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1. Introduction 
During the past decade there has been considerable research on ground penetrat- 
ing radar (GPR) tomography for detecting objects such as pipes, cables, mines, 
and barrels buried under the surface of the earth. While the earlier researches 
were all based on the assumption of a homogeneous background for simplic- 
ity, the planar air-soil interface has also been taken into account in two recently 
developed algorithms [1,2]. These inversion schemes are both based on the first 
Born approximation, where a plane wave expansion of the dyadic Green function 
and an asymptotic formula valid for objects that are buried a few wavelengths 
from the air-soil interface is introduced in [I] ,  while a far-field expression for the 
same dyadic Green function, which is valid when the object is located far from 
the interface, is employed in [2]. Despite the fact that the Born approximation is 
valid for low contrast scatterers, both inversion schemes have proven successful 
in detecting the location of high contrast conducting bodies (cf. [ l ,  Fig. 61). 

In this paper we address a general formulation for GPR imaging of buried 3-D 
metallic objects within the physical optics (PO) approximation which also high- 
lights the analytical background behind the success of methods employed in [1,2] 
in identifying high contrast scatterers. 

2. The Forward Model 
The GPR configuration is shown in Figure I in which a planar interface sepa- 
rates air from soil. A Cartesian zyz coordinate system is introduced such that 
the plane coincides with the interface and such that the upper region z > 0 
is air with permittivity t o  and permeability p~g while the lower region z < 0 is 
homogeneous and lossless soil with permittivity e l ,  permeability PO. However, 
the inversion algorithm is still expected to prove successful for small losses in 
soil as in [1,2] (see [1,2] fordetails). 
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Figure 1: The fixed-offset GPR configuration. 
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All constitutive parameters are assumed real and constant over the bandwidth of 
the transmitter. The propagation constant of air is ko = w@ and that of soil is 
kl  = w& (time factor exp (-2wt)). The transmitting and receiving antennas 
are assumed to be ideal dipoles situated at rt = Rt + i z t  and r, = R, + ti, 
respectively, with the fixed-offset rA = rt - r7 = RA + zzA. The transmitting 
dipole has its dipole moment parallel to the unit vector pt, and its current density 
is denoted by I(w). The receiving dipole determines directly the pr component 
of the electric field. 

Replacing the asymptotic expansion of the dyadic Green function G for the pla- 
nar interface under the far-field approximation (see [2] for details) in the expres- 
sion of the background electric field [l, eq.(lO)] 

E*(r’,w) = i w / r o I ( w ) p t .  G ( r t , r ’ , w )  , z’ < 0 (1) 

helps us to express the background electromagnetic field as a uniform plane wave 
propagating along the -Rto direction as 

Eb(r’, w )  = E,cxp (-zklRt,, . r’) 

Hb(r‘,w) = --Rt, x E,exp ( -zklRto r’) , ZI = E 
P a )  

(26) 
1 -  

21 
with 

E, = Eo(rt,  Tor w )  = I ( w )  C ( r t ,  r,, w )  P t  . F(Kt,, U) 

E,, . Rt, = 0 
( 2 4  

(24 

where 

is the position vector which localizes the buried body and 

ro = kzo + yyo + iz, , z, < 0 ( 2 f )  

In (2c) F stands for a non-invertable dyadic, a closed form expression of which is 
already available in literature (cf.[l, eq.(6)]). The physical optics current density 
is expressed as 

2 ”  Jro(r’, w )  = 2yu(r’) x Hb(r’, w )  = -- [Rt,(y, . E,) - E,(y, Rt,) ]  
z1 

. exp (-zklRt, . r’) (3a) 
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where 

In (3b), U is the unit step function and n’, y, and y, denote the unit normal vector, 
the scalar singular function [3], and the illuminated side vector singular function 
of the scatterer surface, respectively. 

Replacing (3a) and the asymptotic expression of the dyadic Green function [2] 
into the integral representation of the scattered field at the receiver point, 

yu(r’) = y(r’)v(&, . ii’)ii’. (3b) 

yields 

where 

Eq. (5a) is a relation between the two projections of the illuminated side vector 
singular function y, and the expression of the scattered field at the receiver lo- 
cation. Next we shall express F in (Sa) as the multiplication of the transmission 
dyadic T l o  for the planar interface and the plane wave spectrum of an arbitrary 
Hertzian dipole in free space, namely 

We hereby note, without giving its closed-form expression, that T 1 0  is invertable 
and reduces to the identity dyadic 1 when ko = kl .  

For the zero-offset case a,, = a,,, (2d) yields go . E, = 0 and the right-hand 
side of (5a) simplifies as 

. ,  
where 

is the scalar object function, and the forward model can be expressed as 
O(r’) = Tu(‘’) . it,, 

Pr .ES(r , ,w)  = D(rr,ro,w) @&%,) 

(8) 

( 9 4  

with 
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When compared with the forward model derived under the assumption of the 
first Born approximation [2], one observes that they, except for an unimportant 
factor, possess the same form. This explains why the Born-inversion models of 
[1,2] can be used to detect metallic objects. 

The forward model for the fixed-offset case R,, # R,, (therefore R,, . E, # O), 
inspired by the frequency diversity algorithms in the works of Langenberg et al. 
( cf. [4]), can be denved by scalar multiplying each side of the relation 

by R,, and E; respectively to get two equations for the two projections -f,L . E, 
and vu . RI, as follows: 

Here the asterix denotes the complex conjugate and the presence of the inverse 
ofthis matiix is obvious since its determinant lR,,.E,J2+IE,IZ((Rto.R,,)2- 1) 
is identically nonzero. 

3. Concluding Remarks 
We hereby like to note that in practice it is not necessary to measure the z- 
component of the scattered electric field for fixed-offset case; since the z -  com- 
ponents of E, (due to eq.(2d)) and RI,, R,, can be expressed as a linear combi- 
nation of their other two components, one can always get sufficient information 
by extracting the first two component_s of these vectors and the first two rows and 
columns of the transmission dyadic T i ” .  
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