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TRANSDUCERS USING THE FINITE ELEllENT llBTHOD. 
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Technical University of Denmark, DK-2800 Lyngby, Denmark. 

ABSTRACT 

Analysis of piezoelectric transducers is 
often based on one-dimensional methods such 
as equivalent circuits and transmission 
line models. This implies that the vibra- 
tional pattern is presumed rather than 
found by the analysis. The presumptions are 
valid only for simple geometries such as 
thin plates. The finite element method can 
determine the nature of the vibrations and 
is applicable to any geometry. Therefore it 
is a valuable supplement to the traditional 
methods for design of new transducer types. 
Computer programs for analysis of axi- 
symmetric transducers, which include the 
complete set of piezoelectric equations 
have been developed. They can find eigen- 
frequencies for undamped transducers and 
make forced response analysis for transdu- 
cers with internal and radiation damping. 
Super element technique is employed to 
model the transducer backing in an effi- 
cient way. Examples ranging from a freely 
vibrating disk to a real focused transducer 
with a conical backing are presented. 

I .  INTRODUCTION. 

The finite element method (FEM) is a 
method for soLving partial differential 
equations numerically. It can handle not 
only scalar but also vectorial problems. In 
solid mechanics it has become the method of 
choice. The method has also been used for 
piezoelectric materials for almost 20 years 
[l-31, but its use in ultrasonics is still 
limited. There are several reasons for 
this, and the most important may be that 
the one-dimensional methods such as Mason's 
equivalent circuits and the KLM model in 
many cases work quite well. It is also 
important that FEM is computationally de- 
manding and that numerical methods often 
give less insight in the problem. Still FEM 
offers an opportunity to take more design 
parameters into account in the analysis 
than the traditional methods do. Examples 
may be the effect of curvature, partial 
electrode coverage, edge effects and vary- 
ing cross section. As the analysis not 
necessarily involves much manual work if it 
is combined with appropriate pre- and post- 
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processors there should be a place for FEM 
in the transducer designers toolbox. 

A specialized computer program called 
Curie has been written [4] to utilize the 
potential of the method to calculations 
involving piezoelectric transducer. It is 
currently only intended for axi-symmetric 
transducers, but it includes the full set 
of piezoelectric equations, the influence 
of a fluid load, internal damping and makes 
use of super element technique. Some of 
these features are included as they are 
useful in the design process, others make 
the program more efficient. Furthermore 
the program is supported by a PC based pre- 
and post-processor. 

11. Finite Element Analysis. 

When a transducer is to be analyzed with 
FEM it must first be described geometri- 
cally in a coordinate system, xi. The sub- 
script i and later j,k, and 1 may assume 
the values 1,2 and 3 corresponding to the 
three coordinate axes. The transducer geo- 
metry is defined by a number of elements. 
Each element is associated with a number of  
nodes with coordinates Xim, where the se- 
cond subscript m=1,2,.. . ,M. is the node 
number. The main assumption in the method 
is that the electric potential, Q and the 
displacement, uj within the element can be 
determined with an acceptable accuracy by 
interpolation between their nodal values 
denoted by: 

cP(xim) = Qm ( 1.b ) -  

The interpolation is done in acc&dance 
with the shape functions, Nm which are 
characteristic for the Elements. 

cP*(Xi) = "(Xi) Qm ( 2.a ) 

The asterisk is to distinguish the interpo- 
lated functions from the true functions. 

The interpolated displacements are dif- 
ferentiated spatially to find the strain 
tensor, Sij, 
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and the electric field vector, Eil 

Ei = v*,i ( 3.b 1 
The constitutive equations are then used to 
find the stress tensor, Tkl, and the di- 
electric displacement, Dk. 

Tkl = Cijkl sij - eikl Ei ( 4.a ) 

Dk = ekij sij + Eik Ei ( 4.b ) 

Here and throughout this paper is used the 
convention that repeated subscripts in a 
term imply a summation over all allowable 
values of the subscript for that term. 
Once again the shape functions are used, 
but this time as weight functions to in- 
tegrate the divergence of Tkl and Dk on the 
coordinate axes into equivalent nodal for- 
ces, Fkml and equivalent nodal charge, Qm. 

V is the volume of the element. 
The nodal forces must satisfy the equa- 

tion of motion and an electric charge may 
not be accumulated in the nodes, therefore: 

where Mmn represents the mass of the struc- 
ture in form of a mass matrix. The so- 
called consistent mass matrix, MImn, is 
calculated by integrating the mass density, 
p ,  with the shape functions as weight func- 
tions 

Alternatively the mass matrix may be lumped 
ie. only have non-zero elements in the dia- 
gonal. In ultrasonic applications, where 
the wavelengths are small compared with 
typical dimensions, a linear combination of 
the two is superior with respect to conver- 
gence to the true phase velocities. 

When the operations given by equation 2 
through 7 are combined they provide a rela- 
tion between the nodal displacements and 
the electric potential on one side and the 
nodal force and nodal charge on the other. 
As a result of how the shape functions are 
defined in FEM [5] the relation may be 
given in the form 
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where DklmB = (Kklmn ; u2 6k1 Mmn) is the 
dynamic stiffness matrix, and Kklmn is the 
static stiffness matrix. 6k1 is Kronecker's 
delta. The subscript 4 is used to include 
the electrical degree of freedom in the 
same frame as the purely mechanical degrees 
of freedom. Dk4mn and D44mn are piezoelec- 
tric and electric generalized stiffness 
matrices, which have no term equivalent to 
the mass term. 
In this form the method by analogy is equi- 
valent to an electric L-C network, but as 
opposed to the common use of equivalent 
circuits, the method itself provides values 
for the components. 

When the stiffness matrices for all the 
elements are calculated, they are assembled 
into a complete FEM model of the same form 
as equation (8). Boundary conditions are 
enforced directly on the nodes. 

111. Super Elements. 

The first and most important considera- 
tion using FEM is to find symmetries or 
periodicities that can reduce the size of 
the model. Most drastic reduction may be 
obtained if the dimensionality of the pro- 
blem can be reduced, as in the case of 
axial symmetry. Similar reduction may be 
obtained by super element technique if a 
part of the transducer is cylindrical or 
periodic. This may often be the case with 
the backing. 

A super element is an assemblage of 
ordinary elements which is treated as one 
single element. Internal node can be eli- 
minated with no loss in accuracy for a 
single frequency, but the price in an in- 
creased bandwidth in the stiffness matrix. 
The advantages are that substructures may 
be analyzed independently and that super 
elements may be re-used several times in 
the same model. 

A cylinder can be modelled by Zm identi- 
cal layers. When all nodes except those on 
the two faces of the layer are eliminated 
the force displacement relation is most 
conveniently written in matrix form 

F and U are vectors of generalized force 
and displacement degrees of freedom (DOFs). 
Subscript 1 and 2 refers to the two faces 
of the layer. By combining the two layers 
and eliminating the DOFs on their interface 
the super element for two layers becomes: 
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(10) 

where R = ( D11 + D22 )-l abd subscript 3 
refers to the second face of the second 
layer. The computational price of this dou- 
bling procedure is = M3, where M is the 
number of DOFs on the faces of the layers. 
Hence the price of making a super element 
of 2m layers is mM3 whereas thb price of 
direct elimination would be = (2m-1)M3. The 
saving is similar to that of using the FFT 
algorithm instead of direct .evaluation of 
the DFT. 

IV. Element Size. 

The next consideration is the size of the 
elements. The importance of it can be seen 
from the fact that the price of solving M 
linear equations with at bandwidth in the 
coefficient matrix of B is = MB2. Hence the 
price for solving a n-dimensional is inver- 
sely propo tional to the element size in 
the (3n-2)ts* power. 

An acceptable element size may be esti- 
mated from error in the phase velocity in- 
troduced by the discretization. The phase 
velocity can be found by analyzing an in- 
finite waveguide if finite sized layers 
[4]. Fig. 1 shows the normalized phase 
velocity, cCp/c~, vs. the normalized element 
size, l/X, where X is the wave length. The 
phase velocity is shown for various mass 
matrices, Ma, which are linear combinations 
of the consistent, and the lumped, Mol mass 
matrices. MQ = a MI + (1-a) MO. 

1 

0 0.5 
l / X  

1.0 

Fig. 1. Phase velocity vs. element size in 
FEM model for various mass matri- 
ces. 

It can be seen that the lumped mass ma- 
trix results in too low a phase velocity 
whereas for l/X < 0.5 the consistent mass 
matrix results in too high a phase velocity 

and that a combination in most cases is 
superior. 

If the relative error of the phase velo- 
city is required to be within a limit, + E ,  
an optimal value, aoptr ’can be chosen so 
l/x becomes largest possible before the 
error is exceeded. Selected values can be 
seen from the table below. 

0.61 
0.66 
0.80 

Table 1. Optimal Q values and allowable 
element size for selected acceptable 
errors in phase velocity. 

V. Eigenfrequency Analysis. 

The undamped eigenfrequencies of a 
transducer can be found from the FEM model 
by solving the algebraic eigenvalue problem 
that arise from the equations if o is con- 
sidered to be unknown. The model has as 
many eigenvalues as there are DOFs, but 
only very few of interest. Therefore the 
eigenvalues and eigenvectors are found by 
inverse sub-space iteration, as this 
method can be used to find a few eigen- 
vectors in a selected frequency range via a 
frequency shift in the iterations. Even 
then the method may find many eigenfrequen- 
cies that are of little interest as their 
coupling factors , keff , are small. keff 
for a given mode can be found from the 
eigenfrequencies for short circuit (f,) and 
free electrodes (fp) [6]. This can be used 
to discriminate the modes with low coupl- 
ing. Still their presence may degrade the 
convergence of the iterations and require 
more vectors to be iterated simultaneously. 

.- 
Short Circuit Disconnected 
fs = 1.945 MHZ. fp = 1.954 MHz. 

Fig. 2. Mode of curved disk with constraint 
to prevent bending. 
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Fig. 3. Mode of transducer with conical 
backing for short circuit and free 
electrodes. 

The boundary conditions or constraint 
equations may then be used to suppress un 
interesting modes. Fig. 2 shows an example 
of a freely vibrating spherical cap for a 
weakly focused transducer, where the bend- 
ing modes have been suppressed by 
constraining the nodes on the back of the 
cap to have same axial displacement. Both 
the short circuit and the free electrode 
conditions are shown. The diameter is 8 mm. 
and the thickness is 1 mm. The material is 
PZ-29 from Ferroperm. This and the next 
figures show the deformed grid for the com- 
plete model and contours of constant elec- 
tric potential for the piezoelectric part. 
The models are axi-symmetric around the 
horizontal baseline. 

Figure 3 shows the same disk as figure 2 
but now it has been mounted on a conical 
backing of cast iron, which has nearly the 
same impedance as the PZ-29. 

VI. steady State Solution. 

If radiation losses or internal damping is 
included in the analysis and finite valued 
boundary conditions are enforced the eigen- 
frequency analysis is no longer applicable. 
The equations may then be solved for a 
single frequency at a time as a set of 
linear equations. In combination with FFT 
this method can be used to find the tran- 
sient response of a transducer. Figure 4 
shows the transducer from figure 3, but now 
radiating into water at the frequency of 
maximum radiated effect. 

f- 1.8800 MHz 

Fig. 4 .  Vibration pattern for transducer 
radiating into water at the fre- 
quency of maximum output effect. 

VII. Conclusion 

The finite element method is a standard 
method that is applicable to the analysis 
of piezoelectric transducers. The method 
can be computationally demanding, so care 
must be taken to keep the FEM models small. 
Some methods for doing this have been indi- 
cated and typical examples of the use of 
FEM have been given to demonstrate the kind 
of results that is obtained. To utilize the 
method, it is important to have good post- 
processing facilities to generate graphs 
and compress the information in the re- 
sults * 
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