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Abstract

The subject of this thesisis a theoretical investigation of the nonlinear lateral
modesof broad area(BA) semiconductorlasersincluding studies of station-
ary properties, of stability properties, and of the dynamics of a BA laserin
an external cavity.

The most prominent characteristicsof the output eld of a BA laserare
due to lateral properties. A detailed investigation of stationary lateral eld
distributions is carried out and leadsto the nding of a systematicstructure
of seweral categoriesof lateral nonlinear modes. In addition to the known
de nite-parit y modes, asymmetric modes are found, although the physical
system under investigation is symmetric. The structure and interrelation-
ship betweendi erent modesare also seenin their tuning curves.

A stability analysisof the above mertioned stationary solutions must be
carried out in order to evaluate their physical role. By meansof a Green's
function method a small-signalanalysisis carried out with emphasison the
stability properties. It is found that all regardedmodesare unstable except
for the caseof very low pump currents. The small-signal stability analysis
explainswhy BA lasersare generallyfound to have uctuating output elds:
at considerablepump currents there are no stable stationary solutions.

An existing external-cavity sthemeincluding a spatial Iter is imitated
theoretically and it is found that one consequenceof the external cavity
is to dampen the lateral dynamics of the eld, which in turn leadsto a
improvemen of the spatial coherenceof the output. The near- eld reveals
that the external-cavity schhemechangesthe lateral dynamicsof the BA laser
to a behavior more similar to a laserarray.



Resume

Titlen pa dette Ph.d.-projekt er \Struktur, stabilitetsegenskber og ikke-
liner dynamik i bred-arealhalvlederlasere". Indholdet er en teoretisk un-
ders gelseaf ikke-line re laterale modesi bred-areal-laser¢BA-lasere). Un-
ders gelsenomfatter station re egenskber, stabilitetsegenskber sant dy-
namiske egenskber af en BA-laser i en eksternkavitet.

De mest tydelige karateristika ved en BA-lasers udgangsfeltskyldeslat-
erale egenskber. En detaljeret unders gelseaf station re | sninger til det
laterale feltproblem udf res og ledertil erkendelsenaf en systematiskstruk-
tur i ere kategorieraf laterale ikke-line re modes. | tillg til kendte modes
med bestem paritet ndes asymmetriske modes selom det betragtede fy-
siske systemer symmetrisk. Strukturen og indbyrdes tilh rsforhold mellem
statinon re tilstande sesogsa pa derestuningskurver.

En stabilitetsanalyse af de ovenfor ontalte station re tilstande udf res
for at evaluere deresfysiske betydning. Ved hjlp af en Green's funktion
metode udf res en smasignalanalysemed hovedv gt pa stabilitetsegensk-
aber. Det viser sig at alle betragtedestation re | sninger er ustabile bortset
fra ved megetlave pumpestr mme. Den line re stabilitetsanalyseforklarer
hvorfor BA-lasere generelthar uktuerende udgangsfelter: Ved betragtelige
pumpestr mme er ingen station re | sninger stabile.

Et eksisterendeekstern-kavitets-system der indbefatter et rumligt Iter
imiteres teoretisk og det bliver klart at en konsekensaf den eksternekavitet
erat d mp enr-feltes laterale dynamik, hvilket medf rer enforbedret rum-
lig koh rens. N r-feltet afslrer at den eksternekavitet ndrer BA-laserens
laterale dynamik til mereat ligne dynamikken i et laserarray.
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Chapter 1

In tro duction

Broad area(BA) semiconductorasersare edge-emittingsemiconductorasers
usually designedas high-power laserdevicesintendedto emit asmuch power
as possiblewhile at the sametime having a reasonablylong lifetime. They
are wide-aperture Fabry-Perot laserswhich, in their simplestform, only o er
guiding of light by meansof index guiding in one transverse direction; in
the secondmuch broadertransversedirection (the lateral direction) the light
is purely gain guided. An injected current inverts the semiconductorgain
material over a limited lateral regionwherelight is ampli ed. The broadness
of the lateral regionpumped by the injected is motivated by a combined urge
for high output power along with the necessig of lowering the intensity of
light to avoid catastrophic optical damage.

BA lasers,beingFabry-Perot lasers,arelongitudinally multi-moded. How-
ewer, the main interest both from a theoretical and an application point of
view hastraditionally beendirected towards the lateral behaviour. Modern
BA lasersusually have emitter-widths of 100 m or wider. The geometry
of BA lasersgivesa single-male behavior in the index guided transversedi-
rection while the behaviour in the lateral gain guided regiontypically gives
riseto a heavily laterally multi-mo ded behaviour yielding complexvariations
in spaceand time often termened lamentation giving inherertly poor co-
herenceproperties. Consequetly, various schemesaimed at improving the
coherenceof the output of BA lasershave beensuggested.

While the incoherent output is of inconveniencefor applications demand-
ing high power, BA lasersform a laboratory for the study of nonlinear phe-
nomena. The work presered in this thesisis theoretical. The purpose of



the work is to obtain a better understandingof the lateral properties of BA
lasers. While the dynamics of BA lasershas been studied quite a lot, the
stationary mode structure hasbeenstudied lesssystematicly We perform an
in-depth investigation of the stationary lateral modesin a BA Laser. After
nding stationary solutionsin the lateral nonlinear system,we go through a
small-signalanalysis. In time-domain calculationswetry to reproduceexper-
imental behavior of a set-upinvolving a BA laserin an asymmetric external
cavity acting asa spatial Iter. The purposeof the cavity is to improve the
spatial coherenceof the BA laser. The contents of the remaining chaptersis
outlined below.

In Chapter 2 we presen the regardedBA-laser device. It is a generic
structure as our aim is to do a generalinvestigation rather than to view a
particular design. Motivated by the needfor laserswith improved coherence
properties, an existing external-cavity sdhemeaimedat improving the spatial
coherences descrited. We study this setiemein a later chapter. We lastly
aim to give a very brief overlook of the theoretical treatment of BA lasers,
while mertioning the approadheswe pursuein the subsequen chapters.

In Chapter 3 we rst derive the main equationsgoverning the lateral
eld distribution and carrier-densiy distribution using mean- eld theory.
Here mean- eld theory yields performing an averageover the longitudinal
direction of the laser. We then combine thesetwo equationsto form a single,
nonlinear eld equationwith the aim of nding stationary solutions. With
appropriate boundary conditions for lateral gain guided modes, stationary
solutions are then found. We nd that the variety and structure of lateral
stationary solutions and the way their frequenciesvary with pump currert
to be much richer than what has previously beenshovn [1]. We nd asym-
metric modesin the symmetric laser structure and other modeswhich can
only exist due to the nonlinear nature of the gain material. The modesturn
out to be related in a systematicstructure that we have found in their tun-
ing curves,i.e. curvesshowing the stationary frequencyof the modesversus
pump current, and in their eld distributions.

Along with the results of Chapter 3 yielding stationary solutions, Chap-
ter 4 is of a theoretical nature. In this chapter we perform a small-signal
analysisof the nonlinear stationary solutions obtained in Chapter 3 using a
Green'sfunction approad. In particular we investigatethe stability proper-
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ties of selectedmodes. The analysisshows that all investigatedlateral modes
are unstable with the exception of the two lowest order modesat very low
pump currents. This fundamenal result is in correspndancewith streak-
camerameasuremets [2] and large-signaltheory [3][4] which tell that BA
lasersare newer in a steady state when the applied currernt in considerable.

Chapter 5 cortains time-domain calculations based on the numerical
method named hopscotti. A solitary BA laseris comparedto a BA laser
in an asymmetric external cavity. The external cavity improvesthe spatial
coherenceof the Isaser. We obtain a good qualitative agreemeh with mea-
suremerts found in the literature. Our calculationsshaw that the asymmetric
external cavity laseroperatesin a uctuating state.

In Chapter 6 we presen a method to calculate lateral modesin a BA
laservia a mode expansion.With an expansionin linear gain guided lateral
modes, it becomegossibleto recognizethe most signi cant perturbations of
the eld at low currents.

Chapter 7 givesa short summary of results.






Chapter 2

Broad area semiconductor
lasers

The geometry of BA-laser deviceswith their wide apertures allow for high-
power output when pumped at high currerts. In fact the geometry also
makes BA laserssuitable for scieric purposesas testbeds for gain ma-
terials [5] or for experimerts on spatially nondegeneratefour-wave mixing.
Injecting a pump- and a probe beamsat di erent angelswith a frequency
detuning makesit possibleto measureambipolar carrier di usion coe cien ts
and carrier lifetimes [6]. Their usefulnesas lasers,howeer, is also limited
by the geometrysinceit allows the lateral eld distribution to vary in time
and spacein a complexmannerthat ruins the coherenceof the output beam.
The strongly nonlinear behavior due to the light-semiconductorinteraction
also gives a range of interesting phenomenato be studied. Moreover, the
hunt for methods to improve the coherenceof the output of BA lasershas
beenongoingfor at leasttwo decades.

Now, we desribe the basicsof BA lasers,and qualitativ ely discusstheir
spatiotemporal behavoir which is often descriked through the processof I-
amenation. We then, after brie y reviewing methods to improve coherence
propertiesof BA lasers,descrilke an asymmetricexternal cavity BA laserthat
we investigatein Chapter 5. Lastly in this chapter, we discusssomeof the
di erent paths that one can choose, including those that we choose, when
onestudiesBA laserstheoretically.



2.1 Broad area laser devices

The name\BA laser" originates from the lasergeometry When increasing
the current in a semiconductorlaser high above its threshold, the intensity
of light evertually surpasses threshold where catastrophic optical damage
is done to the laser facets. At the sametime many applications demand
high-power output. In order to keepthe intensity of light belov the damage
threshold of the laserfacetsand at the sametime obtain high output power,
the laserstructure is madewider in the lateral direction.

Metal contact
r r
' / 2 /X=>b
‘ x=0
X=-X ¢
- —
Output
— |- L
z=0 z=l
y

— Al Gay.y As (p-type)
— Al.Gay, As X
— Al,Gay_, As (n-type) z

Figure 2.1: Generic structure of a broad area laser. The active layer
(AlwoGa; 4oAs) is sandwided betweentwo cladding layers. The coordinate
systemrepresets the lateral (x), the transverse(y), and the longitudinal (z)
axes,respectively. The origin is certered in the middle of the waveguideat
the badk facet. Hereit is dispalcedfor clarity.

BA lasersare edge-emittinglasers. Figure 2.1 illustrates a BA laserin its
simplest form. Three semiconductorlayers form a p-i-n junction. The top
layer is a p-type doped cladding layer. The middle layer, an intrinsic core
layer, is the active layer where light may be ampli ed in casethe material
is inverted. The bottom layer is an n-type doped cladding layer. On top of
the structure sits a metal contact. Not shown in the gure is the substrate
on which the n-type layer is grown. Under the substrate a secondmetal
cornact is deposited. In the calculations preserted in this thesis we have
assumedthe material composition of the BA laser to be in the AlGaAs



material systembut this is not essetial for the theoretical analysis. From
Figure 2.1,it is evidert that thereis nolateral (in the x-direction) variation in

the material composition and therefore no lateral variation in the refractive
index presen in the system. The BA laser regarded here is thus purely
gain guided. For a purely gain guided BA laserthe optical eld is limited

in the lateral direction only by the extend of the region having appreciable
current pumping. BA laserswith weak lateral index guiding [7] and more
complicated and re ned layer structures [8] than the simple onein Figure
2.1 have beenrealized. Howewer, the work presened in this thesisis purely
theoretical and has no relation to a speci ¢ device whereforewe focus on
a genericBA-laser structure. This genericstructure is thus a wide double
heterostructure with a wide top metal cortact. The double heterostructure
senestwo important purposes.Sincethe bandgapsof the p- and n-layersare
higher than the oneof the intrinsic layer, carriersare con ned in the intrinsic

layer wherethey are to reconbine preferably under stimulated emission. In

addition, the intrinsic layer alsocon neslight asits refractive index is higher
than the two outer layers. The double heterostructure is therefore also a
slab waveguideresponsible for the transverse (y-direction) guiding of light.

The corelayer is made su cien tly thin sothat only onetransversemode is
supported. Most if not all commerciallyavailable BA lasershave oneor more
guartum wells servingasthe gain material. When quantum wells constitute
the active region of the laser a separate-con nemenh heterostructure must
carry the burden of waveguiding. BA laserswith quantum dot gain material
have alsobeenreported [9].

For a gain guided single-stripe AlIGaAs laser supporting only one lateral
mode, the width of the top metal cortact (the currert stripe) is typically 3
to 5 m. The top metal cortact of a BA lasercan be said to be one or two
ordersof magnitude wider than that of a singe-lateralmode laser. BA lasers
with current stripes as wide as 1000 m have beenreported [10. In this
thesiswe regard a width of w = 2xg = 200 m. When increasingthe width
to se\eral tens of microns, oneallows for lateral multimo de operation. In fact
when increasingthe width of the currert stripe to obtain a higher maximun
output power, the high-power performanceis limited by spatially localized
bursts (laments) of high intensity, which in itself lowers the threshold for
catastrophical optical damageof the output facet [11]. Newertheless,the
highest output power achievable from a semiconductorlaser increaseswith
increasingareaof the output facets. Therefore BA lasersremain poplar for
high-power applications. The lasermirrors (facets) with amplitude re ectiv-
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ities r; and r, are obtained by cleaving the crystal in planesperpendicular
to the grown layers. The facetsmay in addition be coatedto modify their
re ectivities.

The p-i-n junction is forward-biasedto obtain inversion. When the diode
is forward biased electrons and holes are injected into the intrinsic layer
wherethey may reconbine or cortinue to the layer opposite to the onefrom
which they were injected. As the forward bias is increasedthe quasi-Fermi
levels of the electronsand the holes,will increaseand decreaserespectively.
When they are separatedby the bandgap energy the material is inverted.
In semiconductorlaser modeling it is often assumedthat oneis not too far
away from thermal equilibrium and that all electron-holetransitions take
place between the extrema of one conduction band and one valenceband,
i.e. at zerowave number. In this thesiswe will employ this approad.

2.2 Spatiotemp oral behavior

In most experimertal work on high-power lasers,slon detection methods av-
erageout any fast variations in time giving only a static spatial variation in
the intensity distribution to read out. Sud measuremets are unlikely to
give a full understanding of the physical mode of operation of a particular
laser. Fischer et al. [2] measuredhe spatio-temporal dynamicsof the output
eld of a BA laseron a picosecondtime scaleusing a streak-camera. The
near- eld was seento consist of rapidly changingirregular lateral patterns
of light intensity. A BA laserpumped at a high currernt never nds a steady
state. The dynamicsfollowing the initial relaxation oscillations may be di-
vided into two domainsof laments [12] wherea lament is a small region
in the active region of relatively high intensity. Firstly, \static" lamenta-
tion whereregionsof the near- eld of high respectively low intensity retain
their individual lateral positions. The eld of a BA laseris not static, how-
ewer, even at moderate (moderate not being high) pump currents. Thus the
\static" laments areturned onando on atime scaleof the order of 100ps.
The reasonfor this is \dynamic lamentation”, the seconddomain, which
meansthat the laments tend to move laterally asa function of time. This
behavior manifestsitself as zig-zagpatters in the temporal ewlution of the
near- eld (we shall seean exampleof this in Chapter 5). If a lament origi-
nating on one edgeof the active region migrates all the way to the opposite
edgeit would take roughly between 200to 500 ps for the inspected device



of [2]. The devicewas a GaAs/AlGaAs deviceof width 100 m pumped at
two times threshold. Static theoriesof lamentation have beenalsobeenput
forth [13]. In fact one may interpret stationary eld distributions obtained
by solving an appropriate set of model equations,i.e. a nonlinear spatial
mode in the laser, as static lamentation [1][14]. In Chapter 3 we nd sev-
eral di erent typesof nonlinear modesrevealing a rich variety of stationary,
spatial shapes.

The irregular output of BA lasershasits origin in the processof dynamic
lamentation. In BA laserswith no passi, lateral index guiding, the lateral
eld distribution is constrainedlaterally only by the nite width of the lat-
eral current distribution. Antiguiding in semiconductords the phenomenon
whereregionswith relatively high carrier density or inversion(and therefore
arelatively high gain) implies a relatively low refractive index. Oppositely for
regionswith relatively low carrier density (and thereforearelatively low gain)
which have a relatively high refractive index. The lamentation processin-
volvesantiguiding that causesself-focusing,di raction, and local di erences
in gain: Considera local burst of high intensity (a lament). The carrier
density is locally depleted causinglocally low gain and due to the antigu-
iding e ect locally high refractive index comparedto the surrounding area
where the gain is relatively high and hencethe refractive index relatively
low. The lament can persistdueto the index guide which hasbeenformed.
Evertually, howewer, the gain in its neighboring area, wherethe intensity of
light is low, risessu cien tly high above the threshold level, dueto the pump
current, sothat the lament moveslaterally andis ampli ed and the process
canstart over. With many sud laments interacting nonlinearly the overall
result is an apparerly chaotic behavior in time and space. We will shov
examplesof this behavior in Chapter 5. The above description of dynamic
lamentation relieson local depletion of the carrier density. At the two edges
of the pumped region the carrier densily is typically relatively high dueto a
relatively low intensity of light indicating that the total eld createsa global
waveguidethrough gain-guidingand anti-guiding. By global we meanon the
length scaleof the width of the metal cortact w = 2x.

2.3 Schemes aimed to increase coherence

BecauseBA laserscan deliver high-power output but have weak coherence
properties, there has beenan urge to improve the latter. It seemsthat the



largest e ort hasbeento improve the spatial coherencen order to be able
to focusthe output beame.g. into an optical b er. To optimize the spatial
coherencethen, meansto obtain an output resenbling a Gaussianbeamto

as high an extend as possible. Here we briey mertion a few attempts to

tame the beast, after which we will describe the speci ¢ external-cavity (EC)

setup which we regard in Chapter 5. We divide the schemesinto on-cip

shemeswhere advanced semiconductortechnology has beenusedin order
to tailor a laser cavity to give a desiredstable single-male output or often
a, more realisticly speaking, partly stabilized output, and then EC sthemes
wherethereis a nite delay betweenthe output of the BA laserand the eld

that is fed bad to the laser.

2.3.1 On-chip schemes

The -distributed-feedbad laser[15][16]is essetially a BA laserwith asingle
intra-cavity angled grating whosefringes make up a substartial angle with
the lazer axis (z-axis). The current stripe is angled parallel to the grating.
The grating Iters the intra-cavity eld spatially and spectrally giving single-
mode operation both spatially and spectrally. The output- eld is closeto
being Gaussianand lamentation is well suppressed.

Another on-chip sdheme has beendemonstratedwith broad area lasers
having an intracavity spatial phasecortroller yielding a nearly di raction-
limited single-lokedfar- eld [17]. In the demonstratedlateral-multi-segment-
device,a spatial phasecortroller could generatean asymmetriclateral varia-
tion in the longitudinal optical path length. Pulsed powers of 300 mW were
achieved. The authors suggestthat a tilted end facet( 1 degree)should
have an equivalert e ect. We mertion this deviceasit hasa built-in lateral
asymmetry The EC laserthat we study in Chapter 5 is also asymmetric.
The devicehad a single-loked far- eld o the laseraxis. Semiconductor-laser
arrays are devicesrelated to BA lasers,which provide an e ective method
to suppressthe lamentation in a wide-aperture laser. Also, a strong com-
petitor to the BA laser as a high-power device are tapered lasers. Praci-
tally diraction-limited tapered laserswith multi-W att output emergedin
the mid-nineties [18].
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2.3.2 External cavity schemes

External cavities o er the combination of an delayed optical feedba& and
optionally a Itering. For twin-stripe lasersthe e ect of the delay in an ex-
ternal cavity can in speci c casesbe seento stabilize what was a chaotic
output intensity for the solitary laserto a periodically varying output [19].
For BA laserswith their broad spatial spectrum, somemeansof spatial Iter-

ing is probably necessaryto increasethe spatial coherenceand/or stabilize
the dynamic lamentation. Most likely one cannot have the former without
the latter at high pump currens. In [20] a spatially Itered feedba& by
meansof a tilted plane mirror was applied and streak-camerameasuremets
show that the Iter is ableto suppresshe dynamic lamentation rather well.
Another way to adieve spatial Itering is to usean external re ector with
a nite radius of curvature. Sud external cavities have producedoperation
causinga single-lobked far- eld of the laser[21]in agreemen with theoretical
predictions [22] [23]. Phaseconjugate feedba& without spatial Itering has
produced operation in a single longitudinal mode [24]. Even operation in
a true single longitudinal and lateral mode has beenadieved albeit at low
currents using photorefractive feedba& [25]. It should be noted that a plane
convertional mirror (without any spatial Itering) has beenshovn not to
have any stabilizing e ect on the output of a BA laser,nor to bring it to lase
in a singlelongitudinal or lateral mode [24].

2.4 Asymmetric external cavity laser

It hasbeenshavn experimentally in [26][27] and through modeling [28] that
injection set-upswith a single-male laser acting as a master oscillator and
the BA laser ampli er asthe slave, that the best spatial coherenceof the
output of the slave is achieved when the angle of incidence of the master
beamon the front facet of the BA laseris o the laseraxis of the BA laser,
i.e. the slave. On the cortrary, normal incidence( = 0) of the master
beam causeslamentation in the near- eld and a far- eld distributed over a
large range of angles. It thus appearsthat locking the fundamertal spatial
(lateral) mode is di cult to achieve. Consideringan external-cavity scheme
in which the intention is to force a wide aperture laser to ideally oscillate
in a single lateral mode, it makes good senseto enhancelateral modes of
the laserthat emit light away from the laser axis in the far- eld. For this

11



purposean asymmetric external cavity (AEC) laserwasintroducedin 1987
[29. The original work was doneusing a wide semiconductorlaserarray but
the behavior of the systemholds similar to the casewhen a BA laseris used
asthe active part of the system.

y Axis Collimator

Output

Reflector

\ \ FF

Figure 2.2: Top view of AEC laser. BA laseremits ligth through right facet.
Lensof focal length f Fourier transformsthe eld from the x-domainto the
ky-domain. The far-eld (FF) or the Fourier planeis thusat z = | + 2f ,
wherethe re ector with amplitude re ectivit y r; actsasa spatial Iter (due
to its small lateral extend). The part of the eld that is re ected dueto r3
is again Fourier transformedto the x-domain. The y-axis collimator (a lens,
e.g. acylindrical lens, of short focal length) collimatesthe eld in the quickly
diverging y-direction.

A version of the AEC laser made as simple as possibleis preserted in
Figure 2.2. It is similar to [10]. It consistsof a wide aperture laser, within
this thesis a BA laser, two lenses,and a re ector (a stripe mirror) with
amplitude re ectivity r;. The eld emitted from the right facet of the BA
laserwith amplitude re ectivit y r, propagatesthrough the lensesbeforepart
of it is re ected by the external stripe-mirror width. A part of the re ected
eld returnsto the right facetthrough the lenses.Let us descrile the system
in more detail: Usually one assumesthat the output (scalar) eld of the
solitary BA laser can be written as a product E*(x;z = 1) (y). The y-
dependent part of the eld is a single-maled and nearly Gaussianpro le
with negligible phasecurvature becauseof the index guiding of the double
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heterostructurein the y-direction [30]. The lenslabeled\ y-axis collimator"”,

is placedimmediately front of the output facet. It can be an e.g. cylindrical
lens. It collimatesthe eld alongthe y-axis and the y-dependencecan be
disregardedin the external cavity. The collimation is important sincethe
eld is quickly diverger in the y-direction. In reality parts of the re ected
eld will not make bad to the right facet becausee.g. undesiredscattering
at the external mirror or misalignmerts. Theselossescan from a theoretical
point of view be included in the re ectivity r;. The secondlensis placed
at z= | + f wheref is the focal length of this lens. This meansthat the
this lens performs a spatial Fourier transform on the output eld so that
at z = | + 2f (the Fourier plane) one obtains the spatial spectrum (the k-
domain) or the far- eld of the output eld. At the Fourier-planethe eld

is Itered and re ected by the external stripe-mirror and due to the return
to right facetat z = | through the lens,the eld is transformedbadk to the
x-domain. Speakingin broaderterms any type of Iter canbe placedin the
Fourier-plane be it symmetric or asymmetric. Also, the lens could also be
displacedfrom z = | + f to obtain a focusedfeedbak [31].

It should be noted that in somereported set-ups,e.g. [10 [32], an aper-
ture was insertedin the output arm as an additional spatial Iter. The aim
of the aperture is to separateunwanted sidelobesfrom the dominant single-
lobe in the far- eld (we call the dominart lobe \the single-loke"). Therefore
reported single-loke output at very high pump currents may have undergone
sud additional spatial Itering. Figures2.3and 2.4 adoptedfrom [33]exem-
pli es measuredtime-averagednear-and far- elds of a BA laser. The gures
comparethe output of the solitary BA laserand the output whenthe AEC is
added. In Figure 2.4 the e ect in the far- eld is evidert: the far- eld of the
solitary laseris a blurred shape spreadover a wide span of angles,typically
2 to 6 degreesdepending on the deviceand pump currernt. When the AEC
is added and optimized one seesa dominart single-loke. The single-loke is
seento be to the left of the optical axis. In this casethe stripe mirror is
placedto the right of the optical axis. For a200 m-wide BA AlGAas-device
pumped at 2 times threshold the single-lole of the AEC lasercan be located
around 2 degrees the optical axisin the far- eld [34]. In order to obtain a
measuremen asthe onein Figure 2.4 showving the ertire far- eld, one must
insert a beam splitter just beforethe external mirror. If one measureshe
output after the external mirror, onewill only (or mainly) seethe single-loke.
The near- eld in Figure 2.3 shavs that the e ect of the external mirror is to
tilt the near- eld. One cansay that the near- eld tilts in the samedirection
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asthe far- eld.

AEC laserswith external cavities including a grating asthe re ector [35]
and a grating as a re ector in conbination with a Fabry-Perot etalon [36]
have beenshownn to considerablynarrow the emissionspectrum while also
improving the spatial coherence.The spectra were narrowed from around 1
nm lessthan 0.1 nm around 810 nm. For AEC laserswith a cornvertional
stripe-mirror, on the other hand, the spectral width of the freely running
BA lasersis not reducedsigni cantly [37]. From a theoretical point of view,
it is of interest whether an AEC laserwith a mirror re ector operatesin a
single,stable, lateral mode or in sometime dependern state. Our calculation
presented in Chapter 5 implies that the latter is the case.

In high power lasertechnology often the spatial coherences of greater
concernthan the temporal coherence.A measureof spatial coherenceoften
usedin connectionwith high-power lasersis the M 2-factor. It expresseshe
similarity betweena regardedoutput eld of a laserwith a Gaussianbeam.
The Gaussianhassamewidth asthe regarded eld at its waist [3§]. The M 2-
factor appearsto make most senseat valuesthat are not vastly greaterthan
1. The beam quality of the single lobe in the far- eld of a AEC laser may
be measuredusing M 2. When pumped far above threshold, the M 2 of AEC
lasersdegradedor increasingpump currerts. Hence,a compromisebetween
high output power and low M? must be made in high-power applications.
We will not discussthe M ?-factor further.

Figure 2.3: Measurednear- eld of solitary laser(left) and AEC laser(right).
The devicewasa BA laserwith a200 m-wide currert stripe running at 810
nm. Adopted from [33].
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Figure 2.4. Measuredfar- eld of solitary laser (full line) and AEC laser
(dotted line). Samecaseas Figure 2.3. Note that the abscissa-unitis length
and not angleasit is commonfor the far- eld. The optical axis( = 0) is
around 2700 m. The stripe mirror is located around 3500 m, i.e. opposite
the dominart single-loke. Adopted from [33).

2.5 Theory and modeling of BA lasers

From approximately 1990until today, mainly two paths have beenfollowed
to model BA lasers. Those are the beam propagation method (BPM) and
time-domain calculationsby integration of time dependen partial di erential
equations(PDESs).

BPM is a method to nd stationary eld distributions by propagating a
eld bad andforth in the lasercavity, while consideringthe couplingbetween
the intensity of the eld andthe semiconductor,until a steadystate hasbeen
obtained. Its main quality is that it gives2-dimensionallaser modeling (as
opposedto 1-dimensional)at low computational cost. We have implemerted
BPM both with and without the external cavity of the AEC laser. As it was
alsofound in [1] we have found it problematic for the method to nd steady
statesexceptfor at very low pump currerts, esgecially whenincluding an ex-
ternal cavity in the system. Supposedlythis problemis due to the di erence
in time scalesof the optical and carrier rate equations[1]. Moreover, the
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steady state which BPM may nd dependson the trial eld that is initially
launched into the system. Sincethe eld is propagatedbadk and forth in the
cavity the e ect of lamentation interfereswith the aim of nding stationary
solution. An amusing exampleof the e ect of lamentation on BPM canbe
found in [30] where the linewidth enhancemen factor was simply set to
zeroin order to get stationary results for a BA laserin an external cavity.
With = 0 there is no self-fccusing, and henceno lamentation. We have
not found BPM suited for our purposes.When modeling BA ampli ers (not
lasers) [39], in conjunction with injection locking of BA lasers[28], or for
index-guideddevicessudt astaperedlasers[40], BPM may work well.

When recognizingthe very complex uctuations in time and spaceof BA
lasersand desiringto be ableto comparetheory with experimert at consider-
able pump currents it becomesadvantageousto usea time-domain method.
In fact one cannot expect stationary solutionsto be found in measuremets
at high currents. While treating the eld of the laser classically di erent
levels of describingthe semiconductorgain material have beenregarded. A
phenomenologicaldescription using linear gain and the -parameteris an
\obvious" possibility [41]. Howewer, aswe nd in Chapter 5 the phenomeno-
logical model causessomeproblemsin a spatially extendedsystemwherethe
di raction of the eld hasto be included. Fortunately, one can modify the
equationsslightly to overcomethe problem. Microscopic models using the
semiconductorMaxwell-Bloch equations[3][4] have beenthe other extreme
at least for bulk BA lasers. In most casesknown to us the numerical ap-
paratus upon which the time-domain approadhesrely, regardlessof the level
of describingthe semiconductor,is the hopscott method, a method to inte-
grate parabolic PDEs. Implemertations including 2 and 1 spatial dimensions
have beenpresened. In Chapter 5 we usea 1-dimensionalimplemertation
of the hopscottr method with a phenomenologicadescription of the semi-
conductor. This hasbeencomputationally highly advantageoussinceall our
numerical calculationshave beenperformedon a laptop computer. To work
in one spatial dimensionwe use a mean- eld approxiamtion when deriving
equationsin Chapter 3, implying that we averageover the longitudinal di-
rection z.

Of course one can choose other paths than the two described above.
Within other typesof laserssud as lateral single-male EC lasersand dis-
tributed feedba& (DFB) lasersthere has beena great tradition of nding
stationary solutions of the given systemand then investigating their small
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signal properties. For examplefor a lateral single-male EC laser,under cer-
tain feedba& conditions, the stationary solutions of the lasermay be located
on an ellipsein the (frequency threshold-gain)-plane[42]. Half of the station-
ary solutions are found to be unstable when subject to a stability analysis,
and the lasermay chooseto lasein only one of the solutionson the ellipseor
perhapsthe laserschoosesa chaotic state, but this doesnot meanthat the
existenceof the ellipse is uninteresting. Basedon these considerationswe
nd stationary lateral modesin a BA laserin Chapter 3 and perform a small
signal analysis of someof the found modesin Chapter 4. Sincea BA laser
is known to operate in a uctuating possibly chaotic state when driven at
considerablecurrents, our analysisis of a theoretical character. The method
we use to obtain stationary solutions resenbles nding bound statesin a
scattering potential. Again, there are se\eral lateral modesin a BA laser
for one pump currert. With BPM this multitude of lateral modeswould be
extremely di cult to comeabout sincethe solution to which BPM settle,
is dependent on a x-dependent trial eld injected from one end of the laser
wheninitiating the iteration.
Further, in order to disasserhle the nonlinear e ects perturbing the eld

near threshold we intro duce a modal-expansiontechnique that allows for an
easyinterpretation in Chapter 6.
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Chapter 3

Theory of stationary lateral
modes in Broad area lasers

In this chapter we rst formulate the equationswhich form the basisof the
results presetted in this thesis. The derived equationsdescrite the lateral
eld distribution and the lateral carrier density distribution of a BA laser.
To study the lateral mode structure in detail we have chosento reducethe,
in principle, 3+1 dimensionalproblemto a 1+1 dimensional problem. We
then conbine the eld and carrier density to a single, nonlinear equation for
stationary solutions following Lang et al. [1].

Secondly we calculate stationary lasing solutions. Here, a stationary so-
lution is the conbination of an oscillation frequency! s, a stationary lateral
eld distribution Es(x), and a stationary lateral carrier-densiy distribution
Ns(x). We have found a wide variety of modesin addition to known gain
guided modes. It turns out that modeswith asymmetric eld distributions
exist despite the symmetric lateral structure under investigation. Further-
morethe stationary solutionsyield a beautiful pattern of tuning curveswhich
possess systematic structure in their interrelationship and bifurcation be-
havior. Tuning curvesare curvesin the current-frequency plane.

As discussedn Chapter 2 one cannot, in general,expect that calculated
stationary modeswill agreewith measuremets. Stationary solutions may
not be stable, and one must at least investigate the stability properties of
given modes before discussingtheir conceiwable role in an experimert. We
investigate stability properties of the stationary solutionsin Chapter 4.
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3.1 Deriv ation of equations using the mean
eld appro ximation

We now derive a set of equationsfor the eld distribution and the carrier
density. We chooseto employ a mean eld appraximation which implies
averaging over the longitudinal direction of the laser. We assumethat the
laseroperatesin a TE mode. The scalarwave equation in the time-domain
is given as[43][44]

6 1e._10
@ @ @
where! is the angular frequency The real scalar electric eld E(x;y;z;t)
inducesthe polarization eld P (x;y;z;t). The material lossesare included
in the conductivity . Spontaneousemissionis included in the term p. cis
the speedof light in vacuumand g is the vacuum permittivit y. The Fourier
transforms are de ned as

r 2E (P + p); (3.1)

VA 1
E(xy:2)=  E(xyzte! (32)

1

1 Z1 .
E(y;zt)= - B(xyize (3:3)
1
In the frequencydomain Eg. (3.1) becomes
. 12 12

r °E J!FE!‘*?E! = F(P!‘*p!): (3.4)

For single-male semiconductorlasersit has beena vast succesdo assume
that the polarization relaxesin time scalesmuch fasterthan the time scalesof
the other variablesin the problem, the eld and the distribution functions of
the charge carriers. If one adiabatically eliminatesthe polarization variable
in the semiconductor Maxwell-Bloch equations (see[45] for the caseof a
semiconductorBA laser) then

P, = o 1 (Xy;2)E (X Y;2) (3.9)

where the susceptibility | (x;y;z) is related to the permittivity | (X;y;z)
through

(X y;2) =1+ 1 (XY:2) 17: (3.6)
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Using Egs. (3.5) and (3.6) in (3.4) yields

re+ g L (Xy;2) Er(xy;2) = Fi (XY 2); (3.7)

with
1 2

Fi(xy;2) = ?pg (X y;2): (3.8)

We now shav how the problem of solving the 3+1 dimensionalscalar wave
eqguation can be reducedto solving a 1+1 dimensional wave equation by
applying a weighted mean eld appraximation. We assumethat the electric
eld in the BA-laser waveguidein the frequencydomain is of the form

E(xy;z;!)=Ef(x2) (y)e! ?+E, (x;2) (y)& = (3.9)

E/(x;2) and E, (x; z) are eld envelopesdescribingforward and badkward
traveling wavesin the longitudinal direction. They are assumedo be slovly
varying functions of z. We intend to study lateral modesfor a given longi-
tudinal mode. The propagationconstart  is thereforechosento satisfy the
longitudinal oscillation condition for a Fabry-Perot laser

rirpexp( 2 1)=1 (3.10)

wherer,; andr, arethe left and right facetre ectivities (seeFigure 2.1). The
function (y) descritesghe transverse eld distribution and is taken to be
normalizedto unity, i.,e  (y) (y)dy= 1. Inserting (3.9) in the scalarwave
equation (3.7) and neglectingthe secondorder z-derivativesleadsto

@ @ @

—E, +E, = 2j =E, °E, +ki (xy;2E, =F ; (311
where kg = ! =c is the vacuum waverumber. By standard procedure we
separateinto a transverse eld equation

@
@ + Kk, (x;y;2) = k& (3.12)
and the in-plane eld equationsfor E, (x; z)
@ . @ 2 Ne g .
@E! 2j @E! + (K& JE, =1, ; (3.13)
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where Z,
f,(62)=  F(xy:x) (y)dye! *: (3.14)
1
The eigervalue equation (3.12) determinesthe fundamertal transversemode
(y) and the correspnding e ective wave number ke (X; ;! ). We ignore
the weak dependenceof on x. The e ective waverumber is related to the
complexe ectiv e refractive index by Kets (X; 2) = ness (X;2)(2 = ) where
is a referencewavelength [43] [46]. ness (X; Z) can be obtained by treating
the lossand pump dependen part of | (x;y;z) in (3.12) using rst order
perturbation theory yielding a real pump independen e ective index n, and
a con nemert factor R _ .
- ac].i_'g‘elayerJ (y)J dy
L izdy
In (3.15) it has beenassumedthat the internal lossin the cladding layers
are the sameasin the corelayer. The mean eld appraximation dealswith
averagesover the z-coordinate; an averagedvariable is denotedby putting a
bar over the variable. Thus

(3.15)

Z,
E, (x) = l—l ) E, (x;2)dz: (3.16)

The longitudinal averageof (3.13) yields the equations
@
@2

wherewe have assumedthat [47]

£ Ew) Ewoy+@@ 98 =T @)

k&(E, = kezszg5 (3.18)

The ervelope elds E, obey the boundary conditions

E/ (x;0)
E, (X1

rg, (x;0) (3.19)
r.e 12'Ef (x;1) (3.20)

at the two end facets. With  satisfying (3.10) we nd that (3.17), (3.19)
and (3.20) lead to the equation

%E! + (kz Z)E! = f! (321)
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for the weighted eld and noisefunctions E, (x) and f, (x) given by

E, = 191:(E,+ +riE, ) (3.22)
f, = plz(f! +r.f,) (3.23)
2rq

Also we have de ned k by k?  kZ,.
The frequencydomain equation (3.21) can be transformedto a time do-
main eld equationfor the complex eld ervelope E(x;t) de ned by
Z,
E(x;t)d'st= =
(x;1) 2 .
where! s is the optical frequencyof the lateral mode under consideration. If
E, areindependen of z, the averagephoton density in the active layer is
given as

E, (x)€'d!; (3.24)

S(x) = BjE(x; 1)j? (3.25)
with the constart of proportionality [48]
B - Zflnfh”gK (3.26)

whereK is the longitudinal Peterman-factor[49]

_ (ra+r)(rarz 1)

K= 2rroIn(rars) (3.27)

and wherewe have usedthat the con nemert factor is approximately equal
to hj (0)j? with h being the thicknessof the active layer. Details are given
in Appendix A. For most practical caseshe factor K is closeto one. n; is
the real passiw part of the e ective index and ng is the group index. We will
assumethat (3.26) is a useful appraximation even when longitudinal spatial
hole burning makesthe eld ervelope E, dependern on z.

Solvingfor in EqQ. (3.10) yields

= Py
=i (3.28)

wherep, is an integer denoting the longitudinal mode number and |, is the
distributed mirror loss

m = I—lln(rlrz): (3.29)
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As we regard only onelongitudinal mode we set the real part of (3.28) equal
to a referencewave number k,

k, = ?rnr; (3.30)

where! , = 2 c=, is a correspnding referencefrequency When there is no
lateral, passieindex guiding preset in the laserstructure, n, is independert
of x. Therefore,

=k +j 7”‘: (3.31)

Taking the squareof (3.31) givesappraximately
20 k24 K m: (3.32)

The z-averagede ective wave number k(x) may be given the as a function
of I and z-averagedcarrier density N (x) [50]:

K6 = -n(iNGO) + 15000 NG ) (333)

Heren(! ;N (x)) isthe modal index, g is the modal gain,and ; isthe internal

lossall of which are averagedover z. The internal lossincludeslossescaused
by scattering of light at surfacesor at crystal defects,and by free carrier
absorption. For the modal gain we assumea simple linear model without

any spectral dependence:

g 9('r;iN(x)) = a(N(x) No): (3.34)

Herea is the di erential material gain and Ny is a referencecarrier density.
The relation betweenthe modal gain and the material gain gy, iSg= On.
We expandthe complexpropagationconstart aroundthe referencerequency
I, and the transparencycarrier density N, = No+ =( a) to rst order:

k(x) = k; + %(! )+ %(N(x) N;): (3.35)

The gain in generalalso dependsupon intensity through processesud as
spectral hole burning and carrier heating. This e ect of nonlinear gain may
be included by adding an expansionterm in (3.35) proportional to the inten-
sity. Normally, the expansioncoe cien t is negative sincehigh intensity tends
to suppressthe gain. Nonlinear gain is relevant at high powers. Modeling of
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BA lasersusing BPM has commonly implied use of linear gain models e.g.
[30 [31]. Imitating a quartum-well gain with a nonlinear dependenceon the
carrier density has also beenusedin conjunction with BPM [51]. A trend
in the modern literature on time-domain methods for BA lasersis to rely
on a microscopictreatment [3][4] of the gain material using the semiconduc-
tor Maxwell-Bloch equationsto descrilke spectral hole burning sud that no
phenomenologicakxpressionfor the gain is needednor is the introduction
of the -parameter described belon. We shall seein Chapter 5 that the
adiabatic elimination performedin connectionwith (3.5) has consequences
for a systemthat includesdiraction of the eld. By disregardingthe fre-
guency dependenceof the gain, the direct-gap semiconductoris reducedto
a two-lewel systemwithout spectral broadening[45]. It is assumedthat the
chargecarriersof the semiconductorare in equilibrium, wherely excitedelec-
trons are mainly found at the bottom of the conduction band of the direct
bandgapsemiconductormaterial. All everts of generationand reconbination
of electron-holepairs are henceassumedor carriers of zerowaverumber. In
reality, the carriersare not in thermal equilibrium in a semiconductorlaser.
Furthermore, a linear dependenceof the gain upon the carrier density is as-
sumed, neglectingthe e ect of gain saturation at high pumping rates. In
this thesis, we shall not considercasesfor currents | > 1:2l4, wherelg is
the approximate threshold currert. The readermay nd a pump currert
20% above the threshold current rather modest. Howewer, in a BA laser, at
currerts just above threshold, instabilities setin aswe shall seein Chapters
4 and 5. Here, the two expansioncoe cien ts in (3.35) are taken to be

% = 1=y, (3.36)
wherevy = c=ny is the group velocity, and
@ _1 _. :
o2 a(j ): (3.37)

Here is Henry's linewidth enhancemen factor [52] giving the coupling
betweenthe real and imaginary parts of the carrier-inducedrefractive index
changes.The linewidth enhancemenfactor in BA lasershas experimertally
beenseento vary with carrier density and wavelength[53]. Onecouldinclude
this by adding higher order terms in the expansionof the waverumber in
(3.35). This, of course,urgesthat higher order expansioncoe cients are
available from measuremets.

25



We move on to obtain our desired eld equation. The squareof k is given
as

)" K2 S L) SN N) D (339

when neglectingthe terms quadratic in @G=@ or @=@I . We cannow write
the eld equationsfor E, (x) using Egs. (3.32) and (3.38) in (3.21)

@ @& @& . m _ ¢ .
@E! + 2K, @(' L) + @(N(X) N:) 17 E,=f: (339
The eld equationin the time-domain becomes
@ . 2kr @ @ @ . H m . — . .
@ jv—g@ + 2k, @(! s ')+t @(N(x, t) N;) 17 E(x;t) = f(x;t):
(3.40)
We may de ne (x;t)
ey @ @& _ m
(x;t) = 2k, @(! s ')+ @(N(x, t) N;) I (3.41)
sud that (3.40) becomes
@ .2 @ . SOy = £ (e Y-
@ j v—g@ + (x;t) E(x;t) = f(x;t): (3.42)

The noisefunction f (x; t) is obtainedfrom f, (x) via a transformation similar
to (3.24).
Next, we must addressthe z-averagedcarrier density. The mean eld

carrier equation stated in the time-domain reads

NN c P [ ¢

@N(x, t)=J (x;t)+D @ZN(X, t) -
HereJ (x;t) is the pump rate and D is the ambipolar di usion coe cien t.
We assumethat the pump rate is the sumJ (x;t) = Js(x) + J(x;t) of
a stationary pump rate Js(x) and a small modulation-term J(x;t). In the
transversey-direction the doubleheterostructurelimits the di usion of charge
carriers whereforeit is negligible in this direction. In the carrier equation,
reconbination of electron-holepairs via processesther than stimulated emis-
sion has beendescriked through

VgOm (X; 1) S(x; 1): (3.43)

R(N) = %; (3.44)
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where the carrier lifetime g is assumedconstart. Se\eral reconbination
medanisms have thus been lumped together in the rate 1= g. They are
spontaneousemission,nonradiative emission,and possiblytransverseleakage
of carriers out of the active layer [54. A more preciseexpressionfor R(N)
involvesa linear, a quadratic, and a cubic term in N.

We do not to include temperature e ects in the analysis. For high pump
rates the lateral temperature pro le can certainly perturb the wave-guiding
properties of wide-aperture lasers[55]. A rise in temperature augmerns the
real part of the refractive index, which in turn causesthermal lensing. In
modeling this is normally included by introducing a thermal index coe cien t,
which senesas a constart of proportionality betweenthe temperature dis-
tribution and the thermally induced changein the real refractive index. The
temperature distribution can be found by solving the heat equation [40] or
simply by assuminga known temperature distribution [56]. In a more rigor-
ous setting, the temperature a ects microscopicproperties, e.g. changesthe
bandgap of the active semiconductor,which in turn a ects the macroscopic
optical properties [57]. Actual devicesare mounted with heat sinks, and in
experimerts thermal e ects are often avoided by a slow temporal modulation
of the pump currert allowing for periodic cooling of the chip [20]. We shall
assumethat temperature e ects are negligiblein our calculations.

3.2 A single nonlinear eld equation

In time-averaged measuremets the near- elds of BA laserscan often be
found to consistof a pedestalwith a more or lessregular ripple superimposed
on top, seeFigure 2.3 or e.g. [58]. That is to sa that the near- elds are not
deeply modulated in the way a truncated sinusoidal is. Perhaps motivated
by sudh measuremets Mehuys et al. [14]assumeda eld solution of the form
E(X) = Egexp(a(x) + j (X)) underneaththe metal contact with a(x) 1
and (x) beingreal functions. Analytical approximate calculationsinvolving
linearizations give near- elds in rather good quartitativ e agreemenh with
someexperimerts at high currents. Howeer, their starting point may be
guestionablebecausea solitary BA laseroperating at high pump currens is
not in a steadystate. Measurednear- elds that are only moderately and not
strongly spatially modulated are most likely a result of time-averagesover
multi-lateral mode operation or alternatively a highly nonlinear (possibly
chaotic) lateral variation in time and space.On the other hand, one can not
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rule out that stationary solutionsleave tracesin time-averagedmeasuremets
and from a fundamertal point of view it is of interest to know about the
stationary solutions of a physical system.

In orderto perform a comprehensie study of the lateral modesstructure
of a BA laserand in addition to investigate stability properties as descrited
in the subsequen chapter, it is very helpful to derive a single equation that
includes both the eld and the carrier density [1]. The derivation is done
under the assumptionthat carrier di usion is negligible. This assumption
is arguedfor in [14]: The approximation is good aslong asthe rry‘ondition of
k2,L2  lisfullled; ki isthe lateral waverumber andLy = " D g isthe
di usion length. Howewer, our main reasongo excludedi usion are givenin
the following.

Our two main motivations to work with a single equation are: Firstly, in
the presen chapter we shall shov a seriesof newly found stationary solutions.
We have seartied for them like searting for needlesin a haystad, notably
needleswhoseexistencewe a priori were not aware of. Thereforea corve-
nient computational environmen hasbeena great advantage. Secondly in
Chapter 4 we study the small signal properties of someof the calculatedsta-
tionary solutions. The mathematical apparatusderived there becomegather
complicatedeven without di usion soleaving it out (for now) hasbeenprac-
tical. By no means,howewer, do we rule out the signi cance of lateral carrier
di usion. In Chapter 5 the carrier di usion is reintroducedin time-domain
calculationsand in Chapter 6 alsoin stationary calculations.

Here we look for staionary solutions (Es(x), Ns(x), !'s). Stationary so-
lutions are found as solutionsto Egs. (3.42) and (3.43) for a steady pump
termJ = Jg(x) and for f (x;t) = 0. Upon neglectingthe carrier di usion

Js(X) R No
N Ng = - - 4
() No= e 0P=Pen (3.45)
where , ah | e
@S e K (3.46)

In obtairB'ng (3.46), Eqg. (3.26) wasused. The eld Eg(x;t) is seento bein
units V="m. . Utilization of (3.45)in Eq. (3.41) leadsto a single nonlinear
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equation, namely

@ @ +@< Js(X) R No it m i

—+ 2k, —(! ! —_— - - + E.=0:
@ % @ls 't eiir e 0P T 2 ;
(3.47)

Note that the output power scaledinearly with Psy. The secondpart of the
operator in (3.47) we de ne as

@ @ Js(x) R No . it m i

= = (I | -
W= degls T QT e PR T2 T2
(3.48)
and the eld equationmay simply be written
@
gzt s Es=o0 (3.49)

Let the eld be de ned onthe interval A x A. We must specify the
boundary conditions. At a position on the x-axis that is su cien tly far away
from the metal contact for the intensity to becomenegligible, Eq. (3.49) can
be appraximated to

@
@ + wke (X) Es=0; (3.50)
with
@ @ :
WKB — 2kr @(I s ! r)+ @(JS(X) R Nr) J?m : (3-51)
For a slowly varying Js(x), one obtains the solution
Ex(x) = Eoexp( ]° “wa %): (3.52)
where E; is a real constart. Assumethat (3.50) is valid at A. Then at
X = A the proper signsmust be chosento ensurea solution for the eld

that decass exponertially when moving away from the metal cortact. This
givesus the derivativesat x = A

@gj = (P e B (3.53)
and &
=g iP e Es(x) (3.54)

at x = A. WeuseEgs. (3.52), (3.53), and (3.54) in the following to specify
boundary conditions.
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Figure 3.1: Lateral distribution of pump rate. The points A and A are
boundary points

3.2.1 Curren t spreading

We must specify the pro le ofthe pump rate Js(x). The pump rate is assumed
to decay exponertially away from the currert stripe, i.e.

8
<  Jexp((x + xg)=d) forx < Xg
Js(X) = J forjxj < Xo ; (3.55)
Jexp( (X Xg)=d forx > Xq:

where J is the pump rate underneath the metal contact and d is a currert
decy constart. The pro le is illustrated in Figure 3.1.

As a unit for the pump rate we introduce Jo. Jo is the approximate
threshold pump rate for the lowest order lateral mode:

1 1 1
Jo=— N+ —In — 3.56
The relation between pump rate and current | is| = gvJ whereq is the

elememary chargeandV isthe volumeofthe activeregionsothat V = 2x;phl.
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We usethe terms pump rate and current interchangeablywhen distinction
IS not important.

The idea of the form of Js(x) is that below threshold but above trans-
parency the lateral spontaneous emissionprole can be measured. Pre-
suming that the intensity distribution due to spontaneousemissionis pro-
portional to the carrier density, the deca of carrier density away from the
pumped region may be tted to an exponertional decg while using (3.45)
with jE(x)j?> = 0 to obtain d [1]. When including the lateral carrier di u-
sion, it is commonto let the di usion spreadthe carrier density outside the
pumpedregion. We do this in the next chapter. To obtain the carrier-density
distribution in the active regionin a more self-consisteh way, proceduresin-
volving e.g. the Poissonequation can also be pursued[40][59. The way one
treats the current spreadingmay certainly a ect the obtained output eld

[60.

Solutions of the nonlinear eld equation (3.49) with the prole of the
pump rate (3.55) are now to be solved using numerical methods descriked in
the next section.

3.3 Numerical procedures for calculation of
mo des

With the nonlinear di erential equation along with boundary conditions
given below, we have a boundary value problem, which must be solved
through iterative methods.

3.3.1 Solutions with de nite parity

Solutionsfor which JEs( A)j = JEs(A)j and either E5(0) = 0 or dEs(0)=dx =
0 possesgle nite parity. For sud solutionswe employ the numerical proce-
dure of [1]. Dueto the nite parity ofthe eld distribution it is only necessary
to calculatethe eld on A x 0. With aninitial guessof a real vector
(Eo.L;!s) the valuesof eld andslopeat x = A become

Eo( A)= Egexp( j° wes A): (3.57)
%j = (P e Es( A): (3.58)
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By (3.49), the eld is propagatedto x = O whereit is evaluated. A Runge-
Kutta method is usedfor this [61]. When searding for a symmetric solution,
dEs(0)=dx = 0 is demandedwhile for an antisymmetric solution E5(0) = 0
must be ful lled. From the complexvalue of Es(0) or dEs(0)=dx, a Newton-
Raphsonroutine suggestscorrectionsto the valuesof (Eq, ;! s). With cor-
rected (Eo.;!s), the eld is again propagatedfrom x = A. This iterative
processis repeated until (Eo. ;!s) has corvergedand a stationary solution
(Es(x);! s) is obtainedby joining the appropriate part of Eg(x) on0< x  A.

3.3.2 Asymmetric solutions

De nite-parit y solutions of nonlinear equationsof the type 4 u(x) + s(u(x))
can, dependingon the function s and the imposedboundary conditions some-
times be shown to bifurcate into asymmetric solutions [62]. Asymmetric so-
lutions are eld distributions, which do not possesgie nite parity. In this
casejEs( A)j and JEs(A)j arein generalnot equal. Then, onemust in this
casecalculatethe eld distribution on the ertire domain A x A. We
split the eld into two parts. One part is propagatedfrom x = A with
\initial conditions"

Es( A)= Eorexp |° wis A): (3.59)
Ee P E A (3.60)

to somepoint x; which satis es A < x; < A. The other part is propagated
from the right (x = A) with

Eo(A) = Eorexpl j° wis A): (3.61)
%: iP e Es(A) (3.62)

alsoto x;. Let Eq.r beacomplexconstart. At X = x; werequirethe complex
eld and its derivative to be cortinuous. This requiremen rendersa total
of four conditions. A four-dimensionalNewton's method givescorrectionsto
the four unknowns. A solution is found whenthe iteration corvergesto give
the four unknowns (! s; Eo. ; Re(Eor); IM(Eqr)). The stationary solution is
obtained by connectingthe left and the right parts of the eld which share
the frequency! ..
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For de nite-parity modes and in particular for asymmetric modesit is
crucial to have good initial guessedo obtain corvergen solutions. With
insu cien tly good initial guesse®ither no solutions are found or the soler
jumps to a solution far away form the wanted solution in caseits existence
is known in advance.

3.3.3 Parameter values

Table 3.1: List of parametervalues

Parameter Symbol  Value Unit
Cavity length I 1.0 mm
Stripe width w 200 m
Activ e layer thickness h 0.2 m
Linewidth enhancemenfactor 3.0

Linear gain coe cien t a 1 10 m?
Con nemernt factor 0.3

E ectiv e refractive index n, 3.5

E ectiv e group index Ng 4.0
Referencewavelength ; 810 nm
Referencecarrier density No 1 164 m?3
Internal loss i 30 cm !
Carrier lifetime R 5 ns
Current decyg distance d 10 m
Left output power re ectivit y r2 0.35

Right output power re ectivit y rs 0.35

In this chapter we usethe parametervaluesof Table 3.1. They e ectively
resenble thoseof [30][3] wherea AlGaAs laserwasinvestigatedusing BPM.
We regarda stripe width of w = 2xg = 200 m. We keepthis width through-
out the thesis. In the calculationspreseited in this chapter, the output facets
will be consideredcleared. As we are not regardinga speci ¢ devicewe have
calculatet neither the e ective index nor the con nemernt factor but usethe
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valuesin the table. In actual high power devicesmost often the output facet
is antire ection coated while the other facet is high-re ection coated. In
this way practically all power is emitted through one of the mirrors only.
Moreover, the intensity inside the cavity is reducedleadingto lesslateral |-

amertation and to a higher catastrophicpower level [63]. For external cavity
schemes,an artire ection-coating implies a higher level of feedba& from the
external re ector to the chip. This hasbeenshavn to improve the obtained
spatial coherenceconsiderably The angular dependenceof re ectivit y of a
coatedfacet is enhancedas comparedwith a cleaved facet. This could be
implemerted in a laser model, and is perhaps an overlooked issuein the
(modern) literature on modeling of high-power lasers.

The justi cation of including only onelongitudinal modeis basedon argu-
merts and measuremets found in the literature, e.g. [1]. Spectrally resoled
near- elds showv that the respective near- elds for individual longitudinal
modesappear similar. Similarly, the authors of [64] measuredspectrally re-
solved near- eld intensity distributions of a freely running 100 micron wide
BA laser. It can be seenthat the individual longitudinal modes contain
similar lateral properties. That is to say that the read out from the grat-
ing spectrometer which is a function of lateral position and wavelength is
similar for eat longitudinal mode. It may hencebe assumedthat one can
regard one longitudinal mode independenly of the others. For a BA laser
that lack uniformity in the laser material, the assumptionof similar lateral
eld distributions for ead longitudinal may becomedubious [65].

3.4 Calculated stationary solutions

We nd a systematicstructure in the tuning curves,i.e. calculatedsolutions
in the current-frequencyplane,andin the stationary solutionsthey represen
The systematicstructure enablesusto categorizedi erent typesof stationary
solutions. Figure 3.2 presetts calculatedtuning curvesin the (J=Jo; f')-plane
wheref" = (s !'y)=(2 ) isthe relative frequency

We categorizedi erent typesof eld distributions E¢(x) correspnding
to di erent branchesof the curvesin Figure 3.2. The gure cortains curves
for 3 di erent typesof modes. In addition to the 3 categoriesof modesin
Figure 3.2, more exist as we shall seebelowv. First, howewer, we regard the
three categoriesof Figure 3.2 namedtype | (m'), type Il (m'"), and type
11 (m'"). m is an integer denoting the mode number. Our investigation
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Figure 3.2: Tuning curves of modes-ypesm', m'', and m''" for m = 1 to
m = 8. Notice that the threshold pump rate of m' increaseswith m and
that m'' and m''' emergeat increasinglyhigh pump rate for increasingm.

focuseson rather modest pump rates. The reasonfor this is two-fold: Firstly,
stability-analysesin the following chapter reveal instabilities at low currens.
Secondly we nd a structure in the modesthat roughly speaking tells that
what happens for a low-order mode also happens for a higher-order mode
but at a higher current.

For all typesof modesthe integer m denotesthe number of peaksin its
near- eld.

Type | modes

The rst category of modeswas also found in [1] albeit with di erent pa-
rameter values. Type | modesare modesof de nite parity. Thesemodesare
labeledm' wherem is an odd integer for symmetric modesand m is an even
integer for antisymmetric modes. In Figure 3.2 thesemodesare seento have
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increasingthreshold currents for increasingm causedby an increasedabsorp-
tion in the unpumped layers as we shall review in Chapter 6. The lateral
outward ow of energyincreaseswith increasingm causinglarger lossesat
thresholdfor higher order modes. At their respective thresholdsm' arelinear
gain guidedmodes. When the pump rate is increasedheir eld distributions
becomeperturbed due to the nonlinearity of the material and changeshape,
i.e. they do not merely increasein amplitude with an unchangedshagpe. In
Figure 3.3 one can seenear- elds for 6' at 4 di erent pump rates.

When following the almost horizortal parts of the m'-tuning curvesfrom
threshold and upwards in currert, new branchesemergeon the lower sides,
e.g. at J = 1:018), for m = 8. Thesebranches are tuning curves of the
secondkind of modes and will be descriked in the subsequen subsection.
One characteristic feature of the type | modesis a dip in the middle of the
near- eld which becomesdeeper asthe curren is increasedmodestly above
threshold. An example of this behavior can be seenin Figure 3.3 (a) and
(b). This is studied in more detail in Chapter 6.

Further, the symmetric and antisymmetric modesdi er in the sensethat
the symmetric modes(odd m) becomeincreasingly compressedaround x =
0, whereasthe intensity distribution of the antisymmetric modes (even m)
becomesdncreasinglylocalizednear the edgesof the metal cortact, i.e. near
X = Xg asthe current is increased.Thus the intensity divides itself in two
when the pump rate becomesconsiderablefor a given mode m' for even m.
Near- elds of 6' (antisymmetric) in Figure 3.3and 5' (symmetric) in Figure
3.4 for increasingpump rates shav the generalbehavior of the 2 di erent
parities for m > 1.

The far- elds of 6' in Fig. 3.5 are represetive of antisymmetric modes.
Just above threshold (a), the far- eld is nicely twin-lobed but asthe currert
is increased,nonlinear perturbations deteriorate the twin-lobes by adding
more and more structure around the lobes.

The changein far- eld for the symmetric modeswith increasingcurren
is partly di erent from the antisymmetric modes. For example,the far- elds
of mode5' shown in Fig. 3.6revealthat just above threshold (a) and slightly
higher above (b) the twin-lobe structure and the slighty perturbed twin-lobe
structure, respectively, are similar to the antisymmetric modes. Howewer,
whenincreasingthe current su cien tly the far- eld becomessingle-loked as
seenin (d). The singlelobe is, howewer, perturbed by sidelobes

It is sometimessaidthat BA lasershave twin-lobedfar- elds. This is true
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Figure 3.3: Near- eld of mode 6' at dierent pump rates. (a) Just above
threshold J = 1:0029; (b) Slightly higher pump rate J = 1:023],. Note
the increaseddip around x = 0; (c) J = 1:04Q); (d) J = 1:.067%)y. For
higher currerts the intensity becomesnore localizednearx =  Xo.

for gain guided modesat threshold. Howewer, whenthe currert is increased
this assumptionbreaksdown sincethe modesbecomehighly nonlinear. Thus
ewven if one could make the laser operate in a single lateral mode of type |

the spatial coherencevould be poor evenfor rather low currens. In Chapter
4 we shall se that for m 3 all m' becomeunstable immediately above
threshold or one can say that they are born unstable. Thusif a far- eld is
measuredwith a a twin-lobed structure it is most likely a result of the laser
beingin a time-dependen state over which a detector has averagedin time.

Typically, at least for wide BA laserswith w 100 m, the time-averaged
far- eld is a blurred shape and not a cleartwin-lobe like in Figure 3.5(a) or

3.6 (a).

Type Il modes (asymmetric)

The physical system under investigation is symmetric around x = 0. Yet
we nd that stationary solutions without de nite parity (asymmetric eld
distributions) exist due to the nonlinearity in the eld equation and possi-
bly also due to the boundary conditions. One type of asymmetric modes
is presettied in this subsection. This secondkind of stationary solutions is
denotedm''. At the branch point wherethey are born in Figure 3.2, e.g.
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Figure 3.4: Near- eld of mode 5' at dierent pump rates. (a) Just above
threshold J = 1:0022]q; (b) Slightly higher pump rate J = 1:0199, Note
the increaseddip around x = 0; (c) J = 1:.0274),; (d) J = 1:0665),. For the
higher currerts the intensity becomescompressedround x = 0.

J = 1:.018], for m = 8, they have eld distributions idertical to the respec-
tive de nite-parity solutions m', but for increasingcurrents they become
increasinglycompressean either sideof x = 0. There are two f'-degenerate
solutionsfor a point on the type |l tuning curves: a left oneand a right one.
It can be seenthat the tuning curve of mode m'' ewertually mergeswith

that of mode (2m)' when increasingthe currert. For example4'' merges
with 8 atJ' 1:054),, (a third branch is seento brandh out from this point

alsoas explainedin the next subsection). At the point wherethe m'' -mode
mergeswith the (2m)'-mode, the intensity distribution of the m''-mode is

localized on the left (right) side of the middle, i.e. on either xo < x< 0

or 0 < X < Xg. At this point in the (J:Jo;Ib)-pIane the near- elds of the

two degeneratem'' -modesaddedtogether spatially overlap the near- eld of

(2m)'.

The ewlution of a type Il mode from its birth to higher currerts is il-
lustrated in Figures 3.7, 3.8, and 3.9. The near- eld of mode 4'' in Figure
3.7 starts out identical to that of 4' aroundJ = 1:0093),. When increasing
the currert, i.e. running along the tuning curve for 4'' in Figure 3.2, the
near- eld initially beginsto tilt to either side (remenber that asymmetric
solutions are doubly degenerate)as seenin 3.7. As the currert is increased
further the eld becomesmore and more localized on either side of x = 0.
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Figure 3.5: Far- elds of mode 6' at the samepump rates asin Fig. 3.3. As
the pump rates is increased the twin-lobesbecomeincreasingly perturbed.

At the highestcurrert represeted in Figure 3.7,the near- eld hasleft either
side empty. For this currert (J = 1:054),) the tuning curve of 4'' merges
with the tuning curve of 8'. For even higher currerts 4'' becomesmore lo-
calizednearx = Xq. The far- eld over the samecurrent rangeasin Figure
3.7is presettied in Figures 3.8 and 3.9 whereit can be seenhow the initially
symmetric twin-lobed far- eld becomesincreasingly asymmetric and single
lobed. Note that the tilt in the far- eld is opposite the onein the near- eld.
l.e. the angle of the dominant single-lole in the far- eld has the opposite
sign of the overall slope of the near- eld.

That asymmetricsolutionsof the eld equationexist is not obvious, since
the physical systemis symmetric around x = 0. The fact that they emerge
from the branch of a m'-mode is due to saddle-nale bifurcations as it will
becomeclearerin Chapter 4. Perhapsm'' -modesmay be relevant in under-
standing the way AEC laserswith their spatial ltering can operate because
of the single-loked far- elds of m''. Howewer, alsom'' will in Chapter 4 be
found unstablein sud a way that they have to operatein a time-dependen
state. Note that 1'' does exist but its tuning curve is not visible in Figure
3.2 asit liesvery closeto the surrounding curves.
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Figure 3.6: Far- elds of mode 5' at the samepump rates asin Fig. 3.4. As
the pump rate is increasedthe twin-lobe changeinto a perturbed single-loke
eld.

Type Il modes (asymmetric)

In addition to modesof type | and type |1, Figure 3.2 cortains tuning curves
labeledm''". Thesesolutions also correspnd to asymmetric eld distribu-

tions. Type lll curvesfor odd m are not visible in the gure asthey lie very
closeto their typel \parents" from which they emerge.At the point wherean
m''"'-mode branchesout from the m' -curve, the eld distributions of m' and
m''!" areidentical. Similarly to the behavior of type II modes,the near- elds
of m'"" becomemore and more compressedowards either side of x = 0 as
the pump rate is increasedand they alsohave an f'-degeneratesolution whose
intensity distribution is the mirror imagewith respectto x = 0. Unlike m'!

the near- elds of m''" donot tilt considerablyasthe currert isincreased.To
our ndings only one asymmetric mode emergesrom 1', namely the mode
we call 1''. Thus, apparertly no m'''-mode existsfor m = 1.

In Figure 3.10it is evidert how the near- eld of 5''", represeting odd m,
is compressedowards either side of the pumped region when the current is
augmerned. The correspnding far- elds in Figure 3.11are single-loked and
becomeasymmetriconly to a very little degreeand are thus odd-m-m' -like.

The behavior of m'!" for even m is slightly more complicated. The near-
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Figure 3.7: Mode 4'': Near-eld for pump rates J = 1:0093, where the
mode emergesthrough J = 1:054], where the tuning curve of the mode
mergeswith the oneof 8'.

and far- elds of 4''" are displayed in Figures3.12and 3.13. The elds for
di erent currernts represen running along the 4'''-tuning curve from the
branch point on 4' (a); onto a point wherethe tuning curve for 4''' bends
(b); onto a point after the bend (c); and nishing at a point far after the
bend (d). It can be seenthat the near- eld remainscertered around x = 0
until nally sliding towards either sidein (d). The far- eld in Figure 3.13
turns single-lobed although the parert 4' is newer single-lokedin the far- eld.

Therefore,alsom''" with m even seemsodd-m-m' -like.

When the pump rate becomegelatively high and the intensity distribu-
tion of m''" (for both even and odd m) is localizedon either Xy, < x < 0
or 0 < X < Xp, its tuning curve mergeswith the tuning curve of yet another
type of modes(labeledm'V) that we have found to exist. This may be seen
for 4''" in Figure 3.14,wheretuning curvesare shown.
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wherethe tuning curve of the mode mergeswith the oneof 8. The dominart
lobe moves outwards for increasingcurren.
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Figure 3.11: Mode 5''": Far-elds. Samepump rates as in Figure 3.10.
The far- eld is certered at = 0 and becomesincreasingly perturbed with
increasingpump rate. It is only slightly asymmetric even with a strongly
asymmetric near- eld.

Type IV modes (de nite parit y)

We move on to presen yet another exotic category of modesthat we have
found to exist. Sofar we have seenone category of de nite parity, namely
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Figure 3.12: Mode 4''": Near- elds.(a) J = 1:029,; (b) J = 1:022]; (c)
J = 1:048; (d) J = 1:08Q),. Thesefour pump-ratescorrespmnd to following
the tuning curve of 4''' from whereit emergeson 4 and around its bend.
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Figure 3.13: Mode 4''": Far-elds. Samepump rates as in Figure 3.12.
The far- eld goesfrom being a perturbed twin-lobe to being a perturbed
single-lote. It is only slightly asymmetric even with a strongly asymmetric
near- eld.

type I. For current levels closeto their thresholdsthey can be viewed as
linear gain guided modes perturbed by nonlinear e ects. We now cometo
a category of de nite-parity modeswhich are solely nonlinear in the same
way that the asymmetric modes m'' and m''' cannot exist without the
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Figure 3.14: Tuning curvesof modes7'V, 8V, and 4''". It canseenhow 4'"
mergeswith 8'V. The mark \A" correspndsto near-and far- eld shovn in
Figure 3.15(a) and (b).

nonlinearity of the gain material. The tuning curvesin Fig. 3.14eadt shaving
a loop and a cusp correspnd to highly nonlinear nite-parit y modes. We
denotethe modescorrespnding to sud tuning curvestype IV. Examplesfor
7'V and 8'V are seenin the gure. Again, the tuning curve for 4'!' is also
seenmerging with 8'V. When running along the tuning curvesof m'V the
eld distributions changeconsiderablyin character. On the upper parts of
thesecurves(the high-frequencypart) the near- eld is a self-facusingsolution
which isincreasinglylocalizedaroundx = Owith increasingpump rate. Near-
and far- eld of 8V near (J=J, = 1:.06,f = 223 GHz) (marked \A") canbe
viewedin (a) and (b) of Figure 3.15. This is an exampleofa eld distribution
of the high-frequencypart. It is rather remarkable that one can nd self-
focusing solutions in a system where the near- elds of the \convertional”
modes (type 1) have slowly varying dips around x = 0. So called spatial
solitonshave beenobsenedin BA optical ampli ers [66]. The spatial solitons
were traveling waves with self-fccusing eld distribution formed inside the
BA amplier. Possibly the self-facusing solutions, that we have found, are
related to theseexperimertally obsened solitons.

On the low frequencypart of the tuning curve of 8'V the eld distributions
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Figure 3.15: Near-and far elds correspnding to points on tuning curvesin
Figure 3.14. (a) and (b) arenear-andfar- eld correspndingto the mark \A"

on tuning curve 8. (c) and (d) are near-and far- eld of 8V correspnding
to the point where4''' mergeswith 8V. (d) and (e) are near-and far- eld
of 4''" at the samepoint.
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are of a di erent character. In Figure 3.14it is seenhow 4''"' mergeswith
8"V around J = 1:12],. Figure 3.15shows eld distributions for 8V ((c)
and (d)) and 4''"" ((e) and (f)) at their merging point . At the point where
m''"" and (2m)'Y merge,the near- eld of either m''' (there are two of them)
makesup half the near- eld of (2m)'V, whereasthe far- elds are completely
di erent. To our ndings, the lowestorder m'V-modeis 3'V.

The systematic structure of the BA-laser modes

As can be clearly seenfrom Figure 3.2, the lateral modesin a BA laserhave
an underlying systematic structure. Type | modesare the basic stationary
statesof BA laserssincethey are linear gain guidedmodesat their respective
thresholds. The remaining types of modescan exist only due to the nonlin-
earity of the gain material. The mode with the lowest threshold currert is
1'. Mode 1'' branchesout from 1' and mergeswith 2'. Mode 2'' bifurcates
from 2' and mergeswith 4'. In addition mode 2''' branchesout from 2' at
a higher currert than 2''. Mode 2''' also mergeswith a mode at a higher
currert, namelymode4'V. Hencemodesm'' emergefrom m' and evertually
mergewith (2m)'. Also, modesm''" emergefrom m' and mergewith modes
(2m)'V. The exceptionis that \1'''" doesnot exist.

25 ! ! ! ! !

24 -

23 A

22 A

21 A

Relative frequency [GHz]

20 A

19

1 1.01 1.02 1.03 1.04 1.05
Current J/J,

Figure 3.16: Exert of 3.2 summarizingpart of the systematicstructure of the
BA-modes. Modes?2'', 4', 4" 4" g 8! and8''' areshavn. The bullets
correspnd to near- elds in Figure 3.17 and far- elds in Figure 3.18.
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An exert of the structure with only tuning curvesfor 2'', 4", 4" 4!
g, 8", and 8" is displayed in Figure 3.16. The points labeled (a)-(f) are
di erent examplesof the just mertioned six modesat J = 1:.054], (the
currert at which 4'' and 8 merge). The correspnding near- elds are found
in Figure 3.17 and the far- elds in Figure 3.18. In thesetwo gures (@) is
4" with a near- eld that is asymmetric but almost untilted. Note that its
far- eld is single-loked and certered around an angle of O degrees.(b) and
(c) are2'' and 4' at a higher currert than where2'' mergeswith 4'. The
near- eld of 2'' is localizednear Xxg or Xo and is seento constitute \half
the near- eld" of 4. Similarly, (d) and (e) are4'' and 8 at their merging
point. (f) is 8''.

A close-upof 2''' branching out from 2' is displayed in Figure 3.19. Also
here1'' mergeswith 2'. This gure is then a close-upof Figure 3.2.

The remarkable systematicsof the mode structure that we have found is
di erent from the mode structure of a DFB laserwhere symmetry-breaking
eld solutions also exist. A multitude of solutions can indeed be found in
the caseof a semiconductorDFB laser[67]. We beliewe that the structure
appliesto all mode ordersm aswe cheded for higherfor orders,e.g. m = 15.
Asymmetric modesmay also be found in stripe geometrylasers[69].

Additional types of modes

In addition to the di erent modesmertioned sofar, we have found two further
types of modes. They are asymmetric modeslikely to bifurcate from m'V.
We leave them to future work.

Ligh t-curren t characteristics

The light current characteristics correspnding to the tuning curvesin 3.2
are displayedin Figure 3.20. Thus, displayed are light-current characteristics
form', m'", and m''"" for m equalto 1 through 8. The total output power
is given as (seeEq. (A.11))

z 1

Pout = 2 onrC K JEs(x)j?dx: (3.63)
1

As an example,modesé6', 6'', and 6''' are shavn separatelyin Figure 3.21.
As expected the branch points are located at the same pump rates as for
correspnding tuning curves.
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Figure 3.19: Tuning curve: Close-upof Figure 3.2. Mode 2''' branchesout
from 2' and 1'' mergeswith 2'.

3.5 Summary

In this chapter we have studied the lateral mode structure of a BA laser. The
stationary solutions were found using a mean eld approximation, which
lead to equationsin 1 spatial dimension. The simple lateral geometry of
a gain guided laser proved to cortain a rich and systematic structure of
modesand not only \standard" gain guidedmodesthat we have labeledtype
| modes (they in themseles shav interesting properties). We introduced
3 other categoriesof modes, and all four types of modes were seento be
interrelated in spatial shape and through the structure of their tuning curves.
Of particular interest were the asymmetric type Il modesas their far- elds
resenble the single-loled far- eld of the AEC laser presened in Chapter 2.
In the following chapter we will test the stability of type | and type I1.

51



Output power [mW]

1 1.01 1.02 1.03 1.04 1.05
Pump rate J/Jy
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going from 1 to 8. That is, P, asa function of J=J,.
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Figure 3.21: Light-current characteristicsof modesé', 6'', and 6'''.
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Chapter 4

Small-signal analysis using
Green's functions: Stabilit y
prop erties and responses

In the Chapter 3 we found stationary solutions using the nonlinear eld
equation (3.49). In this chapter we shall study the small-signal properties
of someof them, namely type | and type Il. First and foremostwe want to
perform a stability analysis. Lasersare nonlinear systemswhosestationary
solutions in a small-signal analysis can be classi ed as stable or unstable.
In semiconductor-lasetheory it can sometimesbe said that the stationary
solution having the lowest threshold gain of all modesis the dominant mode
asthe gain clampsat threshold. BA lasersare known to becomepulsating
at very low cortinuous pump currens, shoving multi-mode or even what is
likely to be chaotic behavior and the gain of a given mode doesnot clamp at
threshold due to spatial hole burning. Thus, there is no indication that sud
an assumptionis generallyvalid for a BA laser.

In a small signal analysis, one may talk about two di erent kinds of
stability, namely local stability and global stability [67]. A locally stable
mode s stablewith respectto small-signal uctuations. Fluctuations presen
in the physical systemwill make a locally unstable mode go to a di erent
stationary solution or a time-dependent state. A local instability is also
called an instability of the saddle-mint type. If a modeis locally stableit is
not necessarilyglobally stable. Other than the saddle-int-t ype instability,
amode may su er from a self-pulsatinginstability, which must alsobe tested
for before a mode can be called globally stable. Speci cally, if the system
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determinart D (s) hastwo zeraeslying symmetrically aroundthe real s-axisin

the right half s-plane,then the systemisin atime-dependert state. This isan
instability of the Hopf-type. Heres = j , where isthe basebandrequency
Instabilities of the saddle-mint type, on the other hand, are assaiated with

a zero of D(s) lying on the real s-axis in the right half s-plane. A saddle-
point instability may be assaiated with a saddle-wint bifurcation wherea
zero of D(s) movesalong the real s-axis from the left half s-plane into the
right. Similarly an instability of the Hopf-type may appear in conjunction
with a Hopf-bifurcation where the two complex conjugate zerces of D(s)

move from the left to the right half plane, e.g. whenthe pump current of the
laseris increased. The reasonwhy we distinguish between, say, a pulsating
instability of the Hopf-type and an actual Hopf bifurcation is that, asit shall
becomeclear in this chapter, stationary solutions may be \b orn" unstable,
sud that an actual bifurcation cannot be detected;only the instability of a
mode is detectablein this case.

Lasermodels,wherethe photon and carrier density are e ectiv ely treated
without spatial dependenceusually yield an algebraicexpressiorfor the sys-
tem determinart, whosezercesin the complexfrequency-planeare found by
graphical or iterative methods. The stationary solutionsfound in the previ-
ous chapter have a spatial dependencein the lateral direction. To carry out
a stability analysison these modes, we employ a Green'sfunction method
[69. The method in its original form was derived for DFB lasers. For lat-
eral gain guided modes, new small-signal equations must be derived. For
saddle-mint bifurcations we have, thanks to the work presened in the pre-
vious chapter, the great advantage of knowing where new branches emerge
on tuning curves. When the small-signalanalysis\predicts" a saddle-mint
bifurcation, perturbation theory tells us that one or more new branches of
solutions will appear in a bifurcation diagram. We will be able to test the
results of the stability analysisby looking for one or more emergingbranches
on the regardedtuning curve. When discussingbifurcations, intrinsicly one
must de ne one or more bifurcation parameters. When varying the bifurca-
tion parameter(s)a given stationary state, or rather the depender variables
ass@iated with it, can be followed along curvesin e.g. the (J=Jo; f)-plane,
where J=J, is the bifurcation parameter. In fact the pump rate will be the
only bifurcation parameterconsideredin the presen thesis.
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4.1 Small signal analysis using the logarith-
mic eld

We start out by linearizing our eld equationand carrier equation. We have
to perform the linearization of the two equationsseparatelyin order to intro-
duce the spectral part of the carrier density properly. Our inhomogeneous
eld equationin the time domain reads

@ 2k @
—+ (Xt ——= E=f(x;t): 4.1
@zt 6V 13 ;1) (4.1)
Upon neglectingcarrier di usion the carrier distribution is given by
AY -5 xy MY g osxn: @)

@

Finding the small-signalproperties of various stationary solutionsinvolvesa
linear expansionaround a speci ¢ calculatedmode. For conveniencewe rst
introducethe logarithmic eld b

b= InE: (4.3)

It is noteworthy that Re(b) = InjEj and Im(b) = g, where g is the phase
of E. The rst and secondderivativesof the logarithmic eld arethen

d 1d
&b— E dx (4.4)
and , , )
d 1d 1 d
e’ Edes E?7 dx- (4-5)
or from (4.4)
d? 1 o d 2
Hence,from Eq. (4.1) the logarithmic wave equationis seento be
o2 d,_? 2k @ f(xt)
Wb-'- &b + (Xt) Jv—g@b_ £ 4.7)
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Next, we linearize the obtained logarithmic wave equation. Taking the dif-
ferertial on both sidesof Eq. (4.7) yields

d2

@ 2 @ _ F(xt),
dx2 B

: vg @ Es(x)

Here E¢(x) is a stationary solution. As is independen of E(x), the di er-
ertial is found to be

b+ Z(d_ci(b)(d_dx b) + (4.8)

(x;t) = 2kr% N (x;1): (4.9)
The small-signalexpansionof (4.2) is found to be

g N=J N avyyB  NjEsj®+ (Ns No)(Eq E+ Es E) : (4.10)
R
From Eqg. (4.3) weget b= E=Esandthus E= bEsand E = bE
Substituting into Eq. (4.10) resultsin
@ N 1
= N = J -
@ R Psat R

Goingto the basebandrequencydomainimpliestaking the Fourier transform

s

NJEsi?+ 2(Ns  No)iEsj°Re( ) : (4.11)

f h

R sat R

|
INJEsj2+ 2(Ns  No)jEsi?Re(b) ;  (4.12)

since E; is stationary in time. A tilde over a symbol denotesthat it is a
function in the basebandfrequency by s=j . Solving for N gives

fa(x;s) g Js(X) R No  jE*=Puy

fN X;S) =
XS = T ¥ |Ej2=Pm 1+ JE?=Po 1% 5 r + JE?=Pom

2Re( b):

(4.13)
We divide the logarithmic eld into real and imaginary parts by intro-
ducing the vector

Re( b .
m( b (4.14)
implying Eg. (4.8) in a new form:
d? d @ :
3z TMig tkoaN +M!@ =f; (4.15)
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where
Re(®) Im(&

M1=2 ) pecd (4.16)
_ 22 0 1 .
Mo=35 o (4.17)

and the noiseis gatheredin the vectorf de ned as

1 Rd
f=g i (4.18)

The Fourier transform of Eq. (4.15) yields the frequencydomain equation

OI—29+M1£9+M E=-f+f (4.19)
dx? dx

wherethe matrix M is the sum

M =®g+sM,: (4.20)

€ is the Fourier transform of and

Js(X) R No jEsj2:Psat 0
o= 2k AL > 4.21
° " 14 JE 2P 1+ S g + JE7=Poy 10 (#:21)
The current modulation term is given as
fax; s) &
=k - ; 4.22
F=koagg R+ JEs?=Ps 1 (4.22)

Now, Eq. (4.19) is the small-signalequationfor the eld and carrier density,
for which Eqg. (4.13) has beenutilized. Note that for Im(s) 6 0, € isin
generalcomplex.

Eq. (4.19) may be solvwed using Green'sfunctions [70]. For convenience
and for historical reasonswe utilize the Green'sfunction of the adjoint of the
di erential operator of (4.19) instead. The operator

d? d

L:W'FM]_&"'M (423)
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hasthe adjoint operator

V=15 pMi+M¥ (4.24)

Assumethat (x%x; s) is the Green'sfunction for LY. Then

d? d
o peMID+MY =8 (X X (4.25)
fori = 1;2 and
_ 1 _ 0
e, = 0 and &, = 1 (4.26)

In the following we shall rst derive an expressiongiving € for a given
driving term £ + £. After deriving this generalform of the response, we
ewvaluate the Green'sfunctions ;.

Partial integration of Y(x%x;s)L (s;x9 gives

d? d
) (0Gxs) g+t Migt M (X59)dx’=
YA A d2
Cpe (K09 go TExIML + TEXIM (xE9dx
Y(yvO d 0. A h Y(y0O 0. iA d y 0. 0.
i(x,x;s)w) (X5 8) A+ [(X5X )M 1 (X5X;8) A a0 [(S;x5x) (x5
(4.27)
Alternativ ely, by manipulating the parerthesisin the right hand side inte-
grand taking adjoints of both the interior and exterior, (4.27) may be put
2 A 0. i d 0. 0
. /(x5 x; s) w"'Ml@*‘M (x5 s)dx" =
yA A d2 d y
. @ (x5 % 9) e MY . (xX%x;s) + MY (x%x;s)  (x%s)dx%
0. d 0. A h 0. ! A d 0. 0.
(069G 048+ HeAaIML (X)) 55 100K ()
(4.28)
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We demandthat ; fulll the boundary conditions

d

0 (x%x;8) = M J(x%s) ;(x%x;s) (4.29)
at xX= A. In addition, it is presumedthat the term d =dx is negligible
at xX= A (seeAppendix B). Then by inserting (4.19) and (4.25) in Eq.
(4.28) we obtain

z A YA A
) Y(x%x; s)Bdx°= ) (x° x)el €(x%s)dx® (4.30)
which leadsto the generalexpressionfor the response
VA A

((x9)i = TG x; 9)(B(xG s) + B(x5 5))dx’ (4.31)
A

With Eq. (4.31) we have obtained the responsefor the noise £(x; s) and a
linear change of the pumping fJ(x; s). In other words the expressioncan
be usedto calculate noise spectra and modulation responses. The notation
\( €);" meansthe ith componert of the vector €.

The solution ; of Eq. (4.25) can be found by solving the homogeneous
equation on ead of the two intervals A < x°< x andx < x°< A. By
integrating both sidesof (4.25) on a small interval around x, the boundary
condition

x%= x+
%) (X% 8) M I(xGs) (x5x9) = &, i=L2 (432
X¥=X
is obtained. We have usedthat M Y ; in (4.25) is cortinuous and madethe
interval of integration arbitrarily small so that the integral over this term
vanishes.
Inspired by the DFB-laser casein [69], we evaluate the Green'sfunction

near the left boundary. Thus, we nd the solution for x = A + , where

is an arbitrarily small distance. For simplicity we shall de ne ;(x;s) =

i(X; A+;s) for x > A, and denote ;( A;s) the limit of (x;s) for
x ! A+. Solving Eq. (4.25) with the conditions (4.29) for ;( A;s) then
correspndsto solving the homogeneougquation

d2

d
vl &(M{i)ﬂwyi:o (4.33)
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with the boundary conditions

d
& i M { P = é (434)
forx = A and g

for x = A.

Having formulated the homogeneouddi erential equation (4.33) with
boundary conditions (4.34) and (4.35) we set out to nd relations for
Upon introducing the 4-dimensionalvector

d y o .
u= ®&i M1 Vi (4.36)
i i
andthe 4 4 matrix
_ o m¥
M= My (4.37)
the homogeneougquation (4.33) may be put in the form
gu- =M yu;i: (4.38)
dX 1= u4i- .

In Eq. (4.37)the entity O isthe 2 2 null matrix and | isthe 2 2 idertity
matrix. We may alsosplit Eqg. (4.38) into the two equations

d_oi(Vi = MY, (4.39)
and q
&i:M{ﬁvi: (4.40)
With the intention to solwe Eq. (4.38) for u; we form the linear combination
x4
uj = Y- (4.42)

j=1
One may alsowrite (4.41) in matrix form

ui(x;s) = Y (x;s)ai(s); (4.42)
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whereY is the matrix
Y =fy1YoiYsYag (4.43)
with column vectorsy;. a; are column vectorswith componerts

(ai); = a: (4.44)

From (4.38) and (4.42) the equationfor Y is stated

dy .o - Q.
Y (69 = M LY (x;9): (4.45)

We choosethe \initial conditions" at x = A forY to be
Y( A;s)=1: (4.46)

Herel isthe 4 4idertity matrix. Equation (4.45) renders4 linear coupled
di erential equations. With the condition (4.46) we can calculate Y (X; S)
with a standard numerical routine for ordinary di erential equations[61].
The 4 vector functions y; obviously have linearly independert initial condi-
tions (4.46) sud that the linear combination in Eqg. (4.41) is valid.

Weintroduce4-dimensionalunity vectors(e;); = . From (4.34), (4.35),
and (4.38) the boundary conditionsat x = A for u; are seento be

eju; = (&) (4.47)
esu; = (&) (4.48)
atx= A and
eju;=0 (4.49)
e;u; =0 (4.50)
at x = A. In matrix form theseboundary conditions become
Q(s)ai(s) = & (4.51)
where 8 9
3 eiY( As) 3
_ gY( As T
Q(s) = s eIY(AS) 3 (4.52)
C Y (As)
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The shall needthe adjoint of the matrix Q for the systemdeterminart:

QY(s) = fa;;d2; 03 049 (4.53)
with column vectors
g.(s) = YY( A;s)e; (4.54)
dx(s) = YY( A;s)e; (4.55)
ds(s) = YY(A; s)es (4.56)
d4(s) = YY(A; s)eu: (4.57)
Becauseof Eq. (4.46) Q becomes
8 9
3 S 03
_ € :
QY= ery(ag s (4.58)
T elY(As)

The vectorsa;(s) are calculatedthrough
ai(s)= Q () i=12 (4.59)
wherely u; can be found. The systemdeterminart is given as
D(s) = detQY(s) (4.60)
which is simply
D(s) = (d3(s))3(da(s))a  (As(s))a(qa(s))s: (4.61)

We have thus expressedhe systemdeterminart in terms of Y (A; s) which
can be calculated numerically. By studying the complex zerces of D(s) we
will be able to determine the stability properties of a given stationary solu-
tion. The reasonfor the Hermitian conjugation \y" in (4.60) is that Q(s)
appearsin the denominatorwhencalculating a;. Thereforeit is the complex
conjugatethat appearsin Eq. (4.31).
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4.2 Local Stabilit y

We introducethe stability parameter

= 5D 0): (4.62)

In Appendix C it is shovn that for largepositive s the systemdeterminart D (s)
is given as
D(s)" %soe2p 25%A (4.63)

wheres®= (2k,=yy)s. Then D(s)! +1 forreals! +1 . Below, we also
show that D(s) hasa xed zeroat s = 0. Thesetwo properties of D(s)
imply the following: If < 0 then D(s) is negative in an interval (0;sp) on
the real s-axis and D(s) has an odd number of zercessinceD(s) ! +1
forreals! +1 . Hence,if < 0 for a given stationary solution, it is
unstable and its instability is of the saddle-mint type. In case > 0, we
declarethe mode locally stable. If > 0, the given mode can, howeer, not
be declaredglobally stable since there may be zercesof D(s) in the right
half s-plane o the real axis. In principle, when > 0, D(s) may have an
even number of zeraes on the real axis in the right half s-plane. Howewer,
after doing sometests we have not seenthis happening. Regardlesswhen

> 0 further investigations must be carried out before calling a mode at
a given pump rate globally stable. A method to analyze global stability is
descriked in a subsequen section. When calculating asa function of the
pump current a changein the sign of implies a saddle-mint bifurcation.
For = 0 we are at a bifurcation point where two or more tuning curves
meetin a (J=Jo; f')-diagram.

To make useof we must rst show that D(s) hasa xed zeroin s= 0.
From Eq. (4.45) we obtain

d—dXY Y(x;8) = YY(x; )M ¥ (4.64)
The secondcolumn of M ¥ is seento be
M e, = sz—kreg (4.65)
Vg
Multiplying by e, on both sidesof (4.64) and then using (4.65) give
d 2k
TN Yy - N Yy .
de (x;8)e; S Ve Y Y(x; s)ea: (4.66)
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In the limit of s= 0 it follows that

d
&Y Y(x;s)e, = 0 (4.67)

and Y Y(x; s)e, (i.e. the secondrow of Y ) is thus constart and equalto its
initial value. That is,

d4(0) = YY( A;0)ez2 = e (4.68)

Of coursewhen calculating Y numerically, this should hold true which we
indeed nd it to do. Inserting (4.68) in Eq. (4.61) leadsto

D(0) = O (4.69)

Thus D(s) hasa xed zeroat s = 0, and is a valid parameter deciding
the local stability of a calculated stationary solution. This makesit con-
siderably easierto learn about the local stability of a mode, in fact we will
now derive a semianalytical expressionfor in terms of the matrix Q so
that a direct numerical calculation of the derivative dD(0)=ds using nite
di erences becomesunnecessary

By Egs. (4.61) and (4.68) we nd

AD(0) = (@O)s (@i (@O (@O)s  (470)

or by using (4.56) and (4.57)

d

d d
DO = (V5(A 0 (u(@)s (ValA i (@O)s:  (4.7D)

To obtain the derivative %q4 for s = 0, we di erentiate (4.66) with respect
to s and then take the limit s! O:

@ 2k
——YY(x;0)e, = Y Y(x; 0)es: 4.72
@G (X; 0)ez v (x; 0)es (4.72)
Integrating Eq. (4.72) gives
X=A Z A
—@Y Y(x; 0)e, - % Y Y(x; 0)esdx: (4.73)
@ x= A Vg A
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AsYY(x;s)=1 atx = A forall s, weuseEq. (4.57) to end up with

Z Z
d 2k, ~ A 2k, A
d—SCI4(O) = V—r Y Y(x; O)esdx = V—r [(Y )3 (Y2)3(Y3)s(ya)aldx:
g A g A
(4.74)
The i'th componert of the vector %q4(0) is then
z
d 2k, A
—0,00 = = (vi(x0)ydx: (4.75)
ds i g A

With (4.75) the stability parameter can be calculated from Eq. (4.71)
wheny,; andy, are known. Note that we have kept the complex conjugate
in the integrand in Eq. (4.75) although y, are always real for s = 0. When a
saddle-mint bifurcation occurs is supposedto be zero[71]. Thereforewhen
calculating asa function of current we expect it to changesign when the
tuning curve alongwhich we are moving branchesinto oneor more additional
tuning curves.

4.3 Calculation ofy

We briey commen onthe calculation of y;. Antisymmetric stationary solu-
tions have zercesat x = 0. The matrix M ; de ned in Eq. (4.16) su ers from
a singularity at x = 0 when E¢(x) is antisymmetric as seenfrom Eq. (4.4).
When calculating y; for theseodd-parity solutions, we chooseto smoothen
the \p otertial" givenby M ;(x) at x. We do this by introducing the function
h(x)

x o
X+ ydx

h(x) = (4.76)

Herethe ertity  isasmallrealnumber. Obviouslyas ! 0,h(x)! d =dx
Then for antisymmetric solutitions we replaced =dx by h(x) in M 1(x). In
h(x), evaluation of d =dx is still neededfor h(0). We avoid this by averaging
over the nearestdiscreteneighboring points: h(0) ' (h( x;)+ h(  x;))=2.
In this way a smaooth potertial is obtained. The small number  is a free
parameter whose appropriate value is determined as follows: Denote the
pump rate at which  changesfrom positive to negative J for a given .
Foran , well largewe nd that will changefrom positive to negative at a
current a bit too high ascomparedwith the bifurcation point on the relevant
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tuning curve. Decreasing y will leadto a smallervalueof J . At somepoint
increasing y will not lead to a lower value of J . We nd that when this
occurs,J will equalthe current at which the solution actually bifurcates,
i.e. wherea new branch emergeson the tuning curve. Typically , 10 °
m.

4.4 Global stabilit y

With a stationary solution whose > 0t is necessaryto evaluate its global
stability beforenamingit stable or unstable. In orderto determinethe global
stability of a mode at somecurrent, we must know the signsof the real parts
of the zercesof the systemdeterminart D (s). Insteadof nding all zercesof
D we de ne a real function of the imaginary part of s that will shav a peak
wheneer D (s) = 0. Regardthe expansionaround a zeroof D (s) denotedsg

D(s)' b(s so): 4.77)
Next, we introducethe ratio

1@, 1
D@ [s jIm(so)] Re(so)

and state a function (s), which is de ned only for purely imaginary s, i.e.
for Re(s) = 0O:

(4.78)

(s) = Re %% ; (4.79)

By comparisonwith (4.78)

Re(so)

" () Im(so) + [ReGo)l”

(4.80)

If (s) is plotted, peaksin the curve will imply Im(s) = Im(sg). Thus at
Im(s) = Im(sp)
1 1 0

(s) ReGy) (4.81)
Then for (s = Im(sp)) < O for a given zero, the viewed mode is unstable
at the given current as it implies a positive Re(sp). In cortrast if (s =
Im(sp)) > O the zerodoesnot cortribute to an instability sinceRe(sg) < O
in this case.
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The function (s) is calculated numerically using Eq. (4.61) and a nite
di erence is usedto obtain the derivative % . The derivative % fors! O
calculated numerically should of courseagreewith . We nd this to be the
case.

4.5 Results of stabilit y analysis

45.1 Local stabilit y of type | modes

In Figure 3.2 we sav how type Il modes were born in conjunction with
branchesemergingfrom the branchesof type | modes. We expect a saddle-
point bifurcation to occur whenvarying the bifurcation parameter(the pump
rate) through a value wherea branch point is located. However we cannot a
priori tell which branchesare locally stable or unstable. With the stability
parameter , howewer, we are able to determinethe local stability of a mode
as a function of the bifurcation parameter. A type | mode undergces a
saddle-mint bifurcation in conjunction with an emergingtype || asymmetric
mode. E.g. mode 5 bifurcates at approximately J = 1:0113),. This family
of saddle-wint bifurcations is seento occur at an increasingly high currert
for increasingmode number. In Figure 3.2 there are 8 sud bifurcations (for
m = 1 the 1''-branch is not visible asit lies closeto the 1''-branch).

Figure 4.1 shavs examplesof calculated -curvesfor type | modes. The
regardedmodesare 1', 3',4', and 5'. The questionwe want the small-signal
analysisto answver is: on which side of the bifurcation point is > 0 yielding
local stability and on which sideis < 0 yielding local instability.  must
crosszeroat the pump rate of the bifurcation point (wherem'' emerges)o
be in agreemenh with bifurcation theory.

Very reassuringly indeedthe -curvescrosszeroat the respective values
of the pump rate that correspnd to the valueswherethe modesbifurcate and
type |1 modes emerge! Moreover, the actual result from the local stability
analysisis that > 0 for pump rates below the bifurcation point and < 0
above the bifurcation point. We hence nd that the m'-modes are locally
stableonthe interval of the pump rate goingfrom thresholdto the bifurcation
point and losetheir stability for higher pump rates. We have found this to
be the casefor all m' with 1  m 8. In order to be ableto concludethat
all m'-modes carry this behavior we also investigated mode 15', for which

turns negative at 1:037),. Again, this is the pump rate at which 15"
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Figure 4.1: asa function of pump rate for modes1', 3', 4', and5'. The
curves cross zero where their correspnding stationary states saddle-mint
bifurcate. This meansthat modesm' arelocally stablefor pump rates below
the pump rate at which m'' emerge.

emerges.

We are rather con dent that the above picture holds true for all m. Of
courseno mathematical proof hasbeengiven here. Recallthat m'' is doubly
degeneratefor a given m; both a left- and a right-m'' exist. Thereforetwo
(not one) branchesemergefrom the bifurcation point. Consequetly we can
label the saddle-mint bifurcations regarded here as pitchfork bifurcations

[72.

45.2 Local stabilit y of type Il modes

Bifurcation theory predicts that the emergingtype Il branches correspnd
to locally stable modes m'' sincem' turned unstable for currerts above
the respective bifurcation points. A similar casewhere a symmetric solu-
tion saddle-mint bifurcates into an asymmetric one can be seenfor DFB
lasers[71]. At the bifurcation point wheretype | meetstype Il for somem,
= 0 and their eld distributions are idertical. Howewer, while becomes
negative for m' asthe currert is increased, for m'' increasesfrom zero
to an increasingly large positive value as the currernt becomeshigher. The
asymmetricmodesm'' are hencelocally stable. As an example,6'', (J) is
presered in Fig. 4.2. The truncation of -curvesat the lower-currert endis
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tricky asthe elds of m' and m'' becomevery similar near the bifurcation
point. Regardlesswe nd that all m'' arelocally stablesince (J) increases
uniformly. The result that type II modes are locally stable is interesting
consideringresults of chapter 3. The far- elds of m'' at currents well above
the bifurcation points at which they emergeare single-lobed and relatively
coheren spatially. We note that we have not investigatedthe behavior of
near the pump rates at which m'' mergewith (2m)''.

2.5e+26

2e+26

1.5e+26

» 1le+26

5e+25

0

_5e+25 ! ! ! ! ! !
1.013 1.014 1.015 1.016 1.017 1.018 1.019 1.02

Pump rate J/J,

Figure 4.2: asfunction of pump rate. Above the pump rate of the bifur-
cation point wherethe branch for 6'' emergesrom 6', > 0 and uniformly
increasingwith increasingpump rate.

45.3 Global stabilit y of type | modes

From the analysisof the local stability of modesm' we found above that these
modeswere stable for pump rates going from their respective thresholdsto
the bifurcation point involving m'' at which they underwert a saddle-mint
bifurcation thus losing their local stability. In this current rangethe global
stability is now investigated using the function (s) de ned in Eq. (4.79).
Let us beginwith the fundamertal mode 1' for which the results can be
summarizedin short terms: Mode 1' is globally stable from its threshold
pump rate J = 1:0001], until it already Hopf-bifurcates at appraximately
J = 1:.001Q),. Note how 1' becomesunstableat a currert that is higherthan
the threshold currert of 2'. Also as a reference,1' saddle-mint bifurcates
at J ' 1.008)g. To illustrate how the Hopf-bifurcations occur, we shawv
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(s) for the caseof 1' in Figure 4.3 whoseabscissas Im(s)=(2 ). Graph 1
correspndsto a pump rate of J = 1:00028,. At this pump rate there areno
peaksbelow zero,and 1' is stable. Graph 2 represets a higher pump rate
J = 1.00153,. Here two peakshave becomenegative correspnding to 2
pairs of complexconjugatezeraesof D (s) moving into the right half s-plane.
These two Hopf-bifurcations occur where Im(s)=(2 ) is appraximately 0.2
GHz and 0.5 GHz. Thesetwo frequenciesreveal side-male coupling for 1'
to mode 2' and mode 3', respectively, sincethe modespacingsbetween 1'
and 2' and between1' and 3' in Figure 3.2 lie very closeto these Hopf-
frequencies. Note that sincethe 0.2 GHz-peak is less sharp than the 0.5
GHz-peak, the pair of zercescorrespndingto 0.2 GHz-peakhave ertered the
right half s-planefor a lower current than the pair of zeroescorrespnding to
the 0.5 GHz-peak. For a further augmertation of the current, moreand more
negative peaksappearsas seenfrom graph 3, which has 3 negative peaks.

Similar behavior is seenfor mode 2' which is globally stable from its
thresholdat J = 1:0003% until it Hopf bifurcatesat 1:0016@d,. The ewlu-
tion of (s) for 2' is givenin Figure 4.3. Graph 1 represets J = 1:00053,.
Graph 2 is calculatedat J = 1:00163, wherea peakis seento have turned
negative at 0.7 GHz. It should be noted that since?2' is antisymmetric we
must rely on the parameter . Thereforethe currert at which 2' bifurcates
and the frequencys of the instability may depend on the utilized value of .
By comparing Figure 4.4 wherethe detuning of the zeroscrossingthe imag-
inary s-axis is 0.7 GHz with Figure 3.2 where4' lies 0.7 GHz above 2' tells
us that, most likely, the lowest-currert Hopf-bifurcation of 2' is assaiated
with side-male couplingto 4'.

Modes m 3 lose their stability immediately above their thresholds.
Alternativ ely they are all \b orn" unstable. As an example,the stability of
mode m = 3 wasewluated at 2 10 °J, above its threshold where the
mode is clearly unstable with two negative peaksin (s).

As an exampleof form 3, Figure 4.5displays (s) for mode 5' for 3
di erent currernts. Graph 1 is calculatedat J = 1:00188, correspnding to
7 10 °J, above modal threshold. Graphs 2 and 3 represen higher currerts,
where more and more peaksbecomenegative. For the sake of generality we
have in addition to the casesof 1 m 8 calculated for the higher order
mode 15 and we nd to have seweral negative peaksimmediately above
threshold. Hence,we nd good reasonto beliewe that all modesof type m!
form 3 areglobally unstableimmediately above threshold and most likely
remain unstable for all higher currens.
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Figure 4.3: Mode 1':  is plotted as a function of frequencylm(s)=(2 ) for
3 dierent pump rates. Graph 1: For J = 1:.00028,, hasno peakswith
negative values and the mode is therefore globally stable. Graph 2: For
J = 1:.00153,, 2 peakshave becomenegative at 0.2 GHz and 0.5 GHz and
the mode is globally unstable. Graph 3: For J = 1:00243,, a third peakhas
becomenegative. When increasingthe pump rate ewven further, more more
peakswill turn negative.

It is intuitiv ely appealing that 1' does not lose its stability at a cur-
rent where no other modesare above their threshold, sinceone assiatesa
Hopf-bifurcation with oneor seweral emergingside-malesthrough side-male
coupling. There have beenreports on experimertal con gurations designed
to make BA lasersoperate in the fundamenal lateral mode only [64]. These
sthemesrely on making the lossesof the fundamenal mode considerably
lower than those of the higher order modes by meansof spatial Itering.
With the notion that the fundamenal mode cannot Hopf-bifurcate at a cur-
rent below the threshold currents of the modesof higher order, sud Itering
sthemesnot only ensurethat the fundamenal mode be the only mode above
threshold but alsoensureits global stability at currerts higher than the cur-
rent at which it losesits stability in a solitary laser. It is also conceiable
that modesof higher order than 2 can be stable if by somemeansthey are
Itered to have the lowest threshold currert; see[73].
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Figure 4.4: Mode 2': s plotted as a function of frequency Im(s)=(2 )
for 2 dierent pump rates. Graph 1: For J = 1:000530,, hasno peaks
with negative values and the mode is therefore globally stable. Graph 2:
For J = 1:.00163,, a peak hasturned negative at 0.7 GHz and the mode is
globally unstable.

We have seenthat the fundamertal mode 1' losesits global stability at a
very low pump rate, namely 1:001QJ), (again, its threshold was 1:0001]). In
[25] a 100micron-wide AlGaAs BA laseroperating at 810nm wasinvestigated
nearits threshold (recall that we study a laserof width w = 200 m). It was
found that the single mode operation with the fundamenal mode stopped
at a current 1.01l, where instabilities set in. It must be noted that an
external cavity with a plane mirror (no spatial Itering) wasincludedin the
set-up. Howewer, a plane external mirror has not been found to stabilize
lateral behavior in a BA laser[24]. Thereforewe beliewe that it is relevant
to compareour results with this experimert. Most likely the lateral mode-
couplingbecomesstrongerwith increasingwidth and a 200-micronwide laser
madefrom the samewaferasthe devicein [25]would su er from aninstability
at a lower current when normalizing by the respective threshold currents
due to the smaller lateral modespacing. We must also remenber that the
parametervaluesin our calculationsare not taken from a speci ¢ device. In
any case,the experimert reports a very low pump rate as \threshold" for
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Figure 4.5: Mode 5': is plotted as a function of frequencylm(s)=(2 ) for
3 dierent pump rates. Graph 1: For J = 1:001879,, very closeto modal
threshold, has se\eral negative peaksand the mode is therefore globally
stable. Graph 2 and Graph 3: When increasingthe pump rate more and
more peaksbecomenegative.

lateral instabilities, suggestingthat our small-signalanalysis can give good
predictions on the lateral modal behavior of a BA laserat very low pump
rates.

45.4 Global stabilit y of type Il modes

We found earlier that modesm'' were locally stable. Howewer, we nd all
type Il modesto be globally unstable. For m > 1, (s) behaves similarly
to (s) form' (for m 3). The mode 1'' standsout to a small degreeby
having a low-frequencyinstability: at currerts very closeto the branch point
where 1'' is born the mode only has a zero causinga low-frequencyinsta-
bility at around 50 MHz. The explanation for this is most likely a coupling
to 2'' which lies 50 MHz above 1'' in the tuning diagram. Howewer already
at around J = 1:0065]y a higher-frequencyinstability at 0.66 GHz appears;
probably in conjunction with mode 4 accordingto the tuning curves. Re-
gardlessof this small abnormality, we have not found globally stable type |1
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modes.

455 Summary of stabilit y prop erties

By investigating the small-signalstability properties of modesof type | and
type Il we concludethat in a solitary BA laser with the parameter values
usedhere, only modes1' and 2' are globally stable at very low pump rates
only. One experimertal report for a 100 micron-wide BA lasercon rms that
indeedstable, single-male operation can only occur at very low pump rates.

All modesm' are locally stable for pump rates lower than the one at
which a saddle-mint bifurcation occursin conjunction with the birth of m''.
Howewer they are globally unstable immediately above threshold for m 3.
Modes m'' were found to be globally unstable for all m. Sincethey are
locally stable they may in principle operate in sometime-dependen state
(just asm' may for pump rates where they are locally stable). Sincem''
could be related to the time-averagedsingle-loled far- eld of the AEC laser,
this is of our interest. Howewer, sincethe AEC laseris a devicethat usually
operatesat high pump rates, we can not concludeanything about this based
on our analysisat low currerts.

Why do BA lasersin generalnot operate in a single lateral (per longi-
tudinal) mode but rather in an either multimo de state or a complexappar-
ertly chaotic state? In generalterms the above stability analysishas given
the small-signalanswer to this question: All modesare unstable except for
pumping at very low currens.

We have not investigatedthe stability of modesm''' andm'V. We leave
this to future work. Even if someof thesemodesare stable, which one could
intuitiv ely doubt, then they will probably not be seenin a solitary BA laser
where the large-signalbehavior appearsto be chaotic. The trajectory in
somephase-spaceavill never nd a stable stationary solution when the BA
laseris well above threshold. In generalone cannot expect that a laserwill
operate in a cw-mode ewven if one or more stable stationary solutions exist.
For example,in external cavity lasers(with one lateral mode) with strong
optical feedbag, time-domain calculations showv that limit-cycle operation,
chaotic behavior, and mode hopping may occur in spite of the presenceof
stable stationary solutions [74].
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4.6 Linewidth

We move on to demonstratethe use of Eq. (4.31). In this sectionwe will
calculatethe linewidth for mode 1'. The linewidth is the low frequencylimit
of the frequencynoisespectrum. To calculate small-signalnoisespectra from
using (4.31) one must know the di usion matrix D (x;s) in the correlation
relation for £(x; s)
D E
B 9B (x;s) =D(xs) (x x92 ( 9; (4.82)

wheres=j, s°=j © and\hi" denotesensenble averaging. In Appendix
D the diusion matrix is determined from the correlation relations for the
Langevin noise function F, (x;y;z) in Egq. (3.7). The diusion matrix is
approximated to be independen of frequency

. Di(x!s), .
EJ I (4.83)
where
2! 3~
D (X;!s)" *—K nrgnep: (4.84)
3 ol
The inversionfactor ng;, is given by [75]
N
Nsp = N N (4.85)

The Fourier transform of the instantaneousfrequencydeviation £ = d( ),=dt

is s(f ),. The frequencynoisespectrum is the spectral density of the instan-
taneousfrequencydeviation
1P LE
Sc(s)= Jim = js(®)2(s)i (4.86)

By inserting (4.31) for i = 2 and f = 0in Eq. (4.86) while using (4.82)
one obtains the expressionfor the frequencyspectrum at x = A+
z 1

S =2 69D (x8) L0 s)dx (4.87)
1

In the limit s! 0 oneobtains the spectral linewidth

= S(0)=2 : (4.88)
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For the purposeof obtaining the linewidth we needto know limg ¢S ,. Let
us now derive an expressionfor , in terms of individual componerts of y;.
From Eq. (4.42)

elyYa,

2(X;8) = elY a, (4.89)
By Eq. (4.51) and (4.58)
al(s) = e](Q = % 0 1 (@u9) (G)s(d :  (4.90)
and then
9= (s + (Vs 0Va ANy (Vs Vs(ANy . (1)

D(s)  (Y2)a* (Ya)a(Ya(A):  (Ya)a(Y3(A)),

In (4.91) all y, are functions of s respectively x exceptthose evaluated in
x = A. The de nition of in Eq. (4.62) gives

Y2zt (Ya)a (Ya(A)1  (Ya)s(Y3(A)), . (4.92)
(Yoot (Ya)a (Ya(A)1  (Ya)a(Ys(A)), .

In (4.92) all y; are functions of x exceptthose evaluated in x = A. Having
obtained s , in the limit s! 0 we can calculate the linewidth from (4.87)
using (4.92) and (4.83). Figure 4.6 displays the calculatedlinewidth of 1' for
two di erent pump rates. The linewidth at J = 1:009, just belowv the pump
rate at which the mode Hopf-bifurcatesis found to be = 8.0 GHz. For
J = 1:00028,, closeto its thresholdJ = 1:0001J,, the linewidth = 330
GHz. One expectsthe linewidth of a laserto drop for increasingcurrent near
threshold [76].

One could proceedto calculatethe full frequencyspectrum in (4.87) and
other typesof noisespectra. We have not succeededn doing so as of yet.

. L1
Isl!mos 5(X;8) = —

4.7 Static Frequency tuning

With the generalexpressionEg. (4.31) one can also calculate the response

due to a current modulation fJ(x; s) by inserting the current modulation

term (4.22) in (4.31) and setting £ = 0. The changein frequencywhen the

currert is changedstaticly is then given by
z A

10y
1 (0)=k, a li'rr})s (x; 8) R J(X;S)
A S

1 1+ JEs(X)j?=Psa

dx: (4.93)

76



35 1 1 1 1 1 1 1 1

30 - =

25 - -

20 -

15 - -

Linewidth [GHZz]

10 o
[ ]

5 T T T T T T T T
1.0001 1.0002 1.0003 1.0004 1.0005 1.0006 1.0007 1.0008 1.0009 1.001
Pump rate J/J,

Figure 4.6: The linewidth of mode 1' calculated for two pump rates. At
J = 1:001],, the mode Hopf-bifurcates.

wherewe again usethe cortracted notation 3(x; s) Y(x; A+;s). Using
Eq. (4.36)

Msix) = Uax9)s (uaxis)a=ud(s)( es en) (4.94)

and then inserting the adjoint of u, from Eq. (4.42) gives

206s) 1 = aY(5s)( es e (4.95)
By Eg. (4.51) and (4.58)
(9= ef(Q (9= gy O 1 @(o)s (@l :  (4:99)
Using the de nition of in Eq. (4.62) we obtain
imsay= 2 0 1 (y)uA)  (Ve)(A) : (4.97)
Then it follows that,
ims Y60 -
YDA L (Vs  (¥3)a()]  (Ya)u(A) [ (Ya)s(X)  (Ya)a(x)]g:
(4.98)
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The small signal frequencytuning is then obtained by substituting (4.98)
into (4.93).

Exact slope mode 4
100 - s.s.-slope mode 4 + o
Exact slope mode 7 --------
s.s.-slope mode 7 x
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s.s.-slope mode 15 *
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Figure 4.7: Comparisonbetweensmall-signalfrequencytuning denoteds.s.-
slope and the exact slope of tuning curvesdenoted\Exact slope" for modes
4", 7", and 15 in Fig. 3.2. J%is the normalized pump rate J=J,.

For a calculatedstationary solution in the (J :Jo;ib)-planeit is thus possi-
bleto calculatethe local slope of the tuning curve by meansof the small-signal
analysis. By local we meanat the current at which the stationary solution
was calculated. We presen a few examplesof the calculated small-signal
frequencytuning as a function of pump current in Fig. 4.7. For modes4,
7,and 15 (all typel) we rst directly calculatedthe slopesof actual tuning
curvesin Fig. 3.2. Thesecurveslabeled \Exact slope" thus represen the
\exact" slope of the tuning curves. The small-signalfrequencytuning curves
ascalculatedusing Eq. (4.93) are labeled\s.s.-slope". We nd that the pre-
cision of the small-signalfrequencytuning is very good for currents ranging
from the threshold of modesm' to currents past the bifurcation point where
modesm'' are born. The discrepancytypically increasesa little for larger
currerts.
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4.8 Summary

In this chapter we have performeda small-signalanalysison lateral modesin
a BA laser. We employed a Green'sfunction approad to include the spatial
dependenceof the stationary solutions.

The main focuswason a stability analysis. The generalresult was brutal
but in correspndencewith the known experimertal and theoretical time-
domainbehavior of BA lasers:Except for the caseof very low pump rates, all
investigatedmodeswerefound unstable. Alb eit brutal, the resultis appealing
from a theoretical point of view since the highly non-stationary output of
BA lasersconceiably hasits origin in linear instabilities (i.e. instabilities
predictable by a small-signalanalysis). The only modesfound to be globally
stable werethe two lowest order modesof type I. Howewer, asthe pump rate
is increasedrom the threshold of the laserthe fundamenal mode 1' becomes
unstable at already J = 1:001Q), and the next higher order mode 2' loses
its global instability at the slightly higher pump rate around J = 1:0016),.
All higher order type | modesare su er from instabilities of the Hopf-type
immediately above threshold. In connectionwith the birth of type Il modes,
type | modes bifurcates to also su er from a saddle-int instability. The
asymmetrictype Il were found to su er from instabilities of the Hopf-type.

We alsodemonstratedthe calculation of the linewidth of the fundamertal
lateral mode and found plausible valuesfor the linewidth of a single lateral
mode just above threshold. Finally, we shaved examplesof frequencytuning
giving the changein oscillation frequencydue to a static changein pump
rate.
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Chapter 5

Time-domain calculations

The output of BA lasers uctuates in time and spaceewen at small pump
currents. This is known experimertally [25] and from time-domain large-
signal theory including microscopicdescriptions of the gain material [3][4].
Our analysis of the stationary states and their stability properties are in
correspndencewith this known behavior; no stationary output from a BA
laseris possibleexceptfor at very low pump rates. When a stationary state
Hopf-bifurcatesinto a limit cycleit could possibly be recognizedin a time-
domain simulation at a current just above the current of the bifurcation in
casethe limit cycle assaiated with the Hopf-bifurcation is stable. Howewer,
judging from the long time reported chaotic behavior of BA lasers,whereno
perfectly periodic mode of operation is seenfor considerablecurrerts, this
is only conceiable near threshold. In order to be able to compareresults
in chapters 3 and 4 with time-domain results, one could also do large-signal
time-domain calculationsat very low currents and comparespectra obtained
from time-domain simulations (large-signal)with noisespectra (small-signal);
in particular the eld power spectrum. This wasdonesuccessfullyor a single-
mode EC laserin [74]. We shall not pursuesud a comparisonhere. Instead
we turn to the time-domain consideringa higher pump rate, where we seek
to imitate the experimertally obsened behavior of the asymmetric external
cavity (AEC) laser.

Of particular interest here is modeling of the AEC laser. In [73] BPM
was utilized for this. The eld waspropagatedthrough the cavity of the chip
and the external cavity until a steady-statewasreahed. Howewer, at pump
currents slightly above threshold, the method becomesaunstable,i.e. the eld
distribution di ers from oneround-trip to another. BPM beinga method for
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nding steady-statesolutions, sud a variation is not acceptable. Howewer,
the instability of BPM doesadd to the suspicionthat even with the spatial
Itering in the external cavity the AEC laseris not a cw-laser. Therefore
we have pursueda time-domain approad. One could alsotry to extend the
methods of chapters 3 and 4 to include an external cavity and perhapseven
include the spatial ltering, andthen nd stationary solutions. In addition a
stability analysisshould be performed. Howeer, recognizingthe complexity
of EC lasersin generalthis could becomerather involved.

In the following we integrate the eld- and carrier equationsin the time-
domain and for the AEC laser we add a ltered delay term in the eld
equation as it will be described. As mertioned in chapter 2, taking the
phenomenologicaldescription of the semiconductorto the time-domain in
a di ractiv e gain guided systemis not without problems. Spatial Fourier
componerts of the eld with large spatial frequenciesmay be amplied un-
physically. We have experiencedthis rst-hand by solvingthe coupledPDEs
for the eld and the carrier density. The problem can be relieved by im-
plemerting an ad hoc part found in the literature in the eld equation. We
discussthis in more detail after the derivation of the neededequations. The
advantage of the phenomenologicabpproad as opposedto the microscopic
approad is a smaller computational load and also a more transparert de-
scription of dynamic lamentation in BA lasers. Furthermore, to be able to
comparewith our stationary results it is corvenient to be able to usethe
sameparametersin the time domain. In the semiconductorMaxwell-Bloch
equations, one has to insert dephasingtimes as parameters. We note that
the numerical shemethat we useto solwe the PDEs for the eld and car-
rier density can be extendedto include a microscopictreatment of the gain
material.

5.1 Time-domain equations

In the time-domain we now considerthe one-dimensionaleld equationand
carrier-density equationthat we obtained from the mean- eld appraoximation.
One may call theseequationsmacroscopic.A set of similar one-dimensional
macroscopicequations coupled to the semiconductorMaxwell-Bloch equa-
tions applied to a BA laser were usedin [22] with apparernt success. We
therefore beliewe that the one-dimensionaltreatment of BA lasersin the
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time-domain generallyis a good approximation.
From Eq. (3.40)the time-domain eld equationwithout externalfeedba&
reads
j @ 1@ 1+]

4~ E+-—E
&K @2 vy @ 2

where we have assumed! ¢ = ! ,. We choosethis frequencyto obtain an
equationsimilar to what is commonlyfound in the literature. In this chapter
we include carrier di usion sud that the carrier-densiy equation becomes

a(N N,E + 7’“ E=f(xt) (5.1)

@\ (v 1) = . @ N (x; t) CONRIE (v 1112
@ =3 (xt)+ DesN Ve (G HBJE(G D% (5.2)
In the presen chapter the current-pro le is a square,i.e. for jxj > xo we
setJ = 0. Instead the carrier di usion spreadsthe currert. Further, the
lateral boundary conditions are speci ed as
%:jp wkeE X= A (5.3)
and @& 0
= = " «sE X =A 54
@& ] wks (5.4)
for the eld. For the carrier density we utilize boundary conditions [77]
@
— = &N Xx= A 55
a @ (5.5)
% = N (X = A: (5.6)

The constart ¢, is the ratio betweenthe surfacereconbination velocity and
the di usion coe cient, i.e. ¢, = vg,=D [78]. Thusx = A areconsideredhe
lateral boundariesof the chip. We integrate Eqgs. (5.1) and (5.2) numerically
using the hopscotd method. We return to the subject of this method brie y
in Section5.4 and in Appendix E. In the following two sectionswe derive
an additional term describingexternal feedbak that is to be includedin the
eld equation.
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5.2 External feedback without Itering

We now continue to considera BA laserwith an external mirror placedlike
in Figure 2.2. To get started, we regard the casewherethe external mirror
provides no ltering. The eld equation (5.1) shall be extendedto include
the feedba& from an external re ector. Here we considerthe caseof small
to moderate levels of feedbagk.

When an externalre ector is placedin front of the right facet, the e ective
right re ectivit y is the re ectivit y of a Fabry-Perot etalon [50]

rp+ rge it e
1+ rorge it ex

re(!) =

Herer 3 the e ective external amplitude re ectivit y. The e ective re ectivit y
includesre ection by the external mirror and any lossesn the feedba& path.
ext IS the round-trip time of the external cavity. If r3 is small Eq. (5.7) can
be appraximated using the expansionl=(1+ x) ' 1 x:

re(')=ra+r3(l rde I e (5.8)

(5.7)

where terms with r3 of order higher than rst have been neglected. Now,
instead of the mirror lossof the solitary-laser eld ,=2= " Inrr,=2I) we
must considerthe amplitude mirror lossof the compound cavity:

1 1 :
—Inrirg = = In(rirp) + In(L+ et o) (5.9)
2l 2l
where L 2
rs)r
SNCHLIE (5.10)
rz
is the feedba& parameter. In the limit of 1 the compound cavity mirror
losscan be approximated usingIn(1 + x) ' X:
1 1 :
ﬁIn rirg " ﬁ(In(r1r2)+ el o) (5.11)

Replacing the mirror loss of the solitary laserin Eq. (5.1) with the com-
pound cavity lossin Eq. (5.11)yieldsthe eld equationwith full (un Itered)
feedba&

1@ _ | @_, 1% @

ZE= 1 ZEN BN NE
Vg @ 2kr @2 2 @l ( r) (512)
1 "
7'“E+ o e T E( Xt o)+ T (X 1)
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Eg. (5.12),then, isthe eld equationintroducedby Lang and Kobayahsi[79]
exceptthat diraction isincludedin (5.12). Note, howeer, alsothe negative
signin front of x in the argumen of E in the feedba& term, asshall be ex-
plained in section5.3. It stemsfrom the cavity of length 2f , which includes
a lensin the middle and thereforetwo Fourier transforms. The di raction in
the external cavity is thusincludedin (5.12).

From the view point of applied mathematics, di erential equationsin-
cluding a temporally delayed term sud as the term including E (t ext)
in (5.12) are called delay di erential equations. Bifurcation theory and nu-
merical bifurcation padkageshave beenapplied to single-male EC lasersto
study the birth of external cavity modesas well astheir stability properties
when some bifurcation parameter is varied [80]. Of particular interest in
this thesisis the inclusion of the lateral dimensionx. One possiblepath to
follow is to include the lateral eld distribution asa xed Gaussianshape
whoseonly degreeof freedomis to changeamplitude, that is to \breathe" as
a function of time [81]. By doing so, howewer, one presumablydismisseshe
possibility of any lateral instability, which we in Chapter 4 have found to be
of great importance for BA lasers,and therefore the stability properties of
the external cavity modesin Ref. [81] are very similar to thosefound without
including the lateral dimension,i.e. similar to the stability properties of a
single-male EC laser. Of coursea reducedcomputational load is in favor
of this approad, but it canonly give insight in the behavior concerningthe
fundamenal lateral mode.

Often the motivation for delayed feedba& systemsis to stabilize the uc-
tuating output of the regardedsolitary system. If onea priori is aware of a
characteristic temporal period in an unstable nonlinear system, stabilization
of the systemmay possiblybe achieved by using a delay of the known period
to obtain a stable motion [82].

5.3 Spatially Itered feedback

Unlesssomekind of spatial Itering is introducedin the feedba& we can-
not expect a stabilization of a BA laser. It hasbeenseenexperimertally in
[24], where a BA laserwas subject to an external mirror with no ltering,
that no stabilization or spectral narrowing was achieved when comparedto
a solitary laser. In [83] a BA laser subject to a delayed spatially lItered
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feedba& was studied theoretically, wherethe Iter function was a Gaussian
B(ky) = exp( k2=) for someconstart . Howewer, the authors regardedan
in nite lateral structure, i.e. they imposedno lateral boundary conditions.
Sud a Gaussian Iter hastheoretically beenshaowvn to stabilizethe eld of the
in nitely wide semiconductorlaser otherwise unstable without the external
Iter [84]. We saw in Chapter 3 that the stationary lateral mode structure
is much a ected by the lateral gain guiding whereforethe assumptionof an
in nitely wide structure is mainly of theoretical or rather mathematical in-
terest. As mertioned earlier, feedba& from an external mirror with a nite
radius of curvature hasbeenshavn to have a stabilizing e ect on BA lasers
experimertally [21] and theoretically [22] wherethe length of the delay was
of signi cance in addition to the spatial Itering.

We regard the ltering in the Fourier-plane of a laser, seeFigure 2.2.
A thin lens of focal length f is placedat (z = | + f) and an appropriate
Itering re ector is put at (z = | + 2f). The feedba& term to be included
in the eld equation should include propagation from chip to the lens; the
phaseaddedto the eld by the lens; propagation from lensto the Fourier-
plane; re ection and Itering due to the external mirror; and propagation
bad to the chip through the lens. The crucial thing hereis to notice that
the Fourier transform due to propagation from chip to the external mirror
hasthe samedirection (i.e. the samesignin the exponertial function of the
Fourier integral) asthe onedue to the propagation from the external mirror
to the chip; the eld seeghe samelenstwice. Thusthe ltered eld erntering
the chip becomes

Erp(; 1) = ra(l ro)e !’ =F f€(kIF [E(t  ea)lg: (5.13)

whereF denotesa forward Fourier transform and €(k,) isthe Iter function
in the ky-domain. Thus

Z 77
Erp(X;t  ext) = ra(l r2)e Jtres E(X%t o) C(x%e 1K x%* X% ) gy 0gx Ok,
(5.14)
leading to
Z Z
Erp(X;t) = rg(1 rd)e J'res E(x%t  o)C(X%Y ( x x° x%dx%x®
(5.15)
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and
Z

Erp(Xt) =131 ra)el'ret  E(X%t  &)C( x x%dx°  (5.16)

or
Z

Erp(X;t) =131 ra)el'ret  E( x x% o)C(x%dx® (5.17)

Note the minusin front of the unprimed x. This signmakesa very signi cant
di erence. With afull planemirror in the Fourier-plane€(k,) = 2 constant
onegetsa delta-function lter function C(x). The minussignin front of x in
the feedba& term of (5.12) is justi ed, andit isin agreemenhwith [30] where
BPM was usedfor a BA laserwith un ltered feedba&. For an un ltered

feedbag, the minus signin (5.12) says that the re ected eld that reeners
the chip through the front facet, reenters at a position opposite to the point
at which it was emitted. Omitting the minus sign, i.e. corvolving the Iter

function and eld doesnot represen the optical systemdisplayed in Figure
2.2. In the caseof a spatially ltered feedba& we nd that it causesvery
di erent feedba& conditions when the minus is left out. We shall return to
this point later in this chapter.

With a generalspatial ltering we getthe eld equation

1@ j @ 1+] @ m
~%- 1 %, BN N)E -"E
2
Vg @ 12kr@ z, 2 O 2 (5.18)
toe It ea C( x XIE(X%t  ex)dXO+ f(x;1):
1

It shouldbe notedthat the Itering in Eq. (5.18) cannotbe achieved without

a nite distancebetweenthe output facet and the ltering re ector because
the two Fourier transforms are required. An optical system senes as an

attractiv e ervironmert for conbining nonlinear phenomenawith delay and
Itering.

5.3.1 Single strip e mirror

We considerthe lIter function relevant for the AEC laser. It represets a
single stripe mirror placed in the Fourier plane. Hencethe width of the

87



0 | T
0 I'<x' kx Kx Kx+ kx
Spatial frequencyky

Figure 5.1: Singlestripe Iter in the ky-domain.

mirror represets the rangein spatial frequencyor, alternatively, an angular
range. Regardthe Iter function represeting a stripe mirror in the far- eld

€(k) =2 SIStk ket k)+son( Ky+ ket k)] (519)

wheresgn(x) is the signum function. K represets the certer of the mirror
while Kk is the half width in spatial frequency SeeFigure 5.1. This lter
is the only type consideredin this thesis. In position spacewe get

ej( kx + Kx)x e J( kx Kx)x

C(x) = Ix (5.20)
Often onewants the anglein the Fourier plane:
= arcsin&: (5.21)
ko

We adknowledgethat the actual Iter function may be more involved in
an experimert. The width of the re ector is sometimesde ned by two razor
bladesin front of the actual re ector. The adjustable distance betweenthe
razor bladesthen translatesinto a ky. Sud an arrangemem may cause
undesiredscattering of light. Howewer, we assumethat sud scatteringlosses
areincludedin rs.
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5.4 Hopscotc h metho d

The numerical method utilized in this chapter is the hopscott method. It
is a method originally madeto solwe the parabolic equation u; = uyy [85.
It is an explicit-implicit nite-di erence sdemewhich hasbeenfound to be
very numerically stable [86]. The hopscotét method may also be used for
nonlinear PDEs su as Korteweg-deVries equation[87]. In our case,we are
to solwe the nonlinear systemof PDEs in Eqgs. (5.1) and (5.2). Details are
givenin Appendix E.

We nd that the exact valuesof the \decay constarts” in (5.3) through
(5.6) are not important asit alsofound in e.g. [77]. If the boundary con-
ditions on the x-domain are imposedwell away from jxj = X, the eld and
the carrier density at the boundariesbecomevery small. In an actual device
one certainly wants the eld to be vanishingly small at the lateral edgesof
the chip in order to avoid lateral lasing phenomena[88§. Also, it is corve-
nient not having to know the actual magnitude of the surfacereconbination
rate. The noiseterm in the eld equation drivesthe laser above threshold.
We add Gaussianvery-low level noisein the simulation. When the laseris
above threshold, the e ect of the noiseis negligible. For purely explicit in-
tegration of the PDE Du; = uy, one hasthe numerical stability criterion
D t=( x)? < 1. For comparisonwe usevg:(Zkr)(—)t(2 < 25 1072 Asal-
ready stated the macroscopicPDEs treated here can E)e usedin conjunction
with the semiconductorMaxwell-Bloch equations. Moreover, extending the
hopscott method to include z-dependenceappearsstraight forward. Includ-
ing the semiconductorMaxwell-Bloch equationsand/or 2 spatial dimensions
are aimedfor large-scalecomputing. For this purposethe hopscott method
is very well suited for parallel computing [89.

5.5 The problem with adiabatic elimination

When integrating Egs. (5.1) and (5.2) using the hopscottt method we have
experienced rst-hand that eld componerts of high spatial frequenciesmay
becomeampli ed in an unphysical mannerwhenthe eld is calculatedwith
a relatively high spatial resolution. This behavior becomesclear when cal-
culating the far- eld, i.e. the spatial spectrum, in which the highest spatial
frequenciesof the Fourier window grow ordersof magnitude above the phys-
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ical far- eld localizedwithin 3 degreesaround zerodegreegthe laseraxis).
It turns out that the reasonfor this undesiredbehavior is not to be blamed
on the hopscott method; it is not a numerical instability. Rather the fault
lies in the phenomenologicaldescription of the gain and amplitude-phase
coupling [41]. Due to the adiabatic elimination of the polarization variable,
variations of high spatial and temporal frequencyin the permittivit y are
disregarded. A plane-wave linear stability analysis of equationssimilar to
Egs. (5.1) and (5.2) shows that plane waveswith high ky, grow exponertially
when perturbed (they are unstable) [77]. Although this stability analysis
dealswith a laterally in nite system,it capturesthat spatial Fourier com-
ponens of the eld with high spatial frequenciesare inherertly unstable.
Again, this is not a physical result but a mathematical consequenc®f the
introduction of the simple linear gain model along with the -parameterin
a systemwith di raction. As already implied, in a numerical integration of
(5.1) and (5.2) with a relatively high resolutionin X, i.e. a relatively small
X, the Fourier window becomedarge and Fourier componers with a rela-
tively high spatial frequencyky grow unphysically. As a result x must be
kept relatively large. A way to amendthe high-k, instability while retaining
the phenomenologicaldescription has beensuggested41] [77]. The ideais
to ad hac introduce a small imaginary part in the factor 1=(2k;) in (5.1),
ie. 1=2k,) ' (1 +j )=(2k,) with 0. The introduction of may be
understood by transforming (5.1) into the ky-domain:
it 2 1@ 1+] mo- ,
2 keE + vg@E > a(N N,)E+ > E = f(ke;t) (5.22)
It can seenthat > O introducesa lossthat depends parabolically on k,
wherely the componernts of high spatial frequencyare dampened. Of course
the e ect on the physically relevant ky-valuesshould be minimal when in-
troducing . We have found that a valueof = 7:5 10 2 doesnot raisethe
badkground carrier-density level signi cantly. With this value of we can
run calculationswith  x = 1:33 m for a BA laser of width w = 200 m
while keepingthe high ky-componerts dampenedfor a pump rate J = 1:2J,.
The spatial resolution reported in the streak-cameraexperimert in [2] was 3
micronsfor a BA laserof a width of 1200microns (the time resolution was 50
ps). Thusthe obtained numericalresolutionis acceptable.On the other hand
a higher resolution could be desirablefor which a microscopictreatment of
the semiconductoris necessaryIn other words for a higher spatial resolution
onecould couplethe macroscopid®DEs to the semiconductorMaxwell-Bloch
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equationsthrough the polarization variable.

At thresholdthe badkground carrier density is appraximately 2:35N with
the utilized parameters. The additional lossdue to the introduction of the
small number must not signi cantly raise this level. One should be con-
cernedwith the badground carrier density or alternatively the averagecar-
rier density within jxj X or rather how much it diers from the carrier
density outside the pumped region, as it is an important geometric factor
having a signi cant in uence on the shape of modes. This can be seenwhen
nding stationary modes.

As an alternative to a microscopictreatment of the gain material one
could consideradding moretermsin the expansionof the lateral wave number
in Eq. (3.35). If oneincluded nonlinear gain in the phenomenologicamodel,
the problem of high-k, instability would, howewer, not necessarilybe elimi-
nated, asit seemsto appear even at low powers. The problemsassaiated
with a phenomenologicatreatment of BA lasersin the time-domain really
underlinesthe complexity of the spatio-temporal behavior of BA lasers;wide-
aperture multistrip e index-guidedlaserarrays can be treated phenomenolog-
ically without similar problems. As examplesl-dimensionalmodeling of a
laserarray of width 100 m (10 stripes)[90] and similar 2-dimensionalmod-
eling of an array of width 50 m (5 stripes) [86] were performed for high
pump currents using linear gain and the -parameter.

5.6 Time-domain results

Our motivation for doing time-domain simulations is to try and capture the

experimertally obsened behavior of the AEC laser. First, howewer we regard
the freely running (solitary) laseras a reference.Then we turn to the AEC

laser. We are mainly concernedwith the post-relaxation behavior of the

laser since BA lasersare rarely usedas switched devices. We changea few
parametervaluesas comparedwith Chapter 3. They are listed in Table 5.1.
The length of the chip is now 500 m, which is half of the length usedin

chapter 3. Further, we changethe rear facetre ectivit y to r; = 1 sothat we
have the samedistributed mirror lossasin chapter 3. Thus the rear facet
is now assumedarti-re ection coated,while the front facet is still assumed
cleaved.
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Table 5.1: List of parametervalues

Parameter Synmbol  Value Unit
Cavity length I 500 m
Stripe width w 200 m
Activ e layer thickness h 0.2 m
Linewidth enhancemen factor 3.0

Linear gain coe cien t a 1 102 m?
Con nemernt factor 0.3

E ectiv e refractive index n, 3.5

E ectiv e group index Ng 4.0
Referencewavelengh r 810 nm
Transparencycarrier density No 1 10 m?3
Internal loss i 30 cm !
Carrier lifetime R 5 ns
Front facetre ectivit y ra 0.35

Rear facet re ectivit y r2 1.0

Di usion coe cent D 30 cm?s 1
External cavitit y round-trip time ext 0.33 ns
Feedbak parameter 0.15

5.6.1 Freely running laser

The dynamicsof BA lasershas beenstudied extensiely especially theoret-
ically and perhapsto a lesserextend experimertally. Let us just let the
phenomenologicalmodel demonstrate the characteristics of a solitary BA
laser. It capturesthe lamentation processqualitatively well. Even with a
microscopictreatment of the semiconductorgain material it isdi cult to say
how good the quartitativ e agreemehwith experimert is [2]. Figures5.2and
5.3 show the turn-on behavior and the post-relaxation behavior of the total
output power and the laterally averagedcarrier density asa function of time.
The pump rate J = 1:2]), is applied at t = 0. Following the relaxation oscil-
lations, which are quickly \smearedout" dueto lateral dynamics,the output
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Figure 5.2: Output power as a function of time for freely running laser;
J = 1:2J,. After the few relaxation peaksthe lasererters a uctuating state
and newer nds a steady state.

power goesinto a state whereit uctuates between40 mW and 200 mW.
The carrier density nds a badkground level Ng (t) ' 2:4Ng around which it
uctuates but never nds a steady-state. One expects N (t) to lie slightly
above the steady-statethreshold 2:35N, due to spatial hole burning. This
indicates that the introduction of the waverumber-dependent lossthrough
the small number , has not signi cantly changedthe lossfor the relevant
ky-range.

The time-averagednear- elds reported from various measuremets can
be described asa pedestalwith aripple ontop. The time-averagednear- eld
in Figure 5.4 (a) shows those characteristics. For BA lasersof width, say,
200 m or more, the reported far- elds are usually blurred shapeslocalized
within an angular range depending on the width of the laser, the pump
currernt, laserparameters,and design. Sud a blurred shape is seenin Figure
5.4 (b) wherethe time-averagedfar- eld correspndsto the near- eld in (a).
Lastly, the correspnding time-averagedcarrier density is seenin (c). Note
the \ears" nearthe edgesof the cortact at Xxo. Theseare a consequensef
the global guiding medanism mertioned in Chapter 2; the real part of the
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