment and we conclude that the
measurement apparatus operates at the fundamental limits
imposed by quantum theory.

In our second experiment we demonstrated the MDM for
a fixed optical gain. After analyzing our input state as in the
previous experiment we connected the feed-forward loop and
adjusted the appropriate electronic gain, which guaranteed
the desired fixed optical gain. This means that for a particular
beam splitter transmission the feed-forward electronic gain
will increase as the desired optical gain increases. If, in ad-
dition, the desired optical gain is less than the beam splitter
transmission then a deamplification of the optical signal is
required, which was achieved by adding a � phase shift in
the electronic feed-forward loop and by making use of de-
structive interference, which resulted in optical deamplifica-

tion. This particular operation is actually suboptimal mean-
ing that the measurement outcomes lie outside the optimality
window, which follows directly from the fact that in this case
where g�	T, calculation of �cl reveals that �cl� �1+g2� / �1
−g2�. Using a similar procedure as before we measured the
first and second moments for the amplitude and phase
quadrature of the output signal. Having measured the input
and output states we then calculate all the necessary added
noises by means of Eqs. �50� and �51�.

We performed this kind of measurement for three fixed
optical gains of g2=0.5,0.8,1.3 and the results are summa-
rized in Fig. 5. Here we have to stress again that optimal
MDMs with a fixed optical gain lie only within a specific
region of the ��cl ,�out�-plane �gray shaded region in the fig-
ures�. The boundaries of these regions depend solely on the
optical gain and can be easily determined from Eqs. �14� and
�15�. For the optical gains considered here these optimality
windows explicitly read as follows:

1 � �cl � 3, 1 � �out � 3 for g2 = 0.5,

1 � �cl � 9, 1
4 � �out �

9
4 for g2 = 0.8,

1 � �cl �
23
3 , 3

13 � �out �
23
13 for g2 = 1.3.

The left-hand sides of these inequalities are dictated by the
commutation relations �6� and cannot be overcome by any
operation, i.e., the theoretical tradeoff in the figures never
lies below or to the left of the optimality window. However,
the tradeoff �13� lies to the right of the optimality window
for sufficiently large noise �cl. In this case the operation satu-
rating the tradeoff is suboptimal and a better performance is
obviously obtained by the operation corresponding to the
minimum of the tradeoff, which also corresponds to the bot-
tom right corner of the optimality window. Note that the only
exception occurs in the unity gain regime �g=1� demon-
strated in �10� where the optimality window is not bounded
from the right; i.e.,

FIG. 4. Experimental results for MDM with optimized gain. Variances �nout,x
2 � �left figure� and �nout,p

2 � �middle figure� of the added noises
in the amplitude and phase quadratures are plotted against the quantity �ncl,x

2 � and �ncl,p
2 � characterizing the noise added into the outcomes of

simultaneous measurement of amplitude and phase quadratures. We also make use of Eq. �7� to plot �out against �cl �right figure�. The solid
line represents the theoretical relation �out=1/�cl. The experimental data were obtained by taking into account the detection efficiency of
83% at the homodyne detector. The error bars in the x-axis steam from the uncertainty in the measurement of the beam splitter transmission
�2% deviation�. The error bars in the y axis are caused by 0.1 dB relative measurement accuracy of the electronic spectrum analyzer and 0.1
dB deviation of the homodyning efficiency.
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1 � �cl � 	, 0 � �out � 2. �52�

Thus, since �cl−	�cl
2 −1�1 for any �cl�1 the optimal output

noise �out for g=1 always satisfies the second inequality in
Eq. �52� and therefore in the unity gain regime the tradeoff
�13� never leaves the optimality window.

As can be seen in Fig. 5, the obtained experimental trade-
offs are in very good agreement with the theory, which
shows that our measuring apparatus indeed realizes optimal
nonunity gain Gaussian partial estimation of coherent states.
In particular, the noises added to the phase and amplitude
quadratures are practically the same, which confirms that the
measurement procedure introduces isotropic phase-
independent noise into the estimated state as well as the post-
measurement state.

VII. DISCUSSION AND CONCLUSIONS

Our experimental minimal disturbance measurement with
fixed nonunity gain finds a direct application in the context

of optimal Gaussian individual attacks on coherent state
quantum key distribution �QKD� with heterodyne detection
and direct reconciliation �18�. The optimal tradeoff demon-
strated by us determines the minimum added noise in the
outcomes of simultaneous measurement of complementary
quadratures a potential eavesdropper can reach for a Gauss-
ian quantum channel with a fixed gain and a fixed phase-
insensitive added noise. In the QKD terminology it means
that the minimal-disturbance measurement provides an
eavesdropper with maximum possible information that can
be gained from an individual Gaussian attack in the
heterodyne-based coherent state QKD protocol with direct
reconciliation. Recently, the similar problem has been stud-
ied theoretically directly in the context of QKD �34� and
another form of the above-mentioned tradeoff was found
�Eq. �11� of Ref. �34��. The proofs of optimality presented
here, however, follow completely different strategies in com-
parison with those presented in �34� and more importantly

FIG. 5. Experimental results for MDM with fixed gains g2=0.5 �a�, g2=0.8 �b�, and g2=1.3 �c�. Variances �nout,x
2 � �left figure� and �nout,p

2 �
�middle figure� of the added noises in the amplitude and phase quadratures are plotted against the �ncl,x

2 � and �ncl,p
2 � characterizing the noise

added into the outcomes of simultaneous measurement of amplitude and phase quadratures. We also make use of Eq. �7� to plot �out against
�cl �right figure�. The optimality windows �gray shaded regions� are determined by Eqs. �14� and �15�. The solid line represents the
theoretical tradeoff �13�. The experimental data were obtained by taking into account the detection efficiency of 83% at the homodyne
detector. The error bars in the x axis stem from the uncertainty in the measurement of the beam splitter transmission �2% deviation�. The
error bars in the y axis are caused by 0.1 dB relative measurement accuracy of the electronic spectrum analyzer and 0.1 dB deviation of the
homodyning efficiency.
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we saturate the optimal tradeoff between added noises ex-
perimentally.

In this paper we have extended the concept of the phase-
insensitive MDM for coherent states to the nonunity gain
regime. We have given a complete theoretical as well as
experimental study of this MDM for two different scenarios.
First, we have found the nonunity gain MDM assuming fixed
optical gain. In the second scenario we considered MDM
with optimized gain. We have shown that both MDMs can be
realized by a scheme consisting of only linear optical ele-
ments and a feedforward and we implemented the scheme
experimentally. We have experimentally reached theoretical
limits in both scenarios. Our results give answer to a funda-
mental question of how much noise will be in the measure-
ment outcomes from the nondestructive measurement of a
coherent state provided that it is represented by a single-

mode Gaussian channel with a given optical gain and isotro-
pic added noise. Our analysis could be also extended to
phase-sensitive measurements such as the quantum non-
demolition measurement of a single quadrature of light.
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