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Abstract

The subject of this thesisis a theoretical investigationof the nonlinear lateral
modesof broad area(BA) semiconductorlasersincluding studiesof station-
ary properties, of stabilit y properties, and of the dynamicsof a BA laser in
an external cavit y.

The most prominent characteristicsof the output �eld of a BA laserare
due to lateral properties. A detailed investigation of stationary lateral �eld
distributions is carried out and leadsto the �nding of a systematicstructure
of several categoriesof lateral nonlinear modes. In addition to the known
de�nite-parit y modes, asymmetric modes are found, although the physical
system under investigation is symmetric. The structure and interrelation-
ship betweendi�erent modesare alsoseenin their tuning curves.

A stabilit y analysisof the above mentioned stationary solutionsmust be
carried out in order to evaluate their physical role. By meansof a Green's
function method a small-signalanalysisis carried out with emphasison the
stabilit y properties. It is found that all regardedmodesare unstable except
for the caseof very low pump currents. The small-signalstabilit y analysis
explainswhy BA lasersare generallyfound to have uctuating output �elds:
at considerablepump currents there are no stable stationary solutions.

An existing external-cavit y scheme including a spatial �lter is imitated
theoretically and it is found that one consequenceof the external cavit y
is to dampen the lateral dynamics of the �eld, which in turn leads to a
improvement of the spatial coherenceof the output. The near-�eld reveals
that the external-cavit y schemechangesthe lateral dynamicsof the BA laser
to a behavior more similar to a laserarray.
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Resume

Titlen p�a dette Ph.d.-projekt er \Struktur, stabilitetsegenskaber og ikke-
line�r dynamik i bred-arealhalvlederlasere". Indholdet er en teoretisk un-
ders�gelseaf ikke-line�re laterale modesi bred-areal-lasere(BA-lasere). Un-
ders�gelsenomfatter station�re egenskaber, stabilitetsegenskaber samt dy-
namiske egenskaber af en BA-laser i en eksternkavitet.

De mest tydelige karateristika ved en BA-lasersudgangsfeltskyldeslat-
erale egenskaber. En detaljeret unders�gelseaf station�re l�sninger til det
laterale feltproblem udf�res og leder til erkendelsenaf en systematiskstruk-
tur i ere kategorieraf laterale ikke-line�re modes. I till�g til kendte modes
med bestemt paritet �ndes asymmetriske modes selvom det betragtede fy-
siske systemer symmetrisk. Strukturen og indbyrdes tilh�rsforhold mellem
statinon�re tilstande sesogs�a p�a derestuningskurver.

En stabilitetsanalyseaf de ovenfor omtalte station�re tilstande udf�res
for at evaluere deresfysiske betydning. Ved hj�lp af en Green's funktion
metode udf�res en sm�asignalanalysemed hovedv�gt p�a stabilitetsegensk-
aber. Det viser sig at alle betragtedestation�re l�sninger er ustabile bortset
fra ved meget lave pumpestr�mme. Den line�re stabilitetsanalyseforklarer
hvorfor BA-laseregenerelthar uktuerende udgangsfelter:Ved betragtelige
pumpestr�mme er ingen station�re l�sninger stabile.

Et eksisterendeekstern-kavitets-system der indbefatter et rumligt �lter
imiteres teoretisk og det bliver klart at en konsekvensaf deneksternekavitet
er at d�mp e n�r-feltes laterale dynamik, hvilket medf�rer en forbedret rum-
lig koh�rens. N�r-feltet afsl�rer at den eksternekavitet �ndrer BA-laserens
laterale dynamik til mereat ligne dynamikken i et laserarray.
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Chapter 1

In tro duction

Broad area(BA) semiconductorlasersareedge-emittingsemiconductorlasers
usually designedashigh-power laserdevicesintendedto emit asmuch power
as possiblewhile at the sametime having a reasonablylong lifetime. They
arewide-aperture Fabry-Perot laserswhich, in their simplestform, only o�er
guiding of light by meansof index guiding in one transversedirection; in
the secondmuch broadertransversedirection (the lateral direction) the light
is purely gain guided. An injected current inverts the semiconductorgain
material over a limited lateral regionwherelight is ampli�ed. The broadness
of the lateral regionpumped by the injected is motivated by a combined urge
for high output power along with the necessity of lowering the intensity of
light to avoid catastrophic optical damage.

BA lasers,beingFabry-Perot lasers,arelongitudinally multi-moded. How-
ever, the main interest both from a theoretical and an application point of
view has traditionally beendirected towards the lateral behaviour. Modern
BA lasersusually have emitter-widths of 100 � m or wider. The geometry
of BA lasersgivesa single-mode behavior in the index guided transversedi-
rection while the behaviour in the lateral gain guided region typically gives
rise to a heavily laterally multi-modedbehaviour yielding complexvariations
in spaceand time often termened �lamentation giving inherently poor co-
herenceproperties. Consequently, various schemesaimed at improving the
coherenceof the output of BA lasershave beensuggested.

While the incoherent output is of inconveniencefor applicationsdemand-
ing high power, BA lasersform a laboratory for the study of nonlinear phe-
nomena. The work presented in this thesis is theoretical. The purposeof
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the work is to obtain a better understandingof the lateral properties of BA
lasers. While the dynamics of BA lasershas been studied quite a lot, the
stationary modestructure hasbeenstudied lesssystematicly. We perform an
in-depth investigation of the stationary lateral modesin a BA Laser. After
�nding stationary solutions in the lateral nonlinear system,we go through a
small-signalanalysis. In time-domaincalculationswe try to reproduceexper-
imental behavior of a set-up involving a BA laser in an asymmetricexternal
cavit y acting as a spatial �lter. The purposeof the cavit y is to improve the
spatial coherenceof the BA laser. The contents of the remaining chapters is
outlined below.

In Chapter 2 we present the regardedBA-laser device. It is a generic
structure as our aim is to do a general investigation rather than to view a
particular design. Motivated by the needfor laserswith improved coherence
properties,an existing external-cavit y schemeaimedat improving the spatial
coherenceis described. We study this sechemein a later chapter. We lastly
aim to give a very brief overlook of the theoretical treatment of BA lasers,
while mentioning the approacheswe pursuein the subsequent chapters.

In Chapter 3 we �rst derive the main equationsgoverning the lateral
�eld distribution and carrier-density distribution using mean-�eld theory.
Here mean-�eld theory yields performing an averageover the longitudinal
direction of the laser. We then combine thesetwo equationsto form a single,
nonlinear �eld equation with the aim of �nding stationary solutions. With
appropriate boundary conditions for lateral gain guided modes, stationary
solutions are then found. We �nd that the variety and structure of lateral
stationary solutions and the way their frequenciesvary with pump current
to be much richer than what has previously beenshown [1]. We �nd asym-
metric modes in the symmetric laser structure and other modeswhich can
only exist due to the nonlinear nature of the gain material. The modesturn
out to be related in a systematicstructure that we have found in their tun-
ing curves,i.e. curvesshowing the stationary frequencyof the modesversus
pump current, and in their �eld distributions.

Along with the resultsof Chapter 3 yielding stationary solutions, Chap-
ter 4 is of a theoretical nature. In this chapter we perform a small-signal
analysisof the nonlinear stationary solutions obtained in Chapter 3 using a
Green'sfunction approach. In particular we investigatethe stabilit y proper-
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ties of selectedmodes. The analysisshows that all investigatedlateral modes
are unstable with the exception of the two lowest order modesat very low
pump currents. This fundamental result is in correspondancewith streak-
camerameasurements [2] and large-signaltheory [3][4] which tell that BA
lasersare never in a steadystate when the applied current in considerable.

Chapter 5 contains time-domain calculations based on the numerical
method named hopscotch. A solitary BA laser is comparedto a BA laser
in an asymmetric external cavit y. The external cavit y improves the spatial
coherenceof the lsaser. We obtain a good qualitativ e agreement with mea-
surements found in the literature. Our calculationsshow that the asymmetric
external cavit y laseroperatesin a uctuating state.

In Chapter 6 we present a method to calculate lateral modes in a BA
laservia a mode expansion.With an expansionin linear gain guided lateral
modes,it becomespossibleto recognizethe most signi�cant perturbations of
the �eld at low currents.

Chapter 7 givesa short summary of results.
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Chapter 2

Broad area semiconductor
lasers

The geometryof BA-laser deviceswith their wide apertures allow for high-
power output when pumped at high currents. In fact the geometry also
makes BA lasers suitable for scienti�c purposesas testbeds for gain ma-
terials [5] or for experiments on spatially nondegeneratefour-wave mixing.
Injecting a pump- and a probe beamsat di�erent angelswith a frequency
detuning makesit possibleto measureambipolar carrier di�usion coe�cien ts
and carrier lifetimes [6]. Their usefulnesas lasers,however, is also limited
by the geometrysinceit allows the lateral �eld distribution to vary in time
and spacein a complexmannerthat ruins the coherenceof the output beam.
The strongly nonlinear behavior due to the light-semiconductor interaction
also gives a range of interesting phenomenato be studied. Moreover, the
hunt for methods to improve the coherenceof the output of BA lasershas
beenongoingfor at least two decades.

Now, we desribe the basicsof BA lasers,and qualitativ ely discusstheir
spatiotemporal behavoir which is often described through the processof �l-
amentation. We then, after briey reviewing methods to improve coherence
propertiesof BA lasers,describe an asymmetricexternal cavit y BA laserthat
we investigate in Chapter 5. Lastly in this chapter, we discusssomeof the
di�erent paths that one can choose, including those that we choose,when
onestudiesBA laserstheoretically.
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2.1 Broad area laser devices

The name \BA laser" originates from the laser geometry. When increasing
the current in a semiconductorlaser high above its threshold, the intensity
of light eventually surpassesa threshold wherecatastrophic optical damage
is done to the laser facets. At the sametime many applications demand
high-power output. In order to keepthe intensity of light below the damage
threshold of the laserfacetsand at the sametime obtain high output power,
the laserstructure is madewider in the lateral direction.

x=0

r2
r1

  x=x0

x=-x      0

Aly'

Alx'

Alz'
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Output

Metal contact

y

x

z

z=0
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Ga1-x'

1-z'Ga
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Figure 2.1: Generic structure of a broad area laser. The active layer
(Al x0Ga1� x0As) is sandwiched between two cladding layers. The coordinate
systemrepresents the lateral (x), the transverse(y), and the longitudinal (z)
axes,respectively. The origin is centered in the middle of the waveguideat
the back facet. Here it is dispalcedfor clarity.

BA lasersare edge-emittinglasers.Figure 2.1 illustrates a BA laserin its
simplest form. Three semiconductorlayers form a p-i-n junction. The top
layer is a p-type doped cladding layer. The middle layer, an intrinsic core
layer, is the active layer where light may be ampli�ed in casethe material
is inverted. The bottom layer is an n-type doped cladding layer. On top of
the structure sits a metal contact. Not shown in the �gure is the substrate
on which the n-type layer is grown. Under the substrate a secondmetal
contact is deposited. In the calculations presented in this thesis we have
assumedthe material composition of the BA laser to be in the AlGaAs
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material systembut this is not essential for the theoretical analysis. From
Figure 2.1, it is evident that there is no lateral (in the x-direction) variation in
the material composition and thereforeno lateral variation in the refractive
index present in the system. The BA laser regarded here is thus purely
gain guided. For a purely gain guided BA laser the optical �eld is limited
in the lateral direction only by the extend of the region having appreciable
current pumping. BA laserswith weak lateral index guiding [7] and more
complicated and re�ned layer structures [8] than the simple one in Figure
2.1 have beenrealized. However, the work presented in this thesis is purely
theoretical and has no relation to a speci�c device whereforewe focus on
a genericBA-laser structure. This genericstructure is thus a wide double
heterostructure with a wide top metal contact. The double heterostructure
servestwo important purposes.Sincethe bandgapsof the p- and n-layersare
higher than the oneof the intrinsic layer, carriersarecon�ned in the intrinsic
layer where they are to recombine preferably under stimulated emission. In
addition, the intrinsic layer alsocon�nes light asits refractive index is higher
than the two outer layers. The double heterostructure is therefore also a
slab waveguideresponsible for the transverse(y-direction) guiding of light.
The core layer is madesu�cien tly thin so that only one transversemode is
supported. Most if not all commerciallyavailable BA lasershave oneor more
quantum wells servingasthe gain material. When quantum wells constitute
the active region of the laser a separate-con�nement heterostructure must
carry the burden of waveguiding. BA laserswith quantum dot gain material
have alsobeenreported [9].

For a gain guided single-stripe AlGaAs lasersupporting only one lateral
mode, the width of the top metal contact (the current stripe) is typically 3
to 5 � m. The top metal contact of a BA lasercan be said to be oneor two
ordersof magnitudewider than that of a singe-lateralmode laser. BA lasers
with current stripes as wide as 1000 � m have been reported [10]. In this
thesiswe regard a width of w = 2x0 = 200 � m. When increasingthe width
to several tensof microns,oneallows for lateral multimodeoperation. In fact
when increasingthe width of the current stripe to obtain a higher maximun
output power, the high-power performanceis limited by spatially localized
bursts (�lamen ts) of high intensity, which in itself lowers the threshold for
catastrophical optical damageof the output facet [11]. Nevertheless,the
highest output power achievable from a semiconductorlaser increaseswith
increasingareaof the output facets. ThereforeBA lasersremain poplar for
high-power applications. The lasermirrors (facets) with amplitude reectiv-
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ities r1 and r2 are obtained by cleaving the crystal in planesperpendicular
to the grown layers. The facets may in addition be coated to modify their
reectivities.

The p-i-n junction is forward-biasedto obtain inversion. When the diode
is forward biased electrons and holes are injected into the intrinsic layer
wherethey may recombine or continue to the layer opposite to the onefrom
which they were injected. As the forward bias is increasedthe quasi-Fermi
levelsof the electronsand the holes,will increaseand decrease,respectively.
When they are separatedby the bandgap energy, the material is inverted.
In semiconductorlaser modeling it is often assumedthat one is not too far
away from thermal equilibrium and that all electron-holetransitions take
place between the extrema of one conduction band and one valenceband,
i.e. at zerowave number. In this thesiswe will employ this approach.

2.2 Spatiotemp oral behavior

In most experimental work on high-power lasers,slow detection methods av-
erageout any fast variations in time giving only a static spatial variation in
the intensity distribution to read out. Such measurements are unlikely to
give a full understanding of the physical mode of operation of a particular
laser. Fischer et al. [2] measuredthe spatio-temporal dynamicsof the output
�eld of a BA laser on a picosecondtime scaleusing a streak-camera. The
near-�eld was seento consist of rapidly changing irregular lateral patterns
of light intensity. A BA laserpumped at a high current never �nds a steady
state. The dynamics following the initial relaxation oscillations may be di-
vided into two domainsof �laments [12] where a �lament is a small region
in the active region of relatively high intensity. Firstly, \static" �lamenta-
tion where regionsof the near-�eld of high respectively low intensity retain
their individual lateral positions. The �eld of a BA laser is not static, how-
ever, even at moderate (moderate not being high) pump currents. Thus the
\static" �laments are turned on and o� on a time scaleof the order of 100ps.
The reasonfor this is \dynamic �lamentation", the seconddomain, which
meansthat the �laments tend to move laterally as a function of time. This
behavior manifestsitself as zig-zagpatters in the temporal evolution of the
near-�eld (we shall seean exampleof this in Chapter 5). If a �lament origi-
nating on oneedgeof the active region migratesall the way to the opposite
edgeit would take roughly between 200 to 500 ps for the inspected device
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of [2]. The devicewas a GaAs/AlGaAs deviceof width 100 � m pumped at
two times threshold. Static theoriesof �lamentation have beenalsobeenput
forth [13]. In fact one may interpret stationary �eld distributions obtained
by solving an appropriate set of model equations, i.e. a nonlinear spatial
mode in the laser, as static �lamentation [1][14]. In Chapter 3 we �nd sev-
eral di�erent typesof nonlinear modesrevealing a rich variety of stationary,
spatial shapes.

The irregular output of BA lasershasits origin in the processof dynamic
�lamentation. In BA laserswith no passive, lateral index guiding, the lateral
�eld distribution is constrainedlaterally only by the �nite width of the lat-
eral current distribution. Antiguiding in semiconductorsis the phenomenon
whereregionswith relatively high carrier density or inversion(and therefore
a relatively high gain) impliesa relatively low refractive index. Oppositely for
regionswith relatively low carrier density (and thereforea relatively low gain)
which have a relatively high refractive index. The �lamentation processin-
volvesantiguiding that causesself-focusing,di�raction, and local di�erences
in gain: Consider a local burst of high intensity (a �lament). The carrier
density is locally depleted causing locally low gain and due to the antigu-
iding e�ect locally high refractive index comparedto the surrounding area
where the gain is relatively high and hencethe refractive index relatively
low. The �lament can persist due to the index guidewhich hasbeenformed.
Eventually, however, the gain in its neighboring area,wherethe intensity of
light is low, risessu�cien tly high above the threshold level, due to the pump
current, sothat the �lament moveslaterally and is ampli�ed and the process
can start over. With many such �laments interacting nonlinearly the overall
result is an apparently chaotic behavior in time and space. We will show
examplesof this behavior in Chapter 5. The above description of dynamic
�lamentation relieson local depletionof the carrier density. At the two edges
of the pumped region the carrier density is typically relatively high due to a
relatively low intensity of light indicating that the total �eld createsa global
waveguidethrough gain-guidingand anti-guiding. By global we meanon the
length scaleof the width of the metal contact w = 2x0.

2.3 Schemes aimed to increase coherence

BecauseBA laserscan deliver high-power output but have weak coherence
properties, there has beenan urge to improve the latter. It seemsthat the
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largest e�ort has beento improve the spatial coherencein order to be able
to focus the output beame.g. into an optical �b er. To optimize the spatial
coherence,then, meansto obtain an output resembling a Gaussianbeamto
as high an extend as possible. Here we briey mention a few attempts to
tame the beast,after which we will describe the speci�c external-cavit y (EC)
setup which we regard in Chapter 5. We divide the schemesinto on-chip
schemeswhere advancedsemiconductortechnology has beenused in order
to tailor a laser cavit y to give a desiredstable single-mode output or often
a, more realisticly speaking, partly stabilized output, and then EC schemes
wherethere is a �nite delay betweenthe output of the BA laserand the �eld
that is fed back to the laser.

2.3.1 On-c hip schemes

The � -distributed-feedback laser[15][16]is essentially a BA laserwith a single
intra-cavit y angled grating whosefringes make up a substantial angle with
the lazer axis (z-axis). The current stripe is angledparallel to the grating.
The grating �lters the intra-cavit y �eld spatially and spectrally giving single-
mode operation both spatially and spectrally. The output-�eld is closeto
being Gaussianand �lamentation is well suppressed.

Another on-chip scheme has been demonstratedwith broad area lasers
having an intracavit y spatial phasecontroller yielding a nearly di�raction-
limited single-lobedfar-�eld [17]. In the demonstratedlateral-multi-segment-
device,a spatial phasecontroller could generatean asymmetriclateral varia-
tion in the longitudinal optical path length. Pulsedpowers of 300mW were
achieved. The authors suggestthat a tilted end facet (� 1 degree)should
have an equivalent e�ect. We mention this deviceas it hasa built-in lateral
asymmetry. The EC laser that we study in Chapter 5 is also asymmetric.
The devicehad a single-lobed far-�eld o� the laseraxis. Semiconductor-laser
arrays are devicesrelated to BA lasers,which provide an e�ective method
to suppressthe �lamentation in a wide-aperture laser. Also, a strong com-
petitor to the BA laser as a high-power device are tapered lasers. Praci-
tally di�raction-limited tapered laserswith multi-W att output emergedin
the mid-nineties [18].
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2.3.2 External cavit y schemes

External cavities o�er the combination of an delayed optical feedback and
optionally a �ltering. For twin-stripe lasersthe e�ect of the delay in an ex-
ternal cavit y can in speci�c casesbe seento stabilize what was a chaotic
output intensity for the solitary laser to a periodically varying output [19].
For BA laserswith their broad spatial spectrum, somemeansof spatial �lter-
ing is probably necessaryto increasethe spatial coherenceand/or stabilize
the dynamic �lamentation. Most likely onecannot have the former without
the latter at high pump currents. In [20] a spatially �ltered feedback by
meansof a tilted plane mirror wasapplied and streak-camerameasurements
show that the �lter is able to suppressthe dynamic �lamentation rather well.
Another way to achieve spatial �ltering is to usean external reector with
a �nite radius of curvature. Such external cavities have producedoperation
causinga single-lobed far-�eld of the laser[21] in agreement with theoretical
predictions [22] [23]. Phaseconjugate feedback without spatial �ltering has
produced operation in a single longitudinal mode [24]. Even operation in
a true single longitudinal and lateral mode has beenachieved albeit at low
currents using photorefractive feedback [25]. It shouldbe noted that a plane
conventional mirror (without any spatial �ltering) has been shown not to
have any stabilizing e�ect on the output of a BA laser,nor to bring it to lase
in a single longitudinal or lateral mode [24].

2.4 Asymmetric external cavit y laser

It hasbeenshown experimentally in [26][27] and through modeling [28] that
injection set-upswith a single-mode laser acting as a master oscillator and
the BA laser ampli�er as the slave, that the best spatial coherenceof the
output of the slave is achieved when the angle of incidenceof the master
beamon the front facet of the BA laser is o� the laseraxis of the BA laser,
i.e. the slave. On the contrary, normal incidence (� = 0) of the master
beamcauses�lamentation in the near-�eld and a far-�eld distributed over a
large range of angles. It thus appearsthat locking the fundamental spatial
(lateral) mode is di�cult to achieve. Consideringan external-cavit y scheme
in which the intention is to force a wide aperture laser to ideally oscillate
in a single lateral mode, it makes good senseto enhancelateral modes of
the laser that emit light away from the laser axis in the far-�eld. For this
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purposean asymmetric external cavit y (AEC) laser was introduced in 1987
[29]. The original work wasdoneusinga wide semiconductorlaserarray but
the behavior of the systemholds similar to the casewhen a BA laser is used
as the active part of the system.
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Figure 2.2: Top view of AEC laser. BA laseremits ligth through right facet.
Lensof focal length f Fourier transforms the �eld from the x-domain to the
kx-domain. The far-�eld (FF) or the Fourier plane is thus at z = l + 2f ,
wherethe reector with amplitude reectivit y r 3 acts asa spatial �lter (due
to its small lateral extend). The part of the �eld that is reected due to r 3

is again Fourier transformedto the x-domain. The y-axis collimator (a lens,
e.g. a cylindrical lens,of short focal length) collimatesthe �eld in the quickly
diverging y-direction.

A version of the AEC laser made as simple as possibleis presented in
Figure 2.2. It is similar to [10]. It consistsof a wide aperture laser, within
this thesis a BA laser, two lenses,and a reector (a stripe mirror) with
amplitude reectivit y r 3. The �eld emitted from the right facet of the BA
laserwith amplitude reectivit y r 2 propagatesthrough the lensesbeforepart
of it is reected by the external stripe-mirror width. A part of the reected
�eld returns to the right facet through the lenses.Let us describe the system
in more detail: Usually one assumesthat the output (scalar) �eld of the
solitary BA laser can be written as a product E + (x; z = l)� (y). The y-
dependent part of the �eld is a single-moded and nearly Gaussianpro�le
with negligible phasecurvature becauseof the index guiding of the double
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heterostructure in the y-direction [30]. The lens labeled\ y-axis collimator",
is placedimmediately front of the output facet. It can be an e.g. cylindrical
lens. It collimates the �eld along the y-axis and the y-dependencecan be
disregardedin the external cavit y. The collimation is important since the
�eld is quickly divergent in the y-direction. In reality parts of the reected
�eld will not make back to the right facet becausee.g. undesiredscattering
at the external mirror or misalignments. Theselossescan from a theoretical
point of view be included in the reectivit y r 3. The secondlens is placed
at z = l + f where f is the focal length of this lens. This meansthat the
this lens performs a spatial Fourier transform on the output �eld so that
at z = l + 2f (the Fourier plane) one obtains the spatial spectrum (the kx-
domain) or the far-�eld of the output �eld. At the Fourier-plane the �eld
is �ltered and reected by the external stripe-mirror and due to the return
to right facet at z = l through the lens, the �eld is transformed back to the
x-domain. Speaking in broader terms any type of �lter can be placedin the
Fourier-plane be it symmetric or asymmetric. Also, the lens could also be
displacedfrom z = l + f to obtain a focusedfeedback [31].

It should be noted that in somereported set-ups,e.g. [10] [32], an aper-
ture was inserted in the output arm as an additional spatial �lter. The aim
of the aperture is to separateunwanted side lobesfrom the dominant single-
lobe in the far-�eld (we call the dominant lobe \the single-lobe"). Therefore
reported single-lobe output at very high pump currents may have undergone
such additional spatial �ltering. Figures2.3and 2.4adoptedfrom [33]exem-
pli�es measuredtime-averagednear-and far-�elds of a BA laser. The �gures
comparethe output of the solitary BA laserand the output whenthe AEC is
added. In Figure 2.4 the e�ect in the far-�eld is evident: the far-�eld of the
solitary laser is a blurred shape spreadover a wide spanof angles,typically
2 to 6 degreesdepending on the deviceand pump current. When the AEC
is added and optimized one seesa dominant single-lobe. The single-lobe is
seento be to the left of the optical axis. In this casethe stripe mirror is
placedto the right of the optical axis. For a 200� m-wide BA AlGAas-device
pumped at 2 times threshold the single-lobe of the AEC lasercan be located
around 2 degreeso� the optical axis in the far-�eld [34]. In order to obtain a
measurement as the one in Figure 2.4 showing the entire far-�eld, onemust
insert a beam splitter just before the external mirror. If one measuresthe
output after the external mirror, onewill only (or mainly) seethe single-lobe.
The near-�eld in Figure 2.3 shows that the e�ect of the external mirror is to
tilt the near-�eld. One can say that the near-�eld tilts in the samedirection
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as the far-�eld.
AEC laserswith external cavities including a grating as the reector [35]

and a grating as a reector in combination with a Fabry-Perot etalon [36]
have been shown to considerablynarrow the emissionspectrum while also
improving the spatial coherence.The spectra werenarrowed from around 1
nm lessthan 0.1 nm around 810 nm. For AEC laserswith a conventional
stripe-mirror, on the other hand, the spectral width of the freely running
BA lasersis not reducedsigni�cantly [37]. From a theoretical point of view,
it is of interest whether an AEC laser with a mirror reector operatesin a
single,stable, lateral mode or in sometime dependent state. Our calculation
presented in Chapter 5 implies that the latter is the case.

In high power laser technology, often the spatial coherenceis of greater
concernthan the temporal coherence.A measureof spatial coherenceoften
usedin connectionwith high-power lasersis the M 2-factor. It expressesthe
similarity betweena regardedoutput �eld of a laserwith a Gaussianbeam.
The Gaussianhassamewidth asthe regarded�eld at its waist [38]. The M 2-
factor appearsto make most senseat valuesthat are not vastly greater than
1. The beam quality of the single lobe in the far-�eld of a AEC laser may
be measuredusing M 2. When pumped far above threshold, the M 2 of AEC
lasersdegradesfor increasingpump currents. Hence,a compromisebetween
high output power and low M 2 must be made in high-power applications.
We will not discussthe M 2-factor further.

Figure 2.3: Measurednear-�eld of solitary laser(left) and AEC laser(right).
The devicewasa BA laserwith a 200� m-wide current stripe running at 810
nm. Adopted from [33].
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Figure 2.4: Measured far-�eld of solitary laser (full line) and AEC laser
(dotted line). SamecaseasFigure 2.3. Note that the abscissa-unitis length
and not angle as it is commonfor the far-�eld. The optical axis (� = 0) is
around 2700� m. The stripe mirror is locatedaround 3500� m, i.e. opposite
the dominant single-lobe. Adopted from [33].

2.5 Theory and modeling of BA lasers

From approximately 1990until today, mainly two paths have beenfollowed
to model BA lasers. Those are the beam propagation method (BPM) and
time-domaincalculationsby integration of time dependent partial di�erential
equations(PDEs).

BPM is a method to �nd stationary �eld distributions by propagating a
�eld back and forth in the lasercavit y, while consideringthe couplingbetween
the intensity of the �eld and the semiconductor,until a steadystate hasbeen
obtained. Its main quality is that it gives2-dimensionallaser modeling (as
opposedto 1-dimensional)at low computational cost. We have implemented
BPM both with and without the external cavit y of the AEC laser. As it was
alsofound in [1] we have found it problematic for the method to �nd steady
statesexceptfor at very low pump currents, especially whenincluding an ex-
ternal cavit y in the system. Supposedlythis problem is due to the di�erence
in time scalesof the optical and carrier rate equations [1]. Moreover, the
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steadystate which BPM may �nd dependson the trial �eld that is initially
launched into the system. Sincethe �eld is propagatedback and forth in the
cavit y the e�ect of �lamentation interfereswith the aim of �nding stationary
solution. An amusing exampleof the e�ect of �lamentation on BPM can be
found in [30] where the linewidth enhancement factor � was simply set to
zero in order to get stationary results for a BA laser in an external cavit y.
With � = 0 there is no self-focusing, and henceno �lamentation. We have
not found BPM suited for our purposes.When modeling BA ampli�ers (not
lasers) [39], in conjunction with injection locking of BA lasers[28], or for
index-guideddevicessuch as tapered lasers[40], BPM may work well.

When recognizingthe very complexuctuations in time and spaceof BA
lasersand desiringto beableto comparetheory with experiment at consider-
able pump currents it becomesadvantageousto usea time-domain method.
In fact onecannot expect stationary solutions to be found in measurements
at high currents. While treating the �eld of the laser classically, di�erent
levels of describingthe semiconductorgain material have beenregarded. A
phenomenologicaldescription using linear gain and the � -parameter is an
\obvious" possibility [41]. However, aswe �nd in Chapter 5 the phenomeno-
logical model causessomeproblemsin a spatially extendedsystemwherethe
di�raction of the �eld has to be included. Fortunately, one can modify the
equationsslightly to overcomethe problem. Microscopic models using the
semiconductorMaxwell-Bloch equations[3][4] have beenthe other extreme
at least for bulk BA lasers. In most casesknown to us the numerical ap-
paratus upon which the time-domain approachesrely, regardlessof the level
of describingthe semiconductor,is the hopscotch method, a method to inte-
grate parabolic PDEs. Implementations including 2 and 1 spatial dimensions
have beenpresented. In Chapter 5 we usea 1-dimensionalimplementation
of the hopscotch method with a phenomenologicaldescription of the semi-
conductor. This hasbeencomputationally highly advantageoussinceall our
numerical calculationshave beenperformedon a laptop computer. To work
in one spatial dimensionwe usea mean-�eld approxiamtion when deriving
equationsin Chapter 3, implying that we averageover the longitudinal di-
rection z.

Of course one can choose other paths than the two described above.
Within other typesof laserssuch as lateral single-mode EC lasersand dis-
tributed feedback (DFB) lasersthere has beena great tradition of �nding
stationary solutions of the given system and then investigating their small
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signal properties. For examplefor a lateral single-mode EC laser,under cer-
tain feedback conditions, the stationary solutionsof the lasermay be located
on an ellipsein the (frequency, threshold-gain)-plane[42]. Half of the station-
ary solutions are found to be unstable when subject to a stabilit y analysis,
and the lasermay chooseto lasein only oneof the solutionson the ellipseor
perhapsthe laserschoosesa chaotic state, but this doesnot mean that the
existenceof the ellipse is uninteresting. Basedon these considerationswe
�nd stationary lateral modesin a BA laserin Chapter 3 and perform a small
signal analysisof someof the found modesin Chapter 4. Sincea BA laser
is known to operate in a uctuating possibly chaotic state when driven at
considerablecurrents, our analysisis of a theoretical character. The method
we use to obtain stationary solutions resembles �nding bound states in a
scattering potential. Again, there are several lateral modes in a BA laser
for onepump current. With BPM this multitude of lateral modeswould be
extremely di�cult to come about since the solution to which BPM settle,
is dependent on a x-dependent trial �eld injected from one end of the laser
when initiating the iteration.

Further, in order to disassemble the nonlinear e�ects perturbing the �eld
near threshold we introducea modal-expansiontechnique that allows for an
easyinterpretation in Chapter 6.
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Chapter 3

Theory of stationary lateral
mo des in Broad area lasers

In this chapter we �rst formulate the equationswhich form the basisof the
results presented in this thesis. The derived equationsdescribe the lateral
�eld distribution and the lateral carrier density distribution of a BA laser.
To study the lateral mode structure in detail we have chosento reducethe,
in principle, 3+1 dimensionalproblem to a 1+1 dimensionalproblem. We
then combine the �eld and carrier density to a single,nonlinear equation for
stationary solutions following Lang et al. [1].

Secondly, we calculatestationary lasing solutions. Here, a stationary so-
lution is the combination of an oscillation frequency! s, a stationary lateral
�eld distribution Es(x), and a stationary lateral carrier-density distribution
Ns(x). We have found a wide variety of modes in addition to known gain
guided modes. It turns out that modeswith asymmetric �eld distributions
exist despite the symmetric lateral structure under investigation. Further-
morethe stationary solutionsyield a beautiful pattern of tuning curveswhich
possessa systematicstructure in their interrelationship and bifurcation be-
havior. Tuning curvesare curvesin the current-frequency plane.

As discussedin Chapter 2 onecannot, in general,expect that calculated
stationary modes will agreewith measurements. Stationary solutions may
not be stable, and one must at least investigate the stabilit y properties of
given modesbeforediscussingtheir conceivable role in an experiment. We
investigatestabilit y properties of the stationary solutions in Chapter 4.
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3.1 Deriv ation of equations using the mean
�eld appro ximation

We now derive a set of equations for the �eld distribution and the carrier
density. We choose to employ a mean �eld approximation which implies
averaging over the longitudinal direction of the laser. We assumethat the
laser operatesin a TE mode. The scalarwave equation in the time-domain
is given as [43][44]

r 2E �
�

� 0c2
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(P + p); (3.1)

where ! is the angular frequency. The real scalar electric �eld E(x; y; z; t)
inducesthe polarization �eld P (x; y; z; t). The material lossesare included
in the conductivity � . Spontaneousemissionis included in the term p. c is
the speedof light in vacuumand � 0 is the vacuum permittivit y. The Fourier
transforms are de�ned as
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In the frequencydomain Eq. (3.1) becomes
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� 0c2
(P ! + p! ): (3.4)

For single-mode semiconductorlasersit has beena vast successto assume
that the polarization relaxesin time scalesmuch faster than the time scalesof
the other variablesin the problem, the �eld and the distribution functions of
the chargecarriers. If one adiabatically eliminates the polarization variable
in the semiconductorMaxwell-Bloch equations (see [45] for the caseof a
semiconductorBA laser) then

P ! = � 0� ! (x; y; z)E! (x; y; z) (3.5)

where the susceptibility � ! (x; y; z) is related to the permittivit y � ! (x; y; z)
through

� ! (x; y; z) = 1 + � ! (x; y; z) � j
�

� 0!
: (3.6)
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Using Eqs. (3.5) and (3.6) in (3.4) yields
�
r 2 +

! 2

c2
� ! (x; y; z)

�
E ! (x; y; z) = F! (x; y; z); (3.7)

with

F! (x; y; z) = �
! 2

� 0c2
p! (x; y; z): (3.8)

We now show how the problem of solving the 3+1 dimensionalscalar wave
equation can be reduced to solving a 1+1 dimensional wave equation by
applying a weighted mean�eld approximation. We assumethat the electric
�eld in the BA-laser waveguidein the frequencydomain is of the form

E(x; y; z; ! ) = E +
! (x; z)� (y)e� j � z + E �

! (x; z)� (y)ej � z: (3.9)

E +
! (x; z) and E �

! (x; z) are �eld envelopes describing forward and backward
traveling wavesin the longitudinal direction. They are assumedto be slowly
varying functions of z. We intend to study lateral modesfor a given longi-
tudinal mode. The propagation constant � is thereforechosento satisfy the
longitudinal oscillation condition for a Fabry-Perot laser

r1r2 exp(� 2j � l ) = 1 (3.10)

wherer1 and r2 are the left and right facet reectivities (seeFigure 2.1). The
function � (y) describes the transverse�eld distribution and is taken to be
normalizedto unity, i.e

R
� (y)� � (y)dy = 1. Inserting (3.9) in the scalarwave

equation (3.7) and neglectingthe secondorder z-derivatives leadsto
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where k0 = ! =c is the vacuum wavenumber. By standard procedure we
separateinto a transverse�eld equation
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where

f �
! (x; z) =

Z 1

�1
F! (x; y; x)� � (y)dye� j � z : (3.14)

The eigenvalue equation (3.12) determinesthe fundamental transversemode
� (y) and the corresponding e�ective wave number kef f (x; z; ! ). We ignore
the weak dependenceof � on x. The e�ective wavenumber is related to the
complexe�ective refractive index by kef f (x; z) = nef f (x; z)(2� =� r ) where� r

is a referencewavelength [43] [46]. nef f (x; z) can be obtained by treating
the loss and pump dependent part of � ! (x; y; z) in (3.12) using �rst order
perturbation theory yielding a real pump independent e�ective index nr and
a con�nement factor

� =

R
activ e layer j� (y)j2dy

R1
�1 j� (y)j2dy

: (3.15)

In (3.15) it has been assumedthat the internal loss in the cladding layers
are the sameas in the core layer. The mean �eld approximation dealswith
averagesover the z-coordinate; an averagedvariable is denotedby putting a
bar over the variable. Thus
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The longitudinal averageof (3.13) yields the equations
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wherewe have assumedthat [47]
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The envelope �elds E �
! obey the boundary conditions

E +
! (x; 0) = r 1E �

! (x; 0) (3.19)

E �
! (x; l) = r2e� j 2� lE +

! (x; l) (3.20)

at the two end facets. With � satisfying (3.10) we �nd that (3.17), (3.19)
and (3.20) lead to the equation
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for the weighted �eld and noisefunctions E ! (x) and f ! (x) given by
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(E +
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! ) (3.22)

f ! =
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! ) : (3.23)

Also we have de�ned k by k2 � k2
ef f .

The frequencydomain equation (3.21) can be transformed to a time do-
main �eld equation for the complex�eld envelope E(x; t) de�ned by

E(x; t)ej ! s t =
1

2�

Z 1

0
E ! (x)ej ! t d! ; (3.24)

where! s is the optical frequencyof the lateral mode under consideration. If
E �

! are independent of z, the averagephoton density in the active layer is
given as

S(x) = B jE(x; t)j2 (3.25)

with the constant of proportionalit y [48]

B =
2� 0nr ng

~! h
K (3.26)

whereK is the longitudinal Peterman-factor [49]

K =
(r1 + r2)(r1r2 � 1)

2r1r2ln(r1r2)
; (3.27)

and wherewehave usedthat the con�nement factor � is approximately equal
to hj� (0)j2 with h being the thicknessof the active layer. Details are given
in Appendix A. For most practical casesthe factor K is closeto one. nr is
the real passive part of the e�ective index and ng is the group index. We will
assumethat (3.26) is a usefulapproximation even when longitudinal spatial
hole burning makesthe �eld envelope E �

! dependent on z.
Solving for � in Eq. (3.10) yields

� =
� pl

l
+ j

� m

2
(3.28)

wherepl is an integer denoting the longitudinal mode number and � m is the
distributed mirror loss

� m = �
1
l

ln(r1r2): (3.29)
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As we regardonly onelongitudinal mode we set the real part of (3.28) equal
to a referencewave number kr

kr =
! r

c
nr ; (3.30)

where! r = 2� c=� r is a corresponding referencefrequency. When there is no
lateral, passive index guiding present in the laserstructure, nr is independent
of x. Therefore,

� = kr + j
� m

2
: (3.31)

Taking the squareof (3.31) givesapproximately

� 2 ' k2
r + j kr � m : (3.32)

The z-averagede�ective wave number k(x) may be given the as a function
of ! and z-averagedcarrier density N (x) [50]:

k(x) =
!
c

n(! ; N (x)) + j
1
2

[g(! ; N (x)) � � i ] : (3.33)

Heren(! ; N (x)) is the modal index, g is the modal gain, and � i is the internal
lossall of which are averagedover z. The internal lossincludeslossescaused
by scattering of light at surfacesor at crystal defects,and by free carrier
absorption. For the modal gain we assumea simple linear model without
any spectral dependence:

g � g(! r ; N (x)) = � a(N (x) � N0): (3.34)

Here a is the di�erential material gain and N0 is a referencecarrier density.
The relation betweenthe modal gain and the material gain gm is g = � gm .
Weexpandthe complexpropagationconstant around the referencefrequency
! r and the transparencycarrier density N r = N0 + � i =(� a) to �rst order:

k(x) = kr +
@k
@!

(! � ! r ) +
@k
@N

(N (x) � Nr ): (3.35)

The gain in generalalso dependsupon intensity through processessuch as
spectral hole burning and carrier heating. This e�ect of nonlinear gain may
be included by adding an expansionterm in (3.35) proportional to the inten-
sity. Normally, the expansioncoe�cien t is negativesincehigh intensity tends
to suppressthe gain. Nonlinear gain is relevant at high powers. Modeling of
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BA lasersusing BPM has commonly implied useof linear gain models e.g.
[30] [31]. Imitating a quantum-well gain with a nonlinear dependenceon the
carrier density has also beenused in conjunction with BPM [51]. A trend
in the modern literature on time-domain methods for BA lasersis to rely
on a microscopictreatment [3][4] of the gain material using the semiconduc-
tor Maxwell-Bloch equationsto describe spectral hole burning such that no
phenomenologicalexpressionfor the gain is needednor is the introduction
of the � -parameter described below. We shall seein Chapter 5 that the
adiabatic elimination performed in connectionwith (3.5) has consequences
for a systemthat includes di�raction of the �eld. By disregardingthe fre-
quencydependenceof the gain, the direct-gap semiconductoris reducedto
a two-level systemwithout spectral broadening[45]. It is assumedthat the
chargecarriersof the semiconductorare in equilibrium, whereby excitedelec-
trons are mainly found at the bottom of the conduction band of the direct
bandgapsemiconductormaterial. All events of generationand recombination
of electron-holepairs are henceassumedfor carriersof zerowavenumber. In
reality, the carriers are not in thermal equilibrium in a semiconductorlaser.
Furthermore, a linear dependenceof the gain upon the carrier density is as-
sumed, neglecting the e�ect of gain saturation at high pumping rates. In
this thesis, we shall not considercasesfor currents I > 1:2I 0, where I 0 is
the approximate threshold current. The reader may �nd a pump current
20%above the threshold current rather modest. However, in a BA laser,at
currents just above threshold, instabilities set in as we shall seein Chapters
4 and 5. Here, the two expansioncoe�cien ts in (3.35) are taken to be

@k
@!

= 1=vg; (3.36)

wherevg = c=ng is the group velocity, and

@k
@N

=
1
2

� a(j � � ): (3.37)

Here � is Henry's linewidth enhancement factor [52] giving the coupling
betweenthe real and imaginary parts of the carrier-inducedrefractive index
changes.The linewidth enhancement factor in BA lasershasexperimentally
beenseento vary with carrier density and wavelength[53]. Onecould include
this by adding higher order terms in the expansionof the wavenumber in
(3.35). This, of course,urges that higher order expansioncoe�cien ts are
available from measurements.
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We move on to obtain our desired�eld equation. The squareof k is given
as

k2(x) ' k2
r + 2kr

�
@k
@!

(! � ! r ) +
@k
@N

(N (x) � Nr )
�

; (3.38)

whenneglectingthe terms quadratic in @k=@! or @k=@N . We can now write
the �eld equationsfor E ! (x) using Eqs. (3.32) and (3.38) in (3.21)

@2

@x2
E ! + 2kr

�
@k
@!

(! � ! r ) +
@k
@N

(N (x) � Nr ) � j
� m

2

�
E ! = f ! : (3.39)

The �eld equation in the time-domain becomes
�

@2

@x2
� j

2kr

vg

@
@t

+ 2kr

�
@k
@!

(! s � ! r ) +
@k
@N

(N (x; t) � Nr ) � j
� m

2

��
E(x; t) = f (x; t):

(3.40)
We may de�ne � (x; t)

� (x; t) = 2kr

�
@k
@!

(! s � ! r ) +
@k
@N

(N (x; t) � Nr ) � j
� m

2

�
(3.41)

such that (3.40) becomes
�

@2

@x2
� j

2kr

vg

@
@t

+ � (x; t)
�

E(x; t) = f (x; t): (3.42)

The noisefunction f (x; t) is obtainedfrom f ! (x) via a transformation similar
to (3.24).

Next, we must addressthe z-averagedcarrier density. The mean �eld
carrier equation stated in the time-domain reads

@
@t

N (x; t) = J (x; t) + D
@2

@x2
N (x; t) �

N (x; t)
� R

� vggm (x; t)S(x; t): (3.43)

Here J (x; t) is the pump rate and D is the ambipolar di�usion coe�cien t.
We assumethat the pump rate is the sum J (x; t) = Js(x) + � J (x; t) of
a stationary pump rate Js(x) and a small modulation-term � J (x; t). In the
transversey-direction the doubleheterostructurelimits the di�usion of charge
carriers whereforeit is negligible in this direction. In the carrier equation,
recombination of electron-holepairsvia processesother than stimulated emis-
sion hasbeendescribed through

R(N ) =
N
� R

; (3.44)
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where the carrier lifetime � R is assumedconstant. Several recombination
mechanisms have thus been lumped together in the rate 1=�R . They are
spontaneousemission,nonradiativeemission,and possiblytransverseleakage
of carriers out of the active layer [54]. A more preciseexpressionfor R(N )
involvesa linear, a quadratic, and a cubic term in N .

We do not to include temperature e�ects in the analysis. For high pump
rates the lateral temperature pro�le can certainly perturb the wave-guiding
properties of wide-aperture lasers[55]. A rise in temperature augments the
real part of the refractive index, which in turn causesthermal lensing. In
modeling this is normally includedby introducinga thermal index coe�cien t,
which serves as a constant of proportionalit y between the temperature dis-
tribution and the thermally inducedchangein the real refractive index. The
temperature distribution can be found by solving the heat equation [40] or
simply by assuminga known temperature distribution [56]. In a more rigor-
oussetting, the temperature a�ects microscopicproperties, e.g. changesthe
bandgapof the active semiconductor,which in turn a�ects the macroscopic
optical properties [57]. Actual devicesare mounted with heat sinks, and in
experiments thermal e�ects areoften avoidedby a slow temporal modulation
of the pump current allowing for periodic cooling of the chip [20]. We shall
assumethat temperature e�ects are negligible in our calculations.

3.2 A single nonlinear �eld equation

In time-averaged measurements the near-�elds of BA lasers can often be
found to consistof a pedestalwith a moreor lessregular ripple superimposed
on top, seeFigure 2.3 or e.g. [58]. That is to say that the near-�elds are not
deeply modulated in the way a truncated sinusoidal is. Perhapsmotivated
by such measurements Mehuys et al. [14]assumeda �eld solution of the form
E(x) = E0 exp(a(x) + j � (x)) underneath the metal contact with a(x) � 1
and � (x) beingreal functions. Analytical approximate calculationsinvolving
linearizations give near-�elds in rather good quantitativ e agreement with
someexperiments at high currents. However, their starting point may be
questionablebecausea solitary BA laseroperating at high pump currents is
not in a steadystate. Measurednear-�elds that are only moderately and not
strongly spatially modulated are most likely a result of time-averagesover
multi-lateral mode operation or alternatively a highly nonlinear (possibly
chaotic) lateral variation in time and space.On the other hand, onecan not
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rule out that stationary solutionsleave tracesin time-averagedmeasurements
and from a fundamental point of view it is of interest to know about the
stationary solutionsof a physical system.

In order to perform a comprehensive study of the lateral modesstructure
of a BA laserand in addition to investigatestabilit y properties asdescribed
in the subsequent chapter, it is very helpful to derive a singleequation that
includes both the �eld and the carrier density [1]. The derivation is done
under the assumption that carrier di�usion is negligible. This assumption
is arguedfor in [14]: The approximation is good as long as the condition of
k2

latL
2
D � 1 is ful�lled; klat is the lateral wavenumber and L d =

p
D� R is the

di�usion length. However, our main reasonsto excludedi�usion are given in
the following.

Our two main motivations to work with a singleequation are: Firstly, in
the present chapter weshall show a seriesof newly found stationary solutions.
We have searched for them like searching for needlesin a haystack, notably
needleswhoseexistencewe a priori were not aware of. Therefore a conve-
nient computational environment has beena great advantage. Secondly, in
Chapter 4 we study the small signalpropertiesof someof the calculatedsta-
tionary solutions. The mathematicalapparatusderived there becomesrather
complicatedeven without di�usion soleaving it out (for now) hasbeenprac-
tical. By no means,however, do we rule out the signi�cance of lateral carrier
di�usion. In Chapter 5 the carrier di�usion is reintroduced in time-domain
calculationsand in Chapter 6 also in stationary calculations.

Here we look for staionary solutions (Es(x), Ns(x), ! s). Stationary so-
lutions are found as solutions to Eqs. (3.42) and (3.43) for a steady pump
term J = Js(x) and for f (x; t) = 0. Upon neglectingthe carrier di�usion

Ns(x) � N0 =
Js(x)� R � N0

1 + jEs(x)j2=Psat
(3.45)

where

Psat =
~! h

2� 0nr c� a� RK
: (3.46)

In obtaining (3.46), Eq. (3.26) was used. The �eld Es(x; t) is seento be in
units V=

p
m. . Utilization of (3.45) in Eq. (3.41) leadsto a singlenonlinear
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equation, namely
�

@2

@x2
+ 2kr

�
@k
@!

(! s � ! r ) +
@k
@N

Js(x)� R � N0

1 + jEs(x)j2=Psat
� j

� i + � m

2
+

� � i

2

� �
Es = 0:

(3.47)
Note that the output power scaleslinearly with Psat . The secondpart of the
operator in (3.47) we de�ne as

� s(x) = 2kr

�
@k
@!

(! s � ! r ) +
@k
@N

Js(x)� R � N0

1 + jEs(x)j2=Psat
� j

� i + � m

2
+

� � i

2

�

(3.48)
and the �eld equation may simply be written

�
@2

@x2
+ � s(x)

�
Es = 0: (3.49)

Let the �eld be de�ned on the interval � A � x � A. We must specify the
boundary conditions. At a position on the x-axis that is su�cien tly far away
from the metal contact for the intensity to becomenegligible,Eq. (3.49) can
be approximated to �

@2

@x2
+ � WKB (x)

�
Es = 0; (3.50)

with

� WKB = 2kr

�
@k
@!

(! s � ! r ) +
@k
@N

(Js(x)� R � Nr ) � j
� m

2

�
: (3.51)

For a slowly varying Js(x), oneobtains the solution

Es(x) = E0 exp(� j
p

� WKB x): (3.52)

where E0 is a real constant. Assumethat (3.50) is valid at � A. Then at
x = � A the proper signsmust be chosento ensurea solution for the �eld
that decays exponentially when moving away from the metal contact. This
givesus the derivativesat x = � A

@Es

@x
= j

p
� WKB Es(x) (3.53)

and
@Es

@x
= � j

p
� WKB Es(x) (3.54)

at x = A. We useEqs. (3.52), (3.53), and (3.54) in the following to specify
boundary conditions.
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Figure 3.1: Lateral distribution of pump rate. The points � A and A are
boundary points

.

3.2.1 Curren t spreading

Wemust specify the pro�le of the pump rate Js(x). The pump rate is assumed
to decay exponentially away from the current stripe, i.e.

Js(x) =

8
<

:

J exp((x + x0)=d) for x < � x0

J for jxj < x0

J exp(� (x � x0)=d) for x > x0:
; (3.55)

where J is the pump rate underneath the metal contact and d is a current
decay constant. The pro�le is illustrated in Figure 3.1.

As a unit for the pump rate we introduce J0. J0 is the approximate
threshold pump rate for the lowest order lateral mode:

J0 =
1
� R

�
Nr +

1
� al

ln
�

1
r1r2

��
: (3.56)

The relation between pump rate and current I is I = qVJ where q is the
elementary chargeandV is the volumeof the activeregionsothat V = 2x0hl.
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We usethe terms pump rate and current interchangeablywhen distinction
is not important.

The idea of the form of Js(x) is that below threshold but above trans-
parency, the lateral spontaneous emissionpro�le can be measured. Pre-
suming that the intensity distribution due to spontaneousemissionis pro-
portional to the carrier density, the decay of carrier density away from the
pumped region may be �tted to an exponentional decay while using (3.45)
with jE(x)j2 = 0 to obtain d [1]. When including the lateral carrier di�u-
sion, it is commonto let the di�usion spreadthe carrier density outside the
pumpedregion. Wedo this in the next chapter. To obtain the carrier-density
distribution in the active region in a moreself-consistent way, proceduresin-
volving e.g. the Poissonequation can alsobe pursued[40][59]. The way one
treats the current spreadingmay certainly a�ect the obtained output �eld
[60].

Solutions of the nonlinear �eld equation (3.49) with the pro�le of the
pump rate (3.55) are now to be solved usingnumerical methods described in
the next section.

3.3 Numerical pro cedures for calculation of
modes

With the nonlinear di�erential equation along with boundary conditions
given below, we have a boundary value problem, which must be solved
through iterativ e methods.

3.3.1 Solutions with de�nite parit y

Solutionsfor which jEs(� A)j = jEs(A)j and either Es(0) = 0 or dEs(0)=dx =
0 possessde�nite parity. For such solutionswe employ the numerical proce-
dureof [1]. Dueto the �nite parity of the �eld distribution it is only necessary
to calculate the �eld on � A � x � 0. With an initial guessof a real vector
(E0;L ; ! s) the valuesof �eld and slope at x = � A become

Es(� A) = E0;L exp(� j
p

� WKB A); (3.57)

@Es

@x
= j

p
� WKB Es(� A): (3.58)
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By (3.49), the �eld is propagatedto x = 0 where it is evaluated. A Runge-
Kutta method is usedfor this [61]. When searching for a symmetric solution,
dEs(0)=dx = 0 is demandedwhile for an antisymmetric solution Es(0) = 0
must be ful�lled. From the complexvalue of Es(0) or dEs(0)=dx, a Newton-
Raphsonroutine suggestscorrectionsto the valuesof (E0;L ; ! s). With cor-
rected (E0;L ; ! s), the �eld is again propagatedfrom x = � A. This iterativ e
processis repeated until (E0;L ; ! s) has convergedand a stationary solution
(Es(x); ! s) is obtainedby joining the appropriatepart of Es(x) on 0 < x � A.

3.3.2 Asymmetric solutions

De�nite-parit y solutionsof nonlinear equationsof the type 4 u(x) + s(u(x))
can,dependingon the function s and the imposedboundaryconditionssome-
times be shown to bifurcate into asymmetric solutions [62]. Asymmetric so-
lutions are �eld distributions, which do not possessde�nite parity. In this
casejEs(� A)j and jEs(A)j are in generalnot equal. Then, onemust in this
casecalculate the �eld distribution on the entire domain � A � x � A. We
split the �eld into two parts. One part is propagated from x = � A with
\initial conditions"

Es(� A) = E0;L exp(� j
p

� WKB A): (3.59)

@Es

@x
= j

p
� WKB Es(� A) (3.60)

to somepoint x1 which satis�es A < x1 < A. The other part is propagated
from the right (x = A) with

Es(A) = E0;R exp(� j
p

� WKB A): (3.61)

@Es

@x
= � j

p
� WKB Es(A) (3.62)

alsoto x1. Let E0;R bea complexconstant. At x = x1 werequirethe complex
�eld and its derivative to be continuous. This requirement rendersa total
of four conditions. A four-dimensionalNewton's method givescorrectionsto
the four unknowns. A solution is found when the iteration convergesto give
the four unknowns (! s; E0;L ; Re(E0;R ); Im(E0;R )). The stationary solution is
obtained by connectingthe left and the right parts of the �eld which share
the frequency! s.
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For de�nite-parit y modes and in particular for asymmetric modes it is
crucial to have good initial guessesto obtain convergent solutions. With
insu�cien tly good initial guesseseither no solutions are found or the solver
jumps to a solution far away form the wanted solution in caseits existence
is known in advance.

3.3.3 Parameter values

Table 3.1: List of parametervalues
Parameter Symbol Value Unit

Cavit y length l 1.0 mm

Stripe width w 200 � m

Active layer thickness h 0.2 � m

Linewidth enhancement factor � 3.0

Linear gain coe�cien t a 1 � 10� 20 m2

Con�nement factor � 0.3

E�ectiv e refractive index nr 3.5

E�ectiv e group index ng 4.0

Referencewavelength � r 810 nm

Referencecarrier density N0 1 � 1024 m� 3

Internal loss � i 30 cm� 1

Carrier lifetime � R 5 ns

Current decay distance d 10 � m

Left output power reectivit y r 2
1 0.35

Right output power reectivit y r 2
2 0.35

In this chapter we usethe parametervaluesof Table3.1. They e�ectively
resemble thoseof [30][31] wherea AlGaAs laserwasinvestigatedusingBPM.
We regarda stripe width of w = 2x0 = 200� m. We keepthis width through-
out the thesis. In the calculationspresented in this chapter, the output facets
will be consideredcleaved. As we are not regardinga speci�c devicewe have
calculatet neither the e�ective index nor the con�nement factor but usethe
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valuesin the table. In actual high power devicesmost often the output facet
is antireection coated while the other facet is high-reection coated. In
this way practically all power is emitted through one of the mirrors only.
Moreover, the intensity inside the cavit y is reducedleading to lesslateral �l-
amentation and to a higher catastrophicpower level [63]. For external cavit y
schemes,an antireection-coating implies a higher level of feedback from the
external reector to the chip. This hasbeenshown to improve the obtained
spatial coherenceconsiderably. The angular dependenceof reectivit y of a
coated facet is enhancedas comparedwith a cleaved facet. This could be
implemented in a laser model, and is perhaps an overlooked issue in the
(modern) literature on modeling of high-power lasers.

The justi�cation of including only onelongitudinal modeis basedon argu-
ments and measurements found in the literature, e.g. [1]. Spectrally resolved
near-�elds show that the respective near-�elds for individual longitudinal
modesappear similar. Similarly, the authors of [64] measuredspectrally re-
solved near-�eld intensity distributions of a freely running 100 micron wide
BA laser. It can be seenthat the individual longitudinal modes contain
similar lateral properties. That is to say that the read out from the grat-
ing spectrometer which is a function of lateral position and wavelength is
similar for each longitudinal mode. It may hencebe assumedthat one can
regard one longitudinal mode independently of the others. For a BA laser
that lack uniformit y in the laser material, the assumptionof similar lateral
�eld distributions for each longitudinal may becomedubious [65].

3.4 Calculated stationary solutions

We �nd a systematicstructure in the tuning curves,i.e. calculatedsolutions
in the current-frequencyplane,and in the stationary solutionsthey represent.
The systematicstructure enablesusto categorizedi�erent typesof stationary
solutions. Figure 3.2presents calculatedtuning curvesin the (J=J0; f̂ )-plane
where f̂ = (! s � ! r )=(2� ) is the relative frequency.

We categorizedi�erent types of �eld distributions Es(x) corresponding
to di�erent branchesof the curvesin Figure 3.2. The �gure contains curves
for 3 di�erent types of modes. In addition to the 3 categoriesof modes in
Figure 3.2, more exist as we shall seebelow. First, however, we regard the
three categoriesof Figure 3.2 named type I (mI ), type I I (mI I ), and type
I I I (mI I ). m is an integer denoting the mode number. Our investigation
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Figure 3.2: Tuning curves of modes-types mI , mI I , and mI I I for m = 1 to
m = 8. Notice that the threshold pump rate of mI increaseswith m and
that mI I and mI I I emergeat increasinglyhigh pump rate for increasingm.

focuseson rather modestpump rates. The reasonfor this is two-fold: Firstly,
stabilit y-analysesin the following chapter reveal instabilities at low currents.
Secondly, we �nd a structure in the modesthat roughly speaking tells that
what happens for a low-order mode also happens for a higher-order mode
but at a higher current.

For all typesof modesthe integer m denotesthe number of peaksin its
near-�eld.

T yp e I modes

The �rst category of modes was also found in [1] albeit with di�erent pa-
rameter values. Type I modesare modesof de�nite parity. Thesemodesare
labeledmI wherem is an odd integer for symmetric modesand m is an even
integer for antisymmetric modes. In Figure 3.2 thesemodesare seento have
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increasingthresholdcurrents for increasingm causedby an increasedabsorp-
tion in the unpumped layers as we shall review in Chapter 6. The lateral
outward o w of energy increaseswith increasingm causinglarger lossesat
thresholdfor higherordermodes. At their respective thresholdsmI arelinear
gain guidedmodes. When the pump rate is increasedtheir �eld distributions
becomeperturbed due to the nonlinearity of the material and changeshape,
i.e. they do not merely increasein amplitude with an unchangedshape. In
Figure 3.3 onecan seenear-�elds for 6I at 4 di�erent pump rates.

When following the almost horizontal parts of the mI -tuning curvesfrom
threshold and upwards in current, new branchesemergeon the lower sides,
e.g. at J = 1:018J0 for m = 8. These branches are tuning curves of the
secondkind of modes and will be described in the subsequent subsection.
One characteristic feature of the type I modesis a dip in the middle of the
near-�eld which becomesdeeper as the current is increasedmodestly above
threshold. An exampleof this behavior can be seenin Figure 3.3 (a) and
(b). This is studied in more detail in Chapter 6.

Further, the symmetric and antisymmetric modesdi�er in the sensethat
the symmetric modes(odd m) becomeincreasinglycompressedaround x =
0, whereasthe intensity distribution of the antisymmetric modes (even m)
becomesincreasinglylocalizednear the edgesof the metal contact, i.e. near
x = � x0 as the current is increased.Thus the intensity divides itself in two
when the pump rate becomesconsiderablefor a given mode mI for even m.
Near-�elds of 6I (antisymmetric) in Figure 3.3 and 5I (symmetric) in Figure
3.4 for increasingpump rates show the generalbehavior of the 2 di�erent
parities for m > 1.

The far-�elds of 6I in Fig. 3.5 are representive of antisymmetric modes.
Just above threshold (a), the far-�eld is nicely twin-lobed but as the current
is increased,nonlinear perturbations deteriorate the twin-lobes by adding
more and more structure around the lobes.

The changein far-�eld for the symmetric modeswith increasingcurrent
is partly di�erent from the antisymmetric modes. For example,the far-�elds
of mode5I shown in Fig. 3.6 reveal that just above threshold (a) and slightly
higher above (b) the twin-lobe structure and the slighty perturbed twin-lobe
structure, respectively, are similar to the antisymmetric modes. However,
when increasingthe current su�cien tly the far-�eld becomessingle-lobed as
seenin (d). The single lobe is, however, perturbed by side lobes

It is sometimessaid that BA lasershave twin-lobedfar-�elds. This is true
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Figure 3.3: Near-�eld of mode 6I at di�erent pump rates. (a) Just above
threshold J = 1:0029J0; (b) Slightly higher pump rate J = 1:023J0. Note
the increaseddip around x = 0; (c) J = 1:040J0; (d) J = 1:0675J0. For
higher currents the intensity becomesmore localizednear x = � x0.

for gain guided modesat threshold. However, when the current is increased
this assumptionbreaksdown sincethe modesbecomehighly nonlinear. Thus
even if one could make the laser operate in a single lateral mode of type I
the spatial coherencewould be poor even for rather low currents. In Chapter
4 we shall se that for m � 3 all mI becomeunstable immediately above
threshold or one can say that they are born unstable. Thus if a far-�eld is
measuredwith a a twin-lobed structure it is most likely a result of the laser
being in a time-dependent state over which a detector hasaveragedin time.
Typically, at least for wide BA laserswith w � 100� m, the time-averaged
far-�eld is a blurred shape and not a clear twin-lobe like in Figure 3.5 (a) or
3.6 (a).

T yp e I I modes (asymmetric)

The physical system under investigation is symmetric around x = 0. Yet
we �nd that stationary solutions without de�nite parity (asymmetric �eld
distributions) exist due to the nonlinearity in the �eld equation and possi-
bly also due to the boundary conditions. One type of asymmetric modes
is presented in this subsection. This secondkind of stationary solutions is
denoted mI I . At the branch point where they are born in Figure 3.2, e.g.
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Figure 3.4: Near-�eld of mode 5I at di�erent pump rates. (a) Just above
threshold J = 1:0022J0; (b) Slightly higher pump rate J = 1:0199J0 Note
the increaseddip around x = 0; (c) J = 1:0274J0; (d) J = 1:0665J0. For the
higher currents the intensity becomescompressedaround x = 0.

J = 1:018J0 for m = 8, they have �eld distributions identical to the respec-
tive de�nite-parit y solutions mI , but for increasing currents they become
increasinglycompressedon either sideof x = 0. There are two f̂ -degenerate
solutions for a point on the type I I tuning curves: a left oneand a right one.
It can be seenthat the tuning curve of mode mI I eventually mergeswith
that of mode (2m)I when increasingthe current. For example4I I merges
with 8I at J ' 1:054J0, (a third branch is seento branch out from this point
alsoas explainedin the next subsection).At the point wherethe mI I -mode
mergeswith the (2m)I -mode, the intensity distribution of the mI I -mode is
localizedon the left (right) side of the middle, i.e. on either � x0 < x < 0
or 0 < x < x0. At this point in the (J=J0; bf )-plane the near-�elds of the
two degeneratemI I -modesaddedtogether spatially overlap the near-�eld of
(2m)I .

The evolution of a type I I mode from its birth to higher currents is il-
lustrated in Figures 3.7, 3.8, and 3.9. The near-�eld of mode 4I I in Figure
3.7 starts out identical to that of 4I around J = 1:0093J0. When increasing
the current, i.e. running along the tuning curve for 4I I in Figure 3.2, the
near-�eld initially begins to tilt to either side (remember that asymmetric
solutions are doubly degenerate)as seenin 3.7. As the current is increased
further the �eld becomesmore and more localized on either side of x = 0.
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Figure 3.5: Far-�elds of mode 6I at the samepump rates as in Fig. 3.3. As
the pump rates is increased,the twin-lobesbecomeincreasinglyperturbed.

At the highestcurrent represented in Figure 3.7, the near-�eld hasleft either
side empty. For this current (J = 1:054J0) the tuning curve of 4I I merges
with the tuning curve of 8I . For even higher currents 4I I becomesmore lo-
calizednear x = � x0. The far-�eld over the samecurrent rangeas in Figure
3.7 is presented in Figures3.8 and 3.9 whereit can be seenhow the initially
symmetric twin-lobed far-�eld becomesincreasingly asymmetric and single
lobed. Note that the tilt in the far-�eld is opposite the onein the near-�eld.
I.e. the angle of the dominant single-lobe in the far-�eld has the opposite
sign of the overall slope of the near-�eld.

That asymmetricsolutionsof the �eld equationexist is not obvious, since
the physical systemis symmetric around x = 0. The fact that they emerge
from the branch of a mI -mode is due to saddle-node bifurcations as it will
becomeclearerin Chapter 4. PerhapsmI I -modesmay be relevant in under-
standing the way AEC laserswith their spatial �ltering can operatebecause
of the single-lobed far-�elds of mI I . However, alsomI I will in Chapter 4 be
found unstable in such a way that they have to operate in a time-dependent
state. Note that 1I I does exist but its tuning curve is not visible in Figure
3.2 as it lies very closeto the surrounding curves.
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Figure 3.6: Far-�elds of mode 5I at the samepump rates as in Fig. 3.4. As
the pump rate is increasedthe twin-lobe changeinto a perturbed single-lobe
�eld.

T yp e I I I modes (asymmetric)

In addition to modesof type I and type I I, Figure 3.2 contains tuning curves
labeled mI I I . Thesesolutions also correspond to asymmetric �eld distribu-
tions. Type II I curvesfor odd m are not visible in the �gure as they lie very
closeto their typeI \parents" from which they emerge.At the point wherean
mI I I -modebranchesout from the mI -curve, the �eld distributions of mI and
mI I I are identical. Similarly to the behavior of type I I modes,the near-�elds
of mI I I becomemore and more compressedtowards either side of x = 0 as
the pump rate is increasedand they alsohavean f̂ -degeneratesolution whose
intensity distribution is the mirror imagewith respect to x = 0. Unlike mI I

the near-�elds of mI I I do not tilt considerablyasthe current is increased.To
our �ndings only one asymmetric mode emergesfrom 1I , namely the mode
we call 1I I . Thus, apparently no mI I I -mode exists for m = 1.

In Figure 3.10it is evident how the near-�eld of 5I I I , representing odd m,
is compressedtowards either side of the pumped region when the current is
augmented. The corresponding far-�elds in Figure 3.11are single-lobed and
becomeasymmetriconly to a very little degreeand are thus odd-m-mI -like.

The behavior of mI I I for even m is slightly more complicated. The near-
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Figure 3.7: Mode 4I I : Near-�eld for pump rates J = 1:0093J0 where the
mode emergesthrough J = 1:054J0 where the tuning curve of the mode
mergeswith the oneof 8I .

and far-�elds of 4I I I are displayed in Figures 3.12 and 3.13. The �elds for
di�erent currents represent running along the 4I I I -tuning curve from the
branch point on 4I (a); on to a point wherethe tuning curve for 4I I I bends
(b); on to a point after the bend (c); and �nishing at a point far after the
bend (d). It can be seenthat the near-�eld remainscentered around x = 0
until �nally sliding towards either side in (d). The far-�eld in Figure 3.13
turns single-lobedalthough the parent 4I is never single-lobed in the far-�eld.
Therefore,alsomI I I with m even seemsodd-m-mI -like.

When the pump rate becomesrelatively high and the intensity distribu-
tion of mI I I (for both even and odd m) is localizedon either � x0 < x < 0
or 0 < x < x0, its tuning curve mergeswith the tuning curve of yet another
type of modes(labeledmI V ) that we have found to exist. This may be seen
for 4I I I in Figure 3.14,wheretuning curvesare shown.
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Figure 3.8: Mode4I I : For pump ratesJ = 1:0093J0 wherethe modeemerges
through J = 1:011J0. The far-�eld becomesincreasinglysingle-lobed.
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Figure 3.9: Mode 4I I : For pump rates J = 1:011J0 through J = 1:054J0

wherethe tuning curve of the modemergeswith the oneof 8I . The dominant
lobe movesoutwards for increasingcurrent.
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Figure 3.10: Mode 5I I I : Near-�elds. (a) J = 1:0469J0 wheremode emerges
; (b) J = 1:0578J0; (c) J = 1:0684J0; (d) J = 1:0794J0. As the current
is increasedthe near-�eld is compressedtowards either edgeof the pumped
region.
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Figure 3.11: Mode 5I I I : Far-�elds. Samepump rates as in Figure 3.10.
The far-�eld is centered at � = 0 and becomesincreasinglyperturbed with
increasingpump rate. It is only slightly asymmetric even with a strongly
asymmetricnear-�eld.

T yp e IV modes (de�nite parit y)

We move on to present yet another exotic category of modes that we have
found to exist. So far we have seenone category of de�nite parity, namely
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Figure 3.12: Mode 4I I I : Near-�elds.(a) J = 1:029J0; (b) J = 1:022J0; (c)
J = 1:048J0; (d) J = 1:080J0. Thesefour pump-ratescorrespond to following
the tuning curve of 4I I I from whereit emergeson 4I and around its bend.
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Figure 3.13: Mode 4I I I : Far-�elds. Samepump rates as in Figure 3.12.
The far-�eld goes from being a perturbed twin-lobe to being a perturbed
single-lobe. It is only slightly asymmetric even with a strongly asymmetric
near-�eld.

type I. For current levels close to their thresholds they can be viewed as
linear gain guided modesperturbed by nonlinear e�ects. We now cometo
a category of de�nite-parit y modes which are solely nonlinear in the same
way that the asymmetric modes mI I and mI I I cannot exist without the
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Figure 3.14: Tuning curvesof modes7I V , 8I V , and 4I I I . It can seenhow 4I I I

mergeswith 8I V . The mark \A" correspondsto near- and far-�eld shown in
Figure 3.15(a) and (b).

nonlinearity of the gainmaterial. The tuning curvesin Fig. 3.14each showing
a loop and a cusp correspond to highly nonlinear �nite-parit y modes. We
denotethe modescorresponding to such tuning curvestype IV. Examplesfor
7I V and 8I V are seenin the �gure. Again, the tuning curve for 4I I I is also
seenmerging with 8I V . When running along the tuning curves of mI V the
�eld distributions changeconsiderablyin character. On the upper parts of
thesecurves(the high-frequencypart) the near-�eld is a self-focusingsolution
which is increasinglylocalizedaroundx = 0 with increasingpump rate. Near-
and far-�eld of 8I V near (J=J0 = 1:06; f̂ = 22:3 GHz) (marked \A") can be
viewed in (a) and (b) of Figure 3.15. This is an exampleof a �eld distribution
of the high-frequencypart. It is rather remarkable that one can �nd self-
focusing solutions in a system where the near-�elds of the \conventional"
modes (type I) have slowly varying dips around x = 0. So called spatial
solitonshavebeenobserved in BA optical ampli�ers [66]. The spatial solitons
were traveling waves with self-focusing �eld distribution formed inside the
BA ampli�er. Possibly the self-focusing solutions, that we have found, are
related to theseexperimentally observed solitons.

On the low frequencypart of the tuning curveof 8I V the �eld distributions
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Figure 3.15: Near- and far �elds corresponding to points on tuning curvesin
Figure 3.14. (a) and (b) arenear-and far-�eld correspondingto the mark \A"
on tuning curve 8I V . (c) and (d) are near- and far-�eld of 8I V corresponding
to the point where4I I I mergeswith 8I V . (d) and (e) are near- and far-�eld
of 4I I I at the samepoint.
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are of a di�erent character. In Figure 3.14 it is seenhow 4I I I mergeswith
8I V around J = 1:12J0. Figure 3.15 shows �eld distributions for 8I V ((c)
and (d)) and 4I I I ((e) and (f )) at their merging point . At the point where
mI I I and (2m)I V merge,the near-�eld of either mI I I (there are two of them)
makesup half the near-�eld of (2m) I V , whereasthe far-�elds are completely
di�erent. To our �ndings, the lowest order mI V -mode is 3I V .

The systematic structure of the BA-laser modes

As can be clearly seenfrom Figure 3.2, the lateral modesin a BA laserhave
an underlying systematic structure. Type I modesare the basic stationary
statesof BA laserssincethey are linear gain guidedmodesat their respective
thresholds. The remaining typesof modescan exist only due to the nonlin-
earity of the gain material. The mode with the lowest threshold current is
1I . Mode 1I I branchesout from 1I and mergeswith 2I . Mode 2I I bifurcates
from 2I and mergeswith 4I . In addition mode 2I I I branchesout from 2I at
a higher current than 2I I . Mode 2I I I also mergeswith a mode at a higher
current, namelymode4I V . HencemodesmI I emergefrom mI and eventually
mergewith (2m)I . Also, modesmI I I emergefrom mI and mergewith modes
(2m)I V . The exceptionis that \1 I I I " doesnot exist.
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Figure 3.16: Exert of 3.2summarizingpart of the systematicstructure of the
BA-modes. Modes2I I , 4I , 4I I , 4I I I , 8I , 8I I , and 8I I I are shown. The bullets
correspond to near-�elds in Figure 3.17and far-�elds in Figure 3.18.
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Figure 3.17: Near-�elds corresponding to bullets in Figure 3.16. (a) 4I I ; (b)
2I I ; (c) 4I ; (d) 4I I ; (e) 8I ; (f ) 8I I .
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Figure 3.18: Far-�elds corresponding to bullets in Figure 3.16. (a) 4I I ; (b)
2I I ; (c) 4I ; (d) 4I I ; (e) 8I ; (f ) 8I I .
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An exert of the structure with only tuning curves for 2I I , 4I , 4I I , 4I I I ,
8I , 8I I , and 8I I I is displayed in Figure 3.16. The points labeled (a)-(f ) are
di�erent examplesof the just mentioned six modes at J = 1:054J0 (the
current at which 4I I and 8I merge). The corresponding near-�elds are found
in Figure 3.17 and the far-�elds in Figure 3.18. In these two �gures (a) is
4I I I with a near-�eld that is asymmetric but almost untilted. Note that its
far-�eld is single-lobed and centered around an angle of 0 degrees.(b) and
(c) are 2I I and 4I at a higher current than where 2I I mergeswith 4I . The
near-�eld of 2I I is localized near � x0 or x0 and is seento constitute \half
the near-�eld" of 4I . Similarly, (d) and (e) are 4I I and 8I at their merging
point. (f ) is 8I I .
A close-upof 2I I I branching out from 2I is displayed in Figure 3.19. Also
here1I I mergeswith 2I . This �gure is then a close-upof Figure 3.2.

The remarkable systematicsof the mode structure that we have found is
di�erent from the mode structure of a DFB laserwheresymmetry-breaking
�eld solutions also exist. A multitude of solutions can indeed be found in
the caseof a semiconductorDFB laser [67]. We believe that the structure
appliesto all modeordersm aswe checked for higher for orders,e.g. m = 15.
Asymmetric modesmay alsobe found in stripe geometry lasers[68].

Additional t yp es of modes

In addition to the di�erent modesmentioned sofar, wehavefound two further
types of modes. They are asymmetric modes likely to bifurcate from mI V .
We leave them to future work.

Ligh t-curren t characteristics

The light current characteristics corresponding to the tuning curves in 3.2
aredisplayed in Figure 3.20. Thus, displayed are light-current characteristics
for mI , mI I , and mI I I for m equal to 1 through 8. The total output power
is given as (seeEq. (A.11))

Pout = 2� 0nr c� m lK
Z 1

�1
jEs(x)j2dx: (3.63)

As an example,modes6I , 6I I , and 6I I I are shown separatelyin Figure 3.21.
As expected the branch points are located at the samepump rates as for
corresponding tuning curves.
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Figure 3.19: Tuning curve: Close-upof Figure 3.2. Mode 2I I I branchesout
from 2I and 1I I mergeswith 2I .

3.5 Summary

In this chapter we have studied the lateral modestructure of a BA laser. The
stationary solutions were found using a mean �eld approximation, which
lead to equations in 1 spatial dimension. The simple lateral geometry of
a gain guided laser proved to contain a rich and systematic structure of
modesand not only \standard" gain guidedmodesthat we have labeledtype
I modes (they in themselves show interesting properties). We introduced
3 other categoriesof modes, and all four types of modes were seento be
interrelated in spatial shapeand through the structure of their tuning curves.
Of particular interest were the asymmetric type I I modesas their far-�elds
resemble the single-lobed far-�eld of the AEC laser presented in Chapter 2.
In the following chapter we will test the stabilit y of type I and type I I.
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Chapter 4

Small-signal analysis using
Green's functions: Stabilit y
prop erties and responses

In the Chapter 3 we found stationary solutions using the nonlinear �eld
equation (3.49). In this chapter we shall study the small-signalproperties
of someof them, namely type I and type I I. First and foremostwe want to
perform a stabilit y analysis. Lasersare nonlinear systemswhosestationary
solutions in a small-signal analysis can be classi�ed as stable or unstable.
In semiconductor-lasertheory it can sometimesbe said that the stationary
solution having the lowest threshold gain of all modesis the dominant mode
as the gain clampsat threshold. BA lasersare known to becomepulsating
at very low continuous pump currents, showing multi-mode or even what is
likely to be chaotic behavior and the gain of a given mode doesnot clamp at
threshold due to spatial hole burning. Thus, there is no indication that such
an assumptionis generallyvalid for a BA laser.

In a small signal analysis, one may talk about two di�erent kinds of
stabilit y, namely local stabilit y and global stabilit y [67]. A locally stable
mode is stablewith respect to small-signaluctuations. Fluctuations present
in the physical system will make a locally unstable mode go to a di�erent
stationary solution or a time-dependent state. A local instabilit y is also
called an instabilit y of the saddle-point type. If a mode is locally stable it is
not necessarilyglobally stable. Other than the saddle-point-t ype instabilit y,
a modemay su�er from a self-pulsatinginstabilit y, which must alsobe tested
for before a mode can be called globally stable. Speci�cally, if the system
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determinant D(s) hastwo zeroeslying symmetrically aroundthe reals-axisin
the right half s-plane,then the systemis in a time-dependent state. This is an
instabilit y of the Hopf-type. Heres = j 
, where
 is the basebandfrequency.
Instabilities of the saddle-point type, on the other hand, are associated with
a zero of D(s) lying on the real s-axis in the right half s-plane. A saddle-
point instabilit y may be associated with a saddle-point bifurcation wherea
zero of D(s) moves along the real s-axis from the left half s-plane into the
right. Similarly an instabilit y of the Hopf-type may appear in conjunction
with a Hopf-bifurcation where the two complex conjugate zeroes of D(s)
move from the left to the right half plane,e.g. when the pump current of the
laser is increased.The reasonwhy we distinguish between,say, a pulsating
instabilit y of the Hopf-type and an actual Hopf bifurcation is that, asit shall
becomeclear in this chapter, stationary solutions may be \b orn" unstable,
such that an actual bifurcation cannot be detected;only the instabilit y of a
mode is detectablein this case.

Lasermodels,wherethe photon and carrier density aree�ectively treated
without spatial dependence,usually yield an algebraicexpressionfor the sys-
tem determinant, whosezeroesin the complexfrequency-planeare found by
graphical or iterativ e methods. The stationary solutions found in the previ-
ouschapter have a spatial dependencein the lateral direction. To carry out
a stabilit y analysison thesemodes, we employ a Green's function method
[69]. The method in its original form was derived for DFB lasers. For lat-
eral gain guided modes, new small-signal equations must be derived. For
saddle-point bifurcations we have, thanks to the work presented in the pre-
vious chapter, the great advantage of knowing where new branches emerge
on tuning curves. When the small-signalanalysis\predicts" a saddle-point
bifurcation, perturbation theory tells us that one or more new branches of
solutions will appear in a bifurcation diagram. We will be able to test the
resultsof the stabilit y analysisby looking for oneor moreemergingbranches
on the regardedtuning curve. When discussingbifurcations, intrinsicly one
must de�ne oneor more bifurcation parameters.When varying the bifurca-
tion parameter(s)a given stationary state, or rather the dependent variables
associated with it, can be followed along curves in e.g. the (J=J0; f̂ )-plane,
whereJ=J0 is the bifurcation parameter. In fact the pump rate will be the
only bifurcation parameterconsideredin the present thesis.

54



4.1 Small signal analysis using the logarith-
mic �eld

We start out by linearizing our �eld equationand carrier equation. We have
to perform the linearization of the two equationsseparatelyin order to intro-
duce the spectral part of the carrier density properly. Our inhomogeneous
�eld equation in the time domain reads

�
@2

@x2
+ � (x; t) � j

2kr

vg

@
@t

�
E = f (x; t): (4.1)

Upon neglectingcarrier di�usion the carrier distribution is given by

@N (x; t)
@t

= J (x; t) �
N (x; t)

� R
� vggm (x; t)S(x; t); (4.2)

Finding the small-signalproperties of various stationary solutions involvesa
linear expansionaround a speci�c calculatedmode. For conveniencewe �rst
introducethe logarithmic �eld b:

b= ln E: (4.3)

It is noteworthy that Re(b) = lnjE j and Im(b) = � E , where � E is the phase
of E. The �rst and secondderivativesof the logarithmic �eld are then

d
dx

b =
1
E

d
dx

E (4.4)

and
d2

dx2
b =

1
E

d2

dx2
E �

1
E 2

�
d
dx

E
� 2

(4.5)

or from (4.4)
d2

dx2
b=

1
E

d2

dx2
E �

�
d

dx
b
� 2

: (4.6)

Hence,from Eq. (4.1) the logarithmic wave equation is seento be

d2

dx2
b+

�
d
dx

b
� 2

+ � (x; t) � j
2kr

vg

@
@t

b=
f (x; t)

E
: (4.7)
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Next, we linearize the obtained logarithmic wave equation. Taking the dif-
ferential on both sidesof Eq. (4.7) yields

d2

dx2
� b+ 2(

d
dx

b)(
d

dx
� b) + � � � j

2kr

vg

@
@t

� b=
f (x; t)
Es(x)

: (4.8)

HereEs(x) is a stationary solution. As � is independent of Es(x), the di�er-
ential � � is found to be

� � (x; t) = 2kr
@k
@N

� N (x; t): (4.9)

The small-signalexpansionof (4.2) is found to be

@
@t

� N = � J �
� N
� R

� avgB
�
� N jEsj2 + (Ns � N0)(E �

s � E + Es� E � )
�

: (4.10)

From Eq. (4.3) we get � b = � E=Es and thus � E = � bEs and � E � = � b� E �
s .

Substituting into Eq. (4.10) results in

@
@t

� N = � J �
� N
� R

�
1

Psat � R

�
� N jEsj2 + 2(Ns � N0)jEsj2Re(� b)

�
: (4.11)

Goingto the basebandfrequencydomainimpliestaking the Fourier transform

s f� N = f� J �
f� N
� R

�
1

Psat � R

h
f� N jEsj2 + 2(Ns � N0)jEsj2R̂e(� b)

i
; (4.12)

since Es is stationary in time. A tilde over a symbol denotesthat it is a
function in the basebandfrequency
 by s = j 
. Solving for f� N gives

f� N (x; s) =
f� J (x; s)� R

1 + s� R + jEsj2=Psat
�

Js(x)� R � N0

1 + jEsj2=Psat

jEsj2=Psat

1 + s� R + jEsj2=Psat
2R̂e(� b):

(4.13)
We divide the logarithmic �eld into real and imaginary parts by intro-

ducing the vector

 =
�

Re(� b)
Im(� b)

�
; (4.14)

implying Eq. (4.8) in a new form:

d2

dx2
 + M 1

d
dx

 + kr � a� N
�

� �
1

�
+ M !

@
@t

 = f ; (4.15)
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where

M 1 = 2
�

Re(db
dx ) � Im( db

dx )
Im( db

dx ) Re(db
dx )

�
; (4.16)

M ! =
2kr

vg

�
0 1

� 1 0

�
; (4.17)

and the noiseis gatheredin the vector f de�ned as

f =
1

Es

�
Ref
Imf

�
: (4.18)

The Fourier transform of Eq. (4.15) yields the frequencydomain equation

d2

dx2
e + M 1

d
dx

e + M e = ef + ej (4.19)

wherethe matrix M is the sum

M = gM 0 + sM ! : (4.20)

e is the Fourier transform of  and

gM 0 = 2kr � a
Js(x)� R � N0

1 + jEsj2=Psat

jEsj2=Psat

1 + s� R + jEsj2=Psat

�
� 0

� 1 0

�
: (4.21)

The current modulation term is given as

ej = kr � a
f� J (x; s)� R

1 + s� R + jEsj2=Psat

�
�

� 1

�
: (4.22)

Now, Eq. (4.19) is the small-signalequation for the �eld and carrier density,
for which Eq. (4.13) has been utilized. Note that for Im(s) 6= 0, e is in
generalcomplex.

Eq. (4.19) may be solved using Green's functions [70]. For convenience
and for historical reasonswe utilize the Green'sfunction of the adjoint of the
di�erential operator of (4.19) instead. The operator

L =
d2

dx2
+ M 1

d
dx

+ M (4.23)
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has the adjoint operator

L y =
d2

dx2
�

d
dx

M y
1 + M y: (4.24)

Assumethat � i (x
0; x; s) is the Green'sfunction for L y. Then

d2

dx02
� i �

d
dx0

(M y
1� i ) + M y� i = êi � (x0 � x) (4.25)

for i = 1; 2 and

ê1 =
�

1
0

�
and ê2 =

�
0
1

�
: (4.26)

In the following we shall �rst derive an expressiongiving e for a given
driving term ef + ej . After deriving this general form of the response, we
evaluate the Green'sfunctions � i .

Partial integration of � y
i (x

0; x; s)L (s;x0) gives

Z A

� A
� y

i (x
0; x; s)

�
d2

dx02
+ M 1

d
dx0

+ M
�

 (x0; s)dx0 =

Z A

� A

�
d2

dx02
� y

i (x
0; s) �

d
dx0

�
� y

i (x
0; x; s)M 1

�
+ � y

i (x
0; x; s)M

�
 (x0; s)dx0+

�
� y

i (x
0; x; s)

d
dx0

 (x0; s)
� A

� A

+
h
� y

i (x
0; x; s)M 1 (x0; x; s)

i A

� A
�

�
d

dx0
� y

i (s;x0; x) (x0; s)
� A

� A

:

(4.27)

Alternativ ely, by manipulating the parenthesis in the right hand side inte-
grand taking adjoints of both the interior and exterior, (4.27) may be put

Z A

� A
� y

i (x
0; x; s)

�
d2

dx02
+ M 1

d
dx0

+ M
�

 (x0; s)dx0 =

Z A

� A

�
d2

dx02
� i (x

0; x; s) �
d

dx0

�
M y

1� i (x
0; x; s)

�
+ M y� i (x

0; x; s)
� y

 (x0; s)dx0+

�
� y

i (x
0; x; s)

d
dx0

 (x0; s)
� A

� A

+
h
� y

i (x
0; x; s)M 1 (s;x0)

i A

� A
�

�
d

dx0
� y

i (x
0; x; s) (x0; s)

� A

� A

:

(4.28)
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We demandthat � i ful�ll the boundary conditions

d
dx0

� i (x
0; x; s) = M y

1(x
0; s)� i (x

0; x; s) (4.29)

at x0 = � A. In addition, it is presumedthat the term d =dx is negligible
at x0 = � A (seeAppendix B). Then by inserting (4.19) and (4.25) in Eq.
(4.28) we obtain

Z A

� A
� y

i (x
0; x; s) eF dx0 =

Z A

� A
� (x0 � x)eT

i
e (x0; s)dx0 (4.30)

which leadsto the generalexpressionfor the response

( e (x; s)) i =
Z A

� A
� y

i (x
0; x; s)( ef (x0; s) + ej (x0; s))dx0: (4.31)

With Eq. (4.31) we have obtained the responsefor the noise ef (x; s) and a
linear changeof the pumping f� J (x; s). In other words the expressioncan
be usedto calculate noisespectra and modulation responses.The notation
\( e ) i " meansthe i th component of the vector e .

The solution � i of Eq. (4.25) can be found by solving the homogeneous
equation on each of the two intervals � A < x0 < x and x < x0 < A. By
integrating both sidesof (4.25) on a small interval around x, the boundary
condition

�
d

dx0
� i (x

0; x; s) � M y
1(x

0; s)� i (x
0; x; s)

� x0= x+

x0= x�

= êi ; i = 1; 2 (4.32)

is obtained. We have usedthat M y� i in (4.25) is continuous and madethe
interval of integration arbitrarily small so that the integral over this term
vanishes.

Inspired by the DFB-laser casein [69], we evaluate the Green'sfunction
near the left boundary. Thus, we �nd the solution for x = � A + � , where
� is an arbitrarily small distance. For simplicity we shall de�ne � i (x; s) =
� i (x; � A+ ; s) for x > � A, and denote � i (� A; s) the limit of � i (x; s) for
x ! � A+. Solving Eq. (4.25) with the conditions (4.29) for � i (� A; s) then
corresponds to solving the homogeneousequation

d2

dx2
� i �

d
dx

(M y
1� i ) + M y� i = 0 (4.33)
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with the boundary conditions

d
dx

� i � M y
1� i = êi (4.34)

for x = � A and
d

dx
� i � M y

1� i = 0 (4.35)

for x = A.
Having formulated the homogeneousdi�erential equation (4.33) with

boundary conditions (4.34) and (4.35) we set out to �nd relations for � i .
Upon introducing the 4-dimensionalvector

u i =
�

d
dx � i � M y

1� i

� i

�
�

�
v i

� i

�
(4.36)

and the 4 � 4 matrix

M u =
�

0 � M y

I M y
1

�
; (4.37)

the homogeneousequation (4.33) may be put in the form

d
dx

u i = M uu i : (4.38)

In Eq. (4.37) the entit y 0 is the 2� 2 null matrix and I is the 2 � 2 identit y
matrix. We may alsosplit Eq. (4.38) into the two equations

d
dx

v i = � M y� i (4.39)

and
d

dx
� i = M y

1� i + v i : (4.40)

With the intention to solve Eq. (4.38) for u i we form the linear combination

u i =
4X

j =1

aij y j : (4.41)

One may alsowrite (4.41) in matrix form

u i (x; s) = Y (x; s)a i (s); (4.42)
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whereY is the matrix
Y = f y 1; y 2; y 3; y 4g (4.43)

with column vectorsy i . a i are column vectorswith components

(a i ) j = aij : (4.44)

From (4.38) and (4.42) the equation for Y is stated

d
dx

Y (x; s) = M uY (x; s): (4.45)

We choosethe \initial conditions" at x = � A for Y to be

Y (� A; s) = I : (4.46)

Here I is the 4� 4 identit y matrix. Equation (4.45) renders4 linear coupled
di�erential equations. With the condition (4.46) we can calculate Y (x; s)
with a standard numerical routine for ordinary di�erential equations [61].
The 4 vector functions y i obviously have linearly independent initial condi-
tions (4.46) such that the linear combination in Eq. (4.41) is valid.

We introduce4-dimensionalunity vectors(ej ) i = � ij . From (4.34), (4.35),
and (4.38) the boundary conditions at x = � A for u i are seento be

eT
1 u i = (ei )1 (4.47)

eT
2 u i = (ei )2 (4.48)

at x = � A and
eT

1 u i = 0 (4.49)

eT
2 u i = 0 (4.50)

at x = � A. In matrix form theseboundary conditions become

Q(s)a i (s) = ei (4.51)

where

Q(s) =

8
>><

>>:

eT
1 Y (� A; s)

eT
2 Y (� A; s)
eT

1 Y (A; s)
eT

2 Y (A; s)

9
>>=

>>;
: (4.52)
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The shall needthe adjoint of the matrix Q for the systemdeterminant:

Qy(s) = f q1; q2; q3; q4g (4.53)

with column vectors
q1(s) = Y y(� A; s)e1 (4.54)

q2(s) = Y y(� A; s)e2 (4.55)

q3(s) = Y y(A; s)e1 (4.56)

q4(s) = Y y(A; s)e2: (4.57)

Becauseof Eq. (4.46) Q becomes

Q(s) =

8
>><

>>:

eT
1

eT
2

eT
1 Y (A; s)

eT
2 Y (A; s)

9
>>=

>>;
: (4.58)

The vectorsa i (s) are calculatedthrough

a i (s) = Q � 1(s)ei i = 1; 2 (4.59)

whereby u i can be found. The systemdeterminant is given as

D(s) = detQy(s) (4.60)

which is simply

D(s) = (q3(s))3(q4(s))4 � (q3(s))4(q4(s))3: (4.61)

We have thus expressedthe systemdeterminant in terms of Y (A; s) which
can be calculated numerically. By studying the complex zeroesof D(s) we
will be able to determine the stabilit y properties of a given stationary solu-
tion. The reasonfor the Hermitian conjugation \ y" in (4.60) is that Q(s)
appearsin the denominatorwhencalculating a i . Thereforeit is the complex
conjugatethat appearsin Eq. (4.31).
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4.2 Lo cal Stabilit y

We introducethe stabilit y parameter �

� =
d
ds

D(0): (4.62)

In AppendixC it is shown that for largepositives the systemdeterminantD(s)
is given as

D(s) '
1
4

s0e2
p

2s0A (4.63)

wheres0 = (2kr =vg)s. Then D(s) ! + 1 for real s ! + 1 . Below, we also
show that D(s) has a �xed zero at s = 0. These two properties of D(s)
imply the following: If � < 0 then D(s) is negative in an interval (0; s0) on
the real s-axis and D(s) has an odd number of zeroes since D(s) ! + 1
for real s ! + 1 . Hence, if � < 0 for a given stationary solution, it is
unstable and its instabilit y is of the saddle-point type. In case� > 0, we
declarethe mode locally stable. If � > 0, the given mode can, however, not
be declaredglobally stable since there may be zeroes of D(s) in the right
half s-plane o� the real axis. In principle, when � > 0, D(s) may have an
even number of zeroes on the real axis in the right half s-plane. However,
after doing sometests we have not seenthis happening. Regardless,when
� > 0 further investigations must be carried out before calling a mode at
a given pump rate globally stable. A method to analyzeglobal stabilit y is
described in a subsequent section. When calculating � as a function of the
pump current a changein the sign of � implies a saddle-point bifurcation.
For � = 0 we are at a bifurcation point where two or more tuning curves
meet in a (J=J0; f̂ )-diagram.

To make useof � we must �rst show that D(s) hasa �xed zero in s = 0.
From Eq. (4.45) we obtain

d
dx

Y y(x; s) = Y y(x; s)M y
u (4.64)

The secondcolumn of M y
u is seento be

M y
ue2 = � s

2kr

vg
e3 (4.65)

Multiplying by e2 on both sidesof (4.64) and then using (4.65) give

d
dx

Y y(x; s)e2 = � s
2kr

vg
Y y(x; s)e3: (4.66)
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In the limit of s = 0 it follows that

d
dx

Y y(x; s)e2 = 0 (4.67)

and Y y(x; s)e2 (i.e. the secondrow of Y � ) is thus constant and equal to its
initial value. That is,

q4(0) = Y y(� A; 0)e2 = e2 (4.68)

Of coursewhen calculating Y numerically, this should hold true which we
indeed�nd it to do. Inserting (4.68) in Eq. (4.61) leadsto

D(0) = 0: (4.69)

Thus D(s) has a �xed zero at s = 0, and � is a valid parameter deciding
the local stabilit y of a calculated stationary solution. This makes it con-
siderably easierto learn about the local stabilit y of a mode, in fact we will
now derive a semianalytical expressionfor � in terms of the matrix Q so
that a direct numerical calculation of the derivative dD(0)=ds using �nite
di�erences becomesunnecessary.

By Eqs. (4.61) and (4.68) we �nd

d
ds

D(0) = (q3(0))3
d
ds

(q4(0))4 � (q3(0))4
d
ds

(q4(0))3 (4.70)

or by using (4.56) and (4.57)

d
ds

D(0) = (y 3(A; 0))1
d
ds

(q4(0))4 � (y 4(A; 0))1
d
ds

(q4(0))3: (4.71)

To obtain the derivative d
dsq4 for s = 0, we di�erentiate (4.66) with respect

to s and then take the limit s ! 0:

@2

@x@s
Y y(x; 0)e2 =

� 2kr

vg
Y y(x; 0)e3: (4.72)

Integrating Eq. (4.72) gives

@
@s

Y y(x; 0)e2

�
�
�
�

x= A

x= � A

= �
2kr

vg

Z A

� A
Y y(x; 0)e3dx: (4.73)

64



As Y y(x; s) = I at x = � A for all s, we useEq. (4.57) to end up with

d
ds

q4(0) = �
2kr

vg

Z A

� A
Y y(x; 0)e3dx = �

2kr

vg

Z A

� A
[(y 1)3 (y 2)3 (y 3)3 (y 4)3]ydx:

(4.74)
The i'th component of the vector d

dsq4(0) is then

�
d
ds

q4(0)
�

i

= �
2kr

vg

Z A

� A
(y i (x; 0))�

3dx: (4.75)

With (4.75) the stabilit y parameter � can be calculated from Eq. (4.71)
when y 1 and y 2 are known. Note that we have kept the complexconjugate
in the integrand in Eq. (4.75) although y i are always real for s = 0. When a
saddle-point bifurcation occurs� is supposedto bezero[71]. Thereforewhen
calculating � as a function of current we expect it to changesign when the
tuning curve alongwhich wearemoving branchesinto oneor moreadditional
tuning curves.

4.3 Calculation of y

We briey comment on the calculation of y i . Antisymmetric stationary solu-
tions have zeroesat x = 0. The matrix M 1 de�ned in Eq. (4.16) su�ers from
a singularity at x = 0 when Es(x) is antisymmetric as seenfrom Eq. (4.4).
When calculating y i for theseodd-parity solutions, we chooseto smoothen
the \p otential" given by M 1(x) at x. We do this by introducing the function
h(x)

h(x) =
x

x + j � y

df
dx

: (4.76)

Herethe entit y � y is a small real number. Obviously as� y ! 0, h(x) ! df =dx.
Then for antisymmetric solutitions we replacedf =dx by h(x) in M 1(x). In
h(x), evaluation of df =dx is still neededfor h(0). We avoid this by averaging
over the nearestdiscreteneighboring points: h(0) ' (h(� x r ) + h(� � x l ))=2.
In this way a smooth potential is obtained. The small number � y is a free
parameter whose appropriate value is determined as follows: Denote the
pump rate at which � changesfrom positive to negative J � for a given � y .
For an � y well large we �nd that � will changefrom positive to negative at a
current a bit too high ascomparedwith the bifurcation point on the relevant
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tuning curve. Decreasing� y will lead to a smallervalueof J � . At somepoint
increasing� y will not lead to a lower value of J � . We �nd that when this
occurs, J� will equal the current at which the solution actually bifurcates,
i.e. wherea new branch emergeson the tuning curve. Typically � y � 10� 6

m.

4.4 Global stabilit y

With a stationary solution whose� > 0 it is necessaryto evaluate its global
stabilit y beforenaming it stableor unstable. In order to determinethe global
stabilit y of a mode at somecurrent, we must know the signsof the real parts
of the zeroesof the systemdeterminant D(s). Instead of �nding all zeroesof
D we de�ne a real function of the imaginary part of s that will show a peak
whenever D(s) = 0. Regardthe expansionaround a zeroof D(s) denoteds0

D(s) ' b(s � s0): (4.77)

Next, we introducethe ratio

1
D

@D
@s

'
1

[s � j Im(s0)] � Re(s0)
(4.78)

and state a function � (s), which is de�ned only for purely imaginary s, i.e.
for Re(s) = 0:

� (s) = Re
�

1
D

@D
@s

�
: (4.79)

By comparisonwith (4.78)

� (s) '
� Re(s0)

[Im(s) � Im(s0)]2 + [Re(s0)]
2 : (4.80)

If � (s) is plotted, peaks in the curve will imply Im(s) = Im(s0). Thus at
Im(s) = Im(s0)

� (s) ' �
1

Re(s0)
: (4.81)

Then for � (s = Im(s0)) < 0 for a given zero, the viewed mode is unstable
at the given current as it implies a positive Re(s0). In contrast if � (s =
Im(s0)) > 0 the zero doesnot contribute to an instabilit y sinceRe(s0) < 0
in this case.
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The function � (s) is calculatednumerically using Eq. (4.61) and a �nite
di�erence is usedto obtain the derivative @D

@s . The derivative @D
@s for s ! 0

calculatednumerically should of courseagreewith � . We �nd this to be the
case.

4.5 Results of stabilit y analysis

4.5.1 Lo cal stabilit y of typ e I mo des

In Figure 3.2 we saw how type I I modes were born in conjunction with
branchesemergingfrom the branchesof type I modes. We expect a saddle-
point bifurcation to occur whenvarying the bifurcation parameter(the pump
rate) through a value wherea branch point is located. However we cannot a
priori tell which branchesare locally stable or unstable. With the stabilit y
parameter� , however, we are able to determinethe local stabilit y of a mode
as a function of the bifurcation parameter. A type I mode undergoes a
saddle-point bifurcation in conjunction with an emergingtype I I asymmetric
mode. E.g. mode 5 bifurcates at approximately J = 1:0113J0. This family
of saddle-point bifurcations is seento occur at an increasinglyhigh current
for increasingmode number. In Figure 3.2 there are 8 such bifurcations (for
m = 1 the 1I I -branch is not visible as it lies closeto the 1I I -branch).

Figure 4.1 shows examplesof calculated � -curves for type I modes. The
regardedmodesare 1I , 3I ,4I , and 5I . The questionwe want the small-signal
analysisto answer is: on which sideof the bifurcation point is � > 0 yielding
local stabilit y and on which side is � < 0 yielding local instabilit y. � must
crosszeroat the pump rate of the bifurcation point (where mI I emerges)to
be in agreement with bifurcation theory.

Very reassuringly, indeedthe � -curvescrosszeroat the respective values
of the pump rate that correspond to the valueswherethe modesbifurcate and
type I I modesemerge! Moreover, the actual result from the local stabilit y
analysisis that � > 0 for pump rates below the bifurcation point and � < 0
above the bifurcation point. We hence�nd that the mI -modes are locally
stableon the interval of the pump rate goingfrom thresholdto the bifurcation
point and losetheir stabilit y for higher pump rates. We have found this to
be the casefor all mI with 1 � m � 8. In order to be able to concludethat
all mI -modescarry this behavior we also investigated mode 15I , for which
� turns negative at 1:037J0. Again, this is the pump rate at which 15I I
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Figure 4.1: � as a function of pump rate for modes1I , 3I , 4I , and 5I . The
curves crosszero where their corresponding stationary states saddle-point
bifurcate. This meansthat modesmI are locally stablefor pump ratesbelow
the pump rate at which mI I emerge.

emerges.
We are rather con�dent that the above picture holds true for all m. Of

courseno mathematical proof hasbeengiven here. Recall that mI I is doubly
degeneratefor a given m; both a left- and a right-mI I exist. Therefore two
(not one) branchesemergefrom the bifurcation point. Consequently we can
label the saddle-point bifurcations regarded here as pitchfork bifurcations
[72].

4.5.2 Lo cal stabilit y of typ e I I mo des

Bifurcation theory predicts that the emergingtype I I branches correspond
to locally stable modes mI I since mI turned unstable for currents above
the respective bifurcation points. A similar casewhere a symmetric solu-
tion saddle-point bifurcates into an asymmetric one can be seenfor DFB
lasers[71]. At the bifurcation point wheretype I meetstype I I for somem,
� = 0 and their �eld distributions are identical. However, while � becomes
negative for mI as the current is increased,� for mI I increasesfrom zero
to an increasingly large positive value as the current becomeshigher. The
asymmetricmodesmI I are hencelocally stable. As an example,6I I , � (J ) is
presented in Fig. 4.2. The truncation of � -curvesat the lower-current end is
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tricky as the �elds of mI and mI I becomevery similar near the bifurcation
point. Regardless,we �nd that all mI I are locally stablesince� (J ) increases
uniformly. The result that type I I modes are locally stable is interesting
consideringresults of chapter 3. The far-�elds of mI I at currents well above
the bifurcation points at which they emergeare single-lobed and relatively
coherent spatially. We note that we have not investigatedthe behavior of �
near the pump rates at which mI I mergewith (2m)I I .
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s
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Figure 4.2: � as function of pump rate. Above the pump rate of the bifur-
cation point wherethe branch for 6I I emergesfrom 6I , � > 0 and uniformly
increasingwith increasingpump rate.

4.5.3 Global stabilit y of typ e I mo des

From the analysisof the local stabilit y of modesmI wefound abovethat these
modeswere stable for pump rates going from their respective thresholdsto
the bifurcation point involving mI I at which they underwent a saddle-point
bifurcation thus losing their local stabilit y. In this current range the global
stabilit y is now investigatedusing the function � (s) de�ned in Eq. (4.79).

Let us begin with the fundamental mode 1I for which the results can be
summarizedin short terms: Mode 1I is globally stable from its threshold
pump rate J = 1:0001J0 until it already Hopf-bifurcates at approximately
J = 1:0010J0. Note how 1I becomesunstableat a current that is higher than
the threshold current of 2I . Also as a reference,1I saddle-point bifurcates
at J ' 1:005J0. To illustrate how the Hopf-bifurcations occur, we show
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� (s) for the caseof 1I in Figure 4.3 whoseabscissais Im(s)=(2� ). Graph 1
correspondsto a pump rate of J = 1:00028J0. At this pump rate there areno
peaksbelow zero, and 1I is stable. Graph 2 represents a higher pump rate
J = 1:00153J0. Here two peakshave becomenegative corresponding to 2
pairs of complexconjugatezeroesof D(s) moving into the right half s-plane.
These two Hopf-bifurcations occur where Im(s)=(2� ) is approximately 0.2
GHz and 0.5 GHz. Thesetwo frequenciesreveal side-mode coupling for 1I

to mode 2I and mode 3I , respectively, since the modespacingsbetween 1I

and 2I and between 1I and 3I in Figure 3.2 lie very closeto these Hopf-
frequencies. Note that since the 0.2 GHz-peak is less sharp than the 0.5
GHz-peak,the pair of zeroescorresponding to 0.2GHz-peakhaveentered the
right half s-planefor a lower current than the pair of zeroescorresponding to
the 0.5GHz-peak. For a further augmentation of the current, moreand more
negative peaksappearsas seenfrom graph 3, which has3 negative peaks.

Similar behavior is seenfor mode 2I which is globally stable from its
threshold at J = 1:00035J0 until it Hopf bifurcatesat 1:00160J0. The evolu-
tion of � (s) for 2I is given in Figure 4.3. Graph 1 represents J = 1:00053J0.
Graph 2 is calculatedat J = 1:00163J0 wherea peak is seento have turned
negative at 0.7 GHz. It should be noted that since2I is antisymmetric we
must rely on the parameter � y . Thereforethe current at which 2I bifurcates
and the frequencys of the instabilit y may depend on the utilized valueof � y .
By comparingFigure 4.4 wherethe detuning of the zeroscrossingthe imag-
inary s-axis is 0.7 GHz with Figure 3.2 where4I lies 0.7 GHz above 2I tells
us that, most likely, the lowest-current Hopf-bifurcation of 2I is associated
with side-mode coupling to 4I .

Modes m � 3 lose their stabilit y immediately above their thresholds.
Alternativ ely they are all \b orn" unstable. As an example,the stabilit y of
mode m = 3 was evaluated at � 2 � 10� 5J0 above its threshold where the
mode is clearly unstable with two negative peaksin � (s).

As an exampleof � for m � 3, Figure 4.5 displays � (s) for mode 5I for 3
di�erent currents. Graph 1 is calculatedat J = 1:00188J0 corresponding to
7 � 10� 5J0 above modal threshold. Graphs 2 and 3 represent higher currents,
wheremore and more peaksbecomenegative. For the sake of generality we
have in addition to the casesof 1 � m � 8 calculated � for the higher order
mode 15I and we �nd � to have several negative peaksimmediately above
threshold. Hence,we �nd good reasonto believe that all modesof type mI

for m � 3 are globally unstableimmediately above threshold and most likely
remain unstable for all higher currents.
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Figure 4.3: Mode 1I : � is plotted as a function of frequencyIm(s)=(2� ) for
3 di�erent pump rates. Graph 1: For J = 1:00028J0, � has no peakswith
negative values and the mode is therefore globally stable. Graph 2: For
J = 1:00153J0, 2 peakshave becomenegative at 0.2 GHz and 0.5 GHz and
the mode is globally unstable. Graph 3: For J = 1:00247J0, a third peakhas
becomenegative. When increasingthe pump rate even further, more more
peakswill turn negative.

It is intuitiv ely appealing that 1I does not lose its stabilit y at a cur-
rent whereno other modesare above their threshold, sinceone associatesa
Hopf-bifurcation with oneor several emergingside-modesthrough side-mode
coupling. There have beenreports on experimental con�gurations designed
to make BA lasersoperate in the fundamental lateral mode only [64]. These
schemesrely on making the lossesof the fundamental mode considerably
lower than those of the higher order modes by meansof spatial �ltering.
With the notion that the fundamental mode cannot Hopf-bifurcate at a cur-
rent below the threshold currents of the modesof higher order, such �ltering
schemesnot only ensurethat the fundamental mode be the only mode above
threshold but alsoensureits global stabilit y at currents higher than the cur-
rent at which it losesits stabilit y in a solitary laser. It is also conceivable
that modesof higher order than 2 can be stable if by somemeansthey are
�ltered to have the lowest threshold current; see[73].
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Figure 4.4: Mode 2I : � is plotted as a function of frequency Im(s)=(2� )
for 2 di�erent pump rates. Graph 1: For J = 1:000531J0, � has no peaks
with negative values and the mode is therefore globally stable. Graph 2:
For J = 1:00163J0, a peak has turned negative at 0.7 GHz and the mode is
globally unstable.

We have seenthat the fundamental mode 1I losesits global stabilit y at a
very low pump rate, namely 1:0010J0 (again, its threshold was1:0001J0). In
[25] a 100micron-wideAlGaAs BA laseroperating at 810nm wasinvestigated
near its threshold (recall that we study a laserof width w = 200� m). It was
found that the single mode operation with the fundamental mode stopped
at a current 1:01I 0 where instabilities set in. It must be noted that an
external cavit y with a plane mirror (no spatial �ltering) was included in the
set-up. However, a plane external mirror has not been found to stabilize
lateral behavior in a BA laser [24]. Thereforewe believe that it is relevant
to compareour results with this experiment. Most likely the lateral mode-
couplingbecomesstrongerwith increasingwidth and a 200-micronwide laser
madefrom the samewaferasthe devicein [25]would su�er from an instabilit y
at a lower current when normalizing by the respective threshold currents
due to the smaller lateral modespacing. We must also remember that the
parametervaluesin our calculationsare not taken from a speci�c device. In
any case,the experiment reports a very low pump rate as \threshold" for
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Figure 4.5: Mode 5I : � is plotted as a function of frequencyIm(s)=(2� ) for
3 di�erent pump rates. Graph 1: For J = 1:001875J0, very closeto modal
threshold, � has several negative peaksand the mode is therefore globally
stable. Graph 2 and Graph 3: When increasingthe pump rate more and
more peaksbecomenegative.

lateral instabilities, suggestingthat our small-signalanalysiscan give good
predictions on the lateral modal behavior of a BA laser at very low pump
rates.

4.5.4 Global stabilit y of typ e I I mo des

We found earlier that modesmI I were locally stable. However, we �nd all
type I I modes to be globally unstable. For m > 1, � (s) behaves similarly
to � (s) for mI (for m � 3). The mode 1I I stands out to a small degreeby
having a low-frequencyinstabilit y: at currents very closeto the branch point
where 1I I is born the mode only has a zero causinga low-frequencyinsta-
bilit y at around 50 MHz. The explanation for this is most likely a coupling
to 2I I which lies 50 MHz above 1I I in the tuning diagram. However already
at around J = 1:0065J0 a higher-frequencyinstabilit y at 0.66GHz appears;
probably in conjunction with mode 4I accordingto the tuning curves. Re-
gardlessof this small abnormality, we have not found globally stable type I I
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modes.

4.5.5 Summary of stabilit y prop erties

By investigating the small-signalstabilit y properties of modesof type I and
type I I we concludethat in a solitary BA laser with the parameter values
usedhere,only modes1I and 2I are globally stable at very low pump rates
only. One experimental report for a 100micron-wideBA lasercon�rms that
indeedstable, single-mode operation can only occur at very low pump rates.

All modes mI are locally stable for pump rates lower than the one at
which a saddle-point bifurcation occursin conjunction with the birth of mI I .
However they are globally unstable immediately above threshold for m � 3.
Modes mI I were found to be globally unstable for all m. Since they are
locally stable they may in principle operate in sometime-dependent state
(just as mI may for pump rates where they are locally stable). SincemI I

could be related to the time-averagedsingle-lobed far-�eld of the AEC laser,
this is of our interest. However, sincethe AEC laser is a devicethat usually
operatesat high pump rates,we can not concludeanything about this based
on our analysisat low currents.

Why do BA lasersin generalnot operate in a single lateral (per longi-
tudinal) mode but rather in an either multimode state or a complexappar-
ently chaotic state? In generalterms the above stabilit y analysishas given
the small-signalanswer to this question: All modesare unstable except for
pumping at very low currents.

We have not investigatedthe stabilit y of modesmI I I and mI V . We leave
this to future work. Even if someof thesemodesare stable, which onecould
intuitiv ely doubt, then they will probably not be seenin a solitary BA laser
where the large-signalbehavior appears to be chaotic. The tra jectory in
somephase-spacewill never �nd a stable stationary solution when the BA
laser is well above threshold. In generalone cannot expect that a laser will
operate in a cw-mode even if one or more stable stationary solutions exist.
For example, in external cavit y lasers(with one lateral mode) with strong
optical feedback, time-domain calculations show that limit-cycle operation,
chaotic behavior, and mode hopping may occur in spite of the presenceof
stable stationary solutions [74].
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4.6 Linewidth

We move on to demonstratethe use of Eq. (4.31). In this section we will
calculatethe linewidth for mode 1I . The linewidth is the low frequencylimit
of the frequencynoisespectrum. To calculatesmall-signalnoisespectra from
using (4.31) one must know the di�usion matrix D (x; s) in the correlation
relation for ef (x; s)

D
ef (x; s)ef

y
(x; s)

E
= D (x; s)� (x � x0)2� � (
 � 
 0); (4.82)

wheres = j 
, s0 = j 
 0, and \ hi" denotesensemble averaging. In Appendix
D the di�usion matrix is determined from the correlation relations for the
Langevin noise function F! (x; y; z) in Eq. (3.7). The di�usion matrix is
approximated to be independent of frequency

D '
D f (x; ! s)

2jEsj2
I ; (4.83)

where

D f (x; ! s) '
2! 3

s~
c3� 0l

K nr gnsp: (4.84)

The inversion factor nsp is given by [75]

nsp =
N

N � N0
: (4.85)

The Fourier transform of the instantaneousfrequencydeviation _� E = d( )2=dt
is s( f )2. The frequencynoisespectrum is the spectral density of the instan-
taneousfrequencydeviation

S_� E
(s) = lim

T !1

1
T

D
js( e )2(s)j2

E
(4.86)

By inserting (4.31) for i = 2 and ej = 0 in Eq. (4.86) while using (4.82)
oneobtains the expressionfor the frequencyspectrum at x = � A+

S� E (s) = jsj2
Z 1

�1
� y

2(x; s)D (x; s)� 2(x; s)dx: (4.87)

In the limit s ! 0 oneobtains the spectral linewidth

� � = S(0)=2� : (4.88)
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For the purposeof obtaining the linewidth we needto know lim s! 0 s� 2. Let
us now derive an expressionfor � 2 in terms of individual components of y i .
From Eq. (4.42)

� 2(x; s) =
�

eT
3 Y a2

eT
4 Y a2

�
: (4.89)

By Eq. (4.51) and (4.58)

ay
2(s) = eT

2 (Q � 1)y =
1

D(s)

�
0 1 (q3)

�
4(s) � (q3)

�
3(s)

�
: (4.90)

and then

� 2(x; s) =
1

D(s)

�
(y 2)3 + (y 3)3 (y 4(A))1 � (y 4)3 (y 3(A))1
(y 2)4 + (y 3)4 (y 4(A))1 � (y 4)4 (y 3(A))1

�
: (4.91)

In (4.91) all y i are functions of s respectively x except those evaluated in
x = A. The de�nition of � in Eq. (4.62) gives

lim
s! 0

s� 2(x; s) =
1
�

�
(y 2)3 + (y 3)3 (y 4(A))1 � (y 4)3 (y 3(A))1
(y 2)4 + (y 3)4 (y 4(A))1 � (y 4)4 (y 3(A))1

�
: (4.92)

In (4.92) all y i are functions of x except those evaluated in x = A. Having
obtained s� 2 in the limit s ! 0 we can calculate the linewidth from (4.87)
using (4.92) and (4.83). Figure 4.6 displays the calculatedlinewidth of 1I for
two di�erent pump rates. The linewidth at J = 1:009J0, just below the pump
rate at which the mode Hopf-bifurcates is found to be � � = 8:0 GHz. For
J = 1:00028J0, closeto its threshold J = 1:0001J0, the linewidth � � = 33:0
GHz. Oneexpectsthe linewidth of a laserto drop for increasingcurrent near
threshold [76].

One could proceedto calculatethe full frequencyspectrum in (4.87) and
other typesof noisespectra. We have not succeededin doing so as of yet.

4.7 Static Frequency tuning

With the generalexpressionEq. (4.31) one can also calculate the response
due to a current modulation f� J (x; s) by inserting the current modulation
term (4.22) in (4.31) and setting ef = 0. The changein frequencywhen the
current is changedstaticly is then given by

� ! (0) = kr � a
Z A

� A
lim
s! 0

s� y
2(x; s)

�
�

� 1

�
� R

f� J (x; s)
1 + jEs(x)j2=Psat

dx: (4.93)
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Figure 4.6: The linewidth of mode 1I calculated for two pump rates. At
J = 1:001J0, the mode Hopf-bifurcates.

wherewe again usethe contracted notation � y
2(x; s) � � y

2(x; � A+ ; s). Using
Eq. (4.36)

� y
2(s;x)

�
�

� 1

�
= � (u 2(x; s))3 � (u 2(x; s))4 = u y

2(x; s)( � e3 � e4) (4.94)

and then inserting the adjoint of u 2 from Eq. (4.42) gives

� y
2(x; s)

�
�

� 1

�
= ay

2Y y(x; s)( � e3 � e4): (4.95)

By Eq. (4.51) and (4.58)

ay
2(s) = eT

2 (Q � 1(s))y =
1

D(s)

�
0 1 (q3(s)) �

4 � (q3(s)) �
3

�
: (4.96)

Using the de�nition of � in Eq. (4.62) we obtain

lim
s! 0

say
2 =

1
�

�
0 1 (y 4)1(A) � (y 3)1(A)

�
: (4.97)

Then it follows that,

lim
s! 0

s� y
2(s;x)

�
�

� 1

�
=

� � 1 f (y 4)1(A) [� (y 3)3(x) � (y 3)4(x)] � (y 3)1(A) [� (y 4)3(x) � (y 4)4(x)]g :
(4.98)
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The small signal frequency tuning is then obtained by substituting (4.98)
into (4.93).
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Figure 4.7: Comparisonbetweensmall-signalfrequencytuning denoteds.s.-
slope and the exact slope of tuning curvesdenoted\Exact slope" for modes
4I , 7I , and 15I in Fig. 3.2. J 0 is the normalizedpump rate J=J0.

For a calculatedstationary solution in the (J=J0; bf )-plane it is thuspossi-
ble to calculatethe local slopeof the tuning curveby meansof the small-signal
analysis. By local we mean at the current at which the stationary solution
was calculated. We present a few examplesof the calculated small-signal
frequencytuning as a function of pump current in Fig. 4.7. For modes 4,
7, and 15 (all type I) we �rst directly calculated the slopesof actual tuning
curves in Fig. 3.2. Thesecurves labeled \Exact slope" thus represent the
\exact" slope of the tuning curves. The small-signalfrequencytuning curves
ascalculatedusing Eq. (4.93) are labeled\s.s.-slope". We �nd that the pre-
cision of the small-signalfrequencytuning is very good for currents ranging
from the threshold of modesmI to currents past the bifurcation point where
modesmI I are born. The discrepancytypically increasesa little for larger
currents.
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4.8 Summary

In this chapter we have performeda small-signalanalysison lateral modesin
a BA laser. We employed a Green'sfunction approach to include the spatial
dependenceof the stationary solutions.

The main focuswason a stabilit y analysis. The generalresult wasbrutal
but in correspondencewith the known experimental and theoretical time-
domainbehavior of BA lasers:Except for the caseof very low pump rates,all
investigatedmodeswerefoundunstable. Albeit brutal, the result is appealing
from a theoretical point of view since the highly non-stationary output of
BA lasersconceivably has its origin in linear instabilities (i.e. instabilities
predictableby a small-signalanalysis). The only modesfound to be globally
stablewerethe two lowest order modesof type I. However, asthe pump rate
is increasedfrom the thresholdof the laserthe fundamental mode1I becomes
unstable at already J = 1:0010J0 and the next higher order mode 2I loses
its global instabilit y at the slightly higher pump rate around J = 1:0016J0.
All higher order type I modesare su�er from instabilities of the Hopf-type
immediately above threshold. In connectionwith the birth of type I I modes,
type I modes bifurcates to also su�er from a saddle-point instabilit y. The
asymmetric type I I were found to su�er from instabilities of the Hopf-type.

We alsodemonstratedthe calculation of the linewidth of the fundamental
lateral mode and found plausible valuesfor the linewidth of a single lateral
mode just above threshold. Finally, we showed examplesof frequencytuning
giving the change in oscillation frequencydue to a static change in pump
rate.
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Chapter 5

Time-domain calculations

The output of BA lasersuctuates in time and spaceeven at small pump
currents. This is known experimentally [25] and from time-domain large-
signal theory including microscopicdescriptionsof the gain material [3][4].
Our analysis of the stationary states and their stabilit y properties are in
correspondencewith this known behavior; no stationary output from a BA
laser is possibleexcept for at very low pump rates. When a stationary state
Hopf-bifurcates into a limit cycle it could possibly be recognizedin a time-
domain simulation at a current just above the current of the bifurcation in
casethe limit cycleassociated with the Hopf-bifurcation is stable. However,
judging from the long time reported chaotic behavior of BA lasers,whereno
perfectly periodic mode of operation is seenfor considerablecurrents, this
is only conceivable near threshold. In order to be able to compareresults
in chapters 3 and 4 with time-domain results, onecould alsodo large-signal
time-domain calculationsat very low currents and comparespectra obtained
from time-domainsimulations (large-signal)with noisespectra (small-signal);
in particular the �eld power spectrum. This wasdonesuccessfullyfor a single-
mode EC laser in [74]. We shall not pursuesuch a comparisonhere. Instead
we turn to the time-domain consideringa higher pump rate, wherewe seek
to imitate the experimentally observed behavior of the asymmetric external
cavit y (AEC) laser.

Of particular interest here is modeling of the AEC laser. In [73] BPM
wasutilized for this. The �eld waspropagatedthrough the cavit y of the chip
and the external cavit y until a steady-statewas reached. However, at pump
currents slightly above threshold, the method becomesunstable,i.e. the �eld
distribution di�ers from oneround-trip to another. BPM beinga method for

81



�nding steady-statesolutions, such a variation is not acceptable. However,
the instabilit y of BPM doesadd to the suspicionthat even with the spatial
�ltering in the external cavit y the AEC laser is not a cw-laser. Therefore
we have pursueda time-domain approach. One could also try to extend the
methods of chapters 3 and 4 to include an external cavit y and perhapseven
include the spatial �ltering, and then �nd stationary solutions. In addition a
stabilit y analysisshouldbe performed. However, recognizingthe complexity
of EC lasersin generalthis could becomerather involved.

In the following we integrate the �eld- and carrier equationsin the time-
domain and for the AEC laser we add a �ltered delay term in the �eld
equation as it will be described. As mentioned in chapter 2, taking the
phenomenologicaldescription of the semiconductorto the time-domain in
a di�ractiv e gain guided system is not without problems. Spatial Fourier
components of the �eld with large spatial frequenciesmay be ampli�ed un-
physically. We have experiencedthis �rst-hand by solving the coupledPDEs
for the �eld and the carrier density. The problem can be relieved by im-
plementing an ad hoc part found in the literature in the �eld equation. We
discussthis in more detail after the derivation of the neededequations. The
advantage of the phenomenologicalapproach as opposedto the microscopic
approach is a smaller computational load and also a more transparent de-
scription of dynamic �lamentation in BA lasers.Furthermore, to be able to
comparewith our stationary results it is convenient to be able to use the
sameparametersin the time domain. In the semiconductorMaxwell-Bloch
equations,one has to insert dephasingtimes as parameters. We note that
the numerical schemethat we use to solve the PDEs for the �eld and car-
rier density can be extendedto include a microscopictreatment of the gain
material.

5.1 Time-domain equations

In the time-domain we now considerthe one-dimensional�eld equation and
carrier-density equationthat weobtainedfrom the mean-�eld approximation.
One may call theseequationsmacroscopic.A set of similar one-dimensional
macroscopicequationscoupled to the semiconductorMaxwell-Bloch equa-
tions applied to a BA laser were used in [22] with apparent success. We
therefore believe that the one-dimensionaltreatment of BA lasers in the

82



time-domain generally is a good approximation.
From Eq. (3.40)the time-domain�eld equationwithout external feedback

reads
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where we have assumed! s = ! r . We choosethis frequency to obtain an
equationsimilar to what is commonlyfound in the literature. In this chapter
we include carrier di�usion such that the carrier-density equation becomes
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In the present chapter the current-pro�le is a square, i.e. for jxj > x0 we
set J = 0. Instead the carrier di�usion spreadsthe current. Further, the
lateral boundary conditions are speci�ed as
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for the �eld. For the carrier density we utilize boundary conditions [77]
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= c2N ; x = � A (5.5)

@N
@x

= � c2N ; x = A: (5.6)

The constant c2 is the ratio betweenthe surfacerecombination velocity and
the di�usion coe�cien t, i.e. c2 = vsr =D [78]. Thusx = � A areconsideredthe
lateral boundariesof the chip. We integrate Eqs. (5.1) and (5.2) numerically
using the hopscotch method. We return to the subject of this method briey
in Section 5.4 and in Appendix E. In the following two sectionswe derive
an additional term describingexternal feedback that is to be included in the
�eld equation.
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5.2 External feedback without �ltering

We now continue to considera BA laserwith an external mirror placedlike
in Figure 2.2. To get started, we regard the casewhere the external mirror
provides no �ltering. The �eld equation (5.1) shall be extendedto include
the feedback from an external reector. Here we considerthe caseof small
to moderate levels of feedback.

When an external reector is placedin front of the right facet, the e�ective
right reectivit y is the reectivit y of a Fabry-Perot etalon [50]

rR (! ) =
r2 + r3e� j ! � ext

1 + r2r3e� j ! � ext
(5.7)

Herer3 the e�ective external amplitude reectivit y. The e�ective reectivit y
includesreection by the external mirror and any lossesin the feedback path.
� ext is the round-trip time of the external cavit y. If r 3 is small Eq. (5.7) can
be approximated using the expansion1=(1 + x) ' 1 � x:

rR (! ) = r2 + r3(1 � r 2
2)e� j ! � ext (5.8)

where terms with r 3 of order higher than �rst have been neglected. Now,
instead of the mirror lossof the solitary-laser �eld � m =2 = � ln r 1r2=(2l) we
must considerthe amplitude mirror lossof the compound cavit y:

�
1
2l

ln r1rR = �
1
2l

�
ln(r1r2) + ln(1 +  e� j ! � ext )

�
; (5.9)

where

 =
(1 � r 2

2)r3

r2
(5.10)

is the feedback parameter. In the limit of  � 1 the compound cavit y mirror
losscan be approximated using ln(1 + x) ' x:

�
1
2l

ln r1rR ' �
1
2l

(ln( r1r2) +  e� j ! � ext ): (5.11)

Replacing the mirror loss of the solitary laser in Eq. (5.1) with the com-
pound cavit y lossin Eq. (5.11) yields the �eld equationwith full (un�ltered)
feedback
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Eq. (5.12), then, is the �eld equationintroducedby Lang and Kobayahsi [79]
exceptthat di�raction is included in (5.12). Note, however, alsothe negative
sign in front of x in the argument of E in the feedback term, as shall be ex-
plained in section5.3. It stemsfrom the cavit y of length 2f , which includes
a lensin the middle and thereforetwo Fourier transforms. The di�raction in
the external cavit y is thus included in (5.12).

From the view point of applied mathematics, di�erential equations in-
cluding a temporally delayed term such as the term including E(t � � ext )
in (5.12) are called delay di�erential equations. Bifurcation theory and nu-
merical bifurcation packageshave beenapplied to single-mode EC lasersto
study the birth of external cavit y modesas well as their stabilit y properties
when somebifurcation parameter is varied [80]. Of particular interest in
this thesis is the inclusion of the lateral dimensionx. One possiblepath to
follow is to include the lateral �eld distribution as a �xed Gaussianshape
whoseonly degreeof freedomis to changeamplitude, that is to \breathe" as
a function of time [81]. By doing so, however, onepresumablydismissesthe
possibility of any lateral instabilit y, which we in Chapter 4 have found to be
of great importance for BA lasers,and therefore the stabilit y properties of
the external cavit y modesin Ref. [81] arevery similar to thosefound without
including the lateral dimension, i.e. similar to the stabilit y properties of a
single-mode EC laser. Of coursea reducedcomputational load is in favor
of this approach, but it can only give insight in the behavior concerningthe
fundamental lateral mode.

Often the motivation for delayed feedback systemsis to stabilize the uc-
tuating output of the regardedsolitary system. If onea priori is aware of a
characteristic temporal period in an unstablenonlinear system,stabilization
of the systemmay possiblybe achieved by usinga delay of the known period
to obtain a stable motion [82].

5.3 Spatially �ltered feedback

Unlesssomekind of spatial �ltering is introduced in the feedback we can-
not expect a stabilization of a BA laser. It has beenseenexperimentally in
[24], where a BA laser was subject to an external mirror with no �ltering,
that no stabilization or spectral narrowing was achieved when comparedto
a solitary laser. In [83] a BA laser subject to a delayed spatially �ltered
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feedback was studied theoretically, wherethe �lter function was a Gaussian
eF (kx ) = exp(� k2

x=� ) for someconstant � . However, the authors regardedan
in�nite lateral structure, i.e. they imposedno lateral boundary conditions.
Such a Gaussian�lter hastheoretically beenshown to stabilizethe �eld of the
in�nitely wide semiconductorlaser otherwiseunstable without the external
�lter [84]. We saw in Chapter 3 that the stationary lateral mode structure
is much a�ected by the lateral gain guiding whereforethe assumptionof an
in�nitely wide structure is mainly of theoretical or rather mathematical in-
terest. As mentioned earlier, feedback from an external mirror with a �nite
radius of curvature hasbeenshown to have a stabilizing e�ect on BA lasers
experimentally [21] and theoretically [22] wherethe length of the delay was
of signi�cance in addition to the spatial �ltering.

We regard the �ltering in the Fourier-plane of a laser, seeFigure 2.2.
A thin lens of focal length f is placed at (z = l + f ) and an appropriate
�ltering reector is put at (z = l + 2f ). The feedback term to be included
in the �eld equation should include propagation from chip to the lens; the
phaseadded to the �eld by the lens; propagation from lens to the Fourier-
plane; reection and �ltering due to the external mirror; and propagation
back to the chip through the lens. The crucial thing here is to notice that
the Fourier transform due to propagation from chip to the external mirror
has the samedirection (i.e. the samesign in the exponential function of the
Fourier integral) as the onedue to the propagation from the external mirror
to the chip; the �eld seesthe samelenstwice. Thus the �ltered �eld entering
the chip becomes

E f b(x; t) = r3(1 � r 2
2)e� j ! r � ext F f eC(kx )F [E(x; t � � ext )]g; (5.13)

whereF denotesa forward Fourier transform and eC(kx) is the �lter function
in the kx-domain. Thus

E f b(x; t� � ext ) = r3(1� r 2
2)e� j ! r � ext

Z Z Z
E(x0; t� � ext )C(x00)e� j kx (x0+ x00+ x)dx0dx00dkx

(5.14)
leading to

E f b(x; t) = r3(1 � r 2
2)e� j ! r � ext

Z Z
E(x0; t � � ext )C(x00)� (� x � x0� x00)dx0dx00

(5.15)
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and

E f b(x; t) = r3(1 � r 2
2)e� j ! r � ext

Z
E(x0; t � � ext )C(� x � x0)dx0 (5.16)

or

E f b(x; t) = r3(1 � r 2
2)e� j ! r � ext

Z
E(� x � x00; t � � ext )C(x00)dx00: (5.17)

Note the minus in front of the unprimed x. This signmakesa very signi�cant
di�erence. With a full planemirror in the Fourier-plane eC(kx ) = 2� �constant
onegetsa delta-function �lter function C(x). The minus sign in front of x in
the feedback term of (5.12) is justi�ed, and it is in agreement with [30] where
BPM was used for a BA laser with un�ltered feedback. For an un�ltered
feedback, the minus sign in (5.12) says that the reected �eld that reenters
the chip through the front facet, reenters at a position opposite to the point
at which it was emitted. Omitting the minus sign, i.e. convolving the �lter
function and �eld doesnot represent the optical systemdisplayed in Figure
2.2. In the caseof a spatially �ltered feedback we �nd that it causesvery
di�erent feedback conditions when the minus is left out. We shall return to
this point later in this chapter.

With a generalspatial �ltering we get the �eld equation
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(5.18)

It shouldbenoted that the �ltering in Eq. (5.18) cannotbeachieved without
a �nite distancebetweenthe output facet and the �ltering reector because
the two Fourier transforms are required. An optical system serves as an
attractiv e environment for combining nonlinear phenomenawith delay and
�ltering.

5.3.1 Single strip e mirror

We considerthe �lter function relevant for the AEC laser. It represents a
single stripe mirror placed in the Fourier plane. Hence the width of the
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Figure 5.1: Singlestripe �lter in the kx -domain.

mirror represents the rangein spatial frequencyor, alternatively, an angular
range. Regardthe �lter function representing a stripe mirror in the far-�eld

eC(kx ) = 2�
1
2

[sgn(K x � kx + � kx ) + sgn(� K x + kx + � kx )] (5.19)

wheresgn(x) is the signum function. K x represents the center of the mirror
while � kx is the half width in spatial frequency. SeeFigure 5.1. This �lter
is the only type consideredin this thesis. In position spacewe get

C(x) =
ej (� kx + K x )x � e� j (� kx � K x )x

j x
: (5.20)

Often onewants the angle in the Fourier plane:

� = arcsin
kx

k0
: (5.21)

We acknowledgethat the actual �lter function may be more involved in
an experiment. The width of the reector is sometimesde�ned by two razor
bladesin front of the actual reector. The adjustable distancebetweenthe
razor blades then translates into a � kx . Such an arrangement may cause
undesiredscatteringof light. However, we assumethat such scattering losses
are included in r 3.
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5.4 Hopscotc h metho d

The numerical method utilized in this chapter is the hopscotch method. It
is a method originally made to solve the parabolic equation ut = uxx [85].
It is an explicit-implicit �nite-di�erence schemewhich hasbeenfound to be
very numerically stable [86]. The hopscotch method may also be used for
nonlinear PDEs such asKorteweg-deVries equation[87]. In our case,we are
to solve the nonlinear systemof PDEs in Eqs. (5.1) and (5.2). Details are
given in Appendix E.

We �nd that the exact valuesof the \decay constants" in (5.3) through
(5.6) are not important as it also found in e.g. [77]. If the boundary con-
ditions on the x-domain are imposedwell away from jxj = x0 the �eld and
the carrier density at the boundariesbecomevery small. In an actual device
one certainly wants the �eld to be vanishingly small at the lateral edgesof
the chip in order to avoid lateral lasing phenomena[88]. Also, it is conve-
nient not having to know the actual magnitude of the surfacerecombination
rate. The noiseterm in the �eld equation drives the laser above threshold.
We add Gaussianvery-low level noisein the simulation. When the laser is
above threshold, the e�ect of the noiseis negligible. For purely explicit in-
tegration of the PDE D ut = uxx , one has the numerical stabilit y criterion
D � t=(� x)2 < 1. For comparisonwe usevg=(2kr ) � t

(� x)
2

< 2:5 � 10� 2. As al-
ready stated the macroscopicPDEs treated herecan be usedin conjunction
with the semiconductorMaxwell-Bloch equations. Moreover, extending the
hopscotch method to includez-dependenceappearsstraight forward. Includ-
ing the semiconductorMaxwell-Bloch equationsand/or 2 spatial dimensions
are aimed for large-scalecomputing. For this purposethe hopscotch method
is very well suited for parallel computing [89].

5.5 The problem with adiabatic elimination

When integrating Eqs. (5.1) and (5.2) using the hopscotch method we have
experienced�rst-hand that �eld components of high spatial frequenciesmay
becomeampli�ed in an unphysical manner when the �eld is calculatedwith
a relatively high spatial resolution. This behavior becomesclear when cal-
culating the far-�eld, i.e. the spatial spectrum, in which the highest spatial
frequenciesof the Fourier window grow ordersof magnitude above the phys-
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ical far-�eld localizedwithin � 3 degreesaround zerodegrees(the laseraxis).
It turns out that the reasonfor this undesiredbehavior is not to be blamed
on the hopscotch method; it is not a numerical instabilit y. Rather the fault
lies in the phenomenologicaldescription of the gain and amplitude-phase
coupling [41]. Due to the adiabatic elimination of the polarization variable,
variations of high spatial and temporal frequency in the permittivit y are
disregarded. A plane-wave linear stabilit y analysis of equationssimilar to
Eqs. (5.1) and (5.2) shows that planewaveswith high kx grow exponentially
when perturbed (they are unstable) [77]. Although this stabilit y analysis
dealswith a laterally in�nite system, it captures that spatial Fourier com-
ponents of the �eld with high spatial frequenciesare inherently unstable.
Again, this is not a physical result but a mathematical consequenceof the
introduction of the simple linear gain model along with the � -parameter in
a systemwith di�raction. As already implied, in a numerical integration of
(5.1) and (5.2) with a relatively high resolution in x, i.e. a relatively small
� x, the Fourier window becomeslarge and Fourier components with a rela-
tively high spatial frequencykx grow unphysically. As a result � x must be
kept relatively large. A way to amendthe high-kx instabilit y while retaining
the phenomenologicaldescription has beensuggested[41] [77]. The idea is
to ad hoc introduce a small imaginary part in the factor 1=(2kr ) in (5.1),
i.e. 1=(2kr ) ! (1 + j � )=(2kr ) with � � 0. The introduction of � may be
understood by transforming (5.1) into the kx-domain:

j + �
2kr

k2
xE +

1
vg

@
@t

E �
1 + j �

2
� a(N � Nr )E +

� � m

2

�
E = f (kx ; t) (5.22)

It can seenthat � > 0 introducesa loss that depends parabolically on kx

whereby the components of high spatial frequencyare dampened. Of course
the e�ect on the physically relevant kx-valuesshould be minimal when in-
troducing � . We have found that a value of � = 7:5 � 10� 3 doesnot raise the
background carrier-density level signi�cantly. With this value of � we can
run calculations with � x = 1:33� m for a BA laser of width w = 200� m
while keepingthe high kx -components dampenedfor a pump rate J = 1:2J0.
The spatial resolution reported in the streak-cameraexperiment in [2] was3
micronsfor a BA laserof a width of 100microns(the time resolution was50
ps). Thusthe obtainednumerical resolutionis acceptable.On the other hand
a higher resolution could be desirablefor which a microscopictreatment of
the semiconductoris necessary. In other words for a higher spatial resolution
onecould couplethe macroscopicPDEs to the semiconductorMaxwell-Bloch
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equationsthrough the polarization variable.
At thresholdthe background carrier density is approximately 2:35N0 with

the utilized parameters. The additional lossdue to the introduction of the
small number � must not signi�cantly raise this level. One should be con-
cernedwith the background carrier density or alternatively the averagecar-
rier density within jxj � x0 or rather how much it di�ers from the carrier
density outside the pumped region, as it is an important geometric factor
having a signi�cant inuence on the shape of modes. This can be seenwhen
�nding stationary modes.

As an alternative to a microscopictreatment of the gain material one
couldconsideraddingmoreterms in the expansionof the lateral wavenumber
in Eq. (3.35). If oneincluded nonlinear gain in the phenomenologicalmodel,
the problem of high-kx instabilit y would, however, not necessarilybe elimi-
nated, as it seemsto appear even at low powers. The problemsassociated
with a phenomenologicaltreatment of BA lasersin the time-domain really
underlinesthe complexity of the spatio-temporal behavior of BA lasers;wide-
aperture multistrip e index-guidedlaserarrays canbe treated phenomenolog-
ically without similar problems. As examples1-dimensionalmodeling of a
laserarray of width 100� m (10 stripes) [90] and similar 2-dimensionalmod-
eling of an array of width 50 � m (5 stripes) [86] were performed for high
pump currents using linear gain and the � -parameter.

5.6 Time-domain results

Our motivation for doing time-domain simulations is to try and capture the
experimentally observedbehavior of the AEC laser. First, however we regard
the freely running (solitary) laseras a reference.Then we turn to the AEC
laser. We are mainly concernedwith the post-relaxation behavior of the
laser sinceBA lasersare rarely usedas switched devices. We changea few
parametervaluesascomparedwith Chapter 3. They are listed in Table 5.1.
The length of the chip is now 500 � m, which is half of the length used in
chapter 3. Further, we changethe rear facet reectivit y to r 1 = 1 so that we
have the samedistributed mirror loss as in chapter 3. Thus the rear facet
is now assumedanti-reection coated, while the front facet is still assumed
cleaved.
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Table 5.1: List of parametervalues
Parameter Symbol Value Unit

Cavit y length l 500 � m

Stripe width w 200 � m

Active layer thickness h 0.2 � m

Linewidth enhancement factor � 3.0

Linear gain coe�cien t a 1 � 10� 20 m2

Con�nement factor � 0.3

E�ectiv e refractive index nr 3.5

E�ectiv e group index ng 4.0

Referencewavelenght � r 810 nm

Transparencycarrier density N0 1 � 1024 m� 3

Internal loss � i 30 cm� 1

Carrier lifetime � R 5 ns

Front facet reectivit y r 2
2 0.35

Rear facet reectivit y r 2
1 1.0

Di�usion coe�cen t D 30 cm2s� 1

External cavitit y round-trip time � ext 0.33 ns

Feedback parameter  0.15

5.6.1 Freely running laser

The dynamicsof BA lasershas beenstudied extensively especially theoret-
ically and perhaps to a lesserextend experimentally. Let us just let the
phenomenologicalmodel demonstrate the characteristics of a solitary BA
laser. It captures the �lamentation processqualitativ ely well. Even with a
microscopictreatment of the semiconductorgain material it is di�cult to say
how good the quantitativ e agreement with experiment is [2]. Figures5.2and
5.3 show the turn-on behavior and the post-relaxation behavior of the total
output power and the laterally averagedcarrier density asa function of time.
The pump rate J = 1:2J0 is applied at t = 0. Following the relaxation oscil-
lations, which arequickly \smearedout" due to lateral dynamics,the output
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Figure 5.2: Output power as a function of time for freely running laser;
J = 1:2J0. After the few relaxation peaksthe laserenters a uctuating state
and never �nds a steadystate.

power goes into a state where it uctuates between 40 mW and 200 mW.
The carrier density �nds a background level NB (t) ' 2:4N0 around which it
uctuates but never �nds a steady-state. One expects NB (t) to lie slightly
above the steady-statethreshold 2:35N0 due to spatial hole burning. This
indicates that the introduction of the wavenumber-dependent loss through
the small number � , has not signi�cantly changedthe loss for the relevant
kx-range.

The time-averagednear-�elds reported from various measurements can
be described asa pedestalwith a ripple on top. The time-averagednear-�eld
in Figure 5.4 (a) shows those characteristics. For BA lasersof width, say,
200 � m or more, the reported far-�elds are usually blurred shapes localized
within an angular range depending on the width of the laser, the pump
current, laserparameters,and design.Such a blurred shape is seenin Figure
5.4 (b) wherethe time-averagedfar-�eld correspondsto the near-�eld in (a).
Lastly, the corresponding time-averagedcarrier density is seenin (c). Note
the \ears" near the edgesof the contact at � x0. Theseare a consequenseof
the global guiding mechanism mentioned in Chapter 2; the real part of the
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